Finite-state automata Automata are models of computation: they compute languages. A finite-state automaton is a five-tuple $\langle Q, q_0, \Sigma, \delta, F \rangle$, where Σ is a finite set of **alphabet** symbols, Q is a finite set of **states**, $q_0 \in Q$ is the **initial state**, $F \subseteq Q$ is a set of **final** (accepting) states and $\delta: Q \times \Sigma \times Q$ is a relation from states and alphabet symbols to states. Computational Linguistics 108 106 #### Finite-state automata The reflexive transitive extension of the transition relation δ is a new relation, $\hat{\delta}$, defined as follows: - for every state $q \in Q$, $(q, \epsilon, q) \in \hat{\delta}$ - for every string $w \in \Sigma^*$ and letter $a \in \Sigma$, if $(q, w, q') \in \widehat{\delta}$ and $(q', a, q'') \in \delta$ then $(q, w \cdot a, q'') \in \widehat{\delta}$. #### Finite-state automata Example: Finite-state automaton - $Q = \{q_0, q_1, q_2, q_3\}$ - $\Sigma = \{c, a, t, r\}$ - $F = \{q_3\}$ - $\delta = \{\langle q_0, c, q_1 \rangle, \langle q_1, a, q_2 \rangle, \langle q_2, t, q_3 \rangle, \langle q_2, r, q_3 \rangle\}$ $$q_0$$ \xrightarrow{c} q_1 \xrightarrow{a} q_2 \xrightarrow{r} q_3 Computational Linguistics 109 #### Finite-state automata Example: Paths For the finite-state automaton: $\widehat{\delta}$ is the following set of triples: $$\langle q_0, \epsilon, q_0 \rangle, \langle q_1, \epsilon, q_1 \rangle, \langle q_2, \epsilon, q_2 \rangle, \langle q_3, \epsilon, q_3 \rangle, \langle q_0, c, q_1 \rangle, \langle q_1, a, q_2 \rangle, \langle q_2, t, q_3 \rangle, \langle q_2, r, q_3 \rangle, \langle q_0, ca, q_2 \rangle, \langle q_1, at, q_3 \rangle, \langle q_1, ar, q_3 \rangle, \langle q_0, cat, q_3 \rangle, \langle q_0, cat, q_3 \rangle$$ 110 113 #### Finite-state automata A string w is accepted by the automaton $A = \langle Q, q_0, \Sigma, \delta, F \rangle$ if and only if there exists a state $q_f \in F$ such that $(q_0, w, q_f) \in \hat{\delta}$. The *language accepted by a finite-state automaton* is the set of all string it accepts. Example: Language The language of the finite-state automaton: is {cat, car}. Computational Linguistics 112 #### Finite-state automata Example: Some finite-state automata $\{a\}$ #### Finite-state automata Example: Some finite-state automata Ø Computational Linguistics Finite-state automata Example: Some finite-state automata $\{\epsilon\}$ 114 116 #### Finite-state automata Example: Some finite-state automata *{a, aa, aaa, aaaa,...}* #### Computational Linguistics #### Finite-state automata Example: Some finite-state automata Σ^* #### Finite-state automata Example: Some finite-state automata a^* Computational Linguistics 117 #### Finite-state automata An extension: ϵ -moves. The transition relation δ is extended to: $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ Example: Automata with ϵ -moves The language accepted by the following automaton is {do, undo, done, undone}: 118 Computational Linguistics 119 #### Finite-state automata Theorem (Kleene, 1956): The class of languages recognized by finite-state automata is the class of regular languages. Computational Linguistics 120 ## Operations on finite-state automata - Concatenation - Union - Intersection - Minimization - Determinization #### Finite-state automata Example: Finite-state automata and regular expressions Ø $\widehat{q_0}$ a $q_0 \xrightarrow{a} (q_1)$ $((c \cdot a) \cdot t)$ $q_0 \xrightarrow{c} q_1 \xrightarrow{a} q_2 \xrightarrow{t} q_3$ $(((m \cdot e) \cdot (o)^*) \cdot w)$ $q_0 \xrightarrow{m} q_1 \xrightarrow{e} q_2 \xrightarrow{w} q_3$ $((a + (e + (i + (o + u)))))^*$ (q_0) a, e, i, o, u Computational Linguistics 121 ## Minimization and determinization Example: Equivalent automata $$A_1 \quad \circ \underbrace{g \circ n \circ g}_{\bullet \circ n \circ e \circ \bullet} \circ \underbrace{n \circ e}_{\bullet} \circ \underbrace{e \circ n e}_{$$ $$A_{2} = \underbrace{\begin{pmatrix} g & o & i & n & g \\ g & o & o & n & e \\ g & o & \bullet & \bullet \end{pmatrix}}_{g & o & \bullet}$$ # Applications of finite-state automata in language processing Lexicon: $$go, \ gone, \ going: \ \begin{array}{c} g & \circ & \overset{\circ}{\circ} & \circ & \overset{i}{\circ} & \overset{n}{\circ} & \overset{g}{\circ} & \circ \\ g & \circ & \circ & \overset{i}{\circ} & \circ & \overset{n}{\circ} & \overset{e}{\circ} & \circ \\ g & \circ & \circ & \overset{o}{\circ} & \circ & \overset{e}{\circ} & \circ \\ \end{array}$$ This automaton can then be determinized and minimized: Computational Linguistics ## **Regular relations** While regular expressions are sufficiently expressive for some natural language applications, it is sometimes useful to define relations over two sets of strings. Computational Linguistics 1 # Applications of finite-state automata in language processing A naïve morphological analyzer: $$\underbrace{ \begin{array}{c} g \\ \circ \\ -v \\ \end{array} } \underbrace{ \begin{array}{c} o \\ \circ \\ -v \\ \end{array} } \underbrace{ \begin{array}{c} i \\ \circ \\ -v \\ \end{array} } \underbrace{ \begin{array}{c} -v \\ -psp \\ \circ \\ -inf \\ \bullet \end{array} }$$ Computational Linguistics ## **Regular relations** 125 Part-of-speech tagging: 126 27 ## **Regular relations** #### Morphological analysis: | I | know | some | new | |-------------|-------------|----------------|----------| | I-PRON-1-sg | know-V-pres | some-DET-indef | new-ADJ | | tricks | said | the | Cat | | trick-N-pl | say-V-past | the-DET-def | cat-N-sg | | in | the | Hat | | | in-P | the-DFT-def | hat-N-sq | | Computational Linguistics #### Finite-state transducers A finite-state transducer is a six-tuple $\langle Q,q_0,\Sigma_1,\Sigma_2,\delta,F\rangle$. Similarly to automata, Q is a finite set of states, $q_0\in Q$ is the initial state, $F\subseteq Q$ is the set of final (or accepting) states, Σ_1 and Σ_2 are alphabets: finite sets of symbols, not necessarily disjoint (or different). $\delta: Q\times \Sigma_1\times \Sigma_2\times Q$ is a relation from states and pairs of alphabet symbols to states. ## **Regular relations** #### Singular-to-plural mapping: Computational Linguistics ## Finite-state transducers #### Shorthand notation: #### Adding ϵ -moves: #### Finite-state transducers The language of a finite-state transducer is a language of pairs: a binary relation over $\Sigma_1^* \times \Sigma_2^*$. The language is defined analogously to how the language of an automaton is defined. $T(w) = \{u \mid (q_0, w, u, q_f \in \widehat{\delta}) \text{ for some } f \in F\}.$ Computational Linguistics 132 130 #### **Properties of finite-state transducers** Given a transducer $\langle Q, q_0, \Sigma_1, \Sigma_2, \delta, F \rangle$, - its underlying automaton is $\langle Q, q_0, \Sigma_1 \times \Sigma_2, \delta', F \rangle$, where $(q_1, (a, b), q_2) \in \delta'$ iff $(q_1, a, b, q_2) \in \delta$ - its upper automaton is $\langle Q, q_0, \Sigma_1, \delta_1, F \rangle$, where $(q_1, a, q_2) \in \delta_1$ iff for some $b \in \Sigma_2$, $(q_1, a, b, q_2) \in \delta$ - its lower automaton is $\langle Q, q_0, \Sigma_2, \delta_2, F \rangle$, where $(q_1, b, q_2) \in \delta_2$ iff for some $a \in \Sigma_a$, $(q_1, a, b, q_2) \in \delta$ Computational Linguistics #### Finite-state transducers Example: The uppercase transducer Example: English-to-French Computational Linguistics ... ## Properties of finite-state transducers A transducer T is functional if for every $w \in \Sigma_1^*$, T(w) is either empty or a singleton. Transducers are closed under union: if T_1 and T_2 are transducers, there exists a transducer T such that for every $w \in \Sigma_1^*$, $T(w) = T_1(w) \cup T_2(w)$. Transducers are closed under inversion: if T is a transducer, there exists a transducer T^{-1} such that for every $w \in \Sigma_1^*$, $T^{-1}(w) = \{u \in \Sigma_2^* \mid w \in T(u)\}.$ The inverse transducer is $\langle Q, q_0, \Sigma_2, \Sigma_1, \delta^{-1}, F \rangle$, where $(q_1, a, b, q_2) \in \delta^{-1}$ iff $(q_1, b, a, q_2) \in \delta$. 134 Computational Linguistics ## **Properties of finite-state transducers** Transducers are closed under composition: if T_1 and T_2 are transducers, there exists a transducer T such that for every $w \in \Sigma_1^*$, $T(w) = T_1(T_2(w))$. The number of states in the composition transducer might be $|Q_1 \times Q_2|$. Computational Linguistics L36 #### **Properties of finite-state transducers** - Computationally efficient - Denote regular relations - Closed under concatenation, Kleene-star, union - Not closed under intersection (and hence complementation) - Closed under composition - Weights ## Properties of finite-state transducers Transducers are not closed under intersection. $$T_1(c^n) = \{a^n b^m \mid m \ge 0\}$$ $T_2(c^n) = \{a^m b^n \mid m \ge 0\} \Rightarrow$ $(T_1 \cap T_2)(c^n) = \{a^n b^n\}$ Transducers with no ϵ -moves are closed under intersection. Computational Linguistics 137 #### Introduction to XFST - XFST is an interface giving access to finite-state operations (algorithms such as union, concatenation, iteration, intersection, composition etc.) - XFST includes a regular expression compiler - The interface of XFST includes a lookup operation (apply up) and a generation operation (apply down) - The regular expression language employed by XFST is an extended version of standard regular expressions Computational Linguistics 138 Computational Linguistics 139 #### Introduction to XFST a simple symbol a concatenation of three symbols [c a t] grouping brackets denotes any single symbol "+Noun" single symbol with multicharacter print name single symbol with multicharacter print name %+Noun a single multicharacter symbol cat {cat} equivalent to [c a t] Kleene-star Computational Linguistics #### **Introduction to XFST** one or more iterations the universal language the complement of A; equivalent to [?* - A] \sim [?*] the empty language the literal plus-sign symbol %+ the literal asterisk symbol (and similarly for %?, %* %(, %] etc. **Introduction to XFST** [] the empty string the empty string $\lceil A \rceil$ bracketing; equivalent to A AIB union (A) optionality; equivalent to [A|0] intersection A&B A B concatenation set difference A-B Computational Linguistics # Introduction to XFST – denoting relations Cartesian product; relates every string in A to every A.x. B string in B a:b shorthand for [a .x. b] %+P1:s shorthand for [%+Pl .x. s] %+Past:ed shorthand for [%+Past .x. ed] %+Prog:ing shorthand for [%+Prog .x. ing] Computational Linguistics Computational Linguistics 143 #### Introduction to XFST – useful abbreviations | \$A | the language of all the strings that contain A ; equivalent to [?* A ?*] | |-----------|---| | A/B | the language of all the strings in ${\tt A}$, ignoring any strings from B, e.g., | | a*/b | includes strings such as a, aa, aaa, ba, ab, aba etc. | | \A | any single symbol, minus strings in A. Equivalent to [? - A], e.g., | | \b | any single symbol, except 'b'. Compare to: | | \sim A | the complement of A, i.e., [?* - A] | Computational Linguistics ## Introduction to XFST – user interface ``` prompt% H:\class\data\shuly\xfst ``` ``` xfst> help xfst> help union net xfst> exit xfst> read regex [d o g | c a t]; xfst> read regex < myfile.regex xfst> apply up dog xfst> apply down dog xfst> pop stack xfst> clear stack xfst> save stack myfile.fsm ``` ### Introduction to XFST – example ``` [[leave %+VBZ .x. leaves] | [leave %+VB .x. leave] | [leave %+VBG .x. leaving] | [leave %+VBD .x. left] | [leave %+NN .x. leave] | [leave %+NNS .x. leaves] | [leaf %+NNS .x. leaves] | [left %+JJ .x. left]] ``` Computational Linguistics # Introduction to XFST – example of lookup and generation ``` APPLY DOWN> leave+VBD left APPLY UP> leaves leave+NNS leave+VBZ leaf+NNS ``` #### Introduction to XFST - variables ``` xfst> define Myvar; xfst> define Myvar2 [d o g | c a t]; xfst> undefine Myvar; xfst> define var1 [b i r d | f r o g | d o g]; xfst> define var2 [d o g | c a t]; xfst> define var3 var1 | var2; xfst> define var4 var1 var2; xfst> define var5 var1 & var2; xfst> define var6 var1 - var2; ``` Computational Linguistics 148 # Introduction to XFST – replace rules Replace rules are an extremely powerful extension of the regular expression metalanguage. The simplest replace rule is of the form upper → lower || leftcontext _ rightcontext Its denotation is the relation which maps string to themselves, with the exception that an occurrence of *upper* in the input string, preceded by *leftcontext* and followed by *rightcontext*, is replaced in the output by *lower*. Computational Linguistics 147 #### Introduction to XFST - variables ``` xfst> define Root [w a l k | t a l k | w o r k]; xfst> define Prefix [0 | r e]; xfst> define Suffix [0 | s | e d | i n g]; xfst> read regex Prefix Root Suffix; xfst> words xfst> apply up walking ``` Computational Linguistics ## Introduction to XFST - replace rules 149 The language Bambona has an underspecified nasal morpheme N that is realized as a labial m or as a dental n depending on its environment: N is realized as m before p and as n elsewhere. The language also has an assimilation rule which changes p to m when the p is followed by m. ``` xfst> clear stack ; xfst> define Rule1 N -> m || _ p ; xfst> define Rule2 N -> n ; xfst> define Rule3 p -> m || m _ ; xfst> read regex Rule1 .o. Rule2 .o. Rule3 ; ``` ### Introduction to XFST - replace rules Word boundaries can be explicitly referred to: ``` xfst> define Vowel [a|e|i|o|u]; xfst> e -> ' || [.#.] [c | d | l | s] _ [% Vowel]; ``` #### Computational Linguistics ## Introduction to XFST - replace rules Rules can define multiple replacements: [$$A \rightarrow B$$, $B \rightarrow A$] or multiple replacements that share the same context: $$[A \rightarrow B, B \rightarrow A \mid L \mid R]$$ or multiple contexts: or multiple replacements and multiple contexts: [A $$\rightarrow$$ B, B \rightarrow A | L1 _ R1, L2 _ R2] #### Computational Linguistics #### Introduction to XFST - replace rules Contexts can be omitted: ``` xfst> define Rule1 N -> m || _ p ; xfst> define Rule2 N -> n ; xfst> define Rule3 p -> m || m _ ; ``` This can be used to clear unnecessary symbols introduced for "bookkeeping": ``` xfst> define Rule1 %^MorphmeBoundary -> 0; ``` #### Computational Linguistics #### 153 ## Introduction to XFST - replace rules Rules can apply in parallel: ``` xfst> clear stack xfst> read regex a -> b .o. b -> a ; xfst> apply down abba aaaa xfst> clear stack xfst> read regex b -> a .o. a -> b ; xfst> apply down abba bbbb xfst> clear stack xfst> read regex a -> b , b -> a ; xfst> apply down abba ``` Computational Linguistics 154 Computational Linguistics 155 ## Introduction to XFST - replace rules When rules that have contexts apply in parallel, the rule separator is a double comma: ``` xfst> clear stack xfst> read regex b -> a || .#. s ?* _ ,, a -> b || _ ?* e .#. ; xfst> apply down sabbae sbaabe ``` Computational Linguistics Computational Linguistics ## Introduction to XFST - marking ``` xfst> clear stack; xfst> read regex [a|e|i|o|u]+ -> %[... %]; xfst> apply down feeling f[e][e]l[i]ng f[ee]l[i]ng xfst> apply down poolcleaning p[o][o]lcl[e][a]n[i]ng p[oo]lcl[e][a]n[i]ng p[oo]lcl[ea]n[i]ng p[oo]lcl[ea]n[i]ng xfst> read regex [a|e|i|o|u]+ @-> %[... %]; xfst> apply down poolcleaning p[oo]lcl[ea]n[i]ng ``` ## Introduction to XFST - marking The special symbol "..." in the right-hand side of a replace rule stands for whatever was matched in the left-hand side of the rule. ``` xfst> clear stack; xfst> read regex [a|e|i|o|u] -> %[... %]; xfst> apply down unnecessarily [u]nn[e]c[e]ss[a]r[i]ly ``` tational Linguistics 157 # Introduction to XFST – shallow parsing Assume that text is represented as strings of part-of-speech tags, using 'd' for determiner, 'a' for adjective, 'n' for noun, and 'v' verb, etc. In other words, in this example the regular expression symbols represent whole words rather than single letters in a text. Assume that a noun phrase consists of an optional determiner, any number of adjectives, and one or more nouns: $$\lceil (d) \ a* n+ \rceil$$ This expression denotes an infinite set of strings, such as "n" (cats), "aan" (discriminating aristocratic cats), "nn" (cat food), "dn" (many cats), "dann" (that expensive cat food) etc. #### Introduction to XFST – shallow parsing A simple noun phrase parser can be thought of as a transducer that inserts markers, say, a pair of braces { }, around noun phrases in a text. The task is not as trivial as it seems at first glance. Consider the expression $$\lceil (d) \ a* \ n+ -> \ %\{ \ \dots \ \%\} \rceil$$ Applied to the input "danvn" (many small cats like milk) this transducer yields three alternative bracketings: xfst> apply down danvn da{n}v{n} d(an)v{n} fdan}v{n} Computational Linguistics 160 #### Introduction to XFST – the coke machine A vending machine dispenses drinks for 65 cents a can. It accepts any sequence of the following coins: 5 cents (represented as 'n'), 10 cents ('d') or 25 cents ('q'). Construct a regular expression that compiles into a finite-state automaton that implements the behavior of the soft drink machine, pairing "PLONK" with a legal sequence that amounts to 65 cents. Computational Linguistics ## Introduction to XFST - longest match For certain applications it may be desirable to produce a unique parse, marking the maximal expansion of each NP: " $\{dan\}v\{n\}$ ". Using the left-to-right, longest-match replace operator @-> instead of the simple replace operator -> yields the desired result: [(d) $$a* n+ @-> %{ ... %}$$] xfst> apply down danvn {dan}v{n} Computational Linguistics #### Introduction to XFST – the coke machine The construction A^n denotes the concatenation of A with itself n times. Thus the expression $[n .x. c^5]$ expresses the fact that a nickel is worth 5 cents. A mapping from all possible sequences of the three symbols to the corresponding value: $$[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*$$ The solution: #### Introduction to XFST – the coke machine ``` clear stack define SixtyFiveCents [[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*; define BuyCoke SixtyFiveCents .o. [c^65 .x. PLONK]; ``` Computational Linguistics Computatio ## Introduction to XFST - the coke machine The next refinement is to ensure that as much money as possible is converted into soft drinks and to remove any ambiguity in how the extra change is to be reimbursed. ``` clear stack define SixtyFiveCents [[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*; define ReturnChange SixtyFiveCents .o. [[c^65 .x. PLONK]* [c^25 .x. q]* [c^10 .x. d]* [c^5 .x. n]*]; define ExactChange ReturnChange .o. [~$[q q q | [q q | d] d [d | n] | n n]]; ``` Computational Linguistics #### Introduction to XFST – the coke machine In order to ensure that extra money is paid back, we need to modify the lower language of BuyCoke to make it a subset of [PLONK* q* d* n*]. To ensure that the extra change is paid out only once, we need to make sure that quarters get paid before dimes and dimes before nickels. ``` clear stack define SixtyFiveCents [[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*; define ReturnChange SixtyFiveCents .o. [[c^65 .x. PLONK]* [c^25 .x. q]* [c^10 .x. d]* [c^5 .x. n]*]; ``` Computational Linguistics ## Introduction to XFST - the coke machine To make the machine completely foolproof, we need one final improvement. Some clients may insert unwanted items into the machine (subway tokens, foreign coins, etc.). These objects should not be accepted; they should passed right back to the client. This goal can be achieved easily by wrapping the entire expression inside an ignore operator. ``` define IgnoreGarbage [[ExactChange]/[\[q | d | n]]] ; ```