
Computational Linguistics 48

Morphology

Morphology is the area of linguistics which studies the structure

of words.

Almost all natural language applications require some processing

of words: lexicon lookup, morphological analysis and generation,

part-of-speech determination etc.

In order to implement such functions, it is necessary to

understand which morphological processes take place in a variety

of languages.

Why look at many languages?

Computational Linguistics 49

Example

hem dibbru koll ha-layla

Observations:

• dibbru is third person, plural, past form of the verb dibber

• this form is obtained by concatenating the suffix [u] to the

base [dibber]

• in the inflected form dibbru, the vowel [e] of the base [dibber] is

reduced to a schwa. This reduction is mandatory, as [dibberu]

is ungrammatical.

Computational Linguistics 50

Example

These simple observations shed light on a variety of issues:

• What information is encoded by morphology?

In the example, morphology encodes details such as person,

number and tense.

• How does morphology encode information?

In the example, the final form is obtained by concatenating an

affix (which is not a word) to the end of a base (which might

be a word).

• Interaction of morphology and phonology

In the example, the vowel [e] is shortened to a schwa.

Computational Linguistics 51

Structure of this part of the course

• Typology of languages

• Inflection and derivation

• What information is encoded by morphology

• How morphology encodes information

• concatenation, infixation, circumfixation, root and pattern,

reduplication

• Interaction of morphology and phonology



Computational Linguistics 52

Typology of languages

Isolating : no bound forms. Example: Mandarin Chinese

Agglutinative : bound forms occur and are arranged in the word

like beads on a string. Example: Turkish

Polysynthetic : elements that often occur as separate words in

other languages (such as arguments of the verb) are expressed

morphologically. Example: Yupik (central Alaska)

Inflectional : distinct features are merged into a single bound

form. Example: Latin

Computational Linguistics 53

Isolating languages

No bound forms. Example: Mandarin Chinese

gǒu

dog

bú

not

ài

like

ch̄ı

eat

q̄ıngcài

vegetable

Can mean any of the following (inter alia):

• the dog doesn’t like to eat vegetables

• the dog didn’t like to eat vegetables

• the dogs don’t like to eat vegetables

• the dogs didn’t like to eat vegetables

• dogs don’t like to eat vegetables

Computational Linguistics 54

Agglutinative languages

Beads on a string. Example: Turkish

çöplüklerimizdekiledenmiydi

çöp

garbage

lük

Aff

ler

Pl

imiz

1p/Pl

de

Loc

ki

Rel

ler

Pl

den

Abl

mi

Int

y

Aux

di

Past

“was it from those that were in our garbage cans?”

“h-mi-$e-b-paxeinu?”

Computational Linguistics 55

Polysynthetic languages

Morphology encodes units that are usually considered syntactic

(as in noun incorporation). Example: Yupik

qayá:liy’u:l’u:n’i

qayá:

kayaks

li

make

y’u:

excellent

l’u:

he

n’i

Past

“he was excellent at making kayaks”

“The grammar is in the morphology”



Computational Linguistics 56

Inflectional languages

Portmanteau morphemes: a single morpheme can encode various

bits of information. Example: Latin

amó

am

love

ó

1p/Sg/Pres/Indicative/Active

Computational Linguistics 57

Inflections and derivations

Inflectional morphology takes as input a word and outputs a form

of the same word appropriate to a particular context.

Example: [dibber] ⇒ [dibbru]

The output is appropriate to a context in which the subject is

third person plural and the tense is past.

Hence: words have paradigms, defining all possible inflected

forms of a word. Words which belong to the same paradigm

are all inflected forms of a single lexeme.

Computational Linguistics 58

Inflections and derivations

Derivational morphology takes as input a word and outputs a

different word that is derived from the input. This is also called

word formation.

Example: establish+ment+ary+an+ism

Example: hexlit → haxlata → hexleti → hexletiyut

Computational Linguistics 59

Inflections and derivations - distinctive criteria

• Inflection does not change the part-of-speech, derivation

might.

haxlata–haxlatot; haxlata–hexleti

• Inflection is sometimes required by the syntax, derivation never

is.

• If a language marks an inflectional category, it marks it on

all appropriate words. In other words, the relation denoted by

inflectional morphology is productive.

haxlata – haxlatot haxlata – hexleti

hapgana – hapganot hapgana – ∗hepgeni



Computational Linguistics 60

Verbal morphology

Verbs specify the number (and type) of arguments they may

take. In many languages, morphological devices modify these

lexically specified markings.

Example: passivization (Latin)

puer

boy

Cicerōnem

Cicero

laudat

praise/3/Sg/Pres/Ind/Act

“the boy praises Cicero”

Cicerōnem

Cicero

laudātur

praise/3/Sg/Pres/Ind/Pass

“Cicero is praised”

Example: causativization

napal → hippil; nasa& → hissi&

Computational Linguistics 61

Verbal morphology

Verbs are commonly marked with indications of the time at

which the situations denoted by them occurred, or the state

of completion of the situation. Such markers encode tense and

aspect, respectively.

Example: Latin

vir

man

Cicerōnem

Cicero

laudābō

praise/3/Sg/Future/Ind

“the man will praise Cicero”

vir

man

Cicerōnem

Cicero

laudāvit

praise/3/Sg/Perf/Ind

“the man has praised Cicero”

Computational Linguistics 62

Verbal morphology

In many languages the verb must agree on person, number,

gender or other features with one or more of its arguments.

Example:

The

∗The

princess

princess

kisses

kiss

the

the

frog

frog

hem

∗hem

dibbru

dibbra

koll

koll

ha-layla

ha-layla

In some languages (e.g., Georgian and Chicheŵa) verbs agree

not only with their subjects but also with their objects.

Computational Linguistics 63

Nominal morphology

Inflectional categories for nouns (and adjectives) include

• number (singular, plural, dual)

• case (marking various kinds of semantic function)

• gender (feminine, masculine, neuter)

Latin has five cases: nominative, genitive, dative, accusative,

ablative.

Finnish has fourteen different cases!

Example: the inflection paradigm of the noun magnus (big) in

Latin.



Computational Linguistics 64

The inflection paradigm of Latin magnus

masculine feminine neuter

sing. nom magn+us magn+a magn+um

gen magn+̄ı magn+ae magn+̄ı

dat magn+ō magn+ae magn+ō

acc magn+um magn+am magn+um

abl magn+ō magn+ā magn+ō

plur. nom magn+̄ı magn+ae magn+a

gen magn+ōrum magn+ārum magn+ōrum

dat magn+̄ıs magn+̄ıs magn+̄ıs

acc magn+ōs magn+ās magn+a

abl magn+̄ıs magn+̄ıs magn+̄ıs

Computational Linguistics 65

Nominal morphology

Many languages distinguish between two or three grammatical

genders: feminine, masculine and neuter.

In some languages, such as the Bantu languages, more detailed

gender classes exist.

Example: Swahili has inflection affixes for humans, thin objects,

paired things, instruments and extended body parts, inter alia.

Computational Linguistics 66

Adjectival morphology

Many languages express comparison of adjectives morphologically.

Example: Welsh

gwyn gwynn+ed gwynn+ach gwynn+af

white as white whiter whitest

teg tec+ed tec+ach tec+af

fair as fair fairer fairest

Computational Linguistics 67

Derivational morphology

In general, derivational morphology is not as productive as

inflectional morphology.

Nominalization: destroy → destruction; $amar → $mira; pittex

→ pittux ; hiskim → heskem

Deverbal adjectives: drink → drinkable; nazal → nazil

Denominalized adjectives: $ulxan → $ulxani

Adjective nominalization: grammatical → grammaticality; nadir

→ ndirut

Negation: able → unable; xuti → ’alxuti



Computational Linguistics 68

Compounding

In contrast to derivations and inflections, where affixes are

attached to a stem, in compounding two or more lexemes’ stems

are joint together, forming another lexeme.

Example: policeman; newspaper; beit seper ; ypat &einaym

Both lexemes might undergo modification in the process.

In German, the concatenation is expressed in the orthography:

lebensversicherungsgesellschaftsangestellter

leben

life

s versicherung

insurance

s gesellschaft

company

s angestellter

employee

Computational Linguistics 69

What are morphemes?

In order to know what morphemes are, it is useful to check in

what ways they are expressed.

The simplest model of morphology is the situation where a

morphologically complex word can be analyzed as a series of

morphemes concatenated together.

An example: Turkish. Not only is Turkish morphology exclusively

concatenative; in addition, all affixes are suffixes. Turkish words

are of the form stem suffix∗.

çöplüklerimizdekiledenmiydi

çöp

garbage

lük

Aff

ler

Pl

imiz

1p/Pl

de

Loc

ki

Rel

ler

Pl

den

Abl

mi

Int

y

Aux

di

Past

Computational Linguistics 70

What are morphemes?

Linear concatenation is not the only way in which languages put

morphemes together. Affixes may also attach as infixes inside

words.

Example: Bontoc (Philippines)

fikas

strong

→ f-um+ikas

be strong

kilad

red

→ k-um+ilad

be red

fusul

enemy

→ f-um+usul

be an enemy

Computational Linguistics 71

What are morphemes?

In the Bontoc case the infix must be placed after the first

consonant of the word to which it attaches.

In general, the placement of infixes is governed by prosodic

principles.

Example: Ulwa (Nicaragua)

suu+ki-lu my dog

suu+ma-lu your (Sg) dog

suu+ka-lu his/her/its dog

suu+ni-lu our (inclusive) dog

suu+ki+na-lu our (exclusive) dog

suu+ma+na-lu your (Pl) dog

suu+ka+na-lu their dog



Computational Linguistics 72

What are morphemes?

Some languages exhibit circumfixes, affixes which attach

discontinuously around a stem.

Example: German participles

säuseln ge+säusel+t

brüsten ge+brüst+et

täuschen ge+täusch+t

Computational Linguistics 73

What are morphemes?

In contrast to processes of attaching an affix to a stem, there

exist also nonsegmental morphological processes. A typical

example is the Semitic root and pattern morphology.

Example: Hebrew binyanim

a a , ni a , i el, u a , hi i , hu a , hit a e .

Computational Linguistics 74

What are morphemes?

Another nonsegmental process is reduplication.

Example: Indonesian

orang

man

→ orang+orang

men

Sometimes only part of the word is duplicated, as in Yidin

(Australia) plural:

mulari

man

→ mula+mulari

men

gindalba

lizard

→ gindal+gindalba

lizards

Computational Linguistics 75

So, what are morphemes?

In its most general definition, a morpheme is an ordered pair

〈cat,phon〉, where cat is the morphological category expressed by

the morpheme (for example, its syntactic and semantic features),

and phon represents its phonological form, including the ways in

which it is attached to its stem.

Example:

〈(Adj → N,“state of”), ([ut], suffix)〉 nadir → ndirut

〈(root → V, causative), ( i e )〉 g.d.l → giddel



Computational Linguistics 76

What are words, then?

A morpheme is a pairing of syntactic/semantic information with

phonological information. In the same way, it is useful to assume

that words have dual structures: phonological and morphological.

The two structures are not always isomorphic.

It is a fairly traditional observation in morphology that there

are really two kinds of words from a structural point of

view: phonological words and syntactic words. These two

notions specify overlapping but not identical sets of entities.

furthermore, the orthographic word might not correspond to any

of these.

Computational Linguistics 77

What information should a morphological

analyzer produce?

The answer depends on the application:

Sometimes it is sufficient to know that dibbru is an inflected form

of dibber ; sometimes morphological information is needed, either

as a list of features (dibbru is third person, plural, past form of

the verb dibber) or as a structure tree; sometimes it is better to

produce a list of phonemes without determining word boundaries.

For some applications, the root d.b.r might be needed.

Computational Linguistics 78

Morphotactics

Morphotactics investigates the constraints imposed on the order

in which morphemes are combined.

Various kinds of such constraints are known.

Example:

teva& → tiv&i → tiv&iyut → &al-tiv&iyut but

∗tiv&iyut-&al; ∗&al-tiv&uti

Computational Linguistics 79

Morphotactics

Types of constraints:

• Constraints on the type of the affix: &al is a prefix, ut is a

suffix

• Syntactic constraints: [i] converts a noun to an adjective; [ut]

converts an adjective to a noun

• Other constraints: in English, “Latin” affixes are attached

before “native” ones:

non+im+partial non+il+legible

∗in+non+partial ∗in+non+legible



Computational Linguistics 80

Phonology

Ideally, the task of a morphological analysis system would be to

break the word down to its component morphemes and determine

the meaning of the resulting decomposition.

Things are not that simple because of the often quite drastic

effects of phonological rules. A great deal of the effort in

constructing computational models of morphology is spent on

developing techniques for dealing with phonological rules.

Since most computational analyses of morphology assume

written input, phonological rules are often confused with

orthographic ones.

Computational Linguistics 81

Phonology

Orthographic rules often do not correspond to phonological rules.

An orthographic rule that does not correspond to any

phonological rule:

city+s → cities (and not ∗citys)

bake+ing → baking (and not ∗bakeing)

Computational Linguistics 82

Phonology

A phonological rule (changing [aj] to [i]) is not reflected in the

orthography:

divine+ity → divinity

A phonological rule (stress shift) is not reflected in the

orthography:

grammátical → grammaticálity

Computational Linguistics 83

Phonology

Examples of phonological rules

English: [n] changes to [m] before a labial consonant:

impossible; impose; immortal

Finnish: vowel harmony

NOM PART gloss

taivas taivas+ta sky

puhelin puheli+ta telephone

lakeus lakeus+ta plain

syy syy+tä reason

lyhyt lyhyt+tä short

ystävällinen ystävällinen+tä friendly



Computational Linguistics 84

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural

language is given as a list of words. Suggest a data structure that

will provide insertion and retrieval of data. As a first solution,

we are looking for time efficiency rather than space efficiency.

The solution: trie (word tree).

Access time: O(|w|). Space requirement: O(
∑

w |w|).

A trie can be augmented to store also a morphological dictionary

specifying concatenative affixes, especially suffixes. In this case

it is better to turn the tree into a graph.

The obtained model is that of finite-state automata.

Computational Linguistics 85

Finite-state technology

Finite-state automata are not only a good model for

representing the lexicon, they are also perfectly adequate

for representing dictionaries (lexicons+additional information),

describing morphological processes that involve concatenation

etc.

A natural extension of finite-state automata – finite-state

transducers – is a perfect model for most processes known in

morphology and phonology, including non-segmental ones.

Computational Linguistics 86

Formal language theory – definitions

Formal languages are defined with respect to a given alphabet,

which is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Example: Strings

Let Σ = {0,1} be an alphabet. Then all binary numbers

are strings over Σ.

If Σ = {a, b, c, d, . . . , y, z} is an alphabet then cat, incredulous

and supercalifragilisticexpialidocious are strings, as are tac,

qqq and kjshdflkwjehr.

Computational Linguistics 87

Formal language theory – definitions

The length of a string w, denoted |w|, is the number of letters

in w. The unique string of length 0 is called the empty string

and is denoted ε.

If w1 = 〈x1, . . . , xn〉 and w2 = 〈y1, . . . , ym〉, the concatenation of

w1 and w2, denoted w1 · w2, is the string 〈x1, . . . , xn, y1, . . . , ym〉.
|w1 · w2| = |w1| + |w2|.

For every string w, w · ε = ε · w = w.



Computational Linguistics 88

Formal language theory – definitions

Example: Concatenation

Let Σ = {a, b, c, d, . . . , y, z} be an alphabet. Then master ·
mind = mastermind, mind · master = mindmaster and

master ·master = mastermaster. Similarly, learn · s = learns,

learn · ed = learned and learn · ing = learning.

Computational Linguistics 89

Formal language theory – definitions

An exponent operator over strings is defined in the following

way: for every string w, w0 = ε. Then, for n > 0, wn = wn−1 · w.

Example: Exponent

If w = go, then w0 = ε, w1 = w = go, w2 = w1 · w = w · w =

gogo, w3 = gogogo and so on.

Computational Linguistics 90

Formal language theory – definitions

The reversal of a string w is denoted wR and is obtained by

writing w in the reverse order. Thus, if w = 〈x1, x2, . . . , xn〉,
wR = 〈xn, xn−1, . . . , x1〉.

Given a string w, a substring of w is a sequence formed by taking

contiguous symbols of w in the order in which they occur in w. If

w = 〈x1, . . . , xn〉 then for any i, j such that 1 ≤ i ≤ j ≤ n, 〈xi, . . . xj〉
is a substring of w.

Two special cases of substrings are prefix and suffix : if w =

wl · wc · wr then wl is a prefix of w and wr is a suffix of w.

Computational Linguistics 91

Formal language theory – definitions

Example: Substrings

Let Σ = {a, b, c, d, . . . , y, z} be an alphabet and w =

indistinguishable a string over Σ. Then ε, in, indis,

indistinguish and indistinguishable are prefixes of w, while ε,

e, able, distinguishable and indistinguishable are suffixes of

w. Substrings that are neither prefixes nor suffixes include

distinguish, gui and is.



Computational Linguistics 92

Formal language theory – definitions

Given an alphabet Σ, the set of all strings over Σ is denoted by

Σ∗.

A formal language over an alphabet Σ is a subset of Σ∗.

Computational Linguistics 93

Formal language theory – definitions

Example: Languages

Let Σ = {a, b, c, . . ., y, z}. Then Σ∗ is the set of all

strings over the Latin alphabet. Any subset of this set is a

language. In particular, the following are formal languages:

Computational Linguistics 94

Formal language theory – definitions

• Σ∗;

• the set of strings consisting of consonants only;

• the set of strings consisting of vowels only;

• the set of strings each of which contains at least one vowel

and at least one consonant;

• the set of palindromes;

• the set of strings whose length is less than 17 letters;

• the set of single-letter strings;

• the set {i, you, he, she, it, we, they};
• the set of words occurring in Joyce’s Ulysses;

• the empty set;

Note that the first five languages are infinite while the last

five are finite.

Computational Linguistics 95

Formal language theory – definitions

The string operations can be lifted to languages.

If L is a language then the reversal of L, denoted LR, is the

language {w | wR ∈ L}.

If L1 and L2 are languages, then

L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2}.

Example: Language operations

L1 = {i, you, he, she, it, we, they}, L2 = {smile, sleep}.

Then L1
R = {i, uoy, eh, ehs, ti, ew, yeht} and L1 · L2 =

{ismile, yousmile, hesmile, shesmile, itsmile, wesmile,

theysmile, isleep, yousleep, hesleep, shesleep, itsleep,

wesleep, theysleep}.



Computational Linguistics 96

Formal language theory – definitions

If L is a language then L0 = {ε}.
Then, for i > 0, Li = L · Li−1.

Example: Language exponentiation

Let L be the set of words {bau, haus, hof, frau}. Then L0 =

{ε}, L1 = L and L2 = {baubau, bauhaus, bauhof, baufrau,

hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus,

hofhof, hoffrau, fraubau, frauhaus, frauhof, fraufrau}.

Computational Linguistics 97

Formal language theory – definitions

The Kleene closure of L and is denoted L∗ and is defined as⋃∞
i=0 Li.

L+ =
⋃∞

i=1 Li.

Example: Kleene closure

Let L = {dog, cat}. Observe that L0 = {ε}, L1 =

{dog, cat}, L2 = {catcat, catdog, dogcat, dogdog}, etc.

Thus L∗ contains, among its infinite set of strings, the

strings ε, cat, dog, catcat, catdog, dogcat, dogdog,

catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

The notation for Σ∗ should now become clear: it is simply

a special case of L∗, where L = Σ.

Computational Linguistics 98

Regular expressions

Regular expressions are a formalism for defining (formal)

languages. Their “syntax” is formally defined and is relatively

simple. Their “semantics” is sets of strings: the denotation of

a regular expression is a set of strings in some formal language.

Computational Linguistics 99

Regular expressions

Regular expressions are defined recursively as follows:

• ∅ is a regular expression

• ε is a regular expression

• if a ∈ Σ is a letter then a is a regular expression

• if r1 and r2 are regular expressions then so are (r1 + r2) and

(r1 · r2)

• if r is a regular expression then so is (r)∗

• nothing else is a regular expression over Σ.



Computational Linguistics 100

Regular expressions

Example: Regular expressions

Let Σ be the alphabet {a, b, c, . . ., y, z}. Some regular

expressions over this alphabet are:

• ∅
• a

• ((c · a) · t)
• (((m · e) · (o)∗) · w)

• (a + (e + (i + (o + u))))

• ((a + (e + (i + (o + u)))))∗

Computational Linguistics 101

Regular expressions

For every regular expression r its denotation, [[r]], is a set of

strings defined as follows:

• [[∅]] = ∅

• [[ε]] = {ε}

• if a ∈ Σ is a letter then [[a]] = {a}

• if r1 and r2 are regular expressions whose denotations are

[[r1]] and [[r2]], respectively, then [[(r1 + r2)]] = [[r1]] ∪ [[r2]],

[[(r1 · r2)]] = [[r1]] · [[r2]] and [[(r1)∗]] = [[r1]]
∗

Computational Linguistics 102

Regular expressions

Example: Regular expressions and their denotations

∅ ∅
a {a}
((c · a) · t) {c · a · t}
(((m · e) · (o)∗) · w) {mew, meow, meoow, meooow, meoooow, . . .}
(a + (e + (i + (o + u)))) {a, e, i, o, u}
((a + (e + (i + (o + u)))))∗ all strings of 0 or more vowels

Computational Linguistics 103

Regular expressions

Example: Regular expressions

Given the alphabet of all English letters, Σ =

{a, b, c, . . . , y, z}, the language Σ∗ is denoted by the regular

expression Σ∗.

The set of all strings which contain a vowel is denoted by

Σ∗ · (a + e + i + o + u) · Σ∗.

The set of all strings that begin in “un” is denoted by

(un)Σ∗.

The set of strings that end in either “tion” or “sion” is

denoted by Σ∗ · (s + t) · (ion).

Note that all these languages are infinite.



Computational Linguistics 104

Properties of regular languages

Closure properties:

A class of languages L is said to be closed under some operation

‘•’ if and only if whenever two languages L1, L2 are in the class

(L1, L2 ∈ L), also the result of performing the operation on the

two languages is in this class: L1 • L2 ∈ L.

Computational Linguistics 105

Properties of regular languages

Regular languages are closed under:

• Union

• Intersection

• Complementation

• Difference

• Concatenation

• Kleene-star

• Substitution and homomorphism


