Programming Correctly by
Stepwise Refinement

Brought to you by:
Shiri Dori
Shai Erera

Ad-hoc programming

[oday, as in the past, some
programmers just start writing, and
“cross their fingers” in hope

Debugging is long and disappointing

Rewrites or patchwork code are
needed to fix errors

[rial and error — with many errors!

What we will see today

Last week, Yaniv and Hagai showed
us top-down design, and explained
why correctness proof is infeasible

We'll explore both topics in further
depth:

B Stepwise Refinement — how to construct
a top-down design successfully

B Correctness — how to convince yourself
of program correctness

Stepwise Refinement and
Top-Down Design

High Level
Description
Middle Level 5 R Middle Level
Description Description
/\ —
P P Inter-level Interaction

Papers

N. Wirth, Program Development by
Stepwise Refinement,
Communications of the ACM, 14, 4
(1971) 221-227.

H. D. Mills, How to write correct
programs and know it, Proceedings of
the international conference on
Reliable software (1975) 363-370

Program Development by Stepwise
Refinement

a b ¢ d e f g h
8 @ 8
7 \%p 7
5@ 6
5 \%ﬁs
4 @ 4
3 @ 3
2 @ 2
1 \%‘ 1
b ¢ d f g h

Motivation

Programming is taught usually by
examples

Students learn finished products

[herefore, students focus on the
Programming Language’s syntax
rather than its logic

However, programming often consists
of the design of new products, rather
than the maintenance of old ones

Stepwise Refinement

Program development can be expressed as
a sequence of refinement steps

In each step several instructions are
decomposed into more detailed ones

This process terminates when the
instructions are expressed in terms of the
underlying PL

The idea is demonstrated by analyzing the
8-Queens problem

8-Queens Problem

Objective: place 8 queens on a chess
board such that no queen may be
taken by another

We can view the problem as if we
have a set A of all configurations on
the board and we need to select one
that matches the above criteria

[he size of A is enormous (~232)

8-Queens Problem (cont)

In the 70s, a strong computer would
take ~7 hours to complete the task

Reduce the size of A by defining that
each queen is placed in a different
column

Change the criterion into 2 different
criteria such that both form the
original criterion

8-Queens Problem (cont)

Now a strong computer would take
~100 seconds to complete the task

However a very slow computer would
take ~280 hours to complete the task

Need to break the problem further by
solving partial configurations

8-Queens Problem (cont)

Breaking the problem further:

B Place 1 queen and check g

B Place the second queen in a square
where g holds

B Continue until all the queens are placed

Based on the assumption that checking g

for fewer queens is easier

A partial solution cannot be extended to a
full solution if it does not match the
criterion

8-Queens — Pseudo Code

j:i=1
repeat trystep j;

if successful then advance else regress
until j <1)V (j > n)

8-Queens — First Draft

considerFirstColumn
repeat|tryColumn|
iIf safe then
setQueen;
considerNextColumn
else[reg ress]
until lastColDone V regressOutOfFirstCol

8-Queens — Refinement

procedure tryColumn
repeat advancePointer; testSquare
until safe V lastSquare

procedure regress
reconsiderPriorColumn
If not regressOutOfFirstCol then
removeQueen
iIf lastSquare then
reconsiderPriorColumn;
If not regressOutOfFirstCol then
removeQueen

8-Queens - Outline

considerFirstColumn
repeat tryColumn
iIf safe then
setQueen;
considerNextColumn
else regress
until lastColDone V regressOutOfFirstCol

8-Queens — Data Representation

8Xx8 boolean matrix

Need to consider data representation
in terms of efficiency and ease of
performing the various operations

What about a vector of size 8?

8-Queens — Further Refinement

integer j
integer array x[1:8]

procedure considerFirstCol
Jj=1
x[1] = 0;

procedure considerNextCol
J =]+ 1
x[j] = 0;

procedure reconsiderPriorCol
j=j-1

procedure advancePointer
x(j] = x[j] + 1

procedure /astSquare
return x[j] ==

procedure testColDone
returnj > 8

procedure regressOutOfFirstCol
returnj < 1

8-Queens - Diving Deeper

Now the program is expressed in the
terms:

B testSquare

B setQueen

B removeQueen

testSquare, which is a very frequent
method, needs a more efficient way
to calculate

8-Queens — More DS

[0 help testSquare efficiency we
introduce the following boolean
arrays:

B alk] = true; row k is free

B b[k] = true; diagonal “/” is free

B c[k] = true; diagonal *\" is free
How to check b and c efficiently?

8-Queens — More DS (cont)

procedure testSquare

safe := a[x[j]] A b[j + x[j]] A c[j = x[j]]
procedure setQueen

a[x[j]] = b[j + x[j]] = c[j — x[j]] := false
procedure removeQueen

alx[jl]l = b[j + x[jl] = c[j = x[j]] := true

Since x/[j] is examined frequently, the
integer /7 is set instead of x/j]

8-Queens - Outline

considerFirstColumn
repeat tryColumn
iIf safe then
setQueen;
considerNextColumn
else regress
until lastColDone V regressOutOfFirstCol

8-Queens — Final Program

ji=1;i1:=0;
repeat
repeati := i+1; testSquare
until safe V (i = 8);
if safe then
setQueen;
x[j] :i=1;,j:=jJ+1;1i:=0;
else regress
until (j > 8) V(i< 1);
if j > 8 then PRINT(x) else FAILURE

8-Queens — Recursion Version

procedure TryColumn(j) ;
begin integeri; i := 0;

repeati :=i1 + 1, testSquare;
If safe then
setQueen; x[j] :=i;

if] < 8 then TryColumn (j + 1);
If not safe then removeQueen
until safe V (i = 8)

Generalized 8-Queens

In certain applications we may want
to output more then one solution

For example, output all possible
configurations of the board
For that we need to:

B Generate more solutions once one is
found

B Determine if all solutions were generated
B Store/Output a solution

Generalized 8-Queens (cont)

considerFirstColumn
repeat tryColumn,;
iIf safe then
setQueen; considerNextColumn,;
iIf /lastColDone then
PRINT(x); regress
else regress
until regressOutOfFirstCol

Generalized 8-Queens (cont)

How to determine if all configurations
were output?

Mark configurations as sequences of
integers from "00000000" to
"88888888”

Note that the configurations are
output in increasing order

Stepwise Refinement — Recap

Program construction consists of
refinement steps

In each step a task is broken into a
number of tasks

A refinement in the task’s description
may be accompanied by a refinement
data’s description, which constitute
the means of communication between
subtasks

Stepwise Refinement — Recap

During the process of stepwise
refinement, a notation which is natural
to the problem in hand should be used
as long as possible

[he notation should develop according
to the programming language that will
be used to implement the solution

If written correctly, solution can easily
be extended for more requirements

How to Write Correct
Programs and Know It

“An Old Myth and New Reality”

Myth: programming is a trial-and-
error method (with lots of errors)

'he Author claims that programmers
can write entirely correct programs

Reality (says Mills): “You can learn to
consistently write programs which are
error free”.

Sounds fantastic, huh?

Mills begins with a discussion, aimed
to convince readers that this is
possible

B Can’t show absence of bugs

B Can't prove correctness

B Acquire confidence in correctness

B You need to know what you want (be
capable enough)

Can’t show absence of bugs

Like Dijkstra said, testing can’t
demonstrate the absence of bugs

You can never be sure you found the
last bug - there may be more...

In fact, says Mills, your confidence
drops with each bug you find

A better solution?
Never find the first bug!

Can’t prove correctness

A Philosophical Discussion: Proofs

Mills says that proof is relative

B Mathematical proof may fail to convince
B Or convince everyone, yet be erroneous
B An intuitive approach can convince more

[herefore, you can never really prove
that a program is error-free

Acquire confidence in correctness

Confidence depends mostly on testing

We are likely to get errors, and as #
of errors increases, confidence drops

But if there are no errors, confidence
will increase with each test passed

[hat is why we should write them
correctly from the start

[he difference between 0 and 1: big!

Correctness vs. Capability

Correctness means that your program
does what you intended it to do

“"Determining what a program should
do is a much deeper problem...”

Capability means you can figure out
what the program should do

But if you know what should happen,
you can make a program to do it

How do we do this?

Usage of black boxes to describe
functionality (input, output)

Assume that each black box is
correct; prove interactions between
the boxes

Interactions such as “sequence”, “if-

77\

else”, “while”, (and procedure calls)
can be shown by reasoning

Connectors — Sequence

4 Sequence Part E====s

— First Part

v

Second Part

Connectors - If-Then-Else

. If-Then-Else .
Part

Then Part

Else Part

Connectors — While

- N
- N
-
- S
7
7 N
. \
. \

Loop Part

A

Small Example

] =0; sum = 0;
while (a[j] > 0) {
sum += al[jl;

Jt++;

»

=

L

We haven't

oop terminate

checked that the

S

What's wrong with this?

Case Study - Dijkstra Algorithm

Env: Directed Weighted Graph

Goal: find shortest path from vertex s
to all other vertices

We do this using Dijkstra’s Algorithm,
which iteratively finds next-closest
vertex to s

Dijkstra’s
Algorithm

Dijkstra Algorithm - initialize

Dijkstra’s
Algorithm

Initialize infinty = Find real
distances distances

Dijkstra Algorithm - distances

Find real
— . —
distances

Find node next-
closest to s and |«
update others

Are there
any reachable
nodes left?

Dijkstra Algorithm - sequence

Find node next-

closest to s and
update others

Find node t with = Update t's
minimal distance neighbors (loop)

Dijkstra — Update Neighbors

Update t's
neighbors (loop)

Then update
new path

If
found better
path

Else - do
nothing

Dijkstra Case Study - So What?

We can continue this test down to the
lowest levels of code (or design)

And convince ourselves that it works

By thinking through the process
carefully, we are likely to avoid most
(if not all) bugs

Conclusion

Programmers can write entirely
correct programs/design that are
extensible

[his can be achieved by:
B Using stepwise refinement,

And making sure that:
B Each level is correct, and

B Integration between parts of each level
IS correct

Stepwise Refinement and
Top-Down Design

High Level
Description
Middle Level 5 R Middle Level
Description Description
/\ —
P P Inter-level Interaction

The Principles of Design

[hink before you do something!
B Plan the general framework
B Be convinced of correctness

[he articles were written in the 70s;
discuss code for small systems

Yet, principles regarding code can be
easily extended to design large
systems

