Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency.

The solution: trie (word tree).

Access time: $O(|w|)$. Space requirement: $O(\sum_w |w|)$.

A trie can be augmented to store also a morphological dictionary specifying concatenative affixes, especially suffixes. In this case it is better to turn the tree into a graph.

The obtained model is that of finite-state automata.

Finite-state technology

Finite-state automata are not only a good model for representing the lexicon, they are also perfectly adequate for representing dictionaries (lexicons+additional information), describing morphological processes that involve concatenation etc.

A natural extension of finite-state automata — finite-state transducers — is a perfect model for most processes known in morphology and phonology, including non-segmental ones.

Formal language theory — definitions

Formal languages are defined with respect to a given alphabet, which is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Example: Strings
Let $\Sigma = \{0, 1\}$ be an alphabet. Then all binary numbers are strings over Σ.

If $\Sigma = \{a, b, c, d, \ldots, y, z\}$ is an alphabet then cat, incredulous and supercalifragilisticexpialidocious are strings, as are tac, qqq and kjshdfklwjehr.

Formal language theory — definitions

The length of a string w, denoted $|w|$, is the number of letters in w. The unique string of length 0 is called the empty string and is denoted ϵ.

If $w_1 = (x_1, \ldots, x_n)$ and $w_2 = (y_1, \ldots, y_m)$, the concatenation of w_1 and w_2, denoted $w_1 \cdot w_2$, is the string $(x_1, \ldots, x_n, y_1, \ldots, y_m)$. $|w_1 \cdot w_2| = |w_1| + |w_2|$.

For every string w, $w \cdot \epsilon = \epsilon \cdot w = w$.
Formal language theory – definitions

Example: Concatenation
Let $\Sigma = \{a, b, c, d, \ldots, y, z\}$ be an alphabet. Then $\text{master} \cdot \text{mind} = \text{mastermind}$, $\text{mind} \cdot \text{master} = \text{mindmaster}$ and $\text{master} \cdot \text{master} = \text{mastermaster}$. Similarly, $\text{leam} \cdot \text{s} = \text{leams}$, $\text{leam} \cdot \text{ed} = \text{learned}$ and $\text{leam} \cdot \text{ing} = \text{learning}$.

Formal language theory – definitions

An exponent operator over strings is defined in the following way: for every string w, $w^0 = \epsilon$. Then, for $n > 0$, $w^n = w^{n-1} \cdot w$.

Example: Exponent
If $w = \text{go}$, then $w^0 = \epsilon$, $w^1 = w = \text{go}$, $w^2 = w^1 \cdot w = \text{gogo}$, $w^3 = \text{gogogo}$ and so on.

Formal language theory – definitions

The reversal of a string w is denoted w^R and is obtained by writing w in the reverse order. Thus, if $w = \langle x_1, x_2, \ldots, x_n \rangle$, $w^R = \langle x_n, x_{n-1}, \ldots, x_1 \rangle$.

Given a string w, a substring of w is a sequence formed by taking contiguous symbols of w in the order in which they occur in w. If $w = \langle x_1, \ldots, x_n \rangle$ then for any i, j such that $1 \leq i \leq j \leq n$, $\langle x_i, \ldots, x_j \rangle$ is a substring of w.

Two special cases of substrings are prefix and suffix: if $w = w_1 \cdot w_2 \cdot w_3$ then w_1 is a prefix of w and w_3 is a suffix of w.

Formal language theory – definitions

Example: Substrings
Let $\Sigma = \{a, b, c, d, \ldots, y, z\}$ be an alphabet and $w = \text{indistinguishable}$ a string over Σ. Then $\epsilon, \text{in, indis, indistinguish} \text{ and indistinguishable}$ are prefixes of w, while $\epsilon, \text{e, able, distinguish} \text{ and indistinguishable}$ are suffixes of w. Substrings that are neither prefixes nor suffixes include distinguish, gui and is.
Formal language theory – definitions

Given an alphabet Σ, the set of all strings over Σ is denoted by Σ^*.

A formal language over an alphabet Σ is a subset of Σ^*.

Example: Languages
Let $\Sigma = \{a, b, c, \ldots, y, z\}$. Then Σ^* is the set of all strings over the Latin alphabet. Any subset of this set is a language. In particular, the following are formal languages:

- Σ^*;
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;
- the set of single-letter strings;
- the set $\{i, you, he, she, it, we, they\}$;
- the set of words occurring in Joyce’s Ulysses;
- the empty set;

Note that the first five languages are infinite while the last five are finite.

The string operations can be lifted to languages.

If L is a language then the reversal of L, denoted L^R, is the language $\{w \mid w^R \in L\}$.

If L_1 and L_2 are languages, then $L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2\}$.

Example: Language operations
$L_1 = \{i, you, he, she, it, we, they\}$, $L_2 = \{smile, sleep\}$.

Then $L_1^R = \{i, uoy, eh, ehs, ti, ew, yeht\}$ and $L_1 \cdot L_2 = \{ismile, yousmile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep, shesleep, itsleep, wesleep, theysleep\}$.
Formal language theory – definitions

If L is a language then $L^0 = \{ \varepsilon \}$.
Then, for $i > 0$, $L^i = L \cdot L^{i-1}$.

Example: Language exponentiation
Let L be the set of words \{bau, haus, hof, frau\}. Then $L^0 = \{ \varepsilon \}$, $L^1 = L$ and $L^2 = \{ bau, bauhaus, bauhof, baufrau, hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau, frauhaus, frauhof, fraufrau \}$.

Regular expressions

Regular expressions are a formalism for defining (formal) languages. Their “syntax” is formally defined and is relatively simple. Their “semantics” is sets of strings: the denotation of a regular expression is a set of strings in some formal language.

Formal language theory – definitions

The Kleene closure of L and is denoted L^* and is defined as $\bigcup_{i=0}^{\infty} L^i$.

Example: Kleene closure
Let $L = \{ \text{dog}, \text{cat} \}$. Observe that $L^0 = \{ \varepsilon \}$, $L^1 = \{ \text{dog}, \text{cat} \}$, $L^2 = \{ \text{catcat}, \text{catdog}, \text{dogcat}, \text{dogdog} \}$, etc.
Thus L^* contains, among its infinite set of strings, the strings ε, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

The notation for Σ^* should now become clear: it is simply a special case of L^*, where $L = \Sigma$.

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression
- ε is a regular expression
- if $a \in \Sigma$ is a letter then a is a regular expression
- if r_1 and r_2 are regular expressions then so are $(r_1 + r_2)$ and $(r_1 \cdot r_2)$
- if r is a regular expression then so is $(r)^*$
- nothing else is a regular expression over Σ.
Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- \emptyset
- a
- $(c \cdot a) \cdot t$
- $((m \cdot e) \cdot (o)^*) \cdot w$
- $(a + (e + (i + (o + u))))$
- $((a + (e + (i + (o + u))))^*)$

Regular expressions

For every regular expression r, its denotation, $\llbracket r \rrbracket$, is a set of strings defined as follows:

- $\llbracket \emptyset \rrbracket = \emptyset$
- $\llbracket a \rrbracket = \{a\}$
- if $a \in \Sigma$ is a letter then $\llbracket a \rrbracket = \{a\}$
- if r_1 and r_2 are regular expressions whose denotations are $\llbracket r_1 \rrbracket$ and $\llbracket r_2 \rrbracket$, respectively, then $\llbracket (r_1 \cup r_2) \rrbracket = \llbracket r_1 \rrbracket \cup \llbracket r_2 \rrbracket$, $\llbracket (r_1 \cdot r_2) \rrbracket = \llbracket r_1 \rrbracket \cdot \llbracket r_2 \rrbracket$ and $\llbracket (r_1)^* \rrbracket = \llbracket r_1 \rrbracket^*$

Regular expressions

Example: Regular expressions and their denotations
Given the alphabet of all English letters, $\Sigma = \{a, b, c, \ldots, y, z\}$, the language Σ^+ is denoted by the regular expression Σ^*.

The set of all strings which contain a vowel is denoted by $\Sigma^* \cdot (a + e + i + o + u) \cdot \Sigma^*$.

The set of all strings that begin in “un” is denoted by $(un) \Sigma^*$.

The set of strings that end in either “tion” or “sion” is denoted by $\Sigma^* \cdot (s + t) \cdot (ion)$.

Note that all these languages are infinite.
Properties of regular languages

Closure properties:

A class of languages \mathcal{L} is said to be closed under some operation \bullet if and only if whenever two languages L_1, L_2 are in the class ($L_1, L_2 \in \mathcal{L}$), also the result of performing the operation on the two languages is in this class: $L_1 \bullet L_2 \in \mathcal{L}$.

Properties of regular languages

Regular languages are closed under:

- Union
- Intersection
- Complementation
- Difference
- Concatenation
- Kleene-star
- Substitution and homomorphism