Computational Linguistics 275

A fragment of English

FEy is a small fragment of English consisting of very simple
sentences, constructed with only intransitive and transitive (but
no ditransitive) verbs, common nouns, proper names, pronouns
and determiners. Typical sentences are:

A sheep drinks
Rachel herds the sheep

Jacob loves her

Computational Linguistics 276

A fragment of English

Similar strings are not Ep- (and, hence, English-) sentences:

xRachel feed the sheep

xRachel feeds herds the sheep

« T he shepherds feeds the sheep
xRachel feeds

xJacob loves she

xJacob loves Rachel the sheep

* T hem herd the sheep

Computational Linguistics 277

A fragment of English

All Ey sentences have two components, a subject, realized as a
noun phrase, and a predicate, realized as a verb phrase.

A noun phrase can either be a proper name, such as Rachel, or
a pronoun, such as they, or a common noun, possibly preceded
by a determiner: the lamb or three sheep.

A verb phrase consists of a verb, such as feed or sleeps, with a
possible additional object, which is a noun phrase.

Computational Linguistics 278

A fragment of English

Furthermore, there are constraints on the combination of phrases
in Eo:

e The subject and the predicate must agree on number and
person: if the subject is a third person singular, so must the
verb be.

e Objects complement only — and all — the transitive verbs.
e \When a pronoun is used, it is in the nominative case if it is

in the subject position, and in the accusative case if it is an
object.

Computational Linguistics 279

A context-free grammar, Gg, for Ej

S — NP VP

VP — V

VP — V NP

NP — D N

NP — Pron

NP — PropN

D — the, a, two, every, ...

N — Sheep, lamb, lambs, shepherd, water ...

V — Sleep, sleeps, love, loves, feed, feeds, herd, herds, ...
Pron — I me, you, he, him, she, her, it, we, us, they, them
PropN — Rachel, Jacob, ...

Computational Linguistics 280

Problems of Gg

Over-generation (agreement constraints are not imposed):

xRachel feed the sheep

* T he shepherds feeds the sheep
xRachel feeds

xJacob loves she

* T hem herd the sheep

Computational Linguistics 281

Problems of Gg

Over-generation:

S

AN
N|P

~

D
Pron

the lambs sleeps they

NP/ \VP

Computational Linguistics 282

Problems of Gg

Over-generation (subcategorization constraints are not imposed):

the lambs sleep
Jacob loves Rachel
xthe lambs sleep the sheep

xJacob loves

Computational Linguistics 283

Methodological properties of the CFG formalism

1. Concatenation is the only string combination operation
2. Phrase structure is the only syntactic relationship

3. The terminal symbols have no properties

4. Non-terminal symbols (grammar variables) are atomic

5. Most of the information encoded in a grammar lies in the
production rules

6. Any attempt of extending the grammar with a semantics
requires extra means.

Computational Linguistics 284

Alternative methodological properties

1. Concatenation is not necessarily the only way by which phrases
may be combined to yield other phrases.

2. BEven if concatenation is the sole string operation, other
syntactic relationships are being put forward.

3. Modern computational formalisms for expressing grammars
adhere to an approach called lexicalism.

4. Some formalisms do not retain any context-free backbone.
However, if one is present, its categories are not atomic.

5. The expressive power added to the formalisms allows also a
certain way for representing semantic information.

Computational Linguistics 285

An extended context-free formalism

Motivation: the violations of Gg: imposing on a grammar for Eq
person and number agreement constraints.

Basic idea: extend the CFG formalism with additional
mechanisms, based on feature structures.

Augment the terminal symbols of a grammar, then generalize
phrases and rules similarly.

The same techniques will be used to impose other constraints
on a grammar for Ej.

Appropriate for dealing with various phenomena of natural
languages, such as long-distance dependencies.

Preserve the context-free backbone of grammars.

Computational Linguistics 286

An extended context-free formalism

The core idea is to incorporate into the grammar properties of
symbols, in terms of which the violations of Go were stated.

Properties are represented by means of feature structures.

Such structures map features into values (themselves
feature structures).

A special case of feature structures are atoms, which represent
structureless values.

For example, to deal with number, we use a feature NUM, and a
set of atomic feature structures {sg,pl} as its values.

A feature can also have an unspecified value, represented as an
empty feature structure.

Computational Linguistics 287

Associating feature structures with words

Attribute-value matrices (AVMS)
Each ‘row’ in an AVM is a pair F . v

Values can either be atomic or complex, in the form of another
AV M

lamb lambs sheep

NUM . sg NUM : pl NUM : |[]
PERS ! third PERS ! third PERS . third

I dreams

NUM . sg NUM . sg
PERS . first PERS . third

Computational Linguistics 288

Associating feature structures with words

lambs

AGR - NUM . pl
' PERS : third

How to group features?

Computational Linguistics 289

Variables

Two notations for variables:

NUM X([])] 'NUM: 1 []}

PERS : second PERS . second

Value sharing (reentrancy):

F: X(a) F . 1 |a
'G: X(a)} G: |1la

Computational Linguistics 290

Attribute-value matrices

An AVM is a syntactic object, consisting of a finite, possibly
empty set of pairs, where each pair consists of a feature and a
value.

Features are drawn from a fixed (per grammar), pre-defined
set FEATS; values can be either atoms (drawn from a fixed set
AToMms), or, recursively, AVMs themselves.

Some AVMSs are assigned variables.

Two occurrences of the same variable (within the scope of that
variable) denote one and the same value.

FEATS and ATowMmsS are parameters for the collection of AVMSs, and
are referred to as the signature.

Computational Linguistics 291

Attribute-value matrices

l l INUM : sg |||
AGR . 1
SUBJ : PERS . 3rd

CASE ! nom
AGR : 1
TENSE . past

PRED .

Computational Linguistics 292

Attribute-value matrices

If

A=

F, . A,
is a feature structure then the domain of A is dom(A) = {F; | 1 <
i < n}.

|[dom(A)| = n so for every 1 <i,7 <n such that i # j, F; = f;.

The empty AVM, denoted [], has as its domain the empty set
of features.

Computational Linguistics 293

Attribute-value matrices

Some AVMSs can be assigned variables.

An AVM is well-formed if for every variable occurring in it, all its
occurrences are associated with the same value.

[2 :: EI({(:GJ) X(a)ﬂ

well-formed

F
not well-formed [G

not well-formed [2 :: X([H Z}}ﬂ

Computational Linguistics 294

Attribute-value matrices

Conventions:

e since multiple occurrences of the same variables always are
associated with the same values, only one instance of this
value is explicated

e whenever a variable is associated with the empty AVM, the
AVM itself is omitted.

Computational Linguistics 295

Attribute-value matrices

The value of a feature F; in A is val(A,F;) = A;.
If F & dom(A) then val(A,F) is undefined.

A path is a (possibly empty) sequence of features that can be
used to pick a value in a feature structure.

The notion of values is extended from features to paths: val(A, 7)
is the value associated with the path « in A; this value (if defined)
is again a feature structure.

If A, is the value of some path « in A then A, is said to be a
sub-AVM of A.

The empty path is denoted ¢, and val(A,e) = A for every non-
atomic feature structure A.

Computational Linguistics 296

Attribute-value matrices

Let

o . |NUM: pl
A= [AGR' [PERS : third”

Then

dom(A) = {AGR},val(A, AGR) =

NUM . pl
PERS : third|’

The paths of A are {¢, (AGR), (AGR,NUM), (AGR,PERS) }.

The values of these paths are: val(A,e) = A, val(A, (AGR,NUM)) =
pl, val(A, (AGR,PERS)) = third. val(A, (NUM,AGR)) is undefined.

Computational Linguistics 297

Attribute-value matrices

val 1S @ hon-compositional notion:
A=|F: X|, B=|f: Y|

val(A,F) = val(B,F) =[]

F: X F: Y
C:[GZ X(a)]’ D:[GZ X(a)}

val(C,F) = a #* [] = wval(D,F)

Computational Linguistics 298

Reentrancy

The difference between type- and token- identity:

o] @[

Computational Linguistics 299

Reentrancy

e [][e: a]]

val(A1,F1) = val(A1,F2) = val(Az,F1) = val(Az, Fo) = [G ; a].

Suppose that by some action, a feature H with the value b is
added to the value of 71 in both A; and A-:

_F. a al m o G: a
Ap= |1 |H: b||, A= | H: b
Fo G a] Fo 1

Computational Linguistics 300

Reentrancy

The notion of reentrancy is extended to paths: two paths are
said to be reentrant if they are associated with the same (token-
identical) value.

Fq IFERE H: bH
Az = -
[

(F1,G) and (Fp,G) are reentrant, implying wval(As, (F1,G)) =

Computational Linguistics

301

Cycles

A special case of reentrancy is cyclicity:

A=

F .

|

G .
H :

a

2

Computational Linguistics 302

Subsumption

Feature structures are used to represent information.

The amount of information stored within different feature
structures can be compared, thus inducing a natural (partial)
pre-order on the structures.

This relation is called subsumption and is denoted ‘L.

Computational Linguistics 303

Subsumption

Let A, B be feature structures over the same signature. We say
that A subsumes B (A C B; also, A is more general than B, and
B is subsumed by, or is more specific than, A) if the following

conditions hold:

1. if Ais an atom then B is an identical atom:;

2. for every F € FEATS, if F € dom(A) then r € dom(B), and
val(A,F) subsumes val(B,F); and

3. if two paths are reentrant in A, they are also reentrant in B.

Computational Linguistics 304

Subsumption

The empty feature structure, [], is the most general feature
structure, subsuming all others, including atoms (as it encodes
no information at all):

[]C [NUM: sg]
In the same way,
INUM : X| C [NUM: sg]

since by convention, X is a shorthand for X [].

Computational Linguistics 305

Subsumption

Adding more information results in a more specific feature

structure:
NUM : sg }

PERS : third
Another way to add information is through reentrancies:

INUM : sg| C [

NUM1 : sg - NUMI : 1 |Sg
NUM2 . sg| — [NUM2: 1

Computational Linguistics 306

Subsumption

Subsumption is a partial pre-order: not every pair of feature
structures is comparable:

/
z

INUM © sg] INUM : pl]

A different case of incomparability is caused by the existence of
different features in the two structures:

INUM © sg] 7% [PERS : third]

Computational Linguistics 307

Subsumption

Some properties of subsumption:

Least element: the empty feature structure subsumes every
feature structure: for every feature structure A, [|[C A

Refelxivity: for every feature structure A, AC A

Transitivity: If AC B and BL C than AL C.

Computational Linguistics 308

Feature structure equality

When are two atomic feature structures equal?

Two atomic feature structures, bearing one and the same atom,
are not necessarily identical. Of course, it is possible to require
such identity by associating the two feature structures with the
same variable.

Subsumption is not anti-symmetric: it is possible for two feature
structures to mutually subsume each other, while not being
identical.

Computational Linguistics 309

Feature structure equality

Feature structures are intensional objects: two AVMS are not
separable by paths:

F a F : 1 |1a

G. a G 1

This leads naturally to their mathematical representation as
graphs.

Computational Linguistics 310

Unification

Unification, denoted ‘lI', is an information combination
operation. It is defined over pairs of feature structures, and
yields the most general feature structure that is more specific
than both operands, if one exists.

A= BLC if and only if A is the most general feature structure
such that BL A and C' C A.

If such a structure exists, the unification succeeds, and the two
arguments are said to be unifiable (or consistent). Otherwise,
the unification fails, and the operands are said to be inconsistent.
Failure is denote by T.

In terms of the subsumption ordering, non-failing unification
returns the least upper bound (lub) of its arguments.

Computational Linguistics 311

Unification: examples

Unification combines consistent information:

INUM : sg| U [PERS : third| = [NUM .89 }

PERS . third

Computational Linguistics 312

Unification: examples

Different atoms are inconsistent:

INUM @ sg|U[NUM: pl] =T

Computational Linguistics 313

Unification: examples

Atoms and non-atoms are inconsistent:

[NUM : sg] Llsg=T

Computational Linguistics 314

Unification: examples

Unification is absorbing:

NUM : sg }_[NUMZ sg }

[NUM: 89} - [PERSZ third| |PERS: third

Computational Linguistics 315

Unification: examples

Empty feature structures are identity elements:

[JU[AGR: [NUM: sg|| = [aGR: [NUM: sg]

Computational Linguistics 316

Unification: examples

Reentrancy causes two consistent values to coincide:

F 1
|| =
G . 1

NUM . sg
PERS | third

F: |NUM: sg
G: |PERS: third]

Computational Linguistics 317

Unification: examples

Variables can be (partially) instantiated:

F: X|UlF: a|=1F: X(a)

...but they are not lost, and can be used for further instantiation:

Computational Linguistics

318

Unification: examples

Unification acts differently depending on whether the values are

equal:

F: |NUM: sg| U [F
G: |NUM: sg|

_F ~ [NUM

" |PERS

G: [NUM

[PERS : third|| =

Sq |
third

S g}

Computational Linguistics 319

Unification: examples

...or identical:

U [F: [PERS: third|| =

. 1 NUM . Sg
' PERS : third

Computational Linguistics 320

Unification and variables

Unification binds variables together. When two feature
structures are unified, and each of them is associated with some
variable, then the two variables are said to be bound to each
other, which means that they both share one and the same value
(the result of the unification).

The scope of the variables must be taken into account: all other
occurrences of the same variables in this scope are effected.

Computational Linguistics 321

Unification and variables

AZ[F: 1| [NUM : sg” Bz[F: 2 |[PERS : thi'rd”

o NUM . sg
AHB_[F' ol [PERSZ thz’rd”

Since the variables |1 | and | 2 | occur nowhere else,

| INUM: sg
AUB = [F [PERSZ third”

Computational Linguistics

322

Unification and variables

However, had either

1

or

2

occurred elsewhere, their values

would have been modified as a result of the unification:

F: |1|[NUM: sg]]

L [F: 2 | |PERS : thz’rdu —

|

NUM : sg
PERS . third

Computational Linguistics 323

Properties of unification

Idempotency: ALIA=A
Commutativity: AL B=BLA
Associativity: AU(BUC)=(AUB)UC
Absorption If AL B then AL B=2EB

Monotonicity: If A C B then for every C, ALUC C BLC (if both
exist).

Computational Linguistics 324

Generalization

Generalization (or anti-unification) is the inverse of unification.

Defined over pairs of feature structures, generalization (denoted
M) is the operation that returns the most specific (or least
general) feature structure that is still more general than both

arguments.

In terms of the subsumption ordering, generalization is the
greatest lower bound (glb) of two feature structures.

Unlike unification, generalization can never fail.

Computational Linguistics 325

Generalization

Generalization reduces information:

INUM : sg| M [PERS : third| =[]

Computational Linguistics 326

Generalization

Different atoms are inconsistent:

INUM @ sg| M [NUM: pl] =[]

Computational Linguistics 327

Generalization

Generalization is restricting:

_ NUM : sg _
INUM : sg| MM ’PERS : thz’rd} = [NUM : sg]

Computational Linguistics 328

Generalization

Empty feature structures are zero elements:

[|acr: [NUM: sg]] =[]

Computational Linguistics 329

Generalization

Reentrancies can be lost:

[1; - [e]ow: Sg}]

[

}:

F: |[NUM: sg]
G: |NUM: sg|

S

Computational Linguistics 330

Using feature structures for representing lists

Feature structures can be easily used to encode (finite) lists.

A list can be simply represented as a feature structure having
two features, named, say, FIRST and REST.

The value of the FIRST feature is the first element of the list; the
value of REST is either the atom elist, denoting an empty list, or
itself a list.

Computational Linguistics

331

Using feature structures for representing lists

FIRST

REST .

List traversal is analogous to computing the value of a path.

1

FIRST .
REST .

3

elist

|

A feature structure encoding of lists is a representation method
only; it does not provide operations on lists.

Computational Linguistics 332

Using feature structures for representing lists

An encoding of the list ((1,2,6,7),(3,4),(5)):

FIRST : 1
FIRST : 2]
FIRST [FIRST : 6
REST :
REST FIRST : 7
REST : ,
] i REST ! elist
FIRST : 3 i
FIRST FIRST | 4
REST ,
REST : elist
REST . — - - =
FIRST: 5
FIRST .
REST | REST : elust |
| REST © elust |

Computational Linguistics 333

Adding features to rules

Phrases, too, have valued features and consequently, grammar
non-terminals, too, are decorated with features.

When a feature is assigned to a non-terminal symbol C, it means
that this feature is appropriate for all the phrases of category C.

NP
NUM :

[]]
PERS : []

Computational Linguistics 334

Adding features to rules

Generalized categories (or extended ones) have a base category
and an associated feature structure.

Productions are endowed with structural information by assigning
a feature structure to every non-terminal symbol in the CFG
skeleton of the production.

Computational Linguistics 335

Adding features to rules

Imposing number agreement in Eo:

1 N lamb
(1) INUM X - INUM : X (sg)]
N lambs
(2) INUM X - INUM : X (pl)]
(3) S . NP VP

INUM: X| [NUM X

4 NP D N
(4) INUM @ X — INUM X[[NUM X

Computational Linguistics 336

Adding features to rules

Scope of variables

N lambs
NUM @ Y] ~ INUM : Y (pl)]

Agreement as a declarative constraint

The undirectional view of agreement as a typical constraint-
satisfaction view in unification grammars

Computational Linguistics 337

Multi-AVMs

Sequences of AVMSs, where some sub-structures can be shared
among two or more AVMSs.

The scope of variables is extended from a single AVM to a multi-
AVM.

The length of a multi-AVM is the number of it elements.

Computational Linguistics

338

G1, a unification grammar

S NP VP
— [NUM : X} [NUM : X]
NP D N
INUM © X — INUM X NUM X
VP V
INUM © X — INUM @ X
VP vV NP

INUM : X ~ INUM @ X NUM Y]

Computational Linguistics 339

G1, a unification grammar

N . lamb | sheep
INUM X INUM : X(sg)] INUM X
vV . sleeps | sleep
INUM : X INUM : X(sg)] INUM X (pl)]
D a two

INUM : X ~ INUM : X(sg)] | INUM X (pl)]

Computational Linguistics 340

Unification grammars

e Forms (and sentential forms)
e Rule application
e Derivations

e Languages

Computational Linguistics 341

Unification grammars

A form is a sequence of base categories augmented by a multi-
AVM of the same length:

NP VP
[NUM: Y} [NUM: Y}

Derivation is a binary relation over generalized forms.

Computational Linguistics 342

Unification grammars

If « is a generalized form and By — B1B>...B, iS a grammar
rule, application of the rule to the form consists of the following
steps:

e Matching the rule's head with some element of the form that
has the same base category;

e Replacing the selected element in the form with the body of
the rule.

Computational Linguistics 343

Unification grammars

Matching: equality of the base categories; consistency of the
feature structures

Replacing: unification in context

Computational Linguistics 344

Matching

Suppose that

NP VP
[NUM: Y} [NUM: Y}

is a (sentential) form

and that

B VP v NP
p= INUM : X — NUM: X] [NUM W]

IS a rule.

The selected category matches the head of the rule p.

Computational Linguistics 345

Replacing

The selected element of the form and the head of the rule are
unified in their respective contexts: the body of the rule and the
form.

When some variable X in the form is unified with some variable
Y in the rule, all occurrences of X in the form and of Y in the
rule are modified: they are all set to the unified value.

The replacement operation inserts the modified rule body into
the modified form.

Computational Linguistics 346

Derivation step

AS in the previous example, let

NP VP
INUM: Y] | |[NUM: Y|

o VP vV NP
pP= [NUM : X} — [NUM : X} [NUM : W}
be a form and a rule, respectively.

Applying the rule p to the form «a results in a new sentential
form, 3, (in which the variables were renamed):

B NP Vv NP
B = INUM : X1] |NUM: X1| |[NUmM: W1

Computational Linguistics

347

Derivation step

Now assume that the (terminal) rule

|4 herds
INUM : Y] ~ INUM : Y (sg)]

is to be applied to g:

B NP Vv NP
b= INUM @ X1| | |[NUM: X1| | [NUM: W1]

The result is:

o NP herds NP
7= INUM © Z2| [NUM: Z2(sg)] |[NUM: W2

Computational Linguistics 348

Derivation step

The rule itself may change during unification:

NP . D N
NUM X NUM: X| [NUM: X

B NP herds NP
7= INUM @ Z2] | [NUM: Z2(sg)] [Num: W2
The result:
D N herds NP

INUM @ Z3]| |Num: Z3] [NUM: Z3(sg)| |Num: W3]

Computational Linguistics 349

Derivation with e-rules

Applying
B
p= |F. Z| —e€
G A
to
o = A F'BX c
P X] {G Yl a: Y]
yields:

Computational Linguistics 350

Derivation
S NP VP
= INUM : X1| | [NUM X4
D N VP

INUM © Xo| [NUM: X5| | [NUM: Xi]

D N vV
= INUM : X5| | [NUM: X5| |[NUM: X3
two N V
= num : Xa(pl)] |[NUM: X2 [NUM: X3
% two sheep sleep

INUM © Xo(pl)] [NuM: Xa(pl)| [NUM: X3(pl)]

Computational Linguistics 351

Derivation tree

NP VP
INUM @ X4 INUM : X4

Computational Linguistics 352

Derivation tree

Computational Linguistics 353

Derivation tree

Computational Linguistics

354

Derivation tree

S

v T
NUM | X4
/ \
D N
INUM @ X3 INUM X3

INUM 1 X5

INUM © X3

Computational Linguistics 355

Derivation tree

S

/
NP T V=
NUM | X1 INUM 1 X5
D N V
INUM @ X3 INUM X3 INUM © X3
two sheep sleep

INUM : X3(pl)] INUM X3 INUM : X3

Computational Linguistics

356

Derivation tree

S

/
NP T
NUM : X
/ \
D N
INUM @ X INUM X

| |

two sheep

INUM : X (pl)] INUM X

INUM : X

INUM X

sleep
[NUM - X]

Computational Linguistics 357

Unification grammars: language

To determine whether a sequence of words, w = a1---a,, IS
in L(G), let o be some multi-AVM obtained by concatenating
Aiq,..., Ay, Where each A; is a lexical entry of the word a;.

Let ¢/ be a multi-AVM that is unifiable with o: o L ¢’ does not
fail.

w € L(G) if and only if there is a derivation in G whose first form
consists of the start symbol, and whose last form is o’.

Computational Linguistics 358

A context-free grammar G

S — Ss | Sy

S,y =& NPy, VP, S, — NP, VP,

NP., — D,, N., NP, — D, N,

VP,, — Vg, VP, — V)

VP,, — V. NP, | Vg NP, VP, — V, NP, | V,;, NP,
D,, — a D, — two

Ns,, — lamb | sheep N, — lambs | sheep

Vs — Sleeps V, — Sleep

Computational Linguistics 359

Imposing case control

PropN Rachel Jacob
NUM: X — NUM : X (sg) | NUM : X (sg)
CASE: Y CASE: Y CASE: Y

Pron she her

NUM: X — NUM : X (sg) | NUM : X (sg)
|:CASE ; Y] |:CASE ; Y(nom)] |:CASE ; Y(acc)]

Computational Linguistics 360

Imposing case control

NP N
D
NUM: X —> [NUM _ X] NUM: X
CASE: Y ' CASE: Y
NP PropN
NUM: X — NUM : X
CASE: Y CASE . Y
NP Pron

NUM: X — NUM: X
CASE . Y CASE . Y

Computational Linguistics 361

Imposing case control

NP
S — ’NUM :. X [NUM : X}
CASE : nom

} VP
NP
NUM: Y }

VP vV
[CASE . acc

INUM © X ~ INUM @ X

Computational Linguistics

362

|
|

Imposing subcategorization constraints

Vv
NUM
SUBCAT :

vV
NUM
SUBCAT :

X
ntrans

X
trans

|

. sleeps | sleep
[NUM : X (sg)] [NUM X (pl)]

. feeds | feed
[NUM X (sg)] [NUM X (pl)]

Computational Linguistics 363

Imposing subcategorization constraints

VP v
[NUM _ X} —> NUM : X
' SUBCAT . ntrans
vP v NP
—> NUM : X _
INUM X _ NUM Y]
SUBCAT . trans

Computational Linguistics 364

Imposing subcategorization constraints

S
EQ NP VP
[NumM: X]| [NUM: X]
(2) D N VP
= [NumM: X [NuM: X] [NUM: X
(4.2) D N o v v NP
= [Num: X [NUM: X] UM _ [NUM Y]
| SUBCAT ! trans_
(:1>) b N [NUM : Y X b N
[Num: X] [NuM: X] suBCAT: trans | [NUM Y] [NUM:Y |
) a shepherd feeds two sheep
= NUM sg

[NUM: sg] [NUM: sg] [NUM ipl] [NUM : pl]

SUBCAT : trans

Computational Linguistics

365

NP
NUM
CASE

NP
NUM
CASE :

VP
[NUM :

VP
[nunz:

G-, a complete Eyo-grammar

X
Y

X
Y

X]

X]

T

T
T
T

NP
NUM : X
CASE . nom
D
[NUM - X]
Pron
NUM: X | |
CASE: Y
V
NUM X
SUBCAT . ntrans
vV
NUM X
SUBCAT . trans

|

VP
[NUM : X]
N
NUM X
CASE: Y
PropN
NUM X
CASE: Y

NP

NUM Y
CASE . acc

Computational Linguistics 366

G-, a complete Eyo-grammar

N lamb lambs
NUM: X o NUM: X(sg)| | NUM : X(pl)
[CASE : Y} [CASE Y] [CASE Y }

Pron she her
NUM: X — NUM : X(sg)| | NUM: X (pl)
[CASE : Y} [CASE . nom] [CASE . acc }

PropN Rachel Jacob

NUM: X — NUM: X(sg)| | NUM : X(sg)
CASE: Y CASE: Y CASE: Y

Computational Linguistics 367

G-, a complete Eyo-grammar

vV
sleeps sleep
NUM . X — _ | _
[SUBCAT : intrans] [NUM ’ X(sg)] [NUM . X(pl)]
NUM : Y X N feeds | feed |
[SUBCAT . trans] [NUM : X(sg)] [NUM : X(pl)]

D a two
[NUM X] [NUM X (sg)] | [NUM X (pl)]

Computational Linguistics 368

Internalizing categories

The rule

NP . D N
INUM @ X NUM: X| [NUM: X

can be re-written as

NUM . X NUM . X

CAT : np} . ’CATZ d

CAT: n
NUM: X

In this new presentation of grammars, productions are essentially
Mmulti-AVMSs.

Computational Linguistics 369

Internalizing categories

[CAT
CAT . mnp CAT . wvp
[NUM ; XJ ’NUM ; XJ
CAT: d CAT n CAT . v
[NUM ; XQ(pl)} [NUM ; XJ [NUM ; X3(pl)l

two sheep sleep

Computational Linguistics 370

Internalizing categories

Base categories do not have to be atomic any more. This
facilitates generalizations over categories:

N : |
nouns : _ +
V. —
TR
verbs

V! —|—_
. N : |
adjectives . _ H
& —|—_
o N —

prepositions v

Computational Linguistics 371

Internalizing categories

Finitely ambiguous backbone (or skeleton)

Additional expressive power:
CAT: []
NUM . sg

Internalizing categories thus results in a powerful mechanism for
specifying linguistic generalizations.

Computational Linguistics 372

Subcategorization lists

A more sophisticated solution using internalized categories:

[CAT : v
Sleep |[SUBCAT . elist
| NUM : pl |
(CAT : |
love |SUBCAT: ([CAT: np]|)
|NUM : pl |

Computational Linguistics 373

Subcategorization lists

CAT : v
give |SUBCAT: ([CAT: np|,|CAT: np|)
| NUM : pl |
[CAT : v]
tell |SUBCAT: (|CAT: mpl|,|CAT: s])
NUM : pl |

Computational Linguistics 374

Subcategorization lists

lcaT: 5] o [oar: np] |[SM Y
SUBCAT . elist
AT ; [CAT : v]
[-] — _ ’FIRST : X] lcaT @ X|
SUBCAT . Y SUBCAT :
] REST : Y ||

Computational Linguistics 375

Subcategorization lists

[caT : s]
[BCAT]
/
R

/

_ CAT : v _ _
[CAT : np] [SUBCAT : (np, np)] [CAT : np] [CAT : np}

| |
ave

Computational Linguistics 376

Subcategorization lists

[cat: np] [CAT:U } [car: np] [caT: mnp] [CAT:: Y] [caT: np]

Computational Linguistics

377

Ich gebe dem

I give the(dat)

I give the dog the bone
«Ich gebe den

I give the(acc)
«Ich gebe dem

I give the(dat)

Subcategorization lists

Hund
dog

Hund
dog

Hund
dog

den
the(acc)

den
the(acc)

dem
the(dat)

Knhochen
bone

Knhochen
bone

Knochen
bone

Computational Linguistics

378

Subcategorization lists

CAT .

SUBCAT .

NUM .

{

CAT :
CASE .

np
dat

|

CAT .
CASE .

)

Computational Linguisti

CS

379

(3, a complete EFi-grammar

[CAT: s]

CAT :
NUM :
| SUBCAT :

CAT :
NUM
| CASE !
[CAT :
NUM
| CASE !

np
X
Y

np
X
Y

v

X
Y

CAT : np CAT .
NUM . X NUM :
_CASE . nom SUBCAT .
[CAT : v]
NUM . X
FIRST : Z
SUBCAT :
i REST : Y
" AT - d CAT . n
' } NUM: X
NUM
- CASE: Y
CAT : pron CAT :
NUM: X | | NUM :
CASE: Y CASE :

v
X
elist

[caT: Z]

propn
X
Y

Computational Linguistics 380

(3, a complete EFi-grammar

CAT : v
sleep — SUBCAT . elist
| NUM pl
[CAT : v 1
give — SUBCAT : <[CAT TP } , [caT 1 np])
CASE . acc
| NUM : pl 1
[CAT : v 1
love — SUBCAT <[CAT : _ np })
CASE . acc
| NUM pl i
[CAT : v i
tell — | SUBCAT: ([CAT P } , [caT: s])
CASE . acc
| NUM pl i

Computational Linguistics

381

(3, a complete EFi-grammar

lamb

lambs

she

her

CAT

CAT :

NUM :
| CASE

NUM :
| CASE !

CAT :
NUM :
| CASE :

CAT .
NUM :
| CASE

nom

pron

acc

Computational Linguistics

382

(3, a complete EFi-grammar

Rachel

Jacob

two

_>

CAT .
NUM :

CAT .
NUM :

CAT
NUM .

CAT :
NUM !

propn |

59

propn |

59

d

Computational Linguistics 383

Long distance dependencies

The problem:

The shepherd wondered whom Jacob loved —.

An extension of G»> that can handle such phenomena

Signaling that a constituent, in this case a noun phrase, is
missing: slash features

Computational Linguistics 384

Long distance dependencies

Start with the following rules of G5:

(CAT: np | CAT: o
1 CAT . s — NUM: X '
() [} ’NUM X]
CASE . nom
[CAT v 1 [caT: np]
CAT . ’Up
(2) — |NUM : X NUM: Y
NUM . X
SUBCAT : tfrans _CASE . acc

Computational Linguistics

385

Long distance dependencies

To these two rules we add the following two:

CAT: mnp CAT :

CAT : S

(3) — (NUM: X NUM :
SLASH: 4

CASE : nom SLASH :

(CAT : vp | (CAT : v

(4) |NnUM: X — |NUM : X
SLASH : np| | SUBCAT : trans|

N S

Computational Linguistics 386

Long distance dependencies

With the two additional rules, it is possible to derive partial
phrases such as Jacob loves —:

Computational Linguistics

387

Long distance dependencies

T

|

CAT . np

CAT .
SLASH

/ \

NUM .

1

CASE .

2

CAT . propn

NUM . 1

Sg

CASE . 2

nom

Jacob

AT: vp |
NUM : 1
SLLASH . 4

CAT . v

NUM . 1

SUBCAT . trans
loves

Computational Linguistics 388

Long distance dependencies

A rule to create “complete” sentences by combining the missing
category with a “slashed” sentence:

(5) |caT: s| — [caT: Z] [Sﬁ;;{: SZ}

Computational Linguistics 389

Long distance dependencies

A derivation tree for whom Jacob loves —:

Computational Linguistics 390

Long distance dependencies

Computational Linguistics

391

CAT .

CASE .

CAT .
CASE .

pron

3 jacc

whom

[caT

CAT :
NUM .

CASE .

CAT :
NUM !

CASE .

propn

2 mom

Jacob

CAT .
NUM .

CAT :
NUM

SLASH :

SUBCAT

loves

vp

Computational Linguistics 392

Long distance dependencies

Unbounded dependencies can hold across several clause
boundaries:

The shepherd wondered whom Jacob loved —.

The shepherd wondered whom Laban thought Jacob loved

e

The shepherd wondered whom Laban thought Leah claimed
Jacob loved —.

Computational Linguistics 393

Long distance dependencies

Also, the dislocated constituent does not have to be an object:

The shepherd wondered who — loved Rachel.

The shepherd wondered who Laban thought — loved
Rachel.

The shepherd wondered who Laban thought Leah claimed
— |oved Rachel.

Computational Linguistics

394

Long distance dependencies

In order to account for filler-gap relations that hold across
several clauses, all that needs to be done is to add more slash

propagation rules:

CAT
(6) [SLASH :
CAT
() [SLASHZ

vp CAT : v CAT : S

YA SUBCAT . s SLASH : Z
cAT: np | [cAT: vp |

S

ZW — NUM: X NUM X
|CASE: nom| |SLASH : / |

Computational Linguistics 395

Long distance dependencies

To account for gaps in the subject position, all that is needed is
an additional slash introduction rule:

CAT : S CAT . ovp
(8) [SLASHZ np} ~ [NUMZ X}

A derivation tree for who — loves Rachel:

Computational Linguistics 396

Long distance dependencies

Computational Linguistics 397

[CAT: s]
CAT S
SLASH 4 np
|
CAT vp
NUM 1
N _
CAT : np
CAT . 4
NUM . 6
CASE . 3
CASE : 2
_ | - _
‘ [CAT : v] CAT : propn
CAT : pron _
NUM : 1 |sg NUM . 6 |9
CASE . 3 Inom
| SUBCAT : trans CASE : 2 lacc

who — loves Rachel

Computational Linguistics 398

Constituent coordination

N: no man lift up his [hand] or [foot] in all the land of Egypt
NP: Jacob saw [Rachel] and [the sheep of Laban]

VP: Jacob [went on his journey] and [came to the land of the
people of the east]

VP: Jacob [went near], and [rolled the stone from the well's
mouth], and [watered the flock of Laban his mother’s brother].

Computational Linguistics 399

Constituent coordination

ADJ: every [speckled] and [spotted] sheep
ADJP: Leah was [tender eyed] but [not beautiful]
S: [Leah had four sons], but [Rachel was barren]

S: she said to Jacob, “[Give me children], or [I shall die]!”

Computational Linguistics 400

Constituent coordination

Assumptions:

e Every category of Ey can be conjoined

e The same conjunctions (and, or, but) can be used for all the
categories

Computational Linguistics

401

Constituent coordination

A CFG solution:

S
NP
VP

conj

_>
_>
_>

_>

S Conj S
NP Conj NP
VP Conj VP

and, or, but, ...

Computational Linguistics 402

Constituent coordination

With generalized categories:

lcAT: X| — [cAT: X||CAT: conj| |[CAT: X]

Computational Linguistics 403

Constituent coordination

[car: wp]

[CAT : vp] [CAT . ’Up]

CAT . (Y CAT . np [CAT . con :] CAT v CAT . np

SC : trans NUM : sg ' J SC : trans NUM: X
| | | |

rolled and watered the sheep

Computational Linguistics 404

Coordination

Problems:

e Properties of conjoined constituents

e Non-constituent coordination

Computational Linguistics

Properties of conjoined

CAT np

NUM Fels

PERS . 77

GEN 777

e RN
[CAT : np i CAT :
NUM Y NUM
PERS . second PERS
| GEN : A i GEN :
i |] ‘
CAT : pron
NUM Y _ CAT .
) [CAT . conj] [.

PERS : second NUM
GEN Z

you and a

405
constituents
np
sg
third
X

N
CAT . n
d NUM : sg
sg} PERS . third
gen . X

lamb

Computational Linguistics 406

Non-constituent coordination

Joseph became wealthy

Joseph became a minister

Joseph became [wealthy and a minister]

Rachel gave the sheep [grass] and [some water]

Rachel gave [the sheep grass] and [the lambs some water]

Rachel [kissed] and Jacob [hugged] Binyamin

Computational Linguistics 407

T he expressive power of unification grammars

Unification grammars are strictly more expressive than context-
free grammars

A unification grammar for L = {a"b"c" | n > 0}: count the
number of ‘a’'s, ‘b’s or ‘c’s in a unary base

The string bbb is derived by the following AVM:

Computational Linguistics 408

T he expressive power of unification grammars

] cat . a [cat: b cat . c
[Cat' 8] t: X t: X t: X
[cat : a] [cat : a |
¢ [t: X]} - [eat: at] ¢ X |

Cét: a} — [cat: at]

|t 1

[cat: b _ cat: b
¢ [¢: X]} = |eat: bt] [t: X}
[cat: b

; 1} — [cat: bt]

[cat : ¢) cat . ¢
¢ [t: X]} = [eat: et] [t: X}
[cat : c

_t: 1} — [cat: ct]

o
Q
~
Q
~
1
Q

[au: M]—+b [an: d}-+c

Computational Linguistics 409

T he expressive power of unification grammars

/[cat: s\
)))

Computational Linguistics 410

T he expressive power of unification grammars

Unification grammars are equivalent in their weak generative
power to unrestricted rewriting systems.

This is equivalent to saying that unification grammars are
equivalent to Turing machines in their generative capacity, or
that the languages generated by unification grammars are exactly
the set of recursively enumerable languages.

Given an arbitrary unification grammar G and a string w, no
computational procedure can be designed to determine whether
w € L(G).

Computational Linguistics 411

T he expressive power of unification grammars

A Turing machine (Q,>,b,6,s,h) is a tuple such that:

e () is a finite set of states

e > is an alphabet, not containing the symbols L, R and elist
e b € 3 is the blank symbol

e s € () is the initial state

e h € (is the final state

e). (Q\{h})xX - Qx(XZU{L,R}) is a total function specifying
transitions.

Computational Linguistics 412

T he expressive power of unification grammars

A configuration of a Turing machine consists of the state, the
contents of the tape and the position of the head on the tape.

A configuration is depicted as a quadruple (q,w;,o,w,) where
g € Q, w,w, € 2% and o € >; in this case, the contents of the
tape is b -w;-o-w,-»¥, and the head is positioned on the o symbol.

A given configuration yields a next configuration, determined by
the transition function ¢, the current state and the character on
the tape that the head points to.

Computational Linguistics 413

T he expressive power of unification grammars

Let
first(o1---0,) = { gl Zi%
but-first(o1---0,) = {) n =0
last(oq - 0,) = { gn Zi%
— 01" Op-1 N> 0]
but-last(o1---0,) = {) n =0

Computational Linguistics 414

T he expressive power of unification grammars

Then the next configuration of a configuration (q,w;, o, w,) is
defined iff ¢ = h, in which case it is:

(p, wy, o', wy) if 6(q,0) = (p,0'), o' €
(p, wyo, first(w,), but-first(w,)) if 6(q,0) = (p, R)
(p7 bUt_laSt(wl)7 laSt(wl)7 awr) it 5((]7 U) — (p7 L)

A configuration ¢; yields the configuration c¢», denoted c¢1 F ¢, iff
co> i1s the next configuration of cj.

Computational Linguistics 415

T he expressive power of unification grammars

A grammar can ‘“simulate” the operation of a Turing machine.

Define a unification grammar G, for every Turing machine M
such that:

L(Ga) = {halt} if M terminates on the empty input
M2 0 otherwise

If there were a decision procedure to determine whether w € L(G)
for an arbitrary unification grammar G, then in particular such a
procedure could determine membership in the language of Gy,
thus determining whether M terminates for the empty input,
which is known to be undecidable.

Computational Linguistics 416

T he expressive power of unification grammars

Let M = (Q,>,»,d,s,h) be a Turing machine.

Define a unification grammar G, as follows:
e FEATS = {left, right, curr, first, rest}
e ATOMS = 3 U {elist}

e The base categories of the grammar are the states 2, with an
additional symbol S € @

e [here is only one terminal symbol, halt

Computational Linguistics

417

T he expressive power of unification grammars

The grammar rules can be divided to four groups.

First, two rules are defined for every Turing machine:

h

_>

S
curr :
right .
left :
halt

g

elist

elist_

Computational Linguistics 418

T he expressive power of unification grammars

The second group of rules are defined for rewriting transitions.

For every ¢,o such that 6(q,0) = (p,o’) and ¢’ € X, the following
rule is defined:

dq P
curr . o | curr © o
right . X ~ right . X
left: Y left: Y

Computational Linguistics 419

T he expressive power of unification grammars

A third group of rules is defined for right movement of the head.
For every ¢,o such that 6(q,0) = (p, R) define two rules:

q - _ P -
_ curr : b
CrL.LTT - . — right . elist
right . elist first: o
X left : '
left] ef ['rest : X] i
q p
curr . o 1 Ccurr . X 1
) X ’ Y
right first — right |
rest: Y left first o
left: W |] ' rest W |

Computational Linguistics

420

T he expressive power of unification grammars

The last group of rules handle left movements in a symmetric
fashion. For every ¢,o such that §(q,0) = (p, L) define two rules:

left :

curr . o

right :
left : [

curr
right

q
o

X
elist

q

X

first :
rest .

] o

wl.

o)
Ccurr : b i
, first . o
ht :
9 [rest: X
| left . elist i
P
Ccurr Y i
. first . o
ht :
9 [rest: X
| left : W i

Computational Linguistics 421

T he expressive power of unification grammars

Let ci1,co be configurations of a Turing machine M, and A, As
be AFSs encoding these configurations, viewed as AMRSs of
length 1. Then ci1 ¢ iff A1 = As in Gy,

A Turing machine M halts for the empty input iff halt € L(Gy).

The universal recognition problem for unification grammars is
undecidable.

