Computational Linguistics 204

Parsing

Recognition: Given a (context-free) grammar G and a string of
words w, determine whether w € L(G).

Parsing: If w ¢ L(G), produce the (tree) structure that is
assigned by G to w.

Computational Linguistics 205

Parsing

General requirements for a parsing algorithm:

e Generality: the algorithm must be applicable to any grammar

e Completeness: the algorithm must produce all the results in
case of ambiguity

e Efficiency

e Flexibility: a good algorithm can be easily modified

Computational Linguistics 206

Parsing

Parameters that define different parsing algorithms:

Orientation: Top-down vs. bottom-up vs. mixed

Direction: Left-to-right vs. right-to-left vs. mixed (e.g., island-
driven)

Handling multiple choice: Dynamic programming vs. parallel
processing vs. backtracking

Search: Breadth-first or Depth-first

Computational Linguistics 207

An example grammar

D — the NP — D N
N — cat PP — P NP
N — hat NP — NP PP
P — in

Example sentences:

the cat in the hat
the cat in the hat in the hat

Computational Linguistics 208

A bottom-up recognition algorithm

Assumptions:

e The grammar is given in Chomsky Normal Form: each rule is
either of the form A — B C (where A, B, C are non-terminals)
or of the form A — a (where a is a terminal).

e T he string to recognize is w = wi - - - wy,.

e A set of indices {0,1,...,n} is defined to point to positions
between the input string’'s words:

Othelcat 2 in 3 the 4 hat 5

Computational Linguistics 209

The CYK algorithm

Bottom-up, chart-based recognition algorithm for grammars in
CNF

To recognize a string of length n, uses a chart: a bi-dimensional
matrix of size n x (n+ 1)

Invariant: a non-terminal A is stored in the [7,7] entry of the
chart iff A = Wi41 - Wj

Consequently, the chart is triangular. A word w is recognized iff
the start symbol S is in the [0,n] entry of the chart

The idea: build all constituents up to the -th position before
constructing the : + 1 position; build smaller constituents before
constructing larger ones

Computational Linguistics

210

The CYK algorithm

for j := 1 to n do
for all rules A — w; do
chart[j-1,j] := chart[j-1,j]1 U {4}
for i := j-2 downto O do
for k := i+l to j-1 do
for all B € chart[i,k] do
for all C & chartlk,j] do
for all rules A — B C do
chart[i,j] := chart[i,j] U {4}
if S € chart[0,n] then accept else reject

Computational Linguistics 211

The CYK algorithm

Extensions:

e Parsing in addition to recognition
e Support for e-rules

e General context-free grammars (not just CNF)

Computational Linguistics 212

Parsing schemata

To provide a unified framework for discussing various parsing
algorithms we use parsing schemata, which are generalized
schemes for describing the principles behind specific parsing
algorithms. This is a generalization of the parsing as deduction
paradigm.

A parsing schema consists of four components:

e a set of items
e a set of axioms
e a set of deduction rules

e a set of goal items

Computational Linguistics

213

Parsing schema: CYK

Given a grammar G = (>, V, S, P) and a string w = wy --

Items: [i,A,j] for AcV and 0< 4,5 <n
(state that A = w11 w;)

Axioms: [i,A,i+ 1] when A — w;41 € P

Goals: [0, S, n]
Inference rules:

2, B,5] [5, C k]
A— B C

(¢, A, k]

Wy,

Computational Linguistics 214

CYK parsing schema: deduction example

D — the NP — D N
N — cat PP — P NP
N — hat NP — NP PP
P — in

Othe 1l cat2in 3the 4 hat 5

N

[1,N,2] [2,P,3] [3,D,4] [4,N,5]

NP, 2] \ [

(2, PP,

/

[0, NP, 5]

[0,D,1

| W—

W

, NP, 5]

©

o

Computational Linguistics 215

Parsing: bottom-up schema (Shift—Reduce)

*

Items: [we, ;] (state that cw;t1--w, = w1 -+ - wy)
Axioms: [e, O]

Goals: [Se, n]

Inference rules:

[ave, 5]
Shift
law;10,7 + 1]
[aye, 5]
Reduce B — ~

[aBe, j]

Computational Linguistics 216

Bottom-up deduction: example

Computational Linguistics 217

Parsing: top-down schema

Item form: [e3,j] (state that S = wi---w;B3)
Axioms: [eS, 0]

Goals: [e, n]

Inference rules:

[.wj-*-lB) .]]
Scan
[¢8,j + 1]
[eBS, j]
Predict B — ~

[e73, j]

Computational Linguistics 218

Top-down deduction: example

Input: O the 1 cat 2 in 3 the 4 hat 5

Computational Linguistics

219

e NP, 0]
eNP PP, Q]
oD N PP, Q]
ethe N PP, 0]
oN PP, 1]
ecat PP, 1]
o PP, 2]

oP NP, 2]
ein NP, 2]

e NP, 3]

oD N, 3]
ethe N, 3]

o N, 4]

ehat, 4]

0, 5]

axiom

predict NP — NP PP
predict NP — D N
predict D — the
scan

predict N — cat
scan

predict PP — P NP
predict P — in

scan

predict NP — D N
predict D — the
scan

predict N — hat
scan

Computational Linguistics 220

Top-down parsing: algorithm

Parse(/3,j)
if f = wj4+1 - then return parse(f’,; 7+ 1)
else if = B- [’ then
for every rule B — vy &€ P
if Parse(vy-[(’,7) then return true
return false

if Parse(S,0) then accept else reject

Computational Linguistics 221

Top-down vs. Bottom-up parsing

Two inherent constraints:

1. The root of the tree is S

2. The yield of the tree is the input word

Computational Linguistics

222

An example grammar

S — NP VP

S - Aux NP VP

S - VP

VP — Verb

VP — Verb NP

NP — Det Nominal
NP — Proper-Noun
Nominal — Noun

Det — that |this | a

Noun — book |flight | meal
Verb — book | include | includes
Prep — from | to | on
Proper-Noun — Houston | TWA
Aux — does

Nominal — Noun Nominal

Nominal — Nominal PP
PP — Prep NP

Computational Linguistics 223

An example derivation tree

Nomlnal

Verb Det Noun

book that flight

Computational Linguistics 224

An example derivation tree

S
Nommal
Nomlnal / Nommal
Det Noun Prep Proper-Noun Verb D Noun

the fllght from Houston mcludes a meal

Computational Linguistics 225

An example derivation tree

T
NP\
Nommal
Nominal / Nommal
Al‘Jx D‘et Nou Prep Proper-Noun Verb De Noun

does the flight from Houston mclude a meal

Computational Linguistics 226

Top-down vs. Bottom-up parsing

When expanding the top-down search space, which local trees
are created?

Computational Linguistics 227

Top-down vs. Bottom-up parsing

To reduce “blind” search, add bottom-up filtering.

Observation: when trying to Parse((,j), where § = B~, the
parser succeeds only if B = w;110.

Definition: A word w is a left-corner of a non-terminal B iff
B = wf for some 3.

Computational Linguistics 228

Top-down parsing with bottom-up filtering

Parse(/3,j)
if f = wj4+1 - [then return parse(f’;j + 1)
else if = B- [’ then

if wjy1 is a left-corner of B then

for every rule B — v & P
if Parse(vy-[(’,7) then return true
return false

if Parse(S,0) then accept else reject

Computational Linguistics 229

Top-down vs. Bottom-up parsing

Even with bottom-up filtering, top-down parsing suffers from the
following problems:

e Left recursive rules can cause non-termination: NP — NP PP.

e Even when parsing terminates, it might take exponentially
many steps.

e Constituents are computed over and over again

Computational Linguistics 230

Top-down parsing: repeated generation of
sub-trees

N
Nominal

Det Noun

a flight from Chicago to Houston on TWA

Computational Linguistics 231

Top-down parsing: repeated generation of
sub-trees

NP
NP/ \PP
AN AN
NP

Nominal

Det Noun Prep Prop-Noun

| | |
a flight from Chicago to Houston on TWA

Computational Linguistics 232

Top-down parsing: repeated generation of
sub-trees

NP
/ SN
NP PP PP
N\ AN AN
Nominal NP NP

Det Noun Prep Prop-Noun Prep Prop-Noun

| | | | |
a flight from Chicago to Houston on TWA

Computational Linguistics 233

Top-down parsing: repeated generation of
sub-trees

////////////NP
////////////NP
NP
/ S
NP PP PP PP
N\ AN AN AN
Nominal NP NP NP

Det Noun Prep Prop-Noun Prep Prop-Noun Prep Prop-Noun

| | | | | | |
a flight from Chicago to Houston on TWA

Computational Linguistics 234

Top-down parsing: repeated generation of
sub-trees

Reduplication:

H

Constituent

a flight

from Chicago

to Houston

on TWA

a flight from Chicago

a flight from Chicago to Houston

a flight from Chicago to Houston on TWA

N W EFE N WD

Computational Linguistics 235

Top-down vs. Bottom-up parsing

When expanding the bottom-up search space, which local trees
are created?

Computational Linguistics 236

Top-down vs. Bottom-up parsing

Bottom-up parsing suffers from the following problems:

e All possible analyses of every substring are generated, even
when they can never lead to an S, or can never combine with
their neighbors

e c-rules can cause performance degradation

e Reduplication of effort

Computational Linguistics 237

Earley’s parsing algorithm

e Dynamic programming: partial results are stored in a chart
e Combines top-down predictions with bottom-up scanning
e No reduplication of computation

e | eft-recursion is correctly handled

e c-rules are handled correctly

e Worst-case complexity: O(n?)

Computational Linguistics 238

Earley’s parsing algorithm

Basic concepts:

Dotted rules: if A — af is a grammar rule then A — ae 3 is a
dotted rule.

Edges: if A— ae 3 is a dotted rule and iz, 5 are indices into
the input string then [i,A — o e 3,4] is an edge. An edge is
passive (or complete) if 3 = ¢, active otherwise.

Actions: The algorithm performs three operations: scan,
predict and complete.

Computational Linguistics 239

Earley’s parsing algorithm

scan: read an input word and add a corresponding complete edge
to the chart.

predict: when an active edge is added to the chart, predict all
possible edges that can follow it

complete: when a complete edge is added to the chart, combine
it with appropriate active edges

Computational Linguistics 240

Earley’s parsing algorithm

rightsisters: given an active edge A — o e B3, return all dotted
rules B — evy

leftsisters: given a complete edge B — ~e, return all dotted
edges A — a e B

combination:

[i,A — e BB,k] x[k,B — ~ve,j] =[i,A — aBej,j]

Computational Linguistics 241

Parsing: Earley deduction

Item form: [i,A — a e (3, j] (state that S = w; ---w;A~, and also
that o = wit1 -+ w;)

Axioms: [0,S’ — e S,0]

Goals: [0,S" — S e, n]

Computational Linguistics 242

Parsing: Earley deduction

Inference rules:

[7:7 A— ae 'wj-|—167j]

Scan
[, A = aw;t1e 8,7+ 1]
[i,A — a e Bj,j]
Predict B — ~
7, B — ev,j]
[i,A = aeBB,k] [k,B — e,j]
Complete

[, A — aBej3,]]

Computational Linguistics 243

Earley’s parsing algorithm

Parse ::
enteredge([0,S’ — e S,0])
for j := 1 to n do

for every rule 4 — w; do
enteredge([j-1,4 — wje,jl)

if S — S e € C[0,n] then accept else reject

Computational Linguistics

244

Earley’s parsing algorithm

enteredge(i,edge,j)
if edge ¢ C[i,j] then /* occurs check */
Cli,j] := Cl[i,j] U {edge}
if edge is active then /* predict */
for edge’ € rightsisters(edge) do
enteredge([j,edge’,jl)
if edge is passive then /* complete */
for edge’ € leftsisters(edge) do
for k such that edge’ € Clk,i] do
enteredge ([k,edge’*edge, jl)

