Morphology is the area of linguistics which studies the structure of words.

Almost all natural language applications require some processing of words: lexicon lookup, morphological analysis and generation, part-of-speech determination etc.

In order to implement such functions, it is necessary to understand which morphological processes take place in a variety of languages.

Why look at many languages?

Example

hem dibbru koll ha-layla
Observations:

- dibbru is third person, plural, past form of the verb dibber
- this form is obtained by concatenating the suffix [u] to the base [dibber]
- in the inflected form dibbru, the vowel [e] of the base [dibber] is reduced to a schwa. This reduction is mandatory, as [dibberu] is ungrammatical.

Structure of this part of the course

- Typology of languages
- Inflection and derivation
- What information is encoded by morphology
- How morphology encodes information
- concatenation, infixation, circumfixation, root and pattern, reduplication
- Interaction of morphology and phonology

Typology of languages

Isolating : no bound forms. Example: Mandarin Chinese

Agglutinative : bound forms occur and are arranged in the word like beads on a string. Example: Turkish

Polysynthetic : elements that often occur as separate words in other languages (such as arguments of the verb) are expressed morphologically. Example: Yupik (central Alaska)

Inflectional : distinct features are merged into a single bound form. Example: Latin

Agglutinative languages

Beads on a string. Example: Turkish

çöplüklerimizdekiledenmiydi
çöp lük ler imiz de ki ler den mi y di garbage Aff Pl 1p/PI Loc Rel Pl Abl Int Aux Past
"was it from those that were in our garbage cans?"

[^0]
Isolating languages

No bound forms. Example: Mandarin Chinese
gǒu bú ài chī qīngcài
dog not like eat vegetable
Can mean any of the following (inter alia):

- the dog doesn't like to eat vegetables
- the dog didn't like to eat vegetables
- the dogs don't like to eat vegetables
- the dogs didn't like to eat vegetables
- dogs don't like to eat vegetables

Computational Linguistics

Polysynthetic languages

Morphology encodes units that are usually considered syntactic (as in noun incorporation). Example: Yupik
qayá:liy'u:l'u:n'i
qayá: li y'u: l'u: n'i
kayaks make excellent he Past
"he was excellent at making kayaks"
"The grammar is in the morphology"

Inflectional languages

Portmanteau morphemes: a single morpheme can encode various bits of information. Example: Latin
amó
am ó
love $1 \mathrm{p} / \mathrm{Sg} /$ Pres/Indicative/Active

Inflections and derivations

Derivational morphology takes as input a word and outputs a different word that is derived from the input. This is also called word formation.

Example: establish+ment+ary+an+ism
Example: hexlit \rightarrow haxlata \rightarrow hexleti \rightarrow hexletiyut

Inflections and derivations

Inflectional morphology takes as input a word and outputs a form of the same word appropriate to a particular context.

Example: [dibber] \Rightarrow [dibbru]
The output is appropriate to a context in which the subject is third person plural and the tense is past.

Hence: words have paradigms, defining all possible inflected forms of a word. Words which belong to the same paradigm are all inflected forms of a single lexeme.

Computational Linguistics

Inflections and derivations - distinctive criteria

- Inflection does not change the part-of-speech, derivation might.
haxlata-haxlatot; haxlata-hexleti
- Inflection is sometimes required by the syntax, derivation never is.
- If a language marks an inflectional category, it marks it on all appropriate words. In other words, the relation denoted by inflectional morphology is productive.

haxlata - haxlatot haxlata - hexleti		
hapgana	hapganot	hapgana

Verbal morphology

Verbs specify the number (and type) of arguments they may take. In many languages, morphological devices modify these lexically specified markings.

Example: passivization (Latin)
puer Cicerōnem laudat
boy Cicero praise/3/Sg/Pres/Ind/Act
"the boy praises Cicero"
Cicerōnem laudātur
Cicero praise/3/Sg/Pres/Ind/Pass
"Cicero is praised"
Example: causativization
napal \rightarrow hippil; nasa\& \rightarrow hissi\&

Verbal morphology

In many languages the verb must agree on person, number, gender or other features with one or more of its arguments.

Example:
The princess kisses the frog
*The princess kiss the frog
hem dibbru koll ha-layla
*hem dibbra koll ha-layla
In some languages (e.g., Georgian and Chichewa) verbs agree not only with their subjects but also with their objects.

Verbal morphology

Verbs are commonly marked with indications of the time at which the situations denoted by them occurred, or the state of completion of the situation. Such markers encode tense and aspect, respectively.

```
Example: Latin
```

vir Cicerōnem laudābō
man Cicero praise/3/Sg/Future/Ind
"the man will praise Cicero"
vir Cicerōnem laudāvit
man Cicero praise/3/Sg/Perf/Ind
"the man has praised Cicero"

Nominal morphology

Inflectional categories for nouns (and adjectives) include

- number (singular, plural, dual)
- case (marking various kinds of semantic function)
- gender (feminine, masculine, neuter)

Latin has five cases: nominative, genitive, dative, accusative, ablative.

Finnish has fourteen different cases!
Example: the inflection paradigm of the noun magnus (big) in Latin.

The inflection paradigm of Latin magnus

		masculine	feminine	neuter
sing.	nom	magn+us	magn+a	magn+um
	gen	magn+T	$m a g n+a e$	magn + T
	dat	magn $+\overline{\mathbf{o}}$	magn+ae	magn $+\overline{\mathbf{o}}$
	acc	magn+um	magn+am	magn+um
	abl	magn $+\overline{\mathbf{o}}$	magn $+\overline{\mathbf{a}}$	magn $+\overline{\mathbf{o}}$
plur.	nom	magn + T	magn+ae	magn + a
	gen	magn+ōrum	magn+ārum	magn+ōrum
	dat	magn + Is	magn + is	magn+is
	acc	magn + ōs	magn + ās	magn+a
	abl	magn + İs	magn + Is	magn+is

Adjectival morphology

Many languages express comparison of adjectives morphologically.

Example: Welsh

gwyn	gwynn+ed	gwynn+ach	gwynn+af
white	as white	whiter	whitest
teg	tec+ed	tec+ach	tec+af
fair	as fair	fairer	fairest

Nominal morphology

Many languages distinguish between two or three grammatical genders: feminine, masculine and neuter.

In some languages, such as the Bantu languages, more detailed gender classes exist.

Example: Swahili has inflection affixes for humans, thin objects, paired things, instruments and extended body parts, inter alia.

In general, derivational morphology is not as productive as inflectional morphology.

Nominalization: destroy \rightarrow destruction; \$amar \rightarrow \$mira; pittex \rightarrow pittux; hiskim \rightarrow heskem

Deverbal adjectives: drink \rightarrow drinkable; nazal \rightarrow nazil
Denominalized adjectives: \$ulxan \rightarrow \$ulxani
Adjective nominalization: grammatical \rightarrow grammaticality; nadir \rightarrow ndirut

Negation: able \rightarrow unable; xuti \rightarrow 'alxuti

Compounding

In contrast to derivations and inflections, where affixes are attached to a stem, in compounding two or more lexemes' stems are joint together, forming another lexeme.

Example: policeman; newspaper; beit seper; ypat \&einaym
Both lexemes might undergo modification in the process.
In German, the concatenation is expressed in the orthography:
lebensversicherungsgesellschaftsangestellter
leben s versicherung s gesellschaft s angestellter
life insurance \quad company

What are morphemes?

Linear concatenation is not the only way in which languages put morphemes together. Affixes may also attach as infixes inside words.

Example: Bontoc (Philippines)
fikas \rightarrow f-um+ikas
strong be strong
kilad \rightarrow k-um+ilad
red be red
fusul \rightarrow f-um+usul
enemy be an enemy

What are morphemes?

In order to know what morphemes are, it is useful to check in what ways they are expressed.

The simplest model of morphology is the situation where a morphologically complex word can be analyzed as a series of morphemes concatenated together.

An example: Turkish. Not only is Turkish morphology exclusively concatenative; in addition, all affixes are suffixes. Turkish words are of the form stem suffix*.
çöplüklerimizdekiledenmiydi
çöp lük ler imiz de ki ler den mi y di garbage Aff Pl 1p/Pl Loc Rel Pl Abl Int Aux Past

What are morphemes?

In the Bontoc case the infix must be placed after the first consonant of the word to which it attaches.

In general, the placement of infixes is governed by prosodic principles.

Example: Ulwa (Nicaragua)

```
suu+ki-lu my dog
suu+ma-lu your (Sg) dog
suu+ka-lu his/her/its dog
suu+ni-lu our (inclusive) dog
suu+ki+na-lu our (exclusive) dog
suu+ma+na-lu your (PI) dog
suu+ka+na-lu their dog
```


What are morphemes?

Some languages exhibit circumfixes, affixes which attach discontinuously around a stem.

Example: German participles

säuseln	ge+säusel+t
brüsten	ge+brüst + et
täuschen	ge+täusch+t

What are morphemes?

Another nonsegmental process is reduplication.
Example: Indonesian
orang \rightarrow orang+orang
man men
Sometimes only part of the word is duplicated, as in Yidin (Australia) plural:
mulari \rightarrow mula+mulari
man men
gindalba \rightarrow gindal+gindalba
lizard lizards

What are morphemes?

In contrast to processes of attaching an affix to a stem, there exist also nonsegmental morphological processes. A typical example is the Semitic root and pattern morphology.

Example: Hebrew binyanim
_a_a_, ni__a_, _i__el, _u__a_, hi__i_, hu__a_, hit_a__e_.

Computational Linguistics
So, what are morphemes?

In its most general definition, a morpheme is an ordered pair〈cat, phon〉, where cat is the morphological category expressed by the morpheme (for example, its syntactic and semantic features), and phon represents its phonological form, including the ways in which it is attached to its stem.

Example:

$$
\begin{array}{cc}
\langle(\text { Adj } \rightarrow N, \text { "state of" }),([u t], \text { suffix })\rangle & \text { nadir } \rightarrow \text { ndirut } \\
\quad\left\langle(\text { root } \rightarrow V, \text { causative }),\left(_i_{--} e_{-}\right)\right\rangle & \text {g.d.I } \rightarrow \text { giddel }
\end{array}
$$

What are words, then?

A morpheme is a pairing of syntactic/semantic information with phonological information. In the same way, it is useful to assume that words have dual structures: phonological and morphological. The two structures are not always isomorphic.

It is a fairly traditional observation in morphology that there are really two kinds of words from a structural point of view: phonological words and syntactic words. These two notions specify overlapping but not identical sets of entities. furthermore, the orthographic word might not correspond to any of these.

Morphotactics

Morphotactics investigates the constraints imposed on the order in which morphemes are combined.

Various kinds of such constraints are known.
Example:
teva\& \rightarrow tiv\&i \rightarrow tiv\&iyut \rightarrow \&al-tiv\&iyut but
*tiv\&iyut-\&al; *\&al-tiv\&uti

What information should a morphological analyzer produce?

The answer depends on the application:
Sometimes it is sufficient to know that dibbru is an inflected form of dibber; sometimes morphological information is needed, either as a list of features (dibbru is third person, plural, past form of the verb dibber) or as a structure tree; sometimes it is better to produce a list of phonemes without determining word boundaries. For some applications, the root d.b.r might be needed.

Morphotactics

Types of constraints:

- Constraints on the type of the affix: $\& a l$ is a prefix, $u t$ is a suffix
- Syntactic constraints: [i] converts a noun to an adjective; [ut] converts an adjective to a noun
- Other constraints: in English, "Latin" affixes are attached before "native" ones:
non+im+partial non+il+legible
*in+non+partial *in+non+legible

Phonology

Ideally, the task of a morphological analysis system would be to break the word down to its component morphemes and determine the meaning of the resulting decomposition

Things are not that simple because of the often quite drastic effects of phonological rules. A great deal of the effort in constructing computational models of morphology is spent on developing techniques for dealing with phonological rules.

Since most computational analyses of morphology assume written input, phonological rules are often confused with orthographic ones.

Phonology

A phonological rule (changing [a ${ }^{j}$] to [i]) is not reflected in the orthography:
divine+ity \rightarrow divinity
A phonological rule (stress shift) is not reflected in the orthography:
grammátical \rightarrow grammaticálity

Phonology

Orthographic rules often do not correspond to phonological rules. An orthographic rule that does not correspond to any phonological rule:
city $+s \rightarrow$ cities (and not $*$ citys)
bake+ing \rightarrow baking (and not $*$ bakeing)

Phonology

Examples of phonological rules
English: [n] changes to [m] before a labial consonant:
impossible; impose; immortal
Finnish: vowel harmony

NOM	PART	gloss
taivas	taivas+ta	sky
puhelin	puheli+ta	telephone
lakeus	lakeus+ta	plain
syy	syy+tä	reason
lyhyt	lyhyt+tä	short
ystävällinen	ystävällinen+tä	friendly

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency.

The solution: trie (word tree).
Access time: $O(|w|)$. Space requirement: $O\left(\sum_{w}|w|\right)$.
A trie can be augmented to store also a morphological dictionary specifying concatenative affixes, especially suffixes. In this case it is better to turn the tree into a graph

The obtained model is that of finite-state automata.

Computational Linguistics

 86
Formal language theory - definitions

Formal languages are defined with respect to a given alphabet, which is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Example: Strings

Let $\Sigma=\{0,1\}$ be an alphabet. Then all binary numbers are strings over Σ.

If $\Sigma=\{a, b, c, d, \ldots, y, z\}$ is an alphabet then cat, incredulous and supercalifragilisticexpialidocious are strings, as are tac, qqq and kjshdflkwjehr.

Finite-state technology

Finite-state automata are not only a good model for representing the lexicon, they are also perfectly adequate for representing dictionaries (lexicons+additional information), describing morphological processes that involve concatenation etc.

A natural extension of finite-state automata - finite-state transducers - is a perfect model for most processes known in morphology and phonology, including non-segmental ones.

Formal language theory - definitions

The length of a string w, denoted $|w|$, is the number of letters in w. The unique string of length 0 is called the empty string and is denoted ϵ

If $w_{1}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $w_{2}=\left\langle y_{1}, \ldots, y_{m}\right\rangle$, the concatenation of w_{1} and w_{2}, denoted $w_{1} \cdot w_{2}$, is the string $\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\rangle$. $\left|w_{1} \cdot w_{2}\right|=\left|w_{1}\right|+\left|w_{2}\right|$.

For every string $w, w \cdot \epsilon=\epsilon \cdot w=w$

Formal language theory - definitions

Example: Concatenation

Let $\Sigma=\{a, b, c, d, \ldots, y, z\}$ be an alphabet. Then master mind $=$ mastermind, mind \cdot master $=$ mindmaster and master \cdot master $=$ mastermaster. Similarly, learn $\cdot s=$ learns, learn \cdot ed $=$ learned and learn \cdot ing $=$ learning.

The reversal of a string w is denoted w^{R} and is obtained by writing w in the reverse order. Thus, if $w=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, $w^{R}=\left\langle x_{n}, x_{n-1}, \ldots, x_{1}\right\rangle$.

Given a string w, a substring of w is a sequence formed by taking contiguous symbols of w in the order in which they occur in w. If $w=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ then for any i, j such that $1 \leq i \leq j \leq n,\left\langle x_{i}, \ldots x_{j}\right\rangle$ is a substring of w.

Two special cases of substrings are prefix and suffix: if $w=$ $w_{l} \cdot w_{c} \cdot w_{r}$ then w_{l} is a prefix of w and w_{r} is a suffix of w.

An exponent operator over strings is defined in the following way: for every string $w, w^{0}=\epsilon$. Then, for $n>0, w^{n}=w^{n-1} \cdot w$.

Example: Exponent
If $w=g \circ$, then $w^{0}=\epsilon, w^{1}=w=g o, w^{2}=w^{1} \cdot w=w \cdot w=$ gogo, $w^{3}=$ gogogo and so on.

Example: Substrings

Let $\Sigma=\{a, b, c, d, \ldots, y, z\}$ be an alphabet and $w=$ indistinguishable a string over Σ. Then ϵ, in, indis, indistinguish and indistinguishable are prefixes of w, while ϵ, e, able, distinguishable and indistinguishable are suffixes of w. Substrings that are neither prefixes nor suffixes include distinguish, gui and is.

Given an alphabet Σ, the set of all strings over Σ is denoted by Σ^{*}.

A formal language over an alphabet Σ is a subset of Σ^{*}.

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;
- the set of single-letter strings;
- the set $\{i, y o u, h e$, she, it, we, they\};
- the set of words occurring in Joyce's Ulysses;
- the empty set;

Note that the first five languages are infinite while the last five are finite.

Example: Languages

Let $\Sigma=\{a, b, c, \ldots, y, z\}$. Then Σ^{*} is the set of all strings over the Latin alphabet. Any subset of this set is a language. In particular, the following are formal languages:

The string operations can be lifted to languages.
If L is a language then the reversal of L, denoted L^{R}, is the language $\left\{w \mid w^{R} \in L\right\}$.

If L_{1} and L_{2} are languages, then
$L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}\right.$ and $\left.w_{2} \in L_{2}\right\}$.
Example: Language operations
$L_{1}=\{i$, you, he, she, it, we, they $\}, L_{2}=\{$ smile, sleep $\}$.
Then $L_{1}{ }^{R}=\{i$, uoy, eh, ehs, ti, ew, yeht $\}$ and $L_{1} \cdot L_{2}=$ \{ismile, yousmile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep, shesleep, itsleep, wesleep, theysleep\}.

If L is a language then $L^{0}=\{\epsilon\}$.
Then, for $i>0, L^{i}=L \cdot L^{i-1}$.
Example: Language exponentiation
Let L be the set of words $\{b a u$, haus, hof, frau $\}$. Then $L^{0}=$ $\{\epsilon\}, L^{1}=L$ and $L^{2}=\{$ baubau, bauhaus, bauhof, baufrau, hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau, frauhaus, frauhof, fraufrau\}.

Regular expressions

Regular expressions are a formalism for defining (formal) languages. Their "syntax" is formally defined and is relatively simple. Their "semantics" is sets of strings: the denotation of a regular expression is a set of strings in some formal language.

The Kleene closure of L and is denoted L^{*} and is defined as $\bigcup_{i=0}^{\infty} L^{i}$.
$L^{+}=\bigcup_{i=1}^{\infty} L^{i}$.
Example: Kleene closure
Let $L=\{d o g$, cat $\}$. Observe that $L^{0}=\{\epsilon\}, L^{1}=$ $\{d o g, c a t\}, L^{2}=\{$ catcat, catdog, dogcat, dogdog\}, etc. Thus L^{*} contains, among its infinite set of strings, the strings ϵ, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat, catdogcat, dogcatcat, dogdogcat, etc.
The notation for Σ^{*} should now become clear: it is simply a special case of L^{*}, where $L=\Sigma$.

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- if $a \in \Sigma$ is a letter then a is a regular expression
- if r_{1} and r_{2} are regular expressions then so are $\left(r_{1}+r_{2}\right)$ and $\left(r_{1} \cdot r_{2}\right)$
- if r is a regular expression then so is $(r)^{*}$
- nothing else is a regular expression over Σ.

Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- \emptyset
- a
- $((c \cdot a) \cdot t)$
- $\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$
- $(a+(e+(i+(o+u))))$
- $((a+(e+(i+(o+u)))))^{*}$

\emptyset	\emptyset
a	$\{a\}$
$((c \cdot a) \cdot t)$	$\{c \cdot a \cdot t\}$
$\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$	$\{m e w$, meow, meoow, meooow, meoooow,
$(a+(e+(i+(o+u))))$	$\{a, e, i, o, u\}$
$\left((a+(e+(i+(o+u))))^{*}\right.$	all strings of 0 or more vowels

For every regular expression r its denotation, $\llbracket r \rrbracket$, is a set of strings defined as follows:

- $\llbracket \square \rrbracket=\emptyset$
- $\llbracket \epsilon \rrbracket=\{\epsilon\}$
- if $a \in \Sigma$ is a letter then $\llbracket a \rrbracket=\{a\}$
- if r_{1} and r_{2} are regular expressions whose denotations are $\llbracket r_{1} \rrbracket$ and $\llbracket r_{2} \rrbracket$, respectively, then $\llbracket\left(r_{1}+r_{2}\right) \rrbracket=\llbracket r_{1} \rrbracket \cup \llbracket r_{2} \rrbracket$, $\llbracket\left(r_{1} \cdot r_{2}\right) \rrbracket=\llbracket r_{1} \rrbracket \cdot \llbracket r_{2} \rrbracket$ and $\llbracket\left(r_{1}\right)^{*} \rrbracket=\llbracket r_{1} \rrbracket \rrbracket^{*}$

Regular expressions

Example: Regular expressions Given the alphabet of all English letters, $\Sigma=$ $\{a, b, c, \ldots, y, z\}$, the language Σ^{*} is denoted by the regular expression Σ^{*}.

The set of all strings which contain a vowel is denoted by $\Sigma^{*} \cdot(a+e+i+o+u) \cdot \Sigma^{*}$.

The set of all strings that begin in "un" is denoted by (un) Σ^{*}.
The set of strings that end in either "tion" or "sion" is denoted by $\Sigma^{*} \cdot(s+t) \cdot(i o n)$.
Note that all these languages are infinite.

Properties of regular languages

Closure properties:
A class of languages \mathcal{L} is said to be closed under some operation ' \bullet ' if and only if whenever two languages L_{1}, L_{2} are in the class ($L_{1}, L_{2} \in \mathcal{L}$), also the result of performing the operation on the two languages is in this class: $L_{1} \bullet L_{2} \in \mathcal{L}$.

Regular languages are closed under:

- Union
- Intersection
- Complementation
- Difference
- Concatenation
- Kleene-star
- Substitution and homomorphism

[^0]: "h-mi-\$e-b-paxeinu?"

