
�����
�
����	

�

���

Department of Computer Science
����
�
���������

University of Haifa

����������
�
����
�
�������� �
�
!"#
�
����
�
$�%&
�
'"()*$
�
)$

Mount Carmel, 31905 Haifa, Israel Phone: +972-4-8240259 Fax: +972-4-8249331

Laboratory in Natural Language Processing (203.4650)

Shuly Wintner

Semester A, 2004-5: Wednesday, 16:00–18:00

http://cs.haifa.ac.il/ ∼ shuly/teaching/05/lab/

1 Objectives

The Lab offers a number of practical projects in Natural Language Processing, mostly geared towards processing
of Hebrew. Some projects require previous knowledge of computational linguistics but some assume no previous
background. All projects involve programming: the end result is a relatively large-scale, well-documented and ef-
ficient software package. Some of the projects may involve also some research (e.g., reading a research paper and
implementing its ideas).

2 List of projects

2.1 Web crawler for collecting Hebrew and bilingual corpora

No background in NLP is required
Text corpora are the single most important resource for a variety of NLP applications. They are used to provide

word frequency counts for statistical NLP and information retrieval applications such as part-of-speech taggers, shal-
low parsers, categorization and summarization, to list just a few. Collecting corpora, representing and maintaining
them are non-trivial tasks. The objective of this project isto collect a large number of Hebrew documents by crawling
the web. A secondary objective is to create a bilingual corpus of similar texts.

You will develop software for collecting Hebrew as well as Hebrew-English corpora. The main technique is web-
crawling: a program which crawls the web and searches for relevant documents. For the Hebrew corpus, a sufficient
condition is that the document be in Hebrew. You will developa subroutine which determines the language of a
document using simple cues. Once a document is determined tobe in Hebrew, the software will store it and index it.
Indexing is required in order to determine whether the same (or a very similar) document has already been collected.
Note that while many web sites are relatively static, many change on a daily basis (e.g., newspapers).

Constructing a bilingual corpus is more involved. Search here will be limited to a number of dynamic web sites
which are known to have similar documents in the two languages (e.g., some newspapers). Using cues such as URLs
and resources such as a bilingual dictionary, you will have to determine whether two documents are indeed “similar”,
and if they are, collect and store them. Once a parallel corpus is available, you will use an existing tool (GIZA++, Och
and Ney (2000)) to implement sentence- and word-level alignment of the texts in the corpus.

2.2 Consolidation of bilingual dictionaries

No background in NLP is required
A crucial resource for almost any NLP application is a lexicon. For Hebrew, a large-scale, broad-coverage lexicon

is currently being build at the Knowledge Center for Hebrew Telecommunication. It is represented in XML according
to a well-defined and well-documented schema.

For multilingual applications, bilingual extensions of monolingual lexicons are required. The goal of this project
is to extend the Hebrew lexicon with Hebrew-English translation pairs. We currently have three separate bilingual
dictionaries, represented in tabular format. You will haveto extend the XML schema of the Hebrew lexicon to allow

1

for Hebrew-English translation pairs; to extend an existing tool for editing the lexicon such that it support the newly
added fields; and to design a procedure for automatically populating the lexicon with the translation pairs in the
existing bilingual dictionaries.

2.3 Hebrew tokenization

No background in NLP is required
The objective of this project is to design and implement a computer program which, when given a text document in

Hebrew, where possible noise such as non-Hebrew words, HTMLtags, pictures etc. may exist, returns a clean version
of the text where each Hebrew “token” is identified. The output will be represented in XML.

The input to the program is a file which contains Hebrew text. This file is likely to be an HTML document
with various types of noise. For example, Hebrew HTML pages typically contain HTML tags, non-Hebrew words,
pictures, etc. Your goal is to clean these non-Hebrew elements. Then, the program must determine the boundaries
of tokens. Usually, a token is defined as a sequence of characters delimited by spaces. However, the definition is
language-dependent. For example, Hebrew words may containpunctuation marks (e.g., the double quote" is used for
acronyms). Some Hebrew tokens may even include full stops (as in .+ ., .-). Other punctuation marks are not part of
the token, e.g., the full stop at the end of a sentence. More complex examples include strings such as./0123 2343 or5/6789 124., vs.01:4; /3.

2.4 Named entity recognition in Hebrew

Statistical NLP is recommended but not strictly required
The named entity task is to identify all named locations, named persons, named organizations, dates, times, mon-

etary amounts, and percentages in text. Though this sounds clear, enough special cases arise to require lengthy guide-
lines, e.g., when isThe Wall Street Journalan artifact, and when is it an organization? When isWhite Housean
organization, and when a location? Is a street name a location? Shouldyesterdayandlast Tuesdaybe labeled dates?
In order to achieve human annotator consistency, guidelines with numerous special cases have been defined for the
Seventh Message Understanding Conference, MUC-7 (Chinchor, 1997).

The goal of this project is to develop a named entity recognizer for Hebrew, following the algorithm of Bikel,
Schwartz, and Weischedel (1999). This task involves preparing a training corpus, i.e., manually annotating a large
corpus of text according to the MUC guidelines; a straight-forward implementation of the algorithm; and a careful
evaluation of the results.

2.5 A grammar for Hebrew numeric and date expressions

Introduction to Computational Linguistics is required
Numeric expressions (such asnineteen hundred sixty threeor three quarters) and date expressions (such aslast

weekendor the third quarter of 2004) are abundant in natural language texts and their recognition is both important and
relatively easy. Correctly identifying such expressions in texts can greatly reduce the complexity of further processing,
such as parsing, and contribute to the computation of the text meaning.

The goal of this project is to design and implement a grammar for such expressions in Hebrew. The result should
be a program whose input is a Hebrew text, after tokenization, and whose output is the same text, where numeric and
date expressions are properly annotated. The input and the output will be represented in XML. The grammar will be
developed using finite-state technology, with a common toolbox (such as the Xerox XFST package).

2.6 Transliteration of Hebrew named entities

No background in NLP is required
Transliteration is the process of replacing words and phrases in one language with their approximate spelling or

phonetic equivalents in some other language. The goal of this project is to develop a system for transliterating Hebrew
words and phrases into English. We distinguish between two types of transliteration:

Forward transliteration: When a Hebrew name is transliterated into English. For example, <806 .2 /02 is transliter-
ated toAriel Sharonand.206 / ,=1 /9 to Haifa, Israel.

Backward transliteration: This is the reverse transliteration process where an English term which was transliterated
to Hebrew has to be recovered. For example,<8> ?/.@ ./3 to Bill Clinton, 7 88/.8= to Hollywood.

You will implement the algorithm proposed by Al-Onaizan andKnight (2002). The development will include collec-
tion of the required resources, implementation and evaluation.

2

2.7 Chunking for Hebrew

Introduction to Computational Linguistics is required
Text chunking consists of dividing a text into syntactically correlated parts of words. For example, the sentence

He reckons the current account deficit will narrow to only $1.8 billion in Septembercan be divided as follows:

[NP He] [VP reckons] [NP the current account deficit] [VP willnarrow] [PP to] [NP only $1.8 billion]
[PP in] [NP September]

Text chunking is an intermediate step towards full parsing and is useful for a variety of applications. The goal of this
project is to develop a system for chunking Hebrew text usingtwo techniques: a finite-state cascade of transducers
and machine learning. In order to evaluate the performance of either system, you will also develop a procedure which
converts the Hebrew TreeBank format (Sima’an et al., 2001) to chunks.

The problem was first introduced by Abney (1991), who later developed a finite-state-technology solution which
you will implement in this work (Abney, 1996). Later, it was addressed as a classification problem using machine
learning techniques by various authors (Ramshaw and Marcus, 1995; Daelemans, Buchholz, and Veenstra, 1999;
Punyakanok and Roth, 2001). You will implement one of the machine learning algorithms (using an existing toolbox)
and compare the results to the finite-state case.

2.8 Statistical parsing of Hebrew

Introduction to Computational Linguistics and Statistical NLP are required
The best available parser for English is assumed to be the Collins parser (Collins, 1999). In this project you will

experiment with the applicability of statistical parsing in general, and the Collins parser in particular, for a language
with fewer resources than English. You will use the recentlycreated Hebrew TreeBank (Sima’an et al., 2001) to
train and evaluate an existing statistical parser (Bikel, 2004). The main question is whether the limited training
data (approximately 2,000 sentences) are sufficient for reasonable results. Proposals for improvement will be highly
regarded.

3 Administration

Projects are to be implemented by groups of at most two students. All work must be completed by the end of the
semester. All systems will be presented at the end of the semester for a final demo. The programming language must
be portable enough to be usable on a variety of platforms; Java or Perl are recommended, C++ will be tolerated, if you
have a different language in mind discuss it with the instructor.

Grading will be based on comprehension of the problem, quality of the implementation and quality of the docu-
mentation. In particular, the final grade will be based on:

• Comprehension of the problem (and the accompanying paper, where applicable)

• Full implementation of a working solution

• Presentation of a final working system

• Comprehensive documentation

References

Abney, Steven. 1991. Parsing by chunks. In Robert Berwick, Steven Abney, and Carol Tenny, editors,Principle-based
parsing. Kluwer academic publishers.

Abney, Steven. 1996. Partial parsing via finite-state cascades. InWorkshop on Robust Parsing, 8th European Summer
School in Logic, Language and Information, pages 8–15, Prague, Czech Republic.

Al-Onaizan, Yaser and Kevin Knight. 2002. Machine transliteration of names in Arabic text. InProceedings of the
ACL workshop on computational approaches to Semitic languages.

Bikel, Dan. 2004. Multilingual statistical parsing engine. Available from
http://www.cis.upenn.edu/˜dbikel/software.html#stat -parser .

3

Bikel, Daniel M., Richard L. Schwartz, and Ralph M. Weischedel. 1999. An algorithm that learns what’s in a name.
Machine Learning, 34(1-3):211–231.

Chinchor, Nancy. 1997. MUC-7 named entity task definition. Available from
http://www.itl.nist.gov/iaui/894.02/related_project s/muc/proceedings/n%
e_task.html , September.

Collins, Michael. 1999.Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania.

Daelemans, Walter, Sabine Buchholz, and Jorn Veenstra. 1999. Memory-based shallow parsing. InProceedings of
CoNLL.

Och, F. J. and H. Ney. 2000. Improved statistical alignment models. InProceedings of ACL-2000, pages 440–447,
Hongkong, China, October.

Punyakanok, Vasin and Dan Roth. 2001. The use of classifiers in sequential inference. InNIPS-13; The 2000
Conference on Advances in Neural Information Processing Systems 13, pages 995–1001. MIT Press.

Ramshaw, Lance A. and Mitchell P. Marcus. 1995. Text chunking using transformation-based learning. InProceed-
ings of the Third Annual Workshop on Very Large Corpora.

Sima’an, Khalil, Alon Itai, Yoad Winter, Alon Altman, and N.Nativ. 2001. Building a tree-bank of Modern Hebrew
text. Traitment Automatique des Langues, 42(2).

4

