106

108

107

109

Finite-state automata

Automata are models of computation: they compute languages.

A finite-state automaton is a five-tuple $\langle Q, q_0, \Sigma, \delta, F \rangle$, where Σ is a finite set of **alphabet** symbols, Q is a finite set of **states**, $q_0 \in Q$ is the **initial state**, $F \subseteq Q$ is a set of **final** (accepting) states and $\delta: Q \times \Sigma \times Q$ is a relation from states and alphabet symbols to states.

Computational Linguistics

Finite-state automata

The reflexive transitive extension of the transition relation δ is a new relation, $\hat{\delta}$, defined as follows:

- for every state $q \in Q$, $(q, \epsilon, q) \in \hat{\delta}$
- for every string $w \in \Sigma^*$ and letter $a \in \Sigma$, if $(q, w, q') \in \widehat{\delta}$ and $(q', a, q'') \in \delta$ then $(q, w \cdot a, q'') \in \widehat{\delta}$.

Finite-state automata

Example: Finite-state automaton

- $Q = \{q_0, q_1, q_2, q_3\}$
- $\Sigma = \{c, a, t, r\}$
- $F = \{q_3\}$
- $\delta = \{\langle q_0, c, q_1 \rangle, \langle q_1, a, q_2 \rangle, \langle q_2, t, q_3 \rangle, \langle q_2, r, q_3 \rangle\}$

$$q_0$$
 \xrightarrow{c} q_1 \xrightarrow{a} q_2 \xrightarrow{r} q_3

Computational Linguistics

Finite-state automata

Example: Paths

For the finite-state automaton:

$$q_0 \xrightarrow{c} q_1 \xrightarrow{a} q_2 \xrightarrow{r} q_3$$

 $\widehat{\delta}$ is the following set of triples:

$$\langle q_0, \epsilon, q_0 \rangle, \langle q_1, \epsilon, q_1 \rangle, \langle q_2, \epsilon, q_2 \rangle, \langle q_3, \epsilon, q_3 \rangle, \langle q_0, c, q_1 \rangle, \langle q_1, a, q_2 \rangle, \langle q_2, t, q_3 \rangle, \langle q_2, r, q_3 \rangle, \langle q_0, ca, q_2 \rangle, \langle q_1, at, q_3 \rangle, \langle q_1, ar, q_3 \rangle, \langle q_0, cat, q_3 \rangle, \langle q_0, cat, q_3 \rangle, \langle q_0, cat, q_3 \rangle$$

Computational Linguistics

110

112

Computational Linguistics

111

113

Finite-state automata

A string w is accepted by the automaton $A = \langle Q, q_0, \Sigma, \delta, F \rangle$ if and only if there exists a state $q_f \in F$ such that $(q_0, w, q_f) \in \hat{\delta}$.

The language accepted by a finite-state automaton is the set of all the strings it accepts.

Example: Language

The language of the finite-state automaton:

is {cat, car}.

Finite-state automata

Example: Some finite-state automata

Ø

Computational Linguistics

Finite-state automata

Example: Some finite-state automata

{*a*}

Computational Linguistics

Finite-state automata

Example: Some finite-state automata

 $\{\epsilon\}$

Example: Some finite-state automata

Finite-state automata

Example: Some finite-state automata

{a, aa, aaa, aaaa,...}

114

116

 a^*

Computational Linguistics

Finite-state automata

Example: Some finite-state automata

 Σ^*

Computational Linguistics

Finite-state automata

An extension: ϵ -moves.

The transition relation δ is extended to: $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$

Example: Automata with ϵ -moves

The language accepted by the following automaton is {do, undo, done, undone}:

117

Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized by finite-state automata is the class of regular languages.

Finite-state automata

Example: Finite-state automata and regular expressions

Ø

a

$$((c \cdot a) \cdot t)$$

$$(((m \cdot e) \cdot (o)^*) \cdot w)$$

$$((a + (e + (i + (o + u)))))^*$$

Computational Linguistics

120

118

Operations on finite-state automata

- Concatenation
- Union
- Intersection
- Minimization
- Determinization

Computational Linguistics

Minimization and determinization

If L is a regular language then there exists a finite-state automaton A accepting L such that the number of states in A is minimal. A is unique up to isomorphism.

A finite-state automaton is **deterministic** if its transition relation is a function.

If L is a regular language then there exists a deterministic, ϵ -free finite-state automaton which accepts it.

121

119

Minimization and determinization

Example: Equivalent automata

$$A_1 \quad \circ \underbrace{g}_{\circ} \underbrace{o}_{\bullet} \underbrace{n}_{\circ} \underbrace{e}_{\bullet} \bullet$$

$$A_{2} \quad \underbrace{\begin{array}{c} g & \circ & \circ & i & \circ & n & \circ & g \\ g & \circ & \circ & \circ & n & \circ & e \\ g & \circ & \circ & \circ & n & \circ & e \end{array}}_{\circ & \bullet & \circ & \bullet} \circ$$

Applications of finite-state automata in NLP

Computational Linguistics

Finite-state automata are efficient computational devices for generating regular languages.

An equivalent view would be to regard them as recognizing devices: given some automaton A and a word w, applying the automaton to the word yields an answer to the question: Is w a member of L(A), the language accepted by the automaton?

This reversed view of automata motivates their use for a simple yet necessary application of natural language processing: dictionary lookup.

Computational Linguistics

Applications of finite-state automata in NLP

Example: Dictionaries as finite-state automata

$$go: \circ \overset{g}{\longrightarrow} \circ \overset{o}{\longrightarrow} \circ$$

$$go, gone, going: \circ \overset{g}{\longrightarrow} \circ \overset{o}{\longrightarrow} \circ \overset{i}{\longrightarrow} \circ \overset{g}{\longrightarrow} \circ$$

$$go, gone, going: \circ \overset{g}{\longrightarrow} \circ \overset{o}{\longrightarrow} \circ \overset{n}{\longrightarrow} \circ \overset{g}{\longrightarrow} \circ$$

$$go, gone, going: \circ \overset{g}{\longrightarrow} \circ \overset{n}{\longrightarrow} \circ \overset{e}{\longrightarrow} \circ$$

Computational Linguistics

Applications of finite-state automata in NLP

Example: Adding morphological information Add information about part-of-speech, the number of nouns and the tense of verbs:

$$\Sigma = \{a, b, c, ..., y, z, -N, -V, -sg, -pl, -inf, -prp, -psp\}$$

$$\circ \xrightarrow{g} \circ \xrightarrow{o} \circ \xrightarrow{i} \circ \xrightarrow{n} \circ \xrightarrow{g} \circ \xrightarrow{-V} \circ \xrightarrow{-prp} \circ$$

$$\circ \xrightarrow{e} \circ \xrightarrow{-V} \circ \xrightarrow{-inf} \circ$$

Computational Linguistics 126 Computational Linguistics 127

128

The appeal of regular languages for NLP

- Most phonological and morphological process of natural languages can be straight-forwardly described using the operations that regular languages are closed under.
- The closure properties of regular languages naturally support modular development of finite-state grammars.
- Most algorithms on finite-state automata are linear. In particular, the recognition problem is linear.
- Finite-state automata are reversible: they can be used both for analysis and for generation.

Computational Linguistics

Regular relations

Part-of-speech tagging:

Regular relations

While regular expressions are sufficiently expressive for some natural language applications, it is sometimes useful to define relations over two sets of strings.

Computational Linguistics

Regular relations

129

Morphological analysis:

I	know	some	new
I-PRON-1-sg	know-V-pres	some-DET-indef	new-ADJ
tricks	said	the	Cat
trick-N-pl	say-V-past	the-DET-def	cat-N-sg
in	the	Hat	
in-P	the-DET-def	hat-N-sg	

Computational Linguistics 130 Computational Linguistics

Regular relations

Singular-to-plural mapping:

cat hat ox child mouse sheep goose cats hats oxen children mice sheep geese

Computational Linguistics

Finite-state transducers

Shorthand notation:

Adding ϵ -moves:

Lomputational Linguistics

Finite-state transducers

131

133

A finite-state transducer is a six-tuple $\langle Q,q_0,\Sigma_1,\Sigma_2,\delta,F\rangle$. Similarly to automata, Q is a finite set of states, $q_0\in Q$ is the initial state, $F\subseteq Q$ is the set of final (or accepting) states, Σ_1 and Σ_2 are alphabets: finite sets of symbols, not necessarily disjoint (or different). $\delta:Q\times\Sigma_1\times\Sigma_2\times Q$ is a relation from states and pairs of alphabet symbols to states.

$$g: g \qquad \overbrace{q_1} \xrightarrow{o: e} \overbrace{q_2} \xrightarrow{o: e} \overbrace{q_3} \xrightarrow{s: s} \overbrace{q_4} \xrightarrow{e: e} \overbrace{q_5}$$

$$q_6 \xrightarrow{s: s} \overbrace{q_7} \xrightarrow{h: h} \overbrace{q_8} \xrightarrow{e: e} \overbrace{q_9} \xrightarrow{e: e} \overbrace{q_{10}} \xrightarrow{p: p} \overbrace{q_{11}}$$

Computational Linguistics

132

Finite-state transducers

A finite-state transducer defines a set of pairs: a binary relation over $\Sigma_1^* \times \Sigma_2^*$.

The relation is defined analogously to how the language of an automaton is defined: A pair $\langle w_1, w_2 \rangle$ is accepted by the transducer $A = \langle Q, q_0, \Sigma_1, \Sigma_2, \delta, F \rangle$ if and only if there exists a state $q_f \in F$ such that $(q_0, w_1, w_2, q_f) \in \hat{\delta}$.

The transduction of a word $w \in \Sigma_1^*$ is defined as $T(w) = \{u \mid (q_0, w, u, q_f) \in \hat{\delta} \text{ for some } q_f \in F\}.$

Computational Linguistics 134 Computational Linguistics

Finite-state transducers

Example: The uppercase transducer

Example: English-to-French

Computational Linguistics

136

Properties of finite-state transducers

A transducer T is functional if for every $w \in \Sigma_1^*$, T(w) is either empty or a singleton.

Transducers are closed under union: if T_1 and T_2 are transducers, there exists a transducer T such that for every $w \in \Sigma_1^*$, $T(w) = T_1(w) \cup T_2(w)$.

Transducers are closed under inversion: if T is a transducer, there exists a transducer T^{-1} such that for every $w \in \Sigma_1^*$, $T^{-1}(w) = \{u \in \Sigma_2^* \mid w \in T(u)\}.$

The inverse transducer is $\langle Q, q_0, \Sigma_2, \Sigma_1, \delta^{-1}, F \rangle$, where $(q_1, a, b, q_2) \in \delta^{-1}$ iff $(q_1, b, a, q_2) \in \delta$.

Computational Emglistics

Properties of finite-state transducers

Given a transducer $\langle Q, q_0, \Sigma_1, \Sigma_2, \delta, F \rangle$,

- its underlying automaton is $\langle Q, q_0, \Sigma_1 \times \Sigma_2, \delta', F \rangle$, where $(q_1, (a, b), q_2) \in \delta'$ iff $(q_1, a, b, q_2) \in \delta$
- its upper automaton is $\langle Q, q_0, \Sigma_1, \delta_1, F \rangle$, where $(q_1, a, q_2) \in \delta_1$ iff for some $b \in \Sigma_2$, $(q_1, a, b, q_2) \in \delta$
- its lower automaton is $\langle Q, q_0, \Sigma_2, \delta_2, F \rangle$, where $(q_1, b, q_2) \in \delta_2$ iff for some $a \in \Sigma_a$, $(q_1, a, b, q_2) \in \delta$

Computational Linguistics 137

Properties of regular relations

Example: Operations on finite-state relations

 $R_1 = \{tomato: Tomate, cucumber: Gurke, grapefruit: Grapefruit, pineapple: Ananas, coconut: Koko\}$

 $R_2 = \{grapefruit: pampelmuse, coconut: Kokusnuß\}$

 $R_1 \cup R_2 = \{tomato: Tomate, cucumber: Gurke, grapefruit: Grapefruit, grapefruit: pampelmuse, pineapple: Ananas, coconut: Koko, coconut: Kokusnuß \}$

Computational Linguistics 138 Computational Linguistics 13

140

Properties of finite-state transducers

Transducers are closed under composition: if T_1 is a transduction from Σ_1^* to Σ_2^* and and T_2 is a transduction from Σ_2^* to Σ_3^* , then there exists a transducer T such that for every $w \in \Sigma_1^*$, $T(w) = T_2(T_1(w))$.

The number of states in the composition transducer might be $|Q_1 \times Q_2|$.

Computational Linguistics

Properties of finite-state transducers

Transducers are not closed under intersection.

$$c: a$$
 $\epsilon: b$
 T_1

 $\begin{array}{c}
\epsilon : a \\
\hline
q_3 \\
\hline
c : b
\end{array}$

$$T_1(c^n) = \{a^n b^m \mid m \ge 0\}$$

 $T_2(c^n) = \{a^m b^n \mid m \ge 0\} \Rightarrow$
 $(T_1 \cap T_2)(c^n) = \{a^n b^n\}$

Transducers with no ϵ -moves are closed under intersection.

Example: Composition of finite-state relations

 $R_1 = \{tomato: Tomate, cucumber: Gurke, grapefruit: Grapefruit, grapefruit: pampelmuse, pineapple: Ananas, coconut: Koko, coconut: Kokusnuß \}$ $R_2 = \{tomate: tomato, ananas: pineapple, pampelmousse: grapefruit, concombre: cucumber, cornichon: cucumber, noix-de-coco: coconut \}$ $R_2 \circ R_1 = \{tomate: Tomate, ananas: Ananas, pampelmousse: Grapefruit, pampelmousse: Pampelmuse, concombre: Gurke, cornichon: Gurke, noix-de-coco: Koko, noix-de-coco: Kokusnuße }$

Computational Linguistics

Properties of finite-state transducers

- Computationally efficient
- Denote regular relations
- Closed under concatenation, Kleene-star, union
- Not closed under intersection (and hence complementation)
- Closed under composition
- Weights

141