
zeirah zety ceair

xphpie iley

Natural Language Processing 1

Introduction to XFST

Natural Language Processing 1

Introduction to XFST

• XFST is an interface giving access to finite-state operations

(algorithms such as union, concatenation, iteration,

intersection, composition etc.)

• XFST includes a regular expression compiler

• The interface of XFST includes a lookup operation (apply

up) and a generation operation (apply down)

• The regular expression language employed by XFST is an

extended version of standard regular expressions

Natural Language Processing 2

Introduction to XFST

Natural Language Processing 2

Introduction to XFST

a a simple symbol

Natural Language Processing 2

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

Natural Language Processing 2

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

[c a t] grouping brackets

Natural Language Processing 2

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

[c a t] grouping brackets

? denotes any single symbol

Natural Language Processing 2

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

[c a t] grouping brackets

? denotes any single symbol

‘‘+Noun’’ single symbol with multicharacter print name

Natural Language Processing 2

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

[c a t] grouping brackets

? denotes any single symbol

‘‘+Noun’’ single symbol with multicharacter print name

%+Noun single symbol with multicharacter print name

Natural Language Processing 2

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

[c a t] grouping brackets

? denotes any single symbol

‘‘+Noun’’ single symbol with multicharacter print name

%+Noun single symbol with multicharacter print name

cat a single multicharacter symbol

Natural Language Processing 2

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

[c a t] grouping brackets

? denotes any single symbol

‘‘+Noun’’ single symbol with multicharacter print name

%+Noun single symbol with multicharacter print name

cat a single multicharacter symbol

{cat} equivalent to [c a t]

Natural Language Processing 3

Introduction to XFST

[] the empty string

Natural Language Processing 3

Introduction to XFST

[] the empty string

0 the empty string

Natural Language Processing 3

Introduction to XFST

[] the empty string

0 the empty string

[A] bracketing; equivalent to A

Natural Language Processing 3

Introduction to XFST

[] the empty string

0 the empty string

[A] bracketing; equivalent to A

A|B union

Natural Language Processing 3

Introduction to XFST

[] the empty string

0 the empty string

[A] bracketing; equivalent to A

A|B union

(A) optionality; equivalent to [A|0]

Natural Language Processing 3

Introduction to XFST

[] the empty string

0 the empty string

[A] bracketing; equivalent to A

A|B union

(A) optionality; equivalent to [A|0]

A&B intersection

Natural Language Processing 3

Introduction to XFST

[] the empty string

0 the empty string

[A] bracketing; equivalent to A

A|B union

(A) optionality; equivalent to [A|0]

A&B intersection

A B concatenation

Natural Language Processing 3

Introduction to XFST

[] the empty string

0 the empty string

[A] bracketing; equivalent to A

A|B union

(A) optionality; equivalent to [A|0]

A&B intersection

A B concatenation

A-B set difference

Natural Language Processing 4

Introduction to XFST

A* Kleene-star

Natural Language Processing 4

Introduction to XFST

A* Kleene-star

A+ one or more iterations

Natural Language Processing 4

Introduction to XFST

A* Kleene-star

A+ one or more iterations

?* the universal language

Natural Language Processing 4

Introduction to XFST

A* Kleene-star

A+ one or more iterations

?* the universal language

∼A the complement of A; equivalent to [?* - A]

Natural Language Processing 4

Introduction to XFST

A* Kleene-star

A+ one or more iterations

?* the universal language

∼A the complement of A; equivalent to [?* - A]

∼[?*] the empty language

Natural Language Processing 4

Introduction to XFST

A* Kleene-star

A+ one or more iterations

?* the universal language

∼A the complement of A; equivalent to [?* - A]

∼[?*] the empty language

%+ the literal plus-sign symbol

Natural Language Processing 4

Introduction to XFST

A* Kleene-star

A+ one or more iterations

?* the universal language

∼A the complement of A; equivalent to [?* - A]

∼[?*] the empty language

%+ the literal plus-sign symbol

%* the literal asterisk symbol (and similarly for %?,
%(, %] etc.

Natural Language Processing 5

Introduction to XFST – denoting relations

Natural Language Processing 5

Introduction to XFST – denoting relations

A .x. B Cartesian product; relates every string in A to

every string in B

Natural Language Processing 5

Introduction to XFST – denoting relations

A .x. B Cartesian product; relates every string in A to

every string in B

a:b shorthand for [a .x. b]

Natural Language Processing 5

Introduction to XFST – denoting relations

A .x. B Cartesian product; relates every string in A to

every string in B

a:b shorthand for [a .x. b]

%+Pl:s shorthand for [%+Pl .x. s]

Natural Language Processing 5

Introduction to XFST – denoting relations

A .x. B Cartesian product; relates every string in A to

every string in B

a:b shorthand for [a .x. b]

%+Pl:s shorthand for [%+Pl .x. s]

%+Past:ed shorthand for [%+Past .x. ed]

Natural Language Processing 5

Introduction to XFST – denoting relations

A .x. B Cartesian product; relates every string in A to

every string in B

a:b shorthand for [a .x. b]

%+Pl:s shorthand for [%+Pl .x. s]

%+Past:ed shorthand for [%+Past .x. ed]

%+Prog:ing shorthand for [%+Prog .x. ing]

Natural Language Processing 6

Introduction to XFST – useful abbreviations

Natural Language Processing 6

Introduction to XFST – useful abbreviations

$A the language of all the strings that contain A;

equivalent to [?* A ?*]

Natural Language Processing 6

Introduction to XFST – useful abbreviations

$A the language of all the strings that contain A;

equivalent to [?* A ?*]

A/B the language of all the strings in A, ignoring any

strings from B, e.g.,

Natural Language Processing 6

Introduction to XFST – useful abbreviations

$A the language of all the strings that contain A;

equivalent to [?* A ?*]

A/B the language of all the strings in A, ignoring any

strings from B, e.g.,

a*/b includes strings such as a, aa, aaa, ba, ab,
aba etc.

Natural Language Processing 6

Introduction to XFST – useful abbreviations

$A the language of all the strings that contain A;

equivalent to [?* A ?*]

A/B the language of all the strings in A, ignoring any

strings from B, e.g.,

a*/b includes strings such as a, aa, aaa, ba, ab,
aba etc.

\A any single symbol, minus strings in A. Equivalent

to [? - A], e.g.,

Natural Language Processing 6

Introduction to XFST – useful abbreviations

$A the language of all the strings that contain A;

equivalent to [?* A ?*]

A/B the language of all the strings in A, ignoring any

strings from B, e.g.,

a*/b includes strings such as a, aa, aaa, ba, ab,
aba etc.

\A any single symbol, minus strings in A. Equivalent

to [? - A], e.g.,

\b any single symbol, except ‘b’. Compare to:

∼A the complement of A, i.e., [?* - A]

Natural Language Processing 7

Introduction to XFST – example

Natural Language Processing 7

Introduction to XFST – example

[[l e a v e %+VBZ .x. l e a v e s] |
[l e a v e %+VB .x. l e a v e] |
[l e a v e %+VBG .x. l e a v i n g] |
[l e a v e %+VBD .x. l e f t] |
[l e a v e %+NN .x. l e a v e] |
[l e a v e %+NNS .x. l e a v e s] |
[l e a f %+NNS .x. l e a v e s] |
[l e f t %+JJ .x. l e f t]]

Natural Language Processing 8

Introduction to XFST – user interface

Natural Language Processing 8

Introduction to XFST – user interface

prompt% H:\class\data\shuly\xfst

xfst> help
xfst> help union net
xfst> exit
xfst> read regex [d o g | c a t];
xfst> read regex < myfile.regex
xfst> apply up dog
xfst> apply down dog
xfst> pop stack
xfst> clear stack
xfst> save stack myfile.fsm

Natural Language Processing 9

Introduction to XFST – example of lookup
and generation

APPLY DOWN> leave+VBD
left
APPLY UP> leaves
leave+NNS
leave+VBZ
leaf+NNS

Natural Language Processing 10

Introduction to XFST – variables

Natural Language Processing 10

Introduction to XFST – variables

xfst> define Myvar;
xfst> define Myvar2 [d o g | c a t];
xfst> undefine Myvar;

xfst> define var1 [b i r d | f r o g | d o g];
xfst> define var2 [d o g | c a t];
xfst> define var3 var1 | var2;
xfst> define var4 var1 var2;
xfst> define var5 var1 & var2;
xfst> define var6 var1 - var2;

Natural Language Processing 11

Introduction to XFST – variables

xfst> define Root [w a l k | t a l k | w o r k];
xfst> define Prefix [0 | r e];
xfst> define Suffix [0 | s | e d | i n g];
xfst> read regex Prefix Root Suffix;
xfst> words
xfst> apply up walking

Natural Language Processing 12

Introduction to XFST – replace rules

Replace rules are an extremely powerful extension of the

regular expression metalanguage.

Natural Language Processing 12

Introduction to XFST – replace rules

Replace rules are an extremely powerful extension of the

regular expression metalanguage.

The simplest replace rule is of the form

upper→ lower ‖ leftcontext rightcontext

Its denotation is the relation which maps string to themselves,

with the exception that an occurrence of upper in the input

string, preceded by leftcontext and followed by rightcontext,

is replaced in the output by lower.

Natural Language Processing 13

Introduction to XFST – replace rules

The language Bambona has an underspecified nasal morpheme

N that is realized as a labial m or as a dental n depending

on its environment: N is realized as m before p and as n

elsewhere.

The language also has an assimilation rule which changes p

to m when the p is followed by m.

Natural Language Processing 13

Introduction to XFST – replace rules

The language Bambona has an underspecified nasal morpheme

N that is realized as a labial m or as a dental n depending

on its environment: N is realized as m before p and as n

elsewhere.

The language also has an assimilation rule which changes p

to m when the p is followed by m.

xfst> clear stack ;
xfst> define Rule1 N -> m || _ p ;
xfst> define Rule2 N -> n ;
xfst> define Rule3 p -> m || m _ ;
xfst> read regex Rule1 .o. Rule2 .o. Rule3 ;

Natural Language Processing 14

Introduction to XFST – replace rules

Word boundaries can be explicitly referred to:

xfst> define Vowel [a|e|i|o|u];
xfst> e -> ’ || [.#.] [c | d | l | s] _ [% Vowel];

Natural Language Processing 15

Introduction to XFST – replace rules

Contexts can be omitted:

xfst> define Rule1 N -> m || _ p ;
xfst> define Rule2 N -> n ;
xfst> define Rule3 p -> m || m _ ;

This can be used to clear unnecessary symbols introduced for

“bookkeeping”:

xfst> define Rule1 %^MorphmeBoundary -> 0;

Natural Language Processing 16

Introduction to XFST – replace rules

Rules can define multiple replacements:

[A -> B, B -> A]

or multiple replacements that share the same context:

[A -> B, B -> A || L _ R]

or multiple contexts:

[A -> B || L1 _ R1, L2 _ R2]

or multiple replacements and multiple contexts:

[A -> B, B -> A || L1 _ R1, L2 _ R2]

Natural Language Processing 17

Introduction to XFST – replace rules

Rules can apply in parallel:

xfst> clear stack
xfst> read regex a -> b .o. b -> a ;
xfst> apply down abba
aaaa
xfst> clear stack
xfst> read regex b -> a .o. a -> b ;
xfst> apply down abba
bbbb
xfst> clear stack
xfst> read regex a -> b , b -> a ;
xfst> apply down abba
baab

Natural Language Processing 18

Introduction to XFST – replace rules

When rules that have contexts apply in parallel, the rule

separator is a double comma:

xfst> clear stack
xfst> read regex
b -> a || .#. s ?* _ ,, a -> b || _ ?* e .#. ;
xfst> apply down sabbae
sbaabe

Natural Language Processing 19

Introduction to XFST – marking

The special symbol “...” in the right-hand side of a replace

rule stands for whatever was matched in the left-hand side of

the rule.

Natural Language Processing 19

Introduction to XFST – marking

The special symbol “...” in the right-hand side of a replace

rule stands for whatever was matched in the left-hand side of

the rule.

xfst> clear stack;
xfst> read regex [a|e|i|o|u] -> %[... %];
xfst> apply down unnecessarily
[u]nn[e]c[e]ss[a]r[i]ly

Natural Language Processing 20

Introduction to XFST – marking

xfst> clear stack;
xfst> read regex [a|e|i|o|u]+ -> %[... %];
xfst> apply down feeling
f[e][e]l[i]ng
f[ee]l[i]ng
xfst> apply down poolcleaning
p[o][o]lcl[e][a]n[i]ng
p[oo]lcl[e][a]n[i]ng
p[o][o]lcl[ea]n[i]ng
p[oo]lcl[ea]n[i]ng
xfst> read regex [a|e|i|o|u]+ @-> %[... %];
xfst> apply down poolcleaning
p[oo]lcl[ea]n[i]ng

Natural Language Processing 21

Introduction to XFST – shallow parsing

Natural Language Processing 21

Introduction to XFST – shallow parsing

Assume that text is represented as strings of part-of-speech

tags, using ‘d’ for determiner, ‘a’ for adjective, ‘n’ for noun,

and ‘v’ verb, etc. In other words, in this example the regular

expression symbols represent whole words rather than single

letters in a text.

Natural Language Processing 21

Introduction to XFST – shallow parsing

Assume that text is represented as strings of part-of-speech

tags, using ‘d’ for determiner, ‘a’ for adjective, ‘n’ for noun,

and ‘v’ verb, etc. In other words, in this example the regular

expression symbols represent whole words rather than single

letters in a text.

Assume that a noun phrase consists of an optional determiner,

any number of adjectives, and one or more nouns:

[(d) a* n+]

This expression denotes an infinite set of strings, such as

“n” (cats), “aan” (discriminating aristocratic cats), “nn” (cat

food), “dn” (many cats), “dann” (that expensive cat food)

etc.

Natural Language Processing 22

Introduction to XFST – shallow parsing

A simple noun phrase parser can be thought of as a transducer

that inserts markers, say, a pair of braces { }, around noun

phrases in a text. The task is not as trivial as it seems at first

glance. Consider the expression

[(d) a* n+ -> %{ ... %}]

Applied to the input “danvn” (many small cats like milk) this

transducer yields three alternative bracketings:

xfst> apply down danvn
da{n}v{n}
d{an}v{n}
{dan}v{n}

Natural Language Processing 23

Introduction to XFST – longest match

For certain applications it may be desirable to produce a

unique parse, marking the maximal expansion of each NP:

“{dan}v{n}”. Using the left-to-right, longest-match replace

operator @-> instead of the simple replace operator -> yields

the desired result:

[(d) a* n+ @-> %{ ... %}]

xfst> apply down danvn
{dan}v{n}

Natural Language Processing 24

Introduction to XFST – the coke machine

Natural Language Processing 24

Introduction to XFST – the coke machine

A vending machine dispenses drinks for 65 cents a can.

It accepts any sequence of the following coins: 5 cents

(represented as ‘n’), 10 cents (‘d’) or 25 cents (‘q’).

Construct a regular expression that compiles into a finite-

state automaton that implements the behavior of the soft

drink machine, pairing “PLONK” with a legal sequence that

amounts to 65 cents.

Natural Language Processing 25

Introduction to XFST – the coke machine

The construction A^n denotes the concatenation of A with

itself n times.

Natural Language Processing 25

Introduction to XFST – the coke machine

The construction A^n denotes the concatenation of A with

itself n times.

Thus the expression [n .x. c^5] expresses the fact that a

nickel is worth 5 cents.

Natural Language Processing 25

Introduction to XFST – the coke machine

The construction A^n denotes the concatenation of A with

itself n times.

Thus the expression [n .x. c^5] expresses the fact that a

nickel is worth 5 cents.

A mapping from all possible sequences of the three symbols

to the corresponding value:

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*

The solution:

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*
.o.
[c^65 .x. PLONK]

Natural Language Processing 26

Introduction to XFST – the coke machine

clear stack
define SixtyFiveCents
[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;
define BuyCoke
SixtyFiveCents .o. [c^65 .x. PLONK] ;

Natural Language Processing 27

Introduction to XFST – the coke machine

In order to ensure that extra money is paid back, we need to

modify the lower language of BuyCoke to make it a subset of

[PLONK* q* d* n*].

Natural Language Processing 27

Introduction to XFST – the coke machine

In order to ensure that extra money is paid back, we need to

modify the lower language of BuyCoke to make it a subset of

[PLONK* q* d* n*].

To ensure that the extra change is paid out only once, we

need to make sure that quarters get paid before dimes and

dimes before nickels.

Natural Language Processing 27

Introduction to XFST – the coke machine

In order to ensure that extra money is paid back, we need to

modify the lower language of BuyCoke to make it a subset of

[PLONK* q* d* n*].

To ensure that the extra change is paid out only once, we

need to make sure that quarters get paid before dimes and

dimes before nickels.

clear stack
define SixtyFiveCents
[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;
define ReturnChange SixtyFiveCents .o.
[[c^65 .x. PLONK]* [c^25 .x. q]*
[c^10 .x. d]* [c^5 .x. n]*] ;

Natural Language Processing 28

Introduction to XFST – the coke machine

The next refinement is to ensure that as much money as

possible is converted into soft drinks and to remove any

ambiguity in how the extra change is to be reimbursed.

Natural Language Processing 28

Introduction to XFST – the coke machine

The next refinement is to ensure that as much money as

possible is converted into soft drinks and to remove any

ambiguity in how the extra change is to be reimbursed.

clear stack
define SixtyFiveCents
[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;
define ReturnChange SixtyFiveCents .o.
[[c^65 .x. PLONK]* [c^25 .x. q]*
[c^10 .x. d]* [c^5 .x. n]*] ;
define ExactChange ReturnChange .o.
[~$[q q q | [q q | d] d [d | n] | n n]] ;

Natural Language Processing 29

Introduction to XFST – the coke machine

To make the machine completely foolproof, we need one

final improvement. Some clients may insert unwanted items

into the machine (subway tokens, foreign coins, etc.). These

objects should not be accepted; they should passed right back

to the client. This goal can be achieved easily by wrapping

the entire expression inside an ignore operator.

Natural Language Processing 29

Introduction to XFST – the coke machine

To make the machine completely foolproof, we need one

final improvement. Some clients may insert unwanted items

into the machine (subway tokens, foreign coins, etc.). These

objects should not be accepted; they should passed right back

to the client. This goal can be achieved easily by wrapping

the entire expression inside an ignore operator.

define IgnoreGarbage
[[ExactChange]/[\[q | d | n]]] ;

