Computational Linguistics 204

Parsing

Recognition: Given a (context-free) grammar G and a string of
words w, determine whether w € L(G).

Parsing: If w € L(G), produce the (tree) structure that is
assigned by G to w.

Computational Linguistics 206

Parsing

Parameters that define different parsing algorithms:

Orientation: Top-down vs. bottom-up vs. mixed

Direction: Left-to-right vs. right-to-left vs. mixed (e.g., island-
driven)

Handling multiple choice: Dynamic programming vs. parallel
processing vs. backtracking

Search: Breadth-first or Depth-first

Computational Linguistics 205

Parsing
General requirements for a parsing algorithm:

e Generality: the algorithm must be applicable to any grammar

e Completeness: the algorithm must produce all the results in
case of ambiguity

e Efficiency

e Flexibility: a good algorithm can be easily modified

Computational Linguistics 207

An example grammar

D — the NP — D N
N — cat PP — P NP
N — hat NP — NP PP
P — in

Example sentences:

the cat in the hat
the cat in the hat in the hat



Computational Linguistics 208

A bottom-up recognition algorithm
Assumptions:

e The grammar is given in Chomsky Normal Form: each rule is
either of the form A — B C (where A, B, C are non-terminals)
or of the form A — a (where a is a terminal).

e The string to recognize is w = w1 -+ wy.

e A set of indices {0,1,...,n} is defined to point to positions
between the input string’s words:

O the 1l cat2in 3 the 4 hat 5

Computational Linguistics 210

The CYK algorithm

for j :=1 to n do
for all rules 4 — w; do
chart[j-1,j] := chart[j-1,3j]1 U {4}
for i := j-2 downto O do
for k := i+l to j-1 do
for all B € chart[i,k] do
for all C € chartlk,j] do
for all rules A — B C do
chart[i,j] := chart[i,j] U {4}
if S € chart[0,n] then accept else reject

Computational Linguistics 209

The CYK algorithm

Bottom-up, chart-based recognition algorithm for grammars in
CNF

To recognize a string of length n, uses a chart: a bi-dimensional
matrix of size n x (n+ 1)

Invariant: a non-terminal A is stored in the [:,j] entry of the
chart iff A = Wi41* Wy

Consequently, the chart is triangular. A word w is recognized iff
the start symbol S is in the [0,n] entry of the chart

The idea: build all constituents up to the i-th position before
constructing the ¢4 1 position; build smaller constituents before
constructing larger ones

Computational Linguistics 211

The CYK algorithm
Extensions:

e Parsing in addition to recognition
e Support for e-rules

e General context-free grammars (not just CNF)



Computational Linguistics 212 Computational Linguistics

Parsing schemata Parsing schema: CYK
To provide a unified framework for discussing various parsing Given a grammar G = (X, V, S, P) and a string w = w1 -+ - wy!
algorithms we use parsing schemata, which are generalized
schemes for describing the principles behind specific parsing Items: [i,A,j] for AcV and 0<4,5 <n
algorithms. This is a generalization of the parsing as deduction (state that A = w1 ---w;) B -

paradigm.

A parsing schema consists of four components: Axioms: [i,A;i+ 1] when A — w1 € P

a set of items Goals: [0, S,n]

. Inference rules:
e a set of axioms

. [, B,5] 14, G K]
a set of deduction rules A= BC

[i, A, K]

a set of goal items

Computational Linguistics 214 Computational Linguistics
CYK parsing schema: deduction example Parsing: bottom-up schema (Shift—Reduce)
D — the NP — D N .
N —s cat PP — P NP Items: [we,j] (state that cwjq1 - wp = wi - wy)
N — hat NP — NP PP
P —s in Axioms: [e, 0]
0 the 1 cat 2in 3 the 4 hat 5 Goals: [Se,n]
[0,D0,1] [1,N,2] [2,P,3] [3,D,4] [4 N, 5] Inference rules:
/ [, ]
[0, NP, 2] (3, NP, ] Shift
[ow;jt10,5 + 1]
[2, PP, 5]
/ [aye, 4]
[0, NP, 5] Reduce === B — 19

[aBs, j]



Computational Linguistics

216

Bottom-up deduction: example

Computational Linguistics

218

Top-down deduction: example

Input: O the 1 cat 2 in 3 the 4 hat 5

Computational Linguistics

217

Parsing: top-down schema

Item form: [ef, ] (state that S = wi---w;B)

Axioms: [eS,0]

Goals: [e,n]

Inference rules:

[ow;+18, 5]
Scan .
[¢3,7 + 1]
[¢BB, j]
Predict B — ~
(78, 5]
Computational Linguistics 219

[eNP, 0] axiom
[eNP PP,0] predict NP — NP PP
[eD N PP,0] predict NP — D N
[ethe N PP,0] predict D — the
[eN PP, 1] scan
[ecat PP, 1] predict N — cat
[ePP, 2] scan
[eP NP, 2] predict PP — P NP
[ein NP, 2] predict P — in
[eNP, 3] scan
[eD N, 3] predict NP — D N
[ethe N, 3] predict D — the
[eN, 4] scan
[ehat, 4] predict N — hat
[e, 5] scan



Computational Linguistics 220 Computational Linguistics

Top-down parsing: algorithm Top-down vs. Bottom-up parsing
Parse(f3,j) :: Two inherent constraints:
if f = wj41 - then return parse(f,j 4+ 1)
else if = 5[’ then 1. The root of the tree is S

for every rule B — y€ P

. ;.

if Parse(y:[',j) then return true 2. The vyield of the tree is the input word
return false

if Parse(S,0) then accept else reject

Computational Linguistics 222 Computational Linguistics
An example grammar An example derivation tree
S — NP VP Det — that |this | a
S — Aux NP VP Noun — book |flight | meal S
S—> VP Verb — book | include | includes

VP — Verb Prep — from | to | on

VP
VP — Verb NP Proper-Noun — Houston | TWA \
NP — Det Nominal Aux — does NP
NP — Proper-Noun \
Nom

Nominal — Noun

Nominal — Noun Nominal ‘
Nominal — Nominal PP Verb Det Noun
PP — Prep NP | |

book that flight

inal



Computational Linguistics 224

An example derivation tree

/S

NP\
Nominal
Norr‘ﬂnal Nomlnal
D‘et No‘un Prep Proper—Noun Verb D No‘un
the flight from Houston mcIudes a meal
Computational Linguistics 226

Top-down vs. Bottom-up parsing

When expanding the top-down search space, which local trees
are created?

Computational Linguistics 225

An example derivation tree

| \

Nomlnal
Norr‘nnal / /Nommal

A‘ux D‘et No‘un Prep Proper Noun Verb De Noun
does the flight from Houston |nclude a meal
Computational Linguistics 227

Top-down vs. Bottom-up parsing

To reduce “blind” search, add bottom-up filtering.

Observation: when trying to Parse(f,j), where g = By, the
parser succeeds only if B = w;41f.

Definition: A word w is a left-corner of a non-terminal B iff
B = wp for some B.



Computational Linguistics

228 Computational Linguistics 229

Top-down parsing with bottom-up filtering

Parse(f,]j)
if f = wj41 - then return parse(f,j 4+ 1)
else if B = B-3 then

if w;11 is a left-corner of B then

for every rule B — y€ P
if Parse(v-(’,j) then return true
return false

if Parse(S,0) then accept else reject

Computational Linguistics

Top-down vs. Bottom-up parsing

Even with bottom-up filtering, top-down parsing suffers from the
following problems:

e Left recursive rules can cause non-termination: NP — NP PP.

e Even when parsing terminates, it might take exponentially
many steps.

e Constituents are computed over and over again

230 Computational Linguistics 231

Top-down parsing: repeated generation of

sub-trees

NP
Nominal
Det Noun
a‘ flig;ht from Chicago to Houston

on

Top-down parsing: repeated generation of
sub-trees

NP

— \PP

NP

Non‘ﬂnal NP
Det Noun Prep

TWA \ | \
a flight from

Prop-Noun

Chicago to Houston on TWA



Computational Linguistics 232
Top-down parsing: repeated generation of
sub-trees

NP

NP/
NP/ \PP

PP
S e
Norr‘unal N‘P N‘P

Det Noun Prep Prop-Noun Prep Prop-Noun

Computational Linguistics 233

a flight from Chicago to Houston on TWA
Computational Linguistics 234
Top-down parsing: repeated generation of
sub-trees

Reduplication:

*

Constituent

a flight

from Chicago

to Houston

on TWA

a flight from Chicago

a flight from Chicago to Houston

a flight from Chicago to Houston on TWA

N WRFRNWPD

Top-down parsing: repeated generation of
sub-trees

NP

-

NP

NP/
NP/ \PP

PP
N\ AN AN AN
Non‘wlnal N‘P N‘P N‘P

Det Noun Prep Prop-Noun Prep Prop-Noun Prep Prop-Noun

a flight from Chicago to Houston on TWA

Computational Linguistics 235

Top-down vs. Bottom-up parsing

When expanding the bottom-up search space, which local trees
are created?



Computational Linguistics 236

Top-down vs. Bottom-up parsing
Bottom-up parsing suffers from the following problems:

e All possible analyses of every substring are generated, even
when they can never lead to an S, or can never combine with
their neighbors

e c-rules can cause performance degradation

e Reduplication of effort

Computational Linguistics 238

Earley’s parsing algorithm

Basic concepts:

Dotted rules: if A — af is a grammar rule then A — ae 3 is a
dotted rule.

Edges: if A— aef is a dotted rule and 4, 7 are indices into
the input string then [i,A — a e 3,5] is an edge. An edge is
passive (or complete) if 8 = ¢, active otherwise.

Actions: The algorithm performs three operations: scan,
predict and complete.

Computational Linguistics 237

Earley’s parsing algorithm

e Dynamic programming: partial results are stored in a chart
e Combines top-down predictions with bottom-up scanning
e No reduplication of computation

e Left-recursion is correctly handled

e e-rules are handled correctly

e Worst-case complexity: O(n3)

Computational Linguistics 239

Earley’s parsing algorithm

scan: read an input word and add a corresponding complete edge
to the chart.

predict: when an active edge is added to the chart, predict all
possible edges that can follow it

complete: when a complete edge is added to the chart, combine
it with appropriate active edges



Computational Linguistics 240

Earley’s parsing algorithm

rightsisters: given an active edge A — a e B3, return all dotted
rules B — evy

leftsisters: given a complete edge B — e, return all dotted
edges A — ae B

combination:

[1,A — ae BB,k] x [k, B — ~e,5] = [1,A — aBef,j]

Computational Linguistics 242

Parsing: Earley deduction

Inference rules:

[ivA — ae wj-i-l/ij]

Scan
[Z,A — QWj+1 .Baj + 1]
[;,A — ae Bg,j]
Predict B — «
7, B — ev,5]
[,A — ae BB,k] [k,B — ve,j]
Complete

[i,A — aBefj,j]

Computational Linguistics 241

Parsing: Earley deduction

Item form: [i,A — aef3,j] (state that S = w; ---w;A~, and also
that a = wit1 - w;)

Axioms: [0,S’" — e S,0]

Goals: [0,S’ — S e,n]

Computational Linguistics 243

Earley’s parsing algorithm

Parse ::
enteredge([0,S’ — e S,0])
for j :=1 to n do

for every rule 4 — w; do
enteredge([j-1,4 — wje,jl)

if S — S e € C[0,n] then accept else reject



Computational Linguistics 244

Earley’s parsing algorithm

enteredge(i,edge,j)
if edge ¢ C[i,j] then /* occurs check */
Cli,j] := C[i,j] U {edge}
if edge is active then /* predict */
for edge’ € rightsisters(edge) do
enteredge([j,edge’,j]l)
if edge is passive then /* complete */
for edge’ € leftsisters(edge) do
for k such that edge’ € Clk,i] do
enteredge ([k,edge’*edge, j]l)



