Computational Linguistics 106

Finite-state automata

Automata are models of computation: they compute languages.

A finite-state automaton is a five-tuple (Q, g0, >, d, F'), where *
is a finite set of alphabet symbols, @ is a finite set of states,
go € Q is the initial state, FF C Q is a set of final (accepting)
states and § : Q x X x @ is a relation from states and alphabet
symbols to states.

Computational Linguistics 108

Finite-state automata

The reflexive transitive extension of the transition relation § is a
new relation, §, defined as follows:

e for every state ¢ € Q, (g,¢,9) €46

e for every string w € ~* and letter a € =, if (¢q,w,q) € § and
(q/a a, q”) € 0 then (qaw : avq//) € S

Computational Linguistics 107

Finite-state automata

Example: Finite-state automaton

b Q = {qoa q1,42, q3}
* 3 = {c,a,t,r}
e F={qs}
e §= {<q05 c, q1>7 <q17 a, q2>7 <q25 ta q3>a <q27 T, q3>}
t
C a >
@ -0 *-@ @
Computational Linguistics 109

Finite-state automata

Example: Paths
For the finite-state automaton:

t
@@, @
§ is the following set of triples:

<q0’ €, QO>, <CI1, €, CI1>, <Q2, €, q2>v <q3’ €, q3>’
<q0’ ¢, q1>) <q13 a, q2>) <q2’ t, q3>7 <q2a T, q3>)
<q07 ca, Q2>, <Q1, Cbt, q3>a <Q1, ar, Q3>,

<q0’ cat, q3>’ <q0’ car, q3>

Computational Linguistics 110

Finite-state automata

A string w is accepted by the automaton A = (Q,qo, X, 4, F) if
and only if there exists a state ¢y € F such that (go,w,qy) € 5.

The language accepted by a finite-state automaton is the set of
all string it accepts.

Example: Language
The language of the finite-state automaton:

t
®—@--@_ @

is {cat, car}.

Computational Linguistics 112

Finite-state automata

Example: Some finite-state automata

@ @) {a}

Computational Linguistics 111

Finite-state automata

Example: Some finite-state automata

0

Computational Linguistics 113

Finite-state automata

Example: Some finite-state automata

{e}

Computational Linguistics

114 Computational Linguistics 115

Finite-state automata

Example: Some finite-state automata

LDG {a, aa, aaa, aaaa,...}

Computational Linguistics

Finite-state automata

Example: Some finite-state automata

@) -

116 Computational Linguistics 117

Finite-state automata

Example: Some finite-state automata

&)y =

Finite-state automata

An extension: e-moves.
The transition relation § is extended to: 6§ C Q x (X U{e}) x Q
Example: Automata with e-moves

The language accepted by the following automaton is {do,
undo, done, undone}:

U n d 0 n e
S

Computational Linguistics

118

Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized by

finite-state automata is the class of regular languages.

Computational Linguistics

120

Operations on finite-state automata

Concatenation

e Union

Intersection

Minimization

e Determinization

Computational Linguistics

119

Finite-state automata

Example: Finite-state automata and regular expressions

0
o @)%
((c-a)-1) c
(((m-e) - (0)") - w) 5

S

(® ®
S

® O @

® ®

(@t @+ G+e+u)) @) Jueiou

Computational Linguistics

121

Minimization and determinization

Example: Equivalent automata

. n 9
1 O—O0——©0
A L O/A €

g ogoioﬂoi@
A2 /g o n €

O—O0—O0—0——®

Az

Computational Linguistics

122

Applications of finite-state automata in
language processing

Lexicon:

n 9

g/oﬁoﬁ»oﬁ»oﬁ»@
go, gone, going : g, o n_e

O—O0—O0—0——0
\

O—0

This automaton can then be determinized and minimized:

1/O*>O*>©
go, gone, going: 9. .,0.lm e,

Computational Linguistics

124

Regular relations

While regular expressions are sufficiently expressive for some
natural language applications, it is sometimes useful to define

relations over two sets of strings.

Computational Linguistics

123

Applications of finite-state automata in
language processing

A naive morphological analyzer:

Computational Linguistics

125

Regular relations

Part-of-speech tagging:
I know some new tricks
PRON V DET ADJ N

said the Cat in the Hat
\Y DET N P DET N

Computational Linguistics 126

Regular relations

Morphological analysis:

I know some new
I-PRON-1-sg know-V-pres some-DET-indef new-ADJ
tricks said the Cat
trick-N-pl say-V-past the-DET-def cat-N-sg
in the Hat
in-P the-DET-def hat-N-sg

Computational Linguistics 128

Finite-state transducers

A finite-state transducer is a six-tuple (Q,qo,>1,%2,6,F).
Similarly to automata, @ is a finite set of states, ¢qo € Q is the
initial state, F C @Q is the set of final (or accepting) states, >
and X, are alphabets: finite sets of symbols, not necessarily
disjoint (or different). ¢ : Q x =1 x ¥ x Q is a relation from
states and pairs of alphabet symbols to states.

0 a o:eo:es:se:e
s:sh:he:ee:epip

Computational Linguistics 127

Regular relations
Singular-to-plural mapping:

cat hat ox child mouse sheep goose
cats hats oxen children mice sheep (geese

Computational Linguistics 129

Finite-state transducers

Shorthand notation:

Computational Linguistics 130

Finite-state transducers

The language of a finite-state transducer is a language of pairs: a
binary relation over 3; x>%. The language is defined analogously
to how the language of an automaton is defined.

T(w) = {u | (go,w,u,q; € &) for some f € F}.

Computational Linguistics 132

Properties of finite-state transducers

Given a transducer (Q,qo,>1,%2,6, F),

e its wunderlying automaton is (Q,qo, X1 X X2,0',F), where
(qla (aab)7QQ) € o' iff (Q1,0757QQ) €46

e its upper automaton is (Q, qo, =1, 61, F'), where (q1,a,q2) € 61 iff
for some b € 35, (ql,a,b,qg) €4

e its lower automaton is (Q, qo, > 2, 62, F'), where (q1,b,q2) € d> iff
for some a € =, (q1,a,b,q2) €6

Computational Linguistics 131

Finite-state transducers

Example: The uppercase transducer

a:Ab:B,c:C,...

Example: English-to-French

Computational Linguistics 133

Properties of finite-state transducers

A transducer T is functional if for every w € X%, T(w) is either
empty or a singleton.

Transducers are closed under union: if 77 and T are transducers,
there exists a transducer T such that for every w € =%, T(w) =
Ty (w) U T (w).

Transducers are closed under inversion: if T'is a transducer, there
exists a transducer T—! such that for every w € >}, T 1(w) =
{u ey |weT(u)}.

The inverse transducer is (Q, qo, 2, > 1,6~ %, F'), where (q1,a,b,q2) €
61 iff (q1,b,a,q2) €.

Computational Linguistics 134

Properties of finite-state transducers

Transducers are closed under composition: if 77 and 1, are
transducers, there exists a transducer T such that for every
w € %, T(w) = Ti(Ta(w)).

The number of states in the composition transducer might be

Q1 X Q2|

Computational Linguistics 136

Computational Linguistics 135

Properties of finite-state transducers

Computationally efficient

e Denote regular relations

Closed under concatenation, Kleene-star, union

Not closed under intersection (and hence complementation)

e Closed under composition

Weights

Properties of finite-state transducers

Transducers are not closed under intersection.

Ti(c") = {a"b™ | m > 0}
Ta(c™) = {a™" | m > 0} =
(Th N T2)(c™) = {a™b"}

Transducers with no e-moves are closed under intersection.

Computational Linguistics 137

Introduction to XFST

e XFST is an interface giving access to finite-state
operations (algorithms such as union, concatenation, iteration,
intersection, composition etc.)

e XFST includes a regular expression compiler

e The interface of XFST includes a lookup operation (apply up)
and a generation operation (apply down)

e The regular expression language employed by XFST is an
extended version of standard regular expressions

Computational Linguistics

138

¢ ¢+Noun’’
%+Noun

cat

{cat}

Introduction to XFST

a simple symbol

a concatenation of three symbols

grouping brackets

denotes any single symbol

single symbol with multicharacter print name
single symbol with multicharacter print name
a single multicharacter symbol

equivalent to [c a t]

Computational Linguistics

140

Ax

A+

Tk
~A
~[7%]
%+

% *

Introduction to XFST

Kleene-star

one or more iterations

the universal language

the complement of A; equivalent to [7x - A]
the empty language

the literal plus-sign symbol

the literal asterisk symbol (and similarly for %7,

h(, %] etc.

Computational Linguistics

139

Introduction to XFST

[1] the empty string

0 the empty string

[A] bracketing; equivalent to A
AlB union

(A) optionality; equivalent to [A|0]
AgB intersection

AB concatenation

A-B set difference

Computational Linguistics

141

Introduction to XFST — denoting relations

A .x. B Cartesian product; relates every string in A to every
string in B

a:b shorthand for [a .x. ©b]

%+Pl:s shorthand for [%+P1 .x. s]

%t+Past:ed shorthand for [/+Past .x. ed]

%+Prog:ing shorthand for [%+Prog .x. ingl

Computational Linguistics 142 Computational Linguistics 143

Introduction to XFST — useful abbreviations Introduction to XFST — example
1 %+VBZ .x. 1
$A the language of all the strings that contain A; [1[eav .,e /B }1(eaves] |
ivalent to [7% A 7%] [1 eave %#+VB .x. eavell
equiva ’ ’ [leave+VBG .x. 1 eaving] |
A/B the language of all the strings in A&, ignoring any [Leave +VBD .x. 1 e f t] |
Strings from B, e.d., [l1eave %+tNN .x. 1 e a v e] |
[1 eave%+tNNS .x. 1 e aves]|
ax/b includes strings such as a, aa, aaa, ba, ab, aba [leafY+NNS .x. Leaves]|
etc. [1eft %+J] .x. 1 ef t]]
\A any single symbol, minus strings in A. Equivalent
'tO [7 - A]: egl
\b any single symbol, except ‘b’. Compare to:
~A the complement of A, i.e., [?7x - A]
Computational Linguistics 144 Computational Linguistics 145
Introduction to XFST — user interface Introduction to XFST — example of lookup and

generation
prompt’% H:\class\data\shuly\xfst

APPLY DOWN> leave+VBD

xfst> help left

xfst> help union net APPLY UP> leaves
xfst> exit leave+NNS

xfst> read regex [d o g | c a t]; leave+VBZ

xfst> read regex < myfile.regex leaf+NNS

xfst> apply up dog

xfst> apply down dog

xfst> pop stack

xfst> clear stack

xfst> save stack myfile.fsm

Computational Linguistics 146

Introduction to XFST — variables

xfst> define Myvar;
xfst> define Myvar2 [d o g | ¢ a t];
xfst> undefine Myvar;

xfst> define varl [bird | frog |l dogl;
xfst> define var2 [d o g | c a t];

xfst> define var3 varl | var2;

xfst> define var4 varl var2;

xfst> define varb varl & var2;

xfst> define var6 varl - var2;

Computational Linguistics 148

Introduction to XFST — replace rules

Replace rules are an extremely powerful extension of the regular
expression metalanguage.

The simplest replace rule is of the form

upper — lower || leftcontext _ rightcontext

Its denotation is the relation which maps string to themselves,
with the exception that an occurrence of upper in the input
string, preceded by leftcontext and followed by rightcontext, is
replaced in the output by lower.

Computational Linguistics 147

Introduction to XFST — variables

xfst> define Root [walk | talk]| work];
xfst> define Prefix [0 | r e];

xfst> define Suffix [0 | s | ed | i n gl;

xfst> read regex Prefix Root Suffix;

xfst> words

xfst> apply up walking

Computational Linguistics 149

Introduction to XFST — replace rules

The language Bambona has an underspecified nasal morpheme
N that is realized as a labial m or as a dental n depending on its
environment: N is realized as m before p and as n elsewhere.

The language also has an assimilation rule which changes p to
m when the p is followed by m.

xfst> clear stack ;

xfst> define Rulel N ->m || _ p ;

xfst> define Rule2 N -> n ;

xfst> define Rule3 p > m || m _ ;

xfst> read regex Rulel .o. Rule2 .o. Ruled ;

Computational Linguistics 150 Computational Linguistics 151

Introduction to XFST — replace rules Introduction to XFST — replace rules
Word boundaries can be explicitly referred to: Contexts can be omitted:
xfst> define Vowel [alelilolu]; xfst> define Rulel N ->m || _ p ;

xfst>e -> 2 || [.#.1 [c 1 d | 1 | s] [% Vowell; xfst> define Rule2 N -> n ;

xfst> define Rule3 p > m || m

This can be used to clear unnecessary symbols introduced for
“bookkeeping” :

xfst> define Rulel % MorphmeBoundary -> 0;

Computational Linguistics 152 Computational Linguistics 153
Introduction to XFST — replace rules Introduction to XFST — replace rules
Rules can define multiple replacements: Rules can apply in parallel:
[A->B, B->A] xfst> clear stack
xfst> read regex a -=> b .0. b => a ;
or multiple replacements that share the same context: xfst> apply down abba
aaaa

[A->B,B->A || L_R] xfst> clear stack

xfst> read regex b -> a .0. a -> b ;

or multiple contexts:
xfst> apply down abba

[A->B || L1 _R1, L2 _ R2] bbbb
xfst> clear stack
or multiple replacements and multiple contexts: xfst> read regex a -=> b , b -> a ;

xfst> apply down abba
[A->B,B->A ||l L1 _R1l, L2 _ R2] baab

Computational Linguistics 154

Introduction to XFST — replace rules

When rules that have contexts apply in parallel, the rule separator
is a double comma:

xfst> clear stack

xfst> read regex

b->all .#. s ?* _ ,, a >b || _ 7*x e .#. ;
xfst> apply down sabbae

sbaabe

Computational Linguistics 156

Computational Linguistics 155

Introduction to XFST — marking

xfst> clear stack;

xfst> read regex [alelilolul+ -> %[... %]1;
xfst> apply down feeling

flellelllilng

fleell[ilng

xfst> apply down poolcleaning
plollollcl[el [aln[ilng

ploollclle] [aln[ilng

plol[o]lcl[ealn[ilng

ploollcl[ealn[ilng

xfst> read regex [alelilolul+ @-> %[... %]1;
xfst> apply down poolcleaning
ploollcl[ealn[ilng

Introduction to XFST — marking

The special symbol “...” in the right-hand side of a replace rule
stands for whatever was matched in the left-hand side of the
rule.

xfst> clear stack;

xfst> read regex [alelilolul —> %[... %1;
xfst> apply down unnecessarily
[ulnn[elc[elss[alr[illy

Computational Linguistics 157

Introduction to XFST — shallow parsing

Assume that text is represented as strings of part-of-speech tags,
using ‘d’ for determiner, ‘@’ for adjective, ‘n’ for noun, and ‘v’
verb, etc. In other words, in this example the regular expression
symbols represent whole words rather than single letters in a
text.

Assume that a noun phrase consists of an optional determiner,
any number of adjectives, and one or more nouns:

[(d) ax n+]

This expression denotes an infinite set of strings, such as “n”
(cats), “aan” (discriminating aristocratic cats), “nn"” (cat food),
“dn" (many cats), “dann” (that expensive cat food) etc.

Computational Linguistics 158

Introduction to XFST — shallow parsing

A simple noun phrase parser can be thought of as a transducer
that inserts markers, say, a pair of braces { }, around noun
phrases in a text. The task is not as trivial as it seems at first
glance. Consider the expression

[(d) a* n+ —> %{ ... %}]

Applied to the input “danvn” (many small cats like milk) this
transducer yields three alternative bracketings:

xfst> apply down danvn
da{n}v{n}
d{an}v{n}
{dan}v{n}

Computational Linguistics 160

Introduction to XFST — the coke machine

A vending machine dispenses drinks for 65 cents a can. It accepts
any sequence of the following coins: 5 cents (represented as ‘n'),
10 cents (‘d') or 25 cents (‘q’). Construct a regular expression
that compiles into a finite-state automaton that implements the
behavior of the soft drink machine, pairing “PLONK" with a
legal sequence that amounts to 65 cents.

Computational Linguistics 159

Introduction to XFST — longest match

For certain applications it may be desirable to produce a unique
parse, marking the maximal expansion of each NP: “{dan}v{n}".
Using the left-to-right, longest-match replace operator @->
instead of the simple replace operator -> yields the desired result:

[(d) ax n+ @-> %{ ... %}]

xfst> apply down danvn
{dan}v{n}

Computational Linguistics 161

Introduction to XFST — the coke machine

The construction A°n denotes the concatenation of A with itself
n times.

Thus the expression [n .x. c~5] expresses the fact that a nickel
is worth 5 cents.

A mapping from all possible sequences of the three symbols to
the corresponding value:

[[n .x. ¢’8] | [d .x. c"10] | [q .x. ¢c"256]]%
The solution:

[[n .x. ¢’8] | [d .x. c"10] | [q .x. c"25]1]%
.0.
[c"65 .x. PLONK]

Computational Linguistics 162

Introduction to XFST — the coke machine

clear stack

define SixtyFiveCents
[[n .x. ¢°6] | [d .x. c”10] | [q .x. c”2561]%* ;
define BuyCoke

SixtyFiveCents .o. [c"65 .x. PLONK]

Computational Linguistics 164

Introduction to XFST — the coke machine

The next refinement is to ensure that as much money as possible
is converted into soft drinks and to remove any ambiguity in how
the extra change is to be reimbursed.

clear stack

define SixtyFiveCents

[[n .x. ¢6] | [d .x. c”10] | [q .x. c”256]]%* ;
define ReturnChange SixtyFiveCents .o.

[[c"65 .x. PLONK]* [c"25 .x. ql=*

[c"10 .x. dl* [c™5 .x. nlx*] ;

define ExactChange ReturnChange .o.

[*$lqqq | [@gql dl d[d] n]l | nnll ;

Computational Linguistics 163

Introduction to XFST — the coke machine

In order to ensure that extra money is paid back, we need to

modify the lower language of BuyCoke to make it a subset of
[PLONK* g* d* n*].

To ensure that the extra change is paid out only once, we need to

make sure that quarters get paid before dimes and dimes before
nickels.

clear stack

define SixtyFiveCents
[[n .x. ¢*5] | [d .x. ¢c~10] | [q .x. c¢"25]11* ;
define ReturnChange SixtyFiveCents .o.

[[c"65 .x. PLONK]* [c"25 .x. ql*

[c"10 .x. d]* [c"5 .x. nlx*]

H

Computational Linguistics 165

Introduction to XFST — the coke machine

To make the machine completely foolproof, we need one final
improvement. Some clients may insert unwanted items into the
machine (subway tokens, foreign coins, etc.). These objects
should not be accepted; they should passed right back to the
client. This goal can be achieved easily by wrapping the entire
expression inside an ignore operator.

define IgnoreGarbage
[[ExactChange]/[\[q | d | nll] ;

