Computational Linguistics 204

Parsing

Recognition: Given a (context-free) grammar G and a string of
words w, determine whether w € L(G).

Parsing: If w € L(G), produce the (tree) structure that is
assigned by G to w.
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Parsing

Parameters that define different parsing algorithms:

Orientation: Top-down vs. bottom-up vs. mixed

Direction: Left-to-right vs. right-to-left vs. mixed (e.g., island-
driven)

Handling multiple choice: Dynamic programming vs. parallel
processing vs. backtracking

Search: Breadth-first or Depth-first
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Parsing
General requirements for a parsing algorithm:

e Generality: the algorithm must be applicable to any grammar

e Completeness: the algorithm must produce all the results in
case of ambiguity

e Efficiency

e Flexibility: a good algorithm can be easily modified
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An example grammar

D — the NP — D N
N — cat PP — P NP
N — hat NP — NP PP
P — in

Example sentences:

the cat in the hat
the cat in the hat in the hat
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A bottom-up recognition algorithm
Assumptions:

e The grammar is given in Chomsky Normal Form: each rule is
either of the form A — B C (where A, B, C are non-terminals)
or of the form A — a (where a is a terminal).

e The string to recognize is w = w1 -+ wy.

e A set of indices {0,1,...,n} is defined to point to positions
between the input string’s words:

O the 1l cat2in 3 the 4 hat 5
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The CYK algorithm

for j :=1 to n do
for all rules 4 — w; do
chart[j-1,j] := chart[j-1,3j]1 U {4}
for i := j-2 downto O do
for k := i+l to j-1 do
for all B € chart[i,k] do
for all C € chartlk,j] do
for all rules A — B C do
chart[i,j] := chart[i,j] U {4}
if S € chart[0,n] then accept else reject
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The CYK algorithm

Bottom-up, chart-based recognition algorithm for grammars in
CNF

To recognize a string of length n, uses a chart: a bi-dimensional
matrix of size n x (n+ 1)

Invariant: a non-terminal A is stored in the [:,j] entry of the
chart iff A = Wi41* Wy

Consequently, the chart is triangular. A word w is recognized iff
the start symbol S is in the [0,n] entry of the chart

The idea: build all constituents up to the i-th position before
constructing the ¢4 1 position; build smaller constituents before
constructing larger ones
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The CYK algorithm
Extensions:

e Parsing in addition to recognition
e Support for e-rules

e General context-free grammars (not just CNF)
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Parsing schemata Parsing schema: CYK
To provide a unified framework for discussing various parsing Given a grammar G = (X, V, S, P) and a string w = w1 -+ - wy!
algorithms we use parsing schemata, which are generalized
schemes for describing the principles behind specific parsing Items: [i,A,j] for AcV and 0<4,5 <n
algorithms. This is a generalization of the parsing as deduction (state that A = w1 ---w;) B -

paradigm.

A parsing schema consists of four components: Axioms: [i,A;i+ 1] when A — w1 € P

a set of items Goals: [0, S,n]

. Inference rules:
e a set of axioms

. [, B,5] 14, G K]
a set of deduction rules A= BC

[i, A, K]

a set of goal items
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CYK parsing schema: deduction example Parsing: bottom-up schema (Shift—Reduce)
D — the NP — D N .
N —s cat PP — P NP Items: [we,j] (state that cwjq1 - wp = wi - wy)
N — hat NP — NP PP
P —s in Axioms: [e, 0]
0 the 1 cat 2in 3 the 4 hat 5 Goals: [Se,n]
[0,D0,1] [1,N,2] [2,P,3] [3,D,4] [4 N, 5] Inference rules:
/ [, ]
[0, NP, 2] (3, NP, ] Shift
[ow;jt10,5 + 1]
[2, PP, 5]
/ [aye, 4]
[0, NP, 5] Reduce === B — 19

[aBs, j]
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Bottom-up deduction: example
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Top-down deduction: example

Input: O the 1 cat 2 in 3 the 4 hat 5
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Parsing: top-down schema

Item form: [ef, ] (state that S = wi---w;B)

Axioms: [eS,0]

Goals: [e,n]

Inference rules:

[ow;+18, 5]
Scan .
[¢3,7 + 1]
[¢BB, j]
Predict B — ~
(78, 5]
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[eNP, 0] axiom
[eNP PP,0] predict NP — NP PP
[eD N PP,0] predict NP — D N
[ethe N PP,0] predict D — the
[eN PP, 1] scan
[ecat PP, 1] predict N — cat
[ePP, 2] scan
[eP NP, 2] predict PP — P NP
[ein NP, 2] predict P — in
[eNP, 3] scan
[eD N, 3] predict NP — D N
[ethe N, 3] predict D — the
[eN, 4] scan
[ehat, 4] predict N — hat
[e, 5] scan
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Top-down parsing: algorithm Top-down vs. Bottom-up parsing
Parse(f3,j) :: Two inherent constraints:
if f = wj41 - then return parse(f,j 4+ 1)
else if = 5[’ then 1. The root of the tree is S

for every rule B — y€ P

. ;.

if Parse(y:[',j) then return true 2. The vyield of the tree is the input word
return false

if Parse(S,0) then accept else reject
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An example grammar An example derivation tree
S — NP VP Det — that |this | a
S — Aux NP VP Noun — book |flight | meal S
S—> VP Verb — book | include | includes

VP — Verb Prep — from | to | on

VP
VP — Verb NP Proper-Noun — Houston | TWA \
NP — Det Nominal Aux — does NP
NP — Proper-Noun \
Nom

Nominal — Noun

Nominal — Noun Nominal ‘
Nominal — Nominal PP Verb Det Noun
PP — Prep NP | |

book that flight

inal
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An example derivation tree

/S

NP\
Nominal
Norr‘ﬂnal Nomlnal
D‘et No‘un Prep Proper—Noun Verb D No‘un
the flight from Houston mcIudes a meal
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Top-down vs. Bottom-up parsing

When expanding the top-down search space, which local trees
are created?
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An example derivation tree

| \

Nomlnal
Norr‘nnal / /Nommal

A‘ux D‘et No‘un Prep Proper Noun Verb De Noun
does the flight from Houston |nclude a meal
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Top-down vs. Bottom-up parsing

To reduce “blind” search, add bottom-up filtering.

Observation: when trying to Parse(f,j), where g = By, the
parser succeeds only if B = w;41f.

Definition: A word w is a left-corner of a non-terminal B iff
B = wp for some B.
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Top-down parsing with bottom-up filtering

Parse(f,]j)
if f = wj41 - then return parse(f,j 4+ 1)
else if B = B-3 then

if w;11 is a left-corner of B then

for every rule B — y€ P
if Parse(v-(’,j) then return true
return false

if Parse(S,0) then accept else reject
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Top-down vs. Bottom-up parsing

Even with bottom-up filtering, top-down parsing suffers from the
following problems:

e Left recursive rules can cause non-termination: NP — NP PP.

e Even when parsing terminates, it might take exponentially
many steps.

e Constituents are computed over and over again
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Top-down parsing: repeated generation of

sub-trees

NP
Nominal
Det Noun
a‘ flig;ht from Chicago to Houston

on

Top-down parsing: repeated generation of
sub-trees

NP

— \PP

NP

Non‘ﬂnal NP
Det Noun Prep

TWA \ | \
a flight from

Prop-Noun

Chicago to Houston on TWA
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Top-down parsing: repeated generation of
sub-trees

NP

NP/
NP/ \PP

PP
S e
Norr‘unal N‘P N‘P

Det Noun Prep Prop-Noun Prep Prop-Noun
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a flight from Chicago to Houston on TWA
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Top-down parsing: repeated generation of
sub-trees

Reduplication:

*

Constituent

a flight

from Chicago

to Houston

on TWA

a flight from Chicago

a flight from Chicago to Houston

a flight from Chicago to Houston on TWA

N WRFRNWPD

Top-down parsing: repeated generation of
sub-trees

NP

-

NP

NP/
NP/ \PP

PP
N\ AN AN AN
Non‘wlnal N‘P N‘P N‘P

Det Noun Prep Prop-Noun Prep Prop-Noun Prep Prop-Noun

a flight from Chicago to Houston on TWA
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Top-down vs. Bottom-up parsing

When expanding the bottom-up search space, which local trees
are created?
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Top-down vs. Bottom-up parsing
Bottom-up parsing suffers from the following problems:

e All possible analyses of every substring are generated, even
when they can never lead to an S, or can never combine with
their neighbors

e c-rules can cause performance degradation

e Reduplication of effort
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Earley’s parsing algorithm

Basic concepts:

Dotted rules: if A — af is a grammar rule then A — ae 3 is a
dotted rule.

Edges: if A— aef is a dotted rule and 4, 7 are indices into
the input string then [i,A — a e 3,5] is an edge. An edge is
passive (or complete) if 8 = ¢, active otherwise.

Actions: The algorithm performs three operations: scan,
predict and complete.
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Earley’s parsing algorithm

e Dynamic programming: partial results are stored in a chart
e Combines top-down predictions with bottom-up scanning
e No reduplication of computation

e Left-recursion is correctly handled

e e-rules are handled correctly

e Worst-case complexity: O(n3)
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Earley’s parsing algorithm

scan: read an input word and add a corresponding complete edge
to the chart.

predict: when an active edge is added to the chart, predict all
possible edges that can follow it

complete: when a complete edge is added to the chart, combine
it with appropriate active edges
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Earley’s parsing algorithm

rightsisters: given an active edge A — a e B3, return all dotted
rules B — evy

leftsisters: given a complete edge B — e, return all dotted
edges A — ae B

combination:

[1,A — ae BB,k] x [k, B — ~e,5] = [1,A — aBef,j]
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Parsing: Earley deduction

Inference rules:

[ivA — ae wj-i-l/ij]

Scan
[Z,A — QWj+1 .Baj + 1]
[;,A — ae Bg,j]
Predict B — «
7, B — ev,5]
[,A — ae BB,k] [k,B — ve,j]
Complete

[i,A — aBefj,j]
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Parsing: Earley deduction

Item form: [i,A — aef3,j] (state that S = w; ---w;A~, and also
that a = wit1 - w;)

Axioms: [0,S’" — e S,0]

Goals: [0,S’ — S e,n]
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Earley’s parsing algorithm

Parse ::
enteredge([0,S’ — e S,0])
for j :=1 to n do

for every rule 4 — w; do
enteredge([j-1,4 — wje,jl)

if S — S e € C[0,n] then accept else reject
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Earley’s parsing algorithm

enteredge(i,edge,j)
if edge ¢ C[i,j] then /* occurs check */
Cli,j] := C[i,j] U {edge}
if edge is active then /* predict */
for edge’ € rightsisters(edge) do
enteredge([j,edge’,j]l)
if edge is passive then /* complete */
for edge’ € leftsisters(edge) do
for k such that edge’ € Clk,i] do
enteredge ([k,edge’*edge, j]l)



