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Program Structure and readability 

Lefel Yaniv 
Hagay Pollak
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Decomposition into modules 

On the criteria to be used in 
decomposing systems into modules –
by D.L.Parnas.(1972)
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Introduction 

The philosophy of modular programming (1970)

Segmentation of project effort.
System modularity.
Inputs and outputs are well defined. 
Module integrity is tested independently.
System is maintained in modular fashion.

System errors and deficiencies can be traced to specific modules. 
Limiting the scope of detailed error searching. 

4

Major advancement in modular 
programming:

A module can be written with little knowledge of 
code in another module.
Modules can be replaced without reassembly of 
the whole system.

Modular programming 
advancement  
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Managerial – development time reduced.
Product flexibility – one module can be 
changed independently of others.
Comprehensibility – System is better 
designed because it is better understood.  

Benefits of modular 
programming  

6

What is modularization ?

Modularization: partial system description, 
design decisions made prior to commence of 
work.
Module – a responsibility assignment 
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What are the criteria to be used in 
dividing the system into modules ? 
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Input:
An order set of lines.
Each line is an ordered set of words, 
Each word is an ordered set of characters. 

Output:
Listing of all circular shifts of all lines in 
alphabetical order. 

Case study: KWIC index –
description 



5

9

Example:

KWIC index – Modularization 1

Output
AA CC BBB

BBB AA CC

CC BBB AA

ABA CDCD

CDCD ABA 

Input
AA CC BBB

CDCD ABA 
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“Such a system could be produced by a good 
programmer within a week or two”.
We must go through the exercise of treating this 
problem as if it were a large project.

Case study: KWIC index –
remarks 
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Module 1: Input
Read the input into a memory. Create a list of pointers 
which point to the beginning of each line. 

Module 2: Circular Shift.
Prepares an index of the first characters of each 
circular shift. Eventually creating a list of pairs (line 
number, starting address).

KWIC index – Modularization 1
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Example (module 2)
Original line:  Line 2: BBB AA CC

Module 2 output for line 2:
BBB AA CC
AA CC BBB 
CC BBB AA
Represented by 
(2,+0),(2,+4),(2,+7).

KWIC index – Modularization 1 
Cont’
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Module 3: Alphabetizing.
Takes the arrays produced by modules 1,2.
Arranges the circular shifts in alphabetically order.
New data is kept in same format as in module 2.  

KWIC index – Modularization 1
Cont’

14

Example (module 3)
Original data set: (2,+0),(2,+4),(2,+7).
Alphabetically sorted set: (2,+4),(2,+0),(2,+7)

KWIC index – Modularization 1 
Cont’

After
(2,+4),(2,+0),(2,+7)

AA CC BBB

BBB AA CC

CC BBB AA

Before
(2,+0),(2,+4),(2,+7)

BBB AA CC

AA CC BBB

CC BBB AA
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Module 4: Output.
Listing circular shifts. 

Module 5: Master Control
Control sequencing (modules 1,2,3,4).
Handle error messages, space allocation, etc.

KWIC index – Modularization 1
Cont’
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KWIC index – Modularization 1
scheme

Circular
ShiftInput Alphabetizing Output

Control

Modularization 1 scheme 
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Module 1: Line Storage 
Handles all data storage of the lines and characters. 

Module 2: Input.
Reads lines from input.
Calls Line Storage module to store the  lines in the memory. 

Module 3: Circular Shift.
Function CSSETUP() – must be called before the used of other 
functions in the module. 
Function CSCHAR(I,w,c) – provides the value representing the 
cth character in the wth word of the Ith circular shift of all lines.
Other functions TBD. 

KWIC index – Modularization 2
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Module 4: Alphabetizer 
Function ALPH – performs module setup. 
Function ITH(i) – returns the index of the circular 
shift line which comes ith in the alphabetical ordering. 

Module 5: Output 
Provides interface for printing the desired output.  

Module 6: Master Control. 
Similar to modularization 1.

KWIC index – Modularization 2
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KWIC index – Modularization 2
Static Model

Circular
ShifterInput Alphabetizer Output Control

Modularization 2 scheme 

* Additional internal connections might exist.

Line Storage

20

KWIC index – Modularization 2 
Dynamic Model

Circular
Shifter

Input

Alphabetizer

Output

Control

Line Storage
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Both decompositions will work.
Both provide a well defined segmentation of the 
system. 
The decompositions are identical in the runnable 
representation (same output).

Modularization comparison –
Commonalities  

22

The two decompositions have different 
representations for 

Changing
Documenting
Understanding
Etc. 

Other representations are part of the system, 
and not only the running part.

Modularization comparison –
Dissimilarities   
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Design decisions which are likely to change 
(partial list):

Input format
Data structure
Function (method) implementation
Sequencing of events (setup and build a list or trace 
data according to demand)

Modularization comparison –
Changeability    

24

Modularization comparison –
KWIC Changeability examples 

Alphabetizer Output, alphabetizerAlphabetizing

Circular shifter 
module

Alphabetizer, 
output, circular 
shifting modules

Circular shift 
format

Line Storage moduleAll modulesData packing 

Input module  Input module Input format 
IIIModularChange
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Modularization I
Modules share the same physical data structure. 
The development of data formats will be a joint effort by 
the development groups. 

Modularization II 
Abstract interfaces, consist mainly in function names and 
parameters. 
Relatively simple decisions required, thus development of 
modules begins earlier (than in modularization I). 

Modularization comparison –
Independent Development     
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Modularization I
The system will only be comprehensible as a 
whole.

Modularization II 
Each module is independent. To understand a 
module, one needs only to understand the module, 
and the interfaces to other modules. 

Modularization comparison –
Comprehensibility      



14

27

Decompositions - Criteria used 

Modularization I
Each module is a major step in the processing. 
Modules derive from a flowchart. 

Modularization II
“Information hiding” used both for data and for 
implementation. 

28

Decompositions - Criteria offered 
(encapsulating into modules)

Data structure and accessing functions.
Similar data should be hidden in a module. 
Sequence of instructions.
Sequence of processing of data items. 
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Decompositions - Efficiency

The separation between modules is required 
for the readability representation, not in the 
running representation of the program.
Inter module function calls raise procedure 
call overhead.
Can be improved by compiler - time 
optimization.

30

Hierarchical structure 

Hierarchical structure is used if a module “uses” or 
“depends on” another module. 
Hierarchical structure and decomposition are two 
independent properties of system structure. 
Benefits of partial ordering:

Higher levels of the system are simplified since they use 
the services of lower levels. 
Ability to replace system components in the hierarchical 
structure. 
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Conclusion

It is incorrect to decompose the system into 
modules on the basis of a flowchart.
Modules will not necessarily correspond to steps in 
the processing. 
Build a list of design decision likely to change. 
Each module is designed to hide such decisions 
from the others.
Assemble programs as a collection of code from 
various modules.

32

Structured programming  

By Edsger W. Dijkstra (1969)
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Introduction  

Is it possible to increase programming 
ability? 
What techniques should then be applied in 
the process of program composition?

34

Program size

This discussion is concerned with programs 
that are large due to complexity of their task.
Consider a program including N modules.
Let us assume the probability of correctness 
of each module is p.
Therefore the probability of correctness of 
the program is Q = p^N. 
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Program size

For a large N, p must be close to 1, if Q is to 
differ significantly from 0.
Combining subsets into large components 
does not improve the correctness of the 
program. p^(N/2)*p^(N/2) = p^N= Q.

36

Program size – family of 
programs

A large program is always a series of 
versions of the program.
Different versions perform the same and/or 
similar tasks.
We consider a program to be a member of a 
family, sharing components, correctness and 
substructure.
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Program correctness 

Program testing can be used to show the 
presence of bugs, but never to show their 
absence.
Program correctness should be proved on 
account of the program text. 

38

Program correctness 

Program correctness can be proved. 
The effort required to prove program 
correctness may grow exponentially with 
program growth.
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The relation between program 
and computation

When programs are expressed as linear 
sequence of statements, sequencing should 
not be controlled by statements transferring 
control to labeled points (e.g. goto 
statements).

40

The relation between program 
and computation

Let us consider a program, P1, of the form: 
S1, S2, S3, …, SN; where Si, is an individual  
statement.
N steps of reasoning are needed to establish 
the correctness of P1.
For the statement: if B then S1 else S2 , 2 
steps of reasoning are needed.
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The relation between program 
and computation

Let P2 be the program:
if B1 then S11 else S12
if B2 then S21 else S22
…
if BN then SN1 else SN2

To reduce P2 to the form of P1 it takes 2N steps.
And then another N steps to understand the form of 
P1. Altogether 3N steps.

42

The relation between program 
and computation

Trying to understand the algorithm as Sij
would lead to N*2^N steps of reasoning.
Explanation: for each N statements consider 
2^N options of executions.
Conclusion: programs of the form P1 are 
preferable for step-wise abstraction.



22

43

Abstract data structures

Abstract data structures and abstract 
statements (e.g. routines) represent design 
decisions.
They are the natural unit of interchange for 
program modification.
Let us call such a unit - a “pearl”.
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Programs as necklaces strung from 
pearls

A program is an ordered set of pearls – a 
necklace.
The top pearl describes the program in its 
most abstract form.
Lower pearls define and refine the upper 
pearls.
Pearl seems to be a natural program module.
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Programs as necklaces strung from 
pearls

Specific design decision is actually an aspect of 
original problem statement.
A pearl embodies specific design decision.
Lower half of a necklace is the implementation of 
the upper half.
Thus, the correctness of the upper half of the 
necklace can be established regardless of the choice 
of the bottom half.

46

Programs as necklaces strung from 
pearls

The family of programs is the set of 
selections from a collection of pearls that can 
be strung into a necklace.
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Conclusion

Testing of a program is not a proof of 
correctness.
The proof process requires abstraction of the 
statements.
Design using the pearl model provides the 
abstraction required for the proof of 
correctness.

48

Goto statement

“Goto statement considered harmful” –
By Edsger W. Dijkstra (1968)
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Motivation

A programmer’s activity seems to end when 
he constructed a correct program.
A process is the dynamic behavior of a 
program.
The main issue of the program is its process.
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Motivation – cont’

A program is the static description of a 
process.
Our powers to visualize dynamic behavior 
are poorly developed.
Our objective is to shorten the conceptual 
gap between the static program and the 
dynamic process.
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Process progress  

Suppose a process stopped during execution, 
how can we redo the process to the same 
point?

52

Process progress  

Consider a program which includes 
assignments and conditional clauses.
It is sufficient to point to the relevant text.
Such a pointer will be called: “textual 
pointer”.
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Process progress – cont’

As we include procedures in the program, we 
also have to give an index to the procedure 
call.
We characterize the progress of the process 
by a sequence of textual indices.
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Process progress – cont’

As we include repetition clauses in the program, we 
use “dynamic indexing”.
Each entry into a repetition clause changes the index.
The “dynamic index” enables counting of 
repetitions.
The progress of the process is uniquely described by 
a (mixed) sequence of textual and/or dynamic 
indices.
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Process progress – cont’

We have a defined a coordinate system,  
describing the progress of the process. 
Now we can evaluate every variable in the 
program.

56

Goto statements 

Goto statements make it hard to find a 
meaningful coordinate system describing the 
progress of the process.
The difficulty is that such a system, although 
unique is still unhelpful.
We can’t maintain a list of goto calls, as we 
did in the function calls, since the return 
locations are hard to trace.
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Conclusion 

Goto statements make it hard to understand, 
read the code, and analyze the progress of the 
process. 
Since one of the roles of the program is the 
text representation, use of goto statements 
misses the program goals and should not be 
used.

58

Discussion 


