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Finite-state automata

Automata are models of computation: they compute languages.

A finite-state automaton is a five-tuple (Q, qo, %, 9, F'), where =
is a finite set of alphabet symbols, @ is a finite set of states,
go € Q is the initial state, I C Q is a set of final (accepting)
states and § : Q x X x Q is a relation from states and alphabet
symbols to states.
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Finite-state automata

The reflexive transitive extension of the transition relation § is a
new relation, §, defined as follows:

e for every state ¢ € Q, (g,¢,9) €96

e for every string w € ~* and letter a € =, if (q,w,q) € § and
(¢,a,q") €6 then (q,w-a,q") €.
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Finite-state automata

Example: Finite-state automaton

g Q = {qoa q1, 492, q3}
° 3 = {c,a,t./r}
o F={q}
e §= {<(I0, c, q1>a <q17 a, q2>7 <q27 ta (I3>7 <q25 T, q3>}
t
C a Y
@ -0 -@ ©
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Finite-state automata

Example: Paths
For the finite-state automaton:

@@ ®

§ is the following set of triples:

<q03 €, QO>7 <Q1, €, Q1>, <q2’ € q2>a <q37 €, q3>)
<q03 & q1>7 <q17 a, q2>7 g2, 1, q3>’ <q27 r, q3>v
<q05 ca, Q2>, <Q1, at7 q3>7 <(Z1, ar, q3>a
<q03 cat, q3>7 <q07 car, q3>
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Finite-state automata

A string w is accepted by the automaton A = (Q,qo, %, 4, F) if
and only if there exists a state ¢; € F such that (qo,w,qy) € 5.

The language accepted by a finite-state automaton is the set of
all the strings it accepts.

Example: Language
The language of the finite-state automaton:

t
®—-@"-@_@®

is {cat, car}.
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Finite-state automata

Example: Some finite-state automata

@+ @) {a}
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Finite-state automata

Example: Some finite-state automata

0
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Finite-state automata

Example: Some finite-state automata

{e}
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Finite-state automata

Example: Some finite-state automata

LDG {a, aa, aaa, aaaa,...}

Finite-state automata

Example: Some finite-state automata

@) -
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Finite-state automata

Example: Some finite-state automata

@)y =

Finite-state automata

An extension: e-moves.
The transition relation § is extended to: 6§ C Q x (X U{e}) x Q
Example: Automata with e-moves

The language accepted by the following automaton is {do,
undo, done, undone}:

U n d 0 n e
S
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Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized by
finite-state automata is the class of regular languages.
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Operations on finite-state automata

Concatenation
Union
Intersection
Minimization

Determinization
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Finite-state automata

Example: Finite-state automata and regular expressions

0

a @ @)

((c-a)- 1) @—@--@-

(((m-e) - (0)") - w) me"”
5

(@t e+ G+ e+ @) Jaciou

Computational Linguistics 121

Minimization and determinization

If L is a regular language then there exists a finite-state
automaton A accepting L such that the number of states in
A is minimal. A is unique up to isomorphism.

A finite-state automaton is deterministic if its transition relation
is a function.

If L is a regular language then there exists a deterministic, e-free
finite-state automaton which accepts it.
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Minimization and determinization

Example: Equivalent automata

. n 9
7 O—O0—®
Aq g o/n e

O—O0—e——0——©0

g oioioﬂ»oi@
Ao /g o n e

O—O0—O0—0——0

\ o,

Az
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Applications of finite-state automata in NLP

Example: Dictionaries as finite-state automata
go: 9,9,
(o]

g/o—»o‘»oﬂo‘»@
go, gone, going : g,o. n_e

O—O0—O0—0——0

\ o
O——0

Y/O—’O—»(@
go, gone, going : g, oln e

O—O0—e—0—®©
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Applications of finite-state automata in NLP

Finite-state automata are efficient computational devices for
generating regular languages.

An equivalent view would be to regard them as recognizing
devices: given some automaton A and a word w, applying the
automaton to the word yields an answer to the question: Is w a
member of L(A), the language accepted by the automaton?

This reversed view of automata motivates their use for a
simple yet necessary application of natural language processing:
dictionary lookup.
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Applications of finite-state automata in NLP

Example: Adding morphological information
Add information about part-of-speech, the number of nouns
and the tense of verbs:

>={a b ¢ ... ¥ 2 -N, -V, -sg, -pl, -inf, -prp, -psp}

g o) ) n g -V o -DfD©

[¢] [¢] o o o [¢]

-V -pPsp
o ®

-inf
(@] ©
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The appeal of regular languages for NLP

Most phonological and morphological process of natural
languages can be straight-forwardly described using the
operations that regular languages are closed under.

e The closure properties of regular languages naturally support
modular development of finite-state grammars.

e Most algorithms on finite-state automata are linear. In
particular, the recognition problem is linear.

e Finite-state automata are reversible: they can be used both
for analysis and for generation.

Computational Linguistics 128

Regular relations

Part-of-speech tagging:
I know some new tricks
PRON V DET ADJ N

said the Cat in the Hat
\Y DET N P DET N
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Regular relations

While regular expressions are sufficiently expressive for some
natural language applications, it is sometimes useful to define
relations over two sets of strings.
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Regular relations

Morphological analysis:

I know some new
I-PRON-1-sg know-V-pres some-DET-indef new-ADJ
tricks said the Cat
trick-N-pl say-V-past the-DET-def cat-N-sg
in the Hat

in-P the-DET-def hat-N-sg
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Regular relations

Singular-to-plural mapping:

cat hat ox child mouse sheep
cats hats oxen children mice sheep

goose
geese
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Finite-state transducers

Shorthand notation:
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Finite-state transducers

A finite-state transducer is a six-tuple (Q,qo,%1,%2,6,F).
Similarly to automata, @ is a finite set of states, g0 € @ is the
initial state, F C Q is the set of final (or accepting) states, >;
and 3, are alphabets: finite sets of symbols, not necessarily
disjoint (or different). ¢ : Q x =1 x 32 x Q is a relation from
states and pairs of alphabet symbols to states.

P oieo:es:se:e
s:sh:he:ee:ep3p
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Finite-state transducers

A finite-state transducer defines a set of pairs: a binary relation
over X7 x X3.

The relation is defined analogously to how the language of
an automaton is defined: A pair (wi,w») is accepted by the
transducer A = (Q,qo,>1,%2,6, F) if and only if there exists a
state ¢; € F such that (qo, w1, w2,qs) € 4.

The transduction of a word w € X3 is defined as T(w) = {u |
(go,w,u,qs) € § for some q; € F'}.
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Finite-state transducers

Example: The uppercase transducer

a:Ab:B,c:C,...

Example: English-to-French

O%
o:h 9t e€:e €:n
o o o o ®
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Properties of finite-state transducers

A transducer T is functional if for every w € X%, T(w) is either
empty or a singleton.

Transducers are closed under union: if 77 and T are transducers,
there exists a transducer T such that for every w € =%, T(w) =
Ty (w) U T (w).

Transducers are closed under inversion: if T'is a transducer, there
exists a transducer T—! such that for every w € =%, T 1(w) =
{u ey |weT(u)}.

The inverse transducer is (Q, qo, 2, %1, %, F'), where (q1,a,b,q2) €
61 iff (q1,b,a,q2) €94.
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Properties of finite-state transducers

Given a transducer (Q,qo,>1,%2,0, F),

e its wunderlying automaton is (Q,qo, X1 X X5,0',F), where
(q17 (avb)7q2> € o' iff (qla a7b7 Q2) €46

e its upper automaton is (Q, qo, >1, 61, F'), where (q1,a, g2) € 01 iff
for some b € 35, (Q1,a,b, q2) €9

e its lower automaton is (Q, qo, X2, 62, F'), where (q1,b,q2) € d> iff
for some a € >, (q1,a,b,q2) € §

Computational Linguistics 137

Properties of regular relations

Example: Operations on finite-state relations

Ry = {tomato: Tomate, cucumber:Gurke,
grapefruit:Grapefruit, pineapple:Ananas,
coconut:Koko}

R, = {grapefruit:pampelmuse, coconut:Kokusnul3}

R1U Ry = {tomato:Tomate, cucumber:Gurke,
grapefruit:Grapefruit, grapefruit:pampelmuse,
pineapple:Ananas,
coconut:Koko ,coconut:KokusnuG}
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Properties of finite-state transducers

Transducers are closed under composition: if T3 is a transduction
from X3 to X% and and 7> is a transduction from X} to >3,
then there exists a transducer T such that for every w € 3%,
T(w) = To(T1(w)).

The number of states in the composition transducer might be

Q1 X Q2.
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Properties of finite-state transducers

Transducers are not closed under intersection.

c.a €:b . c:b

C .., .., C 9

e.b c.b
Ty T>

Ti(c") = {a"b™ | m > 0}
T5(c™) = {a™" | m > 0} =
(Th NT2)(c™) = {a"b"}

Transducers with no e-moves are closed under intersection.
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Example: Composition of finite-state relations

Ry, = {tomato: Tomate, cucumber:Gurke,
grapefruit:Grapefruit, grapefruit:pampelmuse,
pineapple:Ananas,
coconut:Koko ,coconut:Kokusnul5}

R, = {tomate:tomato, ananas:pineapple,
pampelmousse:grapefruit, concombre:cucumber,
cornichon:cucumber, noix-de-coco:coconut}

R> 0 Ry = {tomate: Tomate, ananas:Ananas,
pampelmousse: Grapefruit,
pampelmousse:Pampelmuse,
concombre:Gurke,cornichon:Gurke,
noix-de-coco:Koko, noix-de-coco:KokusnuBe}
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Properties of finite-state transducers

Computationally efficient

Denote regular relations

Closed under concatenation, Kleene-star, union

Not closed under intersection (and hence complementation)

Closed under composition

e Weights




