
Finite state technology for natural languages
processing

• Finite state technology is usually sufficient for describing natural
languages phenomena such as morphology: in particular the rewrite
rule A→ B | L R defines a regular relation.

• Finite state networks guarantee linear recognition time.

• The method: constructing finite state networks describing specific
phenomena and combining them using the closure properties.

1



XFST and regular expressions calculus

• XFST is an interface giving access to finite state operations
(algorithms such as union, concatenation, intersection, composition
etc.)

• XFST includes a regular expression compiler

• The interface of XFST includes a look up operation (apply up) and a
generation operation (apply down)

• The regular expression language employed by XFST is an extended
version of standard regular expression

2



Basic regular expressions

(A) Option ∼A Complement

\A Term complement $A Contains

A* Kleene star A+ Kleene plus

A/B Ignore A B Concatenation

A | B Union A & B Intersection

A - B Minus A .x. B Cross product

A .o. B Composition ? Any symbol

A.u Upper language A.l Lower language

A.i Inverse

[ ] Empty language and precedence order

3



Extended regular expressions

The basic concept behind regular expressions calculus:

Create more complex regular expressions by using the basic ones.

For example:

$A ≡ ?∗ A ?∗

4



Unconditional replacement A→ B

Meaning: obligatory unconditional replacement of the language A by
the language B.

• a→ b

bcd abac aaab

bcd bbbc bbbb

• a+→ b

bcd abac aaab

bcd bbbc bbbb

bbb

bbb

bb

5



Unconditional replacement A→ B

Construction:

[ noA [A .x. B] ]
∗

noA where noA abbreviates ∼ $[ A− [ ] ].

• This construction defines a regular relation were each member of this
relation contains any number (which can be also zero) of iterations
of [A .x. B] combined with strings that do not contain A which are
mapped to themselves.

• If ε /∈ A then ∼ $A and ∼ $[ A− [ ] ] are equivalent. But if ε ∈ A then
∼ $A is null whereas ∼ $[ A− [ ] ] contains at least ε.

6



Unconditional replacement A← B

• Meaning: obligatory unconditional inverse replacement.

• Definition and construction: [B → A] .i

• What is the difference between A→ B and A← B?

a→ b a← b

bb, ab ab
bb ab, bb

?, b, a : b ?, a, a : b

7



Optional replacement A(→)B

Example: a (→) b

ab

ab, bb

?, a, b, a : b

The tempting (and incorrect) construction: [A→ B] | [A]

The correct way: [?∗ [A .x. B] ]∗ ?∗ or [$[A→ B] ]
∗

8



Conditional replacement

• A→ B || L R where L,R on the upper side.

• A→ B // L R where L on lower and R on the upper side.

• A→ B \\ L R where L on upper and R on the lower side.

• A→ B \/ L R where L,R on the lower side.

Example:

a b→ x || a b a a b→ x //a b a

abababa abababa
ab x x a ab x aba

9



Conditional replacement A→ B || L R

The idea: make the conditional replacement behave exactly like
unconditional replacement except that the operation does not take place
unless the specified context is present.

The problem: the part being replaced can be at the same time the
context of another replacement.

The solution: first, decompose the complex relation into a set
of relatively simple components, define them independently of one
another, and finally use composition to combine them.

10



Conditional replacement A→ B || L R

1. InsertBrackets

2. ConstrainBrackets

3. LeftContext

4. RightContext

5. Replace

6. RemoveBrackets

11



Conditional replacement A→ B || L R

• Two bracket symbols, < and >, are introduced in (1) and (6).

• < indicates the end of a complete left context. > indicates the
beginning of a complete right context.

• Their distribution is controlled by (2), (3) and (4). (2) constrains them
with respect to each other, whereas (3) and (4) constrain them with
respect to the left and right context.

• The replacement expression (5) includes the brackets on both sides
of the relation.

• The final result of the composition does not contain any brackets. (1)
removes them from the upper side, (6) from the lower side.

12



Conditional replacement A→ B || L R

• Let < and > be two symbols not in Σ. The escape character % is
used since < and > are saved symbols in XFST.

• InsertBrackets = [ [ ] ← % < | % > ]. InserBrackets eliminates
from the upper side language all context markers that appear on the
lower side.

• ConstrainBrackets = [ ∼ $[% < % >] ]. ConstrainBrackets
denotes the language consisting of strings that do not contain <>
anywhere.

13



Conditional replacement A→ B || L R

• LeftContext =

[ ∼ [ ∼ [...L] [< ...] ] & ∼ [ [...L] ∼ [< ...] ] ]

LeftContext denotes the language in which any instance of < is
immediately preceded by L and every L is immediately followed by
<, ignoring irrelevant brackets.
[...L] denotes [ [ ?∗ L/[% < | % >] ]− [?∗ % <] ], the language of all
strings ending in L, ignoring all brackets except for a final <. [< ...]
denotes [% < /% > ?∗], the language of strings beginning with <,
ignoring the other bracket.

14



Conditional replacement A→ B || L R

• RightContext =

[ ∼ [ [... >] ∼ [R...] ] & ∼ [ ∼ [... >] [R...] ] ]

RightContext denotes the language in which any instance of > is
immediately followed by R and any R is immediately preceded by >,
ignoring irrelevant brackets.
[R...] denotes [ [ R/[% < | % >] ?∗ ]− [% < ?∗] ], the language of all
strings beginning with R, ignoring all brackets except for an initial >.
[... >] denotes [? ∗ % > /% <], the language of strings ending with
>, ignoring the other bracket.

15



Conditional replacement A→ B || L R

•

Replace = [% < A/[% < | % >] % >→ % < B/[% < | % >] % >]

This is the unconditional replacement of < A > by < B >, ignoring
irrelevant brackets.

• RemoveBrackets = [ % < | % > → [ ] ]. RemoveBrackets denotes
the relation that maps the strings of the upper language to the same
strings without any context markers.

16



Conditional replacement A→ B || L R

Construction:
InsertBrackets

.o.

ConstrainBrackets

.o.

LeftContext

.o.

RightContext

.o.

Replace

.o.

RemoveBrackets

17



Conditional replacement A→ B || L R

Special cases:

• A = {ε} or ε ∈ A.

• Boundary symbol (.#.):

L R actually means ?∗ L R ?∗

18


