Parsing

Recognition: Given a (context-free) grammar G and a string of words w, determine whether $w \in L(G)$.

Parsing: If $w \in L(G)$, produce the (tree) structure that is assigned by G to w.

Parsing

General requirements for a parsing algorithm:

- Generality: the algorithm must be applicable to any grammar
- Completeness: the algorithm must produce all the results in case of ambiguity
- Efficiency
- Flexibility: a good algorithm can be easily modified

Parsing

Parameters that define different parsing algorithms:

Orientation: Top-down vs. bottom-up vs. mixed

Direction: Left-to-right vs. right-to-left vs. mixed (e.g., island-driven)

Handling multiple choice: Dynamic programming vs. parallel processing vs. backtracking

Search: Breadth-first or Depth-first

An example grammar

$$D
ightarrow the$$
 $NP
ightarrow D N$
 $N
ightarrow cat$ $PP
ightarrow P NP$
 $N
ightarrow hat$ $NP
ightarrow NP PP$
 $P
ightarrow in$

Example sentences:

the cat in the hat in the hat

A bottom-up recognition algorithm

Assumptions:

- The grammar is given in Chomsky Normal Form: each rule is either of the form $A \to B$ C (where A, B, C are non-terminals) or of the form $A \to a$ (where a is a terminal).
- The string to recognize is $w = w_1 \cdots w_n$.
- A set of indices $\{0, 1, ..., n\}$ is defined to point to positions between the input string's words:
 - 0 the 1 cat 2 in 3 the 4 hat 5

The CYK algorithm

Bottom-up, chart-based recognition algorithm for grammars in CNF

To recognize a string of length n, uses a *chart*: a bi-dimensional matrix of size $n \times (n+1)$

Invariant: a non-terminal A is stored in the [i,j] entry of the chart iff $A\Rightarrow w_{i+1}\cdots w_j$

Consequently, the chart is triangular. A word w is recognized iff the start symbol S is in the [0,n] entry of the chart

The idea: build all constituents up to the i-th position before constructing the i+1 position; build smaller constituents before constructing larger ones

The CYK algorithm

```
for j := 1 to n do

for all rules A \to w_j do

chart[j-1,j] := chart[j-1,j] \cup \{A\}

for i := j-2 downto 0 do

for k := i+1 to j-1 do

for all B \in \text{chart[i,k]} do

for all C \in \text{chart[k,j]} do

chart[i,j] := chart[i,j] \cup \{A\}

if S \in \text{chart[0,n]} then accept else reject
```

The CYK algorithm

Extensions:

- Parsing in addition to recognition
- Support for ϵ -rules
- General context-free grammars (not just CNF)

Parsing schemata

To provide a unified framework for discussing various parsing algorithms we use *parsing schemata*, which are generalized schemes for describing the principles behind specific parsing algorithms. This is a generalization of the *parsing as deduction* paradigm.

A parsing schema consists of four components:

- a set of items
- a set of axioms
- a set of deduction rules
- a set of goal items

Parsing schema: CYK

Given a grammar $G = \langle \Sigma, V, S, P \rangle$ and a string $w = w_1 \cdots w_n$:

Items: [i, A, j] for $A \in V$ and $0 \le i, j \le n$ (state that $A \stackrel{*}{\Rightarrow} w_{i+1} \cdots w_j$)

Axioms: [i, A, i + 1] when $A \rightarrow w_{i+1} \in P$

Goals: [0, S, n]

Inference rules:

$$\frac{[i,B,j] \quad [j,C,k]}{[i,A,k]} \quad A \to B C$$

CYK parsing schema: deduction example

$$D \rightarrow the$$
 $NP \rightarrow D N$
 $N \rightarrow cat$ $PP \rightarrow P NP$
 $N \rightarrow hat$ $NP \rightarrow NP PP$
 $P \rightarrow in$

0 the 1 cat 2 in 3 the 4 hat 5

Parsing: bottom-up schema (Shift-Reduce)

Items: $[\alpha \bullet, j]$ (state that $\alpha w_{j+1} \cdots w_n \stackrel{*}{\Rightarrow} w_1 \cdots w_n$)

Axioms: [●, 0]

Goals: $[S \bullet, n]$

Inference rules:

Shift
$$\frac{[\alpha \bullet, j]}{[\alpha w_{j+1} \bullet, j+1]}$$
 Reduce
$$\frac{[\alpha \gamma \bullet, j]}{[\alpha B \bullet, j]} \quad B \to \gamma$$

Bottom-up deduction: example

Parsing: top-down schema

Item form: $[\bullet\beta,j]$ (state that $S \stackrel{*}{\Rightarrow} w_1 \cdots w_j\beta$)

Axioms: $[\bullet S, 0]$

Goals: $[\bullet, n]$

Inference rules:

Scan
$$\frac{[\bullet w_{j+1}\beta,j]}{[\bullet\beta,j+1]}$$
 Predict
$$\frac{[\bullet B\beta,j]}{[\bullet\gamma\beta,j]} \quad B\to\gamma$$

Top-down deduction: example

Input: 0 the 1 cat 2 in 3 the 4 hat 5

[• <i>NP</i> , 0]	axiom
[• <i>NP PP</i> , 0]	predict NP \rightarrow NP PP
[● <i>D N PP</i> , 0]	predict NP $ ightarrow$ D N
[•the N PP, 0]	predict $D o$ the
[ullet N PP, 1]	scan
[• <i>cat PP</i> , 1]	predict N $ ightarrow$ cat
[• <i>PP</i> , 2]	scan
[● <i>P NP</i> , 2]	predict $PP o P$ NP
[• <i>in NP</i> , 2]	predict P $ ightarrow$ in
[• <i>NP</i> , 3]	scan
[• <i>D N</i> , 3]	predict NP $ ightarrow$ D N
[• <i>the N</i> , 3]	predict $D o$ the
[● <i>N</i> , 4]	scan
[• <i>hat</i> , 4]	predict N $ ightarrow$ hat
[•, 5]	scan

Top-down parsing: algorithm

```
Parse(\beta, j)::

if \beta = w_{j+1} \cdot \beta' then return parse(\beta', j+1) else if \beta = B \cdot \beta' then

for every rule B \to \gamma \in P

if Parse(\gamma \cdot \beta', j) then return true return false

if Parse(S, 0) then accept else reject
```

Top-down vs. Bottom-up parsing

Two inherent constraints:

- 1. The root of the tree is S
- 2. The yield of the tree is the input word

An example grammar

```
S \rightarrow NP VP Det \rightarrow that |this | a
```

$$S \rightarrow Aux NP VP$$
 Noun \rightarrow book |flight | meal

$$VP \rightarrow Verb$$
 $Prep \rightarrow from \mid to \mid on$

$$NP \rightarrow Det Nominal Aux \rightarrow does$$

Nominal → Noun Nominal

Nominal → *Nominal* PP

An example derivation tree

An example derivation tree

An example derivation tree

Top-down vs. Bottom-up parsing

When expanding the top-down search space, which local trees are created?

Top-down vs. Bottom-up parsing

To reduce "blind" search, add bottom-up filtering.

Observation: when trying to Parse(β ,j), where $\beta = B\gamma$, the parser succeeds only if $B \stackrel{*}{\Rightarrow} w_{j+1}\beta$.

Definition: A word w is a **left-corner** of a non-terminal B iff $B \stackrel{*}{\Rightarrow} w\beta$ for some β .

Top-down parsing with bottom-up filtering

```
\begin{aligned} \operatorname{Parse}(\beta, \mathsf{j}) &:: \\ & \text{if } \beta = w_{j+1} \cdot \beta' \text{ then return } \operatorname{parse}(\beta', j+1) \\ & \text{else if } \beta = B \cdot \beta' \text{ then} \\ & \text{if } w_{j+1} \text{ is a left-corner of } B \text{ then} \\ & \text{for every rule } B \to \gamma \in P \\ & \text{if } \operatorname{Parse}(\gamma \cdot \beta', j) \text{ then return true return false} \\ & \text{if } \operatorname{Parse}(S, 0) \text{ then accept else reject} \end{aligned}
```

Top-down vs. Bottom-up parsing

Even with bottom-up filtering, top-down parsing suffers from the following problems:

- Left recursive rules can cause non-termination: $NP \rightarrow NP PP$.
- Even when parsing terminates, it might take exponentially many steps.
- Constituents are computed over and over again

Reduplication:

Constituent	#
a flight	4
from Chicago	3
to Houston	2
on TWA	1
a flight from Chicago	3
a flight from Chicago to Houston	2
a flight from Chicago to Houston on TWA	1

Top-down vs. Bottom-up parsing

When expanding the bottom-up search space, which local trees are created?

Top-down vs. Bottom-up parsing

Bottom-up parsing suffers from the following problems:

- All possible analyses of every substring are generated, even when they can never lead to an S, or can never combine with their neighbors
- \bullet ϵ -rules can cause performance degradation
- Reduplication of effort

- Dynamic programming: partial results are stored in a chart
- Combines top-down predictions with bottom-up scanning
- No reduplication of computation
- Left-recursion is correctly handled
- ϵ -rules are handled correctly
- Worst-case complexity: $O(n^3)$

Basic concepts:

Dotted rules: if $A \to \alpha\beta$ is a grammar rule then $A \to \alpha \bullet \beta$ is a dotted rule.

Edges: if $A \to \alpha \bullet \beta$ is a dotted rule and i, j are indices into the input string then $[i, A \to \alpha \bullet \beta, j]$ is an edge. An edge is **passive** (or **complete**) if $\beta = \epsilon$, **active** otherwise.

Actions: The algorithm performs three operations: *scan, predict* and *complete*.

scan: read an input word and add a corresponding complete edge to the chart.

predict: when an active edge is added to the chart, predict all
 possible edges that can follow it

complete: when a complete edge is added to the chart, combine it with appropriate active edges

rightsisters: given an active edge $A \to \alpha \bullet B\beta$, return all dotted rules $B \to \bullet \gamma$

leftsisters: given a complete edge $B \to \gamma \bullet$, return all dotted edges $A \to \alpha \bullet B\beta$

combination:

$$[i, A \rightarrow \alpha \bullet B\beta, k] * [k, B \rightarrow \gamma \bullet, j] = [i, A \rightarrow \alpha B \bullet \beta, j]$$

Parsing: Earley deduction

Item form: $[i, A \rightarrow \alpha \bullet \beta, j]$ (state that $S \stackrel{*}{\Rightarrow} w_1 \cdots w_i A \gamma$, and also that $\alpha \stackrel{*}{\Rightarrow} w_{i+1} \cdots w_j$)

Axioms: $[0, S' \rightarrow \bullet S, 0]$

Goals: $[0, S' \rightarrow S \bullet, n]$

Parsing: Earley deduction

Inference rules:

```
Parse ::  \begin{array}{l} \text{enteredge}([0,S' \to \bullet \ S,0]) \\ \text{for } \text{j} := 1 \text{ to n do} \\ \text{for every rule } A \to w_j \text{ do} \\ \text{enteredge}([\text{j-1},A \to w_j \bullet,\text{j}]) \\ \end{array}  if S' \to S \bullet \in \texttt{C[0,n]} then accept else reject
```

```
enteredge(i,edge,j) ::
   if edge ∉ C[i,j] then /* occurs check */
        C[i,j] := C[i,j] ∪ {edge}
        if edge is active then /* predict */
        for edge' ∈ rightsisters(edge) do
            enteredge([j,edge',j])
        if edge is passive then /* complete */
        for edge' ∈ leftsisters(edge) do
            for k such that edge' ∈ C[k,i] do
                  enteredge([k,edge'*edge,j])
```