Computational Linguistics 106

Finite-state automata

Automata are models of computation: they compute languages.

A finite-state automaton is a five-tuple (Q, qo, %, 9, F'), where =
is a finite set of alphabet symbols, @ is a finite set of states,
go € Q is the initial state, I C Q is a set of final (accepting)
states and § : Q x X x Q is a relation from states and alphabet
symbols to states.

Computational Linguistics 108

Finite-state automata

The reflexive transitive extension of the transition relation § is a
new relation, §, defined as follows:

e for every state ¢ € Q, (g,¢,9) €96

e for every string w € ~* and letter a € =, if (q,w,q) € § and
(¢,a,q") €6 then (q,w-a,q") €.

Computational Linguistics 107

Finite-state automata

Example: Finite-state automaton

g Q = {qoa q1, 492, q3}
° 3 = {c,a,t./r}
o F={q}
e §= {<(I0, c, q1>a <q17 a, q2>7 <q27 ta (I3>7 <q25 T, q3>}
t
C a Y
@ -0 -@ ©
Computational Linguistics 109

Finite-state automata

Example: Paths
For the finite-state automaton:

@@ ®

§ is the following set of triples:

<q03 €, QO>7 <Q1, €, Q1>, <q2’ € q2>a <q37 €, q3>)
<q03 & q1>7 <q17 a, q2>7 g2, 1, q3>’ <q27 r, q3>v
<q05 ca, Q2>, <Q1, at7 q3>7 <(Z1, ar, q3>a
<q03 cat, q3>7 <q07 car, q3>




Computational Linguistics 110

Finite-state automata

A string w is accepted by the automaton A = (Q,qo, %, 4, F) if
and only if there exists a state ¢; € F such that (qo,w,qy) € 5.

The language accepted by a finite-state automaton is the set of
all the strings it accepts.

Example: Language
The language of the finite-state automaton:

t
®—-@"-@_@®

is {cat, car}.

Computational Linguistics 112

Finite-state automata

Example: Some finite-state automata

@+ @) {a}

Computational Linguistics 111

Finite-state automata

Example: Some finite-state automata

0

Computational Linguistics 113

Finite-state automata

Example: Some finite-state automata

{e}




Computational Linguistics

114 Computational Linguistics 115

Finite-state automata

Example: Some finite-state automata

LDG {a, aa, aaa, aaaa,...}

Finite-state automata

Example: Some finite-state automata

@) -

Computational Linguistics

116 Computational Linguistics 117

Finite-state automata

Example: Some finite-state automata

@)y =

Finite-state automata

An extension: e-moves.
The transition relation § is extended to: 6§ C Q x (X U{e}) x Q
Example: Automata with e-moves

The language accepted by the following automaton is {do,
undo, done, undone}:

U n d 0 n e
S




Computational Linguistics

118

Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized by
finite-state automata is the class of regular languages.

Computational Linguistics

120

Operations on finite-state automata

Concatenation
Union
Intersection
Minimization

Determinization

Computational Linguistics 119

Finite-state automata

Example: Finite-state automata and regular expressions

0

a @ @)

((c-a)- 1) @—@--@-

(((m-e) - (0)") - w) me"”
5

(@t e+ G+ e+ @) Jaciou

Computational Linguistics 121

Minimization and determinization

If L is a regular language then there exists a finite-state
automaton A accepting L such that the number of states in
A is minimal. A is unique up to isomorphism.

A finite-state automaton is deterministic if its transition relation
is a function.

If L is a regular language then there exists a deterministic, e-free
finite-state automaton which accepts it.




Computational Linguistics

122

Minimization and determinization

Example: Equivalent automata

. n 9
7 O—O0—®
Aq g o/n e

O—O0—e——0——©0

g oioioﬂ»oi@
Ao /g o n e

O—O0—O0—0——0

\ o,

Az

Computational Linguistics

124

Applications of finite-state automata in NLP

Example: Dictionaries as finite-state automata
go: 9,9,
(o]

g/o—»o‘»oﬂo‘»@
go, gone, going : g,o. n_e

O—O0—O0—0——0

\ o
O——0

Y/O—’O—»(@
go, gone, going : g, oln e

O—O0—e—0—®©

Computational Linguistics 123

Applications of finite-state automata in NLP

Finite-state automata are efficient computational devices for
generating regular languages.

An equivalent view would be to regard them as recognizing
devices: given some automaton A and a word w, applying the
automaton to the word yields an answer to the question: Is w a
member of L(A), the language accepted by the automaton?

This reversed view of automata motivates their use for a
simple yet necessary application of natural language processing:
dictionary lookup.

Computational Linguistics 125

Applications of finite-state automata in NLP

Example: Adding morphological information
Add information about part-of-speech, the number of nouns
and the tense of verbs:

>={a b ¢ ... ¥ 2 -N, -V, -sg, -pl, -inf, -prp, -psp}

g o) ) n g -V o -DfD©

[¢] [¢] o o o [¢]

-V -pPsp
o ®

-inf
(@] ©




Computational Linguistics 126

The appeal of regular languages for NLP

Most phonological and morphological process of natural
languages can be straight-forwardly described using the
operations that regular languages are closed under.

e The closure properties of regular languages naturally support
modular development of finite-state grammars.

e Most algorithms on finite-state automata are linear. In
particular, the recognition problem is linear.

e Finite-state automata are reversible: they can be used both
for analysis and for generation.

Computational Linguistics 128

Regular relations

Part-of-speech tagging:
I know some new tricks
PRON V DET ADJ N

said the Cat in the Hat
\Y DET N P DET N

Computational Linguistics 127

Regular relations

While regular expressions are sufficiently expressive for some
natural language applications, it is sometimes useful to define
relations over two sets of strings.

Computational Linguistics 129

Regular relations

Morphological analysis:

I know some new
I-PRON-1-sg know-V-pres some-DET-indef new-ADJ
tricks said the Cat
trick-N-pl say-V-past the-DET-def cat-N-sg
in the Hat

in-P the-DET-def hat-N-sg




Computational Linguistics

130

Regular relations

Singular-to-plural mapping:

cat hat ox child mouse sheep
cats hats oxen children mice sheep

goose
geese

Computational Linguistics

132

Finite-state transducers

Shorthand notation:

Computational Linguistics 131

Finite-state transducers

A finite-state transducer is a six-tuple (Q,qo,%1,%2,6,F).
Similarly to automata, @ is a finite set of states, g0 € @ is the
initial state, F C Q is the set of final (or accepting) states, >;
and 3, are alphabets: finite sets of symbols, not necessarily
disjoint (or different). ¢ : Q x =1 x 32 x Q is a relation from
states and pairs of alphabet symbols to states.

P oieo:es:se:e
s:sh:he:ee:ep3p

Computational Linguistics 133

Finite-state transducers

A finite-state transducer defines a set of pairs: a binary relation
over X7 x X3.

The relation is defined analogously to how the language of
an automaton is defined: A pair (wi,w») is accepted by the
transducer A = (Q,qo,>1,%2,6, F) if and only if there exists a
state ¢; € F such that (qo, w1, w2,qs) € 4.

The transduction of a word w € X3 is defined as T(w) = {u |
(go,w,u,qs) € § for some q; € F'}.




Computational Linguistics 134

Finite-state transducers

Example: The uppercase transducer

a:Ab:B,c:C,...

Example: English-to-French

O%
o:h 9t e€:e €:n
o o o o ®
Computational Linguistics 136

Properties of finite-state transducers

A transducer T is functional if for every w € X%, T(w) is either
empty or a singleton.

Transducers are closed under union: if 77 and T are transducers,
there exists a transducer T such that for every w € =%, T(w) =
Ty (w) U T (w).

Transducers are closed under inversion: if T'is a transducer, there
exists a transducer T—! such that for every w € =%, T 1(w) =
{u ey |weT(u)}.

The inverse transducer is (Q, qo, 2, %1, %, F'), where (q1,a,b,q2) €
61 iff (q1,b,a,q2) €94.

Computational Linguistics 135

Properties of finite-state transducers

Given a transducer (Q,qo,>1,%2,0, F),

e its wunderlying automaton is (Q,qo, X1 X X5,0',F), where
(q17 (avb)7q2> € o' iff (qla a7b7 Q2) €46

e its upper automaton is (Q, qo, >1, 61, F'), where (q1,a, g2) € 01 iff
for some b € 35, (Q1,a,b, q2) €9

e its lower automaton is (Q, qo, X2, 62, F'), where (q1,b,q2) € d> iff
for some a € >, (q1,a,b,q2) € §

Computational Linguistics 137

Properties of regular relations

Example: Operations on finite-state relations

Ry = {tomato: Tomate, cucumber:Gurke,
grapefruit:Grapefruit, pineapple:Ananas,
coconut:Koko}

R, = {grapefruit:pampelmuse, coconut:Kokusnul3}

R1U Ry = {tomato:Tomate, cucumber:Gurke,
grapefruit:Grapefruit, grapefruit:pampelmuse,
pineapple:Ananas,
coconut:Koko ,coconut:KokusnuG}




Computational Linguistics 138

Properties of finite-state transducers

Transducers are closed under composition: if T3 is a transduction
from X3 to X% and and 7> is a transduction from X} to >3,
then there exists a transducer T such that for every w € 3%,
T(w) = To(T1(w)).

The number of states in the composition transducer might be

Q1 X Q2.

Computational Linguistics 140

Properties of finite-state transducers

Transducers are not closed under intersection.

c.a €:b . c:b

C .., .., C 9

e.b c.b
Ty T>

Ti(c") = {a"b™ | m > 0}
T5(c™) = {a™" | m > 0} =
(Th NT2)(c™) = {a"b"}

Transducers with no e-moves are closed under intersection.

Computational Linguistics 139

Example: Composition of finite-state relations

Ry, = {tomato: Tomate, cucumber:Gurke,
grapefruit:Grapefruit, grapefruit:pampelmuse,
pineapple:Ananas,
coconut:Koko ,coconut:Kokusnul5}

R, = {tomate:tomato, ananas:pineapple,
pampelmousse:grapefruit, concombre:cucumber,
cornichon:cucumber, noix-de-coco:coconut}

R> 0 Ry = {tomate: Tomate, ananas:Ananas,
pampelmousse: Grapefruit,
pampelmousse:Pampelmuse,
concombre:Gurke,cornichon:Gurke,
noix-de-coco:Koko, noix-de-coco:KokusnuBe}

Computational Linguistics 141

Properties of finite-state transducers

Computationally efficient

Denote regular relations

Closed under concatenation, Kleene-star, union

Not closed under intersection (and hence complementation)

Closed under composition

e Weights




