Home Assignment 4

1. Which of the following feature structures subsumes the other?

 $A = \begin{bmatrix} \mathbf{F} : \mathbf{3} \end{bmatrix} \begin{bmatrix} \mathbf{F} : \mathbf{3} \end{bmatrix}, \qquad B = \begin{bmatrix} \mathbf{2} \end{bmatrix} \begin{bmatrix} \mathbf{F} : \mathbf{2} \end{bmatrix}$

2. Let:

$$A = \begin{bmatrix} \mathbf{F} : & a \end{bmatrix}$$

$$B = \begin{bmatrix} \mathbf{G} : & \begin{bmatrix} \mathbf{F} : & a \end{bmatrix} \end{bmatrix}$$

$$C = \begin{bmatrix} \mathbf{F} : & a \\ \mathbf{G} : & \begin{bmatrix} \mathbf{F} : & a \end{bmatrix} \end{bmatrix}$$

$$D = \begin{bmatrix} \mathbf{F} : & a \\ \mathbf{G} : & \boxed{1} \begin{bmatrix} \mathbf{F} : & a \end{bmatrix} \end{bmatrix}$$

$$E = \begin{bmatrix} \mathbf{F} : & \boxed{1} \\ \mathbf{G} : & \boxed{1} \end{bmatrix}$$

$$F = \begin{bmatrix} \mathbf{F} : & \boxed{1} \\ \mathbf{G} : & \boxed{1} \end{bmatrix}$$

Which of the following holds?

- (a) $A \sqcup B = C$
- (b) $A \sqcup C = D$
- (c) $A \sqcup F = C$
- (d) $A \sqcup F = E$
- (e) $B \sqcup F = E$
- (f) $C \sqcup D = D$
- (g) $C \sqcup D = E$
- (h) $D \sqcup D = E$
- (i) $E \sqcup F = E$
- 3. Following is a CFG generating Hebrew noun phrases. Augment it with feature structures to enforce agreement on definiteness between the noun and the adjectives:

kaddur gadol hitgalgel

ha-kaddur ha-gadol hitgalgel

- *kaddur ha-gadol hitgalgel
- *ha-kaddur gadol hitgalgel

$$\begin{array}{l} NP \rightarrow NP \ ADJP \\ NP \rightarrow N \mid D \ N \\ ADJP \rightarrow ADJ \mid D \ ADJ \\ N \rightarrow kaddur \mid tappux \\ ADJ \rightarrow gadol \mid `adom \\ D \rightarrow ha- \end{array}$$

4. Extend G_2 , the unification grammar for E_0 , such that transitive verbs with a sentential object are accounted for, too. The grammar must generate also the following sentences:

Rachel thinks that the sheep sleep Rachel knows that Jacob loves her Laban knows that Rachel thinks that Jacob loves her

5. Design a unification grammar for the (formal) language $L = \{a^n b^m c^n d^m \mid 0 \le m, n\}$.

Submission is individual. Answeres should be fully argued.

Submission date: 15.6.02

Good Luck!