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Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural
language is given as a list of words. Suggest a data structure
that will provide insertion and retrieval of data. As a first
solution, we are looking for time efficiency rather than space
efficiency.

The solution: trie (word tree).
Access time: O(|w|). Space requirement: O(>_  |w]).

A trie can be augmented to store also a morphological
dictionary specifying concatenative affixes, especially suffixes.
In this case it Is better to turn the tree into a graph.

The obtained model is that of finite-state automata.
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Finite-state technology

Finite-state automata are not only a good model for
representing the lexicon, they are also perfectly adequate for
representing dictionaries (lexicons—+additional information),
describing morphological processes that involve concatenation
etc.

A natural extension of finite-state automata — finite-state
transducers — is a perfect model for most processes known in
morphology and phonology, including non-segmental ones.
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Formal language theory — definitions

Formal languages are defined with respect to a given alphabet,
which is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Example: Strings
Let > = {0, 1} be an alphabet. Then all binary numbers
are strings over 2..

It ¥ = {a,b,cd,...,y,z} is an alphabet then
cat, incredulous and supercalifragilisticexpialidocious are
strings, as are tac, qqq and kjshdflkwjehr.
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The length of a string w, denoted |w|, is the number of letters
in w. The unique string of length 0 is called the empty string
and is denoted e.



Natural Language Processing 4

Formal language theory — definitions

The length of a string w, denoted |w|, is the number of letters

in w. The unique string of length 0 is called the empty string
and iIs denoted e.

If w = (x1,...,2,) and ws = (Y1,...,Ym), the
concatenation of wy and wsy, denoted w; - wo, Is the string
(X1y ey Ty Y1y e v s Ym)- W1 - wo| = |w1| + |wal.

For every string w, w-€ =¢€-w = w.
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Formal language theory — definitions

Example: Concatenation

Let ¥ = {a,b,c,d,...,y,z} be an alphabet. Then
master- mind = mastermind, mind- master = mindmaster
and master- master = mastermaster. Similarly, learn-s =
learns, learn - ed = learned and learn - ing = learning.
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Formal language theory — definitions

An exponent operator over strings is defined in the following

way: for every string w, w' = €. Then, for n > 0, w" =

wn—l .

w.
Example: Exponent

If w = go, then w® = ¢, w! = w = go, w? =w!-w =
3

w - w = gogo, w’ = gogogo and so on.
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Formal language theory — definitions

The reversal of a string w is denoted w' and is obtained by
writing w in the reverse order. Thus, if w = (x1,T3,...,%,),

wt =Ty, Tp_1,...,%1).

Given a string w, a substring of w is a sequence formed by
taking contiguous symbols of w in the order in which they
occur in w. If w = (x1,...,z,) then for any 4,5 such that
1<i<j<m, (x;...x;) is a substring of w.

Two special cases of substrings are prefix and suffix: if
w = wy - W, - W, then wy is a prefix of w and w, is a suffix of
w.
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Formal language theory — definitions

Example: Substrings

Let ¥ = {a,b,c,d,...,y,z} be an alphabet and w =
indistinguishable a string over >.. Then ¢, in, indis,
indistinguish and indistinguishable are prefixes of w,
while €, e, able, distinguishable and indistinguishable
are suffixes of w. Substrings that are neither prefixes nor
suffixes include distinguish, gui and is.
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Given an alphabet X, the set of all strings over X is denoted
by X*.
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Formal language theory — definitions

Given an alphabet X, the set of all strings over X is denoted
by X*.

A formal language over an alphabet X is a subset of X*.
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Formal language theory — definitions

Example: Languages

Let X ={a, b, ¢, ...,y z}. Then X* is the set of all
strings over the Latin alphabet. Any subset of this set
s a language. In particular, the following are formal
languages:
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the set of strings consisting of vowels only;
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and at least one consonant;

e the set of palindromes;
e the set of strings whose length is less than 17 letters;
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Formal language theory — definitions

® X"

e the set of strings consisting of consonants only;

e the set of strings consisting of vowels only;

e the set of strings each of which contains at least one vowel
and at least one consonant;

e the set of palindromes;

e the set of strings whose length is less than 17 letters;

e the set of single-letter strings;

e the set {/, you, he, she, it, we, they};
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the set of strings each of which contains at least one vowel
and at least one consonant;
the set of palindromes;
the set of strings whose length is less than 17 letters;
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Formal language theory — definitions
DI
the set of strings consisting of consonants only;
the set of strings consisting of vowels only;
the set of strings each of which contains at least one vowel
and at least one consonant;
the set of palindromes;
the set of strings whose length is less than 17 letters;
the set of single-letter strings;
the set {i, you, he, she, it, we, they}
the set of words occurring in Joyce's Ulysses;
the empty set;

Note that the first five languages are infinite while the
last five are finite.
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Formal language theory — definitions

The string operations can be lifted to languages.

If L is a language then the reversal of L, denoted L, is the
language {w | w® € L}.

If L1 and Ly are languages, then
Ll'LQZ{wl‘w2’w1 e Ly andeELg}.

Example: Language operations
Ly =i, you, he, she, it, we, they}, Lo = {smile, sleep}.

Then LlR = {i, uoy, eh, ehs, ti, ew, yeht} and L;- Lo =
{ismile, yousmile, hesmile, shesmile, itsmile, wesmile,
theysmile, isleep, yousleep, hesleep, shesleep, itsleep,
wesleep, theysleep}.
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Formal language theory — definitions

If L is a language then LY = {e}.
Then, fori >0, L' =L - L* 1.
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Formal language theory — definitions

If L is a language then LY = {e}.
Then, fori >0, L' =L - L* 1.

Example: Language exponentiation

Let L be the set of words {bau, haus, hof, frau}. Then
L° = {e}, L' = L and L? = {baubau, bauhaus, bauhof,
baufrau, hausbau, haushaus, haushof, hausfrau, hofbau,
hofhaus, hofhof, hoffrau, fraubau, frauhaus, frauhof,
fraufrau}.
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Uizo L*.
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The Kleene closure of L and is denoted L™ and is defined as
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Example: Kleene closure

Let L = {dog, cat}. Observe that L’ = {¢}, L' =
{dog, cat}, L? = {catcat, catdog, dogcat, dogdog}, etc.
Thus L* contains, among its infinite set of strings, the
strings €, cat, dog, catcat, catdog, dogcat, dogdog,
catcatcat, catdogcat, dogcatcat, dogdogcat, etc.
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Formal language theory — definitions

The Kleene closure of L and is denoted L™ and is defined as

Uizo L'
Lt =2, L

Example: Kleene closure

Let L = {dog, cat}. Observe that L’ = {¢}, L' =
{dog, cat}, L? = {catcat, catdog, dogcat, dogdog}, etc.
Thus L* contains, among its infinite set of strings, the
strings €, cat, dog, catcat, catdog, dogcat, dogdog,
catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

The notation for >.* should now become clear: it is
simply a special case of L*, where L = ..
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Regular expressions

Regular expressions are a formalism for defining (formal)
languages. Their “syntax” is formally defined and is relatively
simple. Their “semantics’ is sets of strings: the denotation
of a regular expression is a set of strings in some formal
language.
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Regular expressions

Regular expressions are defined recursively as follows:
e () is a regular expression

® c Is a regular expression

e if a € X is a letter then a is a regular expression

e if 1 and ry are regular expressions then so are (ry + r2)
and (7“1 . 7“2)

e if r is a regular expression then so is (7)*
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Regular expressions

Regular expressions are defined recursively as follows:

e () is a regular expression
® c Is a regular expression
e if a € X is a letter then a is a regular expression

e if 1 and ry are regular expressions then so are (ry + r2)
and (7“1 . 7“2)

e if r is a regular expression then so is (7)*

e nothing else is a regular expression over ..
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Example: Regular expressions
Let 3 be the alphabet {a, b, ¢, ..., y, z}. Some regular
expressions over this alphabet are:

° ()

®

e ((c-a)-t)
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Example: Regular expressions

Let > be the alphabet {a, b, ¢, ..
expressions over this alphabet are:

0
a

A
SD
N——"
\/

((c
(( €
(a +

., ¥, z}. Some regular
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Example: Regular expressions
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., ¥, z}. Some regular
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Regular expressions

For every regular expression r its denotation, [[r], is a set of
strings defined as follows:

o [0] =10
o [ = {¢}
o if a € X is a letter then [a] = {a}

e if 71 and ry are regular expressions whose denotations are
[r1] and [r2], respectively, then [(r1 + r2)] = [r1] U [r2].

[(r1-72)] = [ra] - [roll and [(r1)*] = [ra]”
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a 14}
((c-a)-1) (c-a-tj
(((m-e) - (0)7) -w)
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Example: Regular expressions and their denotations

0

la}
(c-a)-t) {c-a-t}
((m-e)-(0)") - w)

LR =

/N 77N

{mew, meow, meoow, meooow, meoooow, ...}

(a+(e+(14+ (0+uw)))) {a,e,i,0,u}
((a+(e+ (i + (0+u)))))”
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Example: Regular expressions and their denotations

0

{a}

(c-a)-t) {c-a-t}
((m-e)-(0)) - w)

{mew, meow, meoow, meooow, meoooow, ...}
(a+(e+(i+(0+uw)) {aedo0u;
((a+(e+ (i +(0+wu)))))

the set containing all strings of 0 or more vowels

LR =

/N 77N
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Given the alphabet of all English letters, > =
{a,b,c,...,y,z}, the language >* is denoted by the
regular expression X*.
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Example: Regular expressions

Given the alphabet of all English letters, > =
{a,b,c,...,y,z}, the language >* is denoted by the
regular expression X*.

The set of all strings which contain a vowel is denoted
by ¥>*-(a+e+i+o+u)- X*

The set of all strings that begin in “un” is denoted by
(un)X*.

The set of strings that end in either “tion” or “sion” is
denoted by X* - (s +t) - (ion).

Note that all these languages are infinite.
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Properties of regular languages

Closure properties:

A class of languages L is said to be closed under some
operation ‘e’ if and only if whenever two languages L1, L> are
in the class (L1, Lo € L), also the result of performing the
operation on the two languages is in this class: L, e Ly € L.
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Properties of regular languages

Regular languages are closed under:
e Union

e |ntersection

e Complementation

e Difference

e Concatenation

o Kleene-star

e Substitution and homomorphism



