
1

1

Programming Languages Seminar

Program Structure and readability

Lefel Yaniv
Hagay Pollak

2

Decomposition into modules

On the criteria to be used in
decomposing systems into modules –
by D.L.Parnas.(1972)

2

3

Introduction

The philosophy of modular programming (1970)

Segmentation of project effort.
System modularity.
Inputs and outputs are well defined.
Module integrity is tested independently.
System is maintained in modular fashion.

System errors and deficiencies can be traced to specific modules.
Limiting the scope of detailed error searching.

4

Major advancement in modular
programming:

A module can be written with little knowledge of
code in another module.
Modules can be replaced without reassembly of
the whole system.

Modular programming
advancement

3

5

Managerial – development time reduced.
Product flexibility – one module can be
changed independently of others.
Comprehensibility – System is better
designed because it is better understood.

Benefits of modular
programming

6

What is modularization ?

Modularization: partial system description,
design decisions made prior to commence of
work.
Module – a responsibility assignment

4

7

What are the criteria to be used in
dividing the system into modules ?

8

Input:
An order set of lines.
Each line is an ordered set of words,
Each word is an ordered set of characters.

Output:
Listing of all circular shifts of all lines in
alphabetical order.

Case study: KWIC index –
description

5

9

Example:

KWIC index – Modularization 1

Output
AA CC BBB

BBB AA CC

CC BBB AA

ABA CDCD

CDCD ABA

Input
AA CC BBB

CDCD ABA

10

“Such a system could be produced by a good
programmer within a week or two”.
We must go through the exercise of treating this
problem as if it were a large project.

Case study: KWIC index –
remarks

6

11

Module 1: Input
Read the input into a memory. Create a list of pointers
which point to the beginning of each line.

Module 2: Circular Shift.
Prepares an index of the first characters of each
circular shift. Eventually creating a list of pairs (line
number, starting address).

KWIC index – Modularization 1

12

Example (module 2)
Original line: Line 2: BBB AA CC

Module 2 output for line 2:
BBB AA CC
AA CC BBB
CC BBB AA
Represented by
(2,+0),(2,+4),(2,+7).

KWIC index – Modularization 1
Cont’

7

13

Module 3: Alphabetizing.
Takes the arrays produced by modules 1,2.
Arranges the circular shifts in alphabetically order.
New data is kept in same format as in module 2.

KWIC index – Modularization 1
Cont’

14

Example (module 3)
Original data set: (2,+0),(2,+4),(2,+7).
Alphabetically sorted set: (2,+4),(2,+0),(2,+7)

KWIC index – Modularization 1
Cont’

After
(2,+4),(2,+0),(2,+7)

AA CC BBB

BBB AA CC

CC BBB AA

Before
(2,+0),(2,+4),(2,+7)

BBB AA CC

AA CC BBB

CC BBB AA

8

15

Module 4: Output.
Listing circular shifts.

Module 5: Master Control
Control sequencing (modules 1,2,3,4).
Handle error messages, space allocation, etc.

KWIC index – Modularization 1
Cont’

16

KWIC index – Modularization 1
scheme

Circular
ShiftInput Alphabetizing Output

Control

Modularization 1 scheme

9

17

Module 1: Line Storage
Handles all data storage of the lines and characters.

Module 2: Input.
Reads lines from input.
Calls Line Storage module to store the lines in the memory.

Module 3: Circular Shift.
Function CSSETUP() – must be called before the used of other
functions in the module.
Function CSCHAR(I,w,c) – provides the value representing the
cth character in the wth word of the Ith circular shift of all lines.
Other functions TBD.

KWIC index – Modularization 2

18

Module 4: Alphabetizer
Function ALPH – performs module setup.
Function ITH(i) – returns the index of the circular
shift line which comes ith in the alphabetical ordering.

Module 5: Output
Provides interface for printing the desired output.

Module 6: Master Control.
Similar to modularization 1.

KWIC index – Modularization 2

10

19

KWIC index – Modularization 2
Static Model

Circular
ShifterInput Alphabetizer Output Control

Modularization 2 scheme

* Additional internal connections might exist.

Line Storage

20

KWIC index – Modularization 2
Dynamic Model

Circular
Shifter

Input

Alphabetizer

Output

Control

Line Storage

11

21

Both decompositions will work.
Both provide a well defined segmentation of the
system.
The decompositions are identical in the runnable
representation (same output).

Modularization comparison –
Commonalities

22

The two decompositions have different
representations for

Changing
Documenting
Understanding
Etc.

Other representations are part of the system,
and not only the running part.

Modularization comparison –
Dissimilarities

12

23

Design decisions which are likely to change
(partial list):

Input format
Data structure
Function (method) implementation
Sequencing of events (setup and build a list or trace
data according to demand)

Modularization comparison –
Changeability

24

Modularization comparison –
KWIC Changeability examples

Alphabetizer Output, alphabetizerAlphabetizing

Circular shifter
module

Alphabetizer,
output, circular
shifting modules

Circular shift
format

Line Storage moduleAll modulesData packing

Input module Input module Input format
IIIModularChange

13

25

Modularization I
Modules share the same physical data structure.
The development of data formats will be a joint effort by
the development groups.

Modularization II
Abstract interfaces, consist mainly in function names and
parameters.
Relatively simple decisions required, thus development of
modules begins earlier (than in modularization I).

Modularization comparison –
Independent Development

26

Modularization I
The system will only be comprehensible as a
whole.

Modularization II
Each module is independent. To understand a
module, one needs only to understand the module,
and the interfaces to other modules.

Modularization comparison –
Comprehensibility

14

27

Decompositions - Criteria used

Modularization I
Each module is a major step in the processing.
Modules derive from a flowchart.

Modularization II
“Information hiding” used both for data and for
implementation.

28

Decompositions - Criteria offered
(encapsulating into modules)

Data structure and accessing functions.
Similar data should be hidden in a module.
Sequence of instructions.
Sequence of processing of data items.

15

29

Decompositions - Efficiency

The separation between modules is required
for the readability representation, not in the
running representation of the program.
Inter module function calls raise procedure
call overhead.
Can be improved by compiler - time
optimization.

30

Hierarchical structure

Hierarchical structure is used if a module “uses” or
“depends on” another module.
Hierarchical structure and decomposition are two
independent properties of system structure.
Benefits of partial ordering:

Higher levels of the system are simplified since they use
the services of lower levels.
Ability to replace system components in the hierarchical
structure.

16

31

Conclusion

It is incorrect to decompose the system into
modules on the basis of a flowchart.
Modules will not necessarily correspond to steps in
the processing.
Build a list of design decision likely to change.
Each module is designed to hide such decisions
from the others.
Assemble programs as a collection of code from
various modules.

32

Structured programming

By Edsger W. Dijkstra (1969)

17

33

Introduction

Is it possible to increase programming
ability?
What techniques should then be applied in
the process of program composition?

34

Program size

This discussion is concerned with programs
that are large due to complexity of their task.
Consider a program including N modules.
Let us assume the probability of correctness
of each module is p.
Therefore the probability of correctness of
the program is Q = p^N.

18

35

Program size

For a large N, p must be close to 1, if Q is to
differ significantly from 0.
Combining subsets into large components
does not improve the correctness of the
program. p^(N/2)*p^(N/2) = p^N= Q.

36

Program size – family of
programs

A large program is always a series of
versions of the program.
Different versions perform the same and/or
similar tasks.
We consider a program to be a member of a
family, sharing components, correctness and
substructure.

19

37

Program correctness

Program testing can be used to show the
presence of bugs, but never to show their
absence.
Program correctness should be proved on
account of the program text.

38

Program correctness

Program correctness can be proved.
The effort required to prove program
correctness may grow exponentially with
program growth.

20

39

The relation between program
and computation

When programs are expressed as linear
sequence of statements, sequencing should
not be controlled by statements transferring
control to labeled points (e.g. goto
statements).

40

The relation between program
and computation

Let us consider a program, P1, of the form:
S1, S2, S3, …, SN; where Si, is an individual
statement.
N steps of reasoning are needed to establish
the correctness of P1.
For the statement: if B then S1 else S2 , 2
steps of reasoning are needed.

21

41

The relation between program
and computation

Let P2 be the program:
if B1 then S11 else S12
if B2 then S21 else S22
…
if BN then SN1 else SN2

To reduce P2 to the form of P1 it takes 2N steps.
And then another N steps to understand the form of
P1. Altogether 3N steps.

42

The relation between program
and computation

Trying to understand the algorithm as Sij
would lead to N*2^N steps of reasoning.
Explanation: for each N statements consider
2^N options of executions.
Conclusion: programs of the form P1 are
preferable for step-wise abstraction.

22

43

Abstract data structures

Abstract data structures and abstract
statements (e.g. routines) represent design
decisions.
They are the natural unit of interchange for
program modification.
Let us call such a unit - a “pearl”.

44

Programs as necklaces strung from
pearls

A program is an ordered set of pearls – a
necklace.
The top pearl describes the program in its
most abstract form.
Lower pearls define and refine the upper
pearls.
Pearl seems to be a natural program module.

23

45

Programs as necklaces strung from
pearls

Specific design decision is actually an aspect of
original problem statement.
A pearl embodies specific design decision.
Lower half of a necklace is the implementation of
the upper half.
Thus, the correctness of the upper half of the
necklace can be established regardless of the choice
of the bottom half.

46

Programs as necklaces strung from
pearls

The family of programs is the set of
selections from a collection of pearls that can
be strung into a necklace.

24

47

Conclusion

Testing of a program is not a proof of
correctness.
The proof process requires abstraction of the
statements.
Design using the pearl model provides the
abstraction required for the proof of
correctness.

48

Goto statement

“Goto statement considered harmful” –
By Edsger W. Dijkstra (1968)

25

49

Motivation

A programmer’s activity seems to end when
he constructed a correct program.
A process is the dynamic behavior of a
program.
The main issue of the program is its process.

50

Motivation – cont’

A program is the static description of a
process.
Our powers to visualize dynamic behavior
are poorly developed.
Our objective is to shorten the conceptual
gap between the static program and the
dynamic process.

26

51

Process progress

Suppose a process stopped during execution,
how can we redo the process to the same
point?

52

Process progress

Consider a program which includes
assignments and conditional clauses.
It is sufficient to point to the relevant text.
Such a pointer will be called: “textual
pointer”.

27

53

Process progress – cont’

As we include procedures in the program, we
also have to give an index to the procedure
call.
We characterize the progress of the process
by a sequence of textual indices.

54

Process progress – cont’

As we include repetition clauses in the program, we
use “dynamic indexing”.
Each entry into a repetition clause changes the index.
The “dynamic index” enables counting of
repetitions.
The progress of the process is uniquely described by
a (mixed) sequence of textual and/or dynamic
indices.

28

55

Process progress – cont’

We have a defined a coordinate system,
describing the progress of the process.
Now we can evaluate every variable in the
program.

56

Goto statements

Goto statements make it hard to find a
meaningful coordinate system describing the
progress of the process.
The difficulty is that such a system, although
unique is still unhelpful.
We can’t maintain a list of goto calls, as we
did in the function calls, since the return
locations are hard to trace.

29

57

Conclusion

Goto statements make it hard to understand,
read the code, and analyze the progress of the
process.
Since one of the roles of the program is the
text representation, use of goto statements
misses the program goals and should not be
used.

58

Discussion

