Computational Linguistics 166

Context-free grammars

A context-free grammar (CFG) is a four-tuple (>,V,S,P),
where:

e > is a finite, non-empty set of terminals, the alphabet;

e V is a finite, non-empty set of grammar variables (categories,
or non-terminal symbols), such that =NV = 0,

e S €V is the start symbol;

e P is a finite set of production rules, each of the form A — «,
where A€V and a € (VUZX)*.

For a rule A — «, A is the rule’'s head and « is its body.

Computational Linguistics 168

Context-free grammars: language

Each non-terminal symbol in a grammar denotes a language.

A rule such as N — cat implies that the language denoted by
the non-terminal N includes the alphabet symbol cat.

The symbol cat here is a single, atomic alphabet symbol, and
not a string of symbols: the alphabet of this example consists
of natural language words, not of natural language letters.

For a more complex rule such as NP — D N, the language
denoted by NP contains the concatenation of the language
denoted by D with that denoted by N: L(NP) = L(D) - L(N).

Matters become more complicate when we consider recursive
rules such as NP — NP PP.

Computational Linguistics 167

Context-free grammars: example

> = {the, cat, in, hat}
V={D, N, P, NP, PP}

The start symbol is NP

The rules:
D — the NP — DN
N — cat PP — P NP
N — hat NP — NP PP
P — in
Computational Linguistics 169

Context-free grammars: derivation

Given a grammar G = (V, X, P, S), we define the set of forms to
be (VUX)*: the set of all sequences of terminal and non-terminal
symbols.

Derivation is a relation that holds between two forms, each a
sequence of grammar symbols.

A form a derives a form 3, denoted by a = g3, if and only if
a = yAvy, and B = vy and A — 4. is a rule in P.

A is called the selected symbol. The rule A — ~ is said to be
applicable to a.

Computational Linguistics 170

Derivation: example

The set of non-terminals of Gis V = {D, N, P, NP, PP} and the
set of terminals is X~ = {the, cat, in, hat}.

The set of forms therefore contains all the (infinitely many)
sequences of elements from V and X, such as (), (NP),
(D cat P D hat), (D N), (the cat in the hat), etc.

Let us start with a simple form, (NP). Observe that it can be
written as ~,NP~,, where both ~, and ~, are empty. Observe also
that NP is the head of some grammar rule: the rule NP — D N.
Therefore, the form is a good candidate for derivation: if we
replace the selected symbol NP with the body of the rule, while
preserving its environment, we get v,D Nv, = D N. Therefore,
(N) = (D N).

Computational Linguistics 172

Derivation: example

Given the form (the N), there is exactly one non-terminal that
we can select, namely N. However, there are two rules that are
headed by N: N — cat and N — hat. We can select either of
these rules to show that both (the N) = (the cat) and (the N) =
(the hat).

Since the form (the cat) consists of terminal symbols only, no
non-terminal can be selected and hence it derives no form.

Computational Linguistics 171

Derivation: example

We now apply the same process to (D N). This time the selected
symbol is D (we could have selected N, of course). The left
context is again empty, while the right context is v, = N. As
there exists a grammar rule whose head is D, namely D — the,
we can replace the rule's head by its body, preserving the context,
and obtain the form (the N). Hence (D N) = (the N).

Computational Linguistics 173

Extended derivation

«a :k>g B if a derives B in k steps: a =¢ a1 =¢ a2 =g ... =¢ Qi
and o = .

. -y i o i 1 H k
The reflexive-transitive closure of ‘=¢' is ‘=¢': o =¢ B if o =¢
for some k£ > 0.

A G-derivation is a sequence of forms ai,...,a,, such that for
every i,1 <i<n, a; =g 1.

Computational Linguistics 174

Extended derivation: example

(1) (NP) = (D N)
(2) (D N) = (the N)
(3) (the N) = (the cat)
Therefore, we trivially have:
Computational Linguistics 176
Languages

A form « is a sentential form of a grammar G iff S =¢ «, i.e.,
it can be derived in G from the start symbol.

The (formal) language generated by a grammar G with respect
to a category name (non-terminal) A is La(G) = {w | A = w}.
The language generated by the grammar is L(G) = Ls(G).

A language that can be generated by some CFG is a context-
free language and the class of context-free languages is the set
of languages every member of which can be generated by some
CFG. If no CFG can generate a language L, L is said to be
trans-context-free.

Computational Linguistics 175

Extended derivation: example

(4) (NP) = (D N)

(5) (DN)y = (theN)
(6) (the N) = (the cat)

From (2) and (6) we get
(7) (D N) = (the cat)
and from (1) and (7) we get

(7) (NP) = (the cat)

Computational Linguistics 177

Language of a grammar

For the example grammar (with NP the start symbol):

D — the NP — DN
N — cat PP — P NP
N — hat NP — NP PP
P —in

it is fairly easy to see that L(D) = {the}.

Similarly, L(P) = {in} and L(N) = {cat, hat}.

Computational Linguistics 178

Language of a grammar

It is more difficult to define the languages denoted by the non-
terminals NP and PP, although is should be straight-forward that
the latter is obtained by concatenating {in} with the former.

Proposition: L(NP) is the denotation of the regular expression

the- (cat + hat) - (in- the- (cat+ hat))*

Computational Linguistics 180

Recursion

The language L(G.) is infinite: it includes an infinite number of
words; G, is a finite grammar.

To be able to produce infinitely many words with a finite number
of rules, a grammar must be recursive: there must be at least
one rule whose body contains a symbol, from which the head of
the rule can be derived.

Put formally, a grammar (>, V, S, P) is recursive if there exists a
chain of rules, pi,...,p, € P, such that for every 1 < ¢ < n, the
head of p;41 occurs in the body of p;, and the head of p; occurs
in the body of p,.

In G, the recursion is simple: the chain of rules is of length O,
namely the rule S — V, S V, is in itself recursive.

Computational Linguistics 179

Language: a formal example G.

S = V, 8V
S — €
V. =& a
i — b
L(G.) = {a™" | n > 0}.
Computational Linguistics 181

Derivation tree

Sometimes derivations provide more information than is actually
needed. In particular, sometimes two derivations of the same
string differ not in the rules that were applied but only in the
order in which they were applied.

Starting with the form (NP) it is possible to derive the string the
cat in two ways:

(1) (NP)= (D N) = (D cat) = (the cat)
(2) (NP) = (D N) = (the N) = (the cat)

Since both derivations use the same rules to derive the same
string, it is sometimes useful to collapse such ‘“equivalent”
derivations into one. To this end the notion of derivation trees
is introduced.

Computational Linguistics 182

Derivation tree

A derivation tree (sometimes called parse tree, or simply tree) is
a visual aid in depicting derivations, and a means for imposing
structure on a grammatical string.

Trees consist of vertices and branches; a designated vertex, the
root of the tree, is depicted on the top. Then, branches are
simply connections between two vertices.

Intuitively, trees are depicted “upside down”, since their root is
at the top and their leaves are at the bottom.

Computational Linguistics 184

Derivation tree

Formally, a tree consists of a finite set of vertices and a finite
set of branches (or arcs), each of which is an ordered pair of
vertices.

In addition, a tree has a designated vertex, the root, which has
two properties: it is not the target of any arc, and every other
vertex is accessible from it (by following one or more branches).

When talking about trees we sometimes use family notation: if
a vertex v has a branch leaving it which leads to some vertex u,
then we say that v is the mother of w and w is the daughter, or
child, of ». If v has two daughters, we refer to them as sisters.

Computational Linguistics 183

Derivation tree: example

An example for a derivation tree for the string the cat in the hat:

NP
N
P PP
/ N\ N
D P NP
‘ /\
?N

|
the cat in the hat

Computational Linguistics 185

Derivation trees

Derivation trees are defined with respect to some grammar G,
and must obey the following conditions:

1. every vertex has a label, which is either a terminal symbol, a
non-terminal symbol or e;

2. the label of the root is the start symbol;

3. if a vertex v has an outgoing branch, its label must be a non-
terminal symbol, the head of some grammar rule; and the
elements in body of the same rule must be the labels of the

children of v, in the same order;

4. if a vertex is labeled ¢, it is the only child of its mother.

Computational Linguistics 186

Derivation trees

A leaf is a vertex with no outgoing branches.

A tree induces a natural “left-to-right” order on its leaves; when
read from left to right, the sequence of leaves is called the
frontier, or yield of the tree.

Computational Linguistics 188

Correspondence between trees and derivations

NP
N
NP PP
/ N\ N

D N P NP

/ N\

70

|
the cat in the hat

Each non-leaf vertex in the tree corresponds to some grammar
rule (since it must be labeled by the head of some rule, and its
children must be labeled by the body of the same rule).

Computational Linguistics 187

Correspondence between trees and derivations

Derivation trees correspond very closely to derivations.

For a form «, a non-terminal symbol A derives « if and only if «
is the yield of some parse tree whose root is A.

Sometimes there exist different derivations of the same string
that correspond to a single tree. In fact, the tree representation
collapses exactly those derivations that differ from each other
only in the order in which rules are applied.

Computational Linguistics 189

Correspondence between trees and derivations

This tree represents the following derivations (among others):

(1) NP=> NP PP=DN PP=DN P NP

= DNPDN=the NPDN

= the cat P D N = the cat in D N

= the cat in the N = the cat in the hat
(2) NP= NP PP= D N PP = the N PP

= the cat PP = the cat P NP

= the cat in NP = the cat in D N

= the cat in the N = the cat in the hat
(3) NP= NP PP= NP P NP= NP P DN

= NP P D hat = NP P the hat

= NP in the hat= D N in the hat

= D cat in the hat = the cat in the hat

Computational Linguistics 190

Correspondence between trees and derivations

While exactly the same rules are applied in each derivation (the
rules are uniquely determined by the tree), they are applied
in different orders. In particular, derivation (2) is a leftmost
derivation: in every step the leftmost non-terminal symbol of a
derivation is expanded. Similarly, derivation (3) is rightmost.

Computational Linguistics 192

Ambiguity: example

Consider again the example grammar and the following string:
the cat in the hat in the hat

Intuitively, there can be (at least) two readings for this string:
one in which a certain cat wears a hat-in-a-hat, and one in which
a certain cat-in-a-hat is inside a hat:

((the cat in the hat) in the hat)
(the cat in (the hat in the hat))

This distinction in intuitive meaning is reflected in the grammar,
and hence two different derivation trees, corresponding to the
two readings, are available for this string:

Computational Linguistics 191

Ambiguity

Sometimes, however, different derivations (of the same string!)
correspond to different trees.

This can happen only when the derivations differ in the rules
which they apply.

When more than one tree exists for some string, we say that the
string is ambiguous.

Ambiguity is a major problem when grammars are used for certain
formal languages, in particular programming languages. But for
natural languages, ambiguity is unavoidable as it corresponds to
properties of the natural language itself.

Computational Linguistics 193

Ambiguity: example

NP
NP/
N
P PP

/ \ N\ N\

D N P NP P NP

/ \ / \

R

the cat in the hat in the hat

Computational Linguistics 194

Ambiguity: example

N
N
NP PP
/ N\ PN
D N P NP
/
NP PP
/\ ”)
NP
/\
D N

| l |
the cat in the hat in the hat

Computational Linguistics 196

Context-free grammars for natural languages

A context-free grammar for English sentences: G = (V,X, P, S)
where V = {D, N, P, NP, PP, V, VP, S}, > = {the, cat, in, hat,
sleeps, smile, loves, saw}, the start symbol is S and P is the
following set of rules:

S —» NP VP D — the
NP — D N N — cat
NP — NP PP N — hat
PP — P NP V — sleeps
VP — V P — in

VP — VP NP V — smile
VP — VP PP V — loves

V — saw

Computational Linguistics 195

Ambiguity: example

Using linguistic terminology, in the left tree the second
occurrence of the prepositional phrase in the hat modifies the
noun phrase the cat in the hat, whereas in the right tree it only
modifies the (first occurrence of) the noun phrase the hat. This
situation is known as syntactic or structural ambiguity.

Computational Linguistics 197

Context-free grammars for natural languages

The augmented grammar can derive strings such as the cat
sleeps or the cat in the hat saw the hat.

A derivation tree for the cat sleeps is:

the cat sleeps

Computational Linguistics 198

Context-free grammars for natural languages

There are two major problems with this grammar.

1. it ignores the valence of verbs: there is no distinction among
subcategories of verbs, and an intransitive verb such as sleep
might occur with a noun phrase complement, while a transitive
verb such as love might occur without one. In such a case we
say that the grammar overgenerates: it generates strings that
are not in the intended language.

2. there is no treatment of subject—verb agreement, so that
a singular subject such as the cat might be followed by a
plural form of verb such as smile. This is another case of
overgeneration.

Both problems are easy to solve.

Computational Linguistics 200

Agreement

To account for agreement, we can again extend the set of non-
terminal symbols such that categories that must agree reflect in
the non-terminal that is assigned for them the features on which
they agree. In the very simple case of English, it is sufficient to
multiply the set of “nominal” and “verbal” categories, so that
we get Dsg, Dpl, Nsg, Npl, NPsg, NPpl, Vsg, Vip, VPsg, VPpl
etc. We must also change the set of rules accordingly:

Computational Linguistics 199

Verb valence

To account for valence, we can replace the non-terminal symbol
V by a set of symbols: Vtrans, Vintrans, Vditrans etc. We must
also change the grammar rules accordingly:

VP — Vintrans Vintrnas — sleeps

VP — Vtrans NP Vintrans — smile

VP — Vditrans NP PP Vtrans — loves
Vditrans — give

Computational Linguistics 201
Adgreement

Nsg — cat Npl — cats

Nsg — hat Npl — hats

P — in

Vsg — sleeps Vpl — sleep

Vsg — smiles Vpl — smile

Vsg — loves Vpl — love

Vsg — saw Vpl — saw

Dsg — a Dpl — many

Computational Linguistics

202

Agreement

S — NPsg VPsg
NPsg — Dsg Nsg
NPsg — NPsg PP
PP — P NP
VPsg — Vsg
VPsg — VPsg NP
VPsg — VPsg PP

S — NPpl VPpl
NPpl — Dpl Npl
NPpl — NPpl PP

VPpl — Vpl
VPpl — VPpl NP
VPpl — VPpl PP

Computational Linguistics 203

Context-free grammars for natural languages

Context-free grammars can be used for a variety of syntactic
constructions, including some non-trivial phenomena such as
unbounded dependencies, extraction, extraposition etc.

However, some (formal) languages are not context-free, and
therefore there are certain sets of strings that cannot be
generated by context-free grammars.

The interesting question, of course, involves natural languages:
are there natural languages that are not context-free? Are
context-free grammars sufficient for generating every natural
language?

