עבבוד שפות טבעיות

שולי וינטנר

Implementing morphology and phonology

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency.

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency.

The solution: trie (word tree).

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency.

The solution: trie (word tree).
Access time: $O(|w|)$. Space requirement: $O\left(\sum_{w}|w|\right)$.

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency.

The solution: trie (word tree).
Access time: $O(|w|)$. Space requirement: $O\left(\sum_{w}|w|\right)$.
A trie can be augmented to store also a morphological dictionary specifying concatenative affixes, especially suffixes. In this case it is better to turn the tree into a graph.

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency.

The solution: trie (word tree).
Access time: $O(|w|)$. Space requirement: $O\left(\sum_{w}|w|\right)$.
A trie can be augmented to store also a morphological dictionary specifying concatenative affixes, especially suffixes. In this case it is better to turn the tree into a graph.

The obtained model is that of finite-state automata.

Finite-state technology

Finite-state automata are not only a good model for representing the lexicon, they are also perfectly adequate for representing dictionaries (lexicons+additional information), describing morphological processes that involve concatenation etc.

A natural extension of finite-state automata - finite-state transducers - is a perfect model for most processes known in morphology and phonology, including non-segmental ones.

Formal language theory - definitions

Formal language theory - definitions

Formal languages are defined with respect to a given alphabet, which is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Formal language theory - definitions

Formal languages are defined with respect to a given alphabet, which is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Example: Strings
Let $\Sigma=\{0,1\}$ be an alphabet. Then all binary numbers are strings over Σ.

If $\Sigma=\{a, b, c, d, \ldots, y, z\}$ is an alphabet then cat, incredulous and supercalifragilisticexpialidocious are strings, as are tac, $q q q$ and kjshdflkwjehr.

Formal language theory - definitions

The length of a string w, denoted $|w|$, is the number of letters in w. The unique string of length 0 is called the empty string and is denoted ϵ.

Formal language theory - definitions

The length of a string w, denoted $|w|$, is the number of letters in w. The unique string of length 0 is called the empty string and is denoted ϵ.

If $w_{1}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $w_{2}=\left\langle y_{1}, \ldots, y_{m}\right\rangle$, the concatenation of w_{1} and w_{2}, denoted $w_{1} \cdot w_{2}$, is the string $\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\rangle .\left|w_{1} \cdot w_{2}\right|=\left|w_{1}\right|+\left|w_{2}\right|$.

For every string $w, w \cdot \epsilon=\epsilon \cdot w=w$.

Formal language theory - definitions

Example: Concatenation
Let $\Sigma=\{a, b, c, d, \ldots, y, z\}$ be an alphabet. Then master \cdot mind $=$ mastermind, mind \cdot master $=$ mindmaster and master \cdot master $=$ mastermaster. Similarly, learn $\cdot s=$ learns, learn \cdot ed $=$ learned and learn \cdot ing $=$ learning.

Formal language theory - definitions

An exponent operator over strings is defined in the following way: for every string $w, w^{0}=\epsilon$. Then, for $n>0, w^{n}=$ $w^{n-1} \cdot w$.

Example: Exponent
If $w=$ go, then $w^{0}=\epsilon, w^{1}=w=$ go, $w^{2}=w^{1} \cdot w=$
$w \cdot w=$ gogo, $w^{3}=$ gogogo and so on.

Formal language theory - definitions

The reversal of a string w is denoted w^{R} and is obtained by writing w in the reverse order. Thus, if $w=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, $w^{R}=\left\langle x_{n}, x_{n-1}, \ldots, x_{1}\right\rangle$.

Formal language theory - definitions

The reversal of a string w is denoted w^{R} and is obtained by writing w in the reverse order. Thus, if $w=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, $w^{R}=\left\langle x_{n}, x_{n-1}, \ldots, x_{1}\right\rangle$.

Given a string w, a substring of w is a sequence formed by taking contiguous symbols of w in the order in which they occur in w. If $w=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ then for any i, j such that $1 \leq i \leq j \leq n,\left\langle x_{i}, \ldots x_{j}\right\rangle$ is a substring of w.

Formal language theory - definitions

The reversal of a string w is denoted w^{R} and is obtained by writing w in the reverse order. Thus, if $w=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, $w^{R}=\left\langle x_{n}, x_{n-1}, \ldots, x_{1}\right\rangle$.

Given a string w, a substring of w is a sequence formed by taking contiguous symbols of w in the order in which they occur in w. If $w=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ then for any i, j such that $1 \leq i \leq j \leq n,\left\langle x_{i}, \ldots x_{j}\right\rangle$ is a substring of w.

Two special cases of substrings are prefix and suffix: if $w=w_{l} \cdot w_{c} \cdot w_{r}$ then w_{l} is a prefix of w and w_{r} is a suffix of w.

Formal language theory - definitions

Example: Substrings
Let $\Sigma=\{a, b, c, d, \ldots, y, z\}$ be an alphabet and $w=$ indistinguishable a string over Σ. Then ϵ, in, indis, indistinguish and indistinguishable are prefixes of w, while ϵ, e, able, distinguishable and indistinguishable are suffixes of w. Substrings that are neither prefixes nor suffixes include distinguish, gui and is.

Formal language theory - definitions

Given an alphabet Σ, the set of all strings over Σ is denoted by Σ^{*}.

Formal language theory - definitions

Given an alphabet Σ, the set of all strings over Σ is denoted by Σ^{*}.

A formal language over an alphabet Σ is a subset of Σ^{*}.

Formal language theory - definitions

Example: Languages
Let $\Sigma=\{a, b, c, \ldots, y, z\}$. Then Σ^{*} is the set of all strings over the Latin alphabet. Any subset of this set is a language. In particular, the following are formal languages:

Formal language theory - definitions

- Σ^{*};

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;
- the set of single-letter strings;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;
- the set of single-letter strings;
- the set $\{i$, you, he, she, it, we, they $\}$;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;
- the set of single-letter strings;
- the set $\{i$, you, he, she, it, we, they\};
- the set of words occurring in Joyce's Ulysses;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;
- the set of single-letter strings;
- the set $\{i$, you, he, she, it, we, they\};
- the set of words occurring in Joyce's Ulysses;
- the empty set;

Formal language theory - definitions

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;
- the set of single-letter strings;
- the set $\{i$, you, he, she, it, we, they\};
- the set of words occurring in Joyce's Ulysses;
- the empty set;

Note that the first five languages are infinite while the last five are finite.

Formal language theory - definitions

The string operations can be lifted to languages.

Formal language theory - definitions

The string operations can be lifted to languages.
If L is a language then the reversal of L, denoted L^{R}, is the language $\left\{w \mid w^{R} \in L\right\}$.

Formal language theory - definitions

The string operations can be lifted to languages.
If L is a language then the reversal of L, denoted L^{R}, is the language $\left\{w \mid w^{R} \in L\right\}$.

If L_{1} and L_{2} are languages, then
$L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}\right.$ and $\left.w_{2} \in L_{2}\right\}$.

Formal language theory - definitions

The string operations can be lifted to languages.
If L is a language then the reversal of L, denoted L^{R}, is the language $\left\{w \mid w^{R} \in L\right\}$.

If L_{1} and L_{2} are languages, then
$L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}\right.$ and $\left.w_{2} \in L_{2}\right\}$.
Example: Language operations
$L_{1}=\{i$, you, he, she, it, we, they $\}, L_{2}=\{$ smile, sleep $\}$.
Then $L_{1}{ }^{R}=\{i$, uoy, eh, ehs, ti, ew, yeht $\}$ and $L_{1} \cdot L_{2}=$ \{ismile, yousmile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep, shesleep, itsleep, wesleep, theysleep\}.

Formal language theory - definitions

If L is a language then $L^{0}=\{\epsilon\}$.
Then, for $i>0, L^{i}=L \cdot L^{i-1}$.

Formal language theory - definitions

If L is a language then $L^{0}=\{\epsilon\}$.
Then, for $i>0, L^{i}=L \cdot L^{i-1}$.

Example: Language exponentiation
Let L be the set of words $\{$ bau, haus, hof, frau\}. Then $L^{0}=\{\epsilon\}, L^{1}=L$ and $L^{2}=\{$ baubau, bauhaus, bauhof, baufrau, hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau, frauhaus, frauhof, fraufrau\}.

Formal language theory - definitions

The Kleene closure of L and is denoted L^{*} and is defined as $\bigcup_{i=0}^{\infty} L^{i}$.

Formal language theory - definitions

The Kleene closure of L and is denoted L^{*} and is defined as $\bigcup_{i=0}^{\infty} L^{i}$. $L^{+}=\bigcup_{i=1}^{\infty} L^{i}$.

Formal language theory - definitions

The Kleene closure of L and is denoted L^{*} and is defined as $\bigcup_{i=0}^{\infty} L^{i}$. $L^{+}=\bigcup_{i=1}^{\infty} L^{i}$.

Example: Kleene closure
Let $L=\{d o g$, cat $\}$. Observe that $L^{0}=\{\epsilon\}, L^{1}=$ $\{d o g, c a t\}, L^{2}=\{$ catcat, catdog, dogcat, dogdog\}, etc. Thus L^{*} contains, among its infinite set of strings, the strings ϵ, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

Formal language theory - definitions

The Kleene closure of L and is denoted L^{*} and is defined as $\bigcup_{i=0}^{\infty} L^{i}$. $L^{+}=\bigcup_{i=1}^{\infty} L^{i}$.

Example: Kleene closure
Let $L=\{d o g$, cat $\}$. Observe that $L^{0}=\{\epsilon\}, L^{1}=$ $\{d o g, c a t\}, L^{2}=\{$ catcat, catdog, dogcat, dogdog\}, etc. Thus L^{*} contains, among its infinite set of strings, the strings ϵ, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

The notation for Σ^{*} should now become clear: it is simply a special case of L^{*}, where $L=\Sigma$.

Regular expressions

Regular expressions

Regular expressions are a formalism for defining (formal) languages. Their "syntax" is formally defined and is relatively simple. Their "semantics" is sets of strings: the denotation of a regular expression is a set of strings in some formal language.

Regular expressions

Regular expressions are defined recursively as follows:

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- if $a \in \Sigma$ is a letter then a is a regular expression

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- if $a \in \Sigma$ is a letter then a is a regular expression
- if r_{1} and r_{2} are regular expressions then so are $\left(r_{1}+r_{2}\right)$ and $\left(r_{1} \cdot r_{2}\right)$

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- if $a \in \Sigma$ is a letter then a is a regular expression
- if r_{1} and r_{2} are regular expressions then so are $\left(r_{1}+r_{2}\right)$ and $\left(r_{1} \cdot r_{2}\right)$
- if r is a regular expression then so is $(r)^{*}$

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- if $a \in \Sigma$ is a letter then a is a regular expression
- if r_{1} and r_{2} are regular expressions then so are $\left(r_{1}+r_{2}\right)$ and $\left(r_{1} \cdot r_{2}\right)$
- if r is a regular expression then so is $(r)^{*}$
- nothing else is a regular expression over Σ.

Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- Ø

Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- Ø
- a

Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- Ø
- a
- $((c \cdot a) \cdot t)$

Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- \emptyset
- a
- $((c \cdot a) \cdot t)$
- $\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$

Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- \emptyset
- a
- $((c \cdot a) \cdot t)$
- $\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$
- $(a+(e+(i+(o+u))))$

Regular expressions

Example: Regular expressions
Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- \emptyset
- a
- $((c \cdot a) \cdot t)$
- $\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$
- $(a+(e+(i+(o+u))))$
- $((a+(e+(i+(o+u)))))^{*}$

Regular expressions

For every regular expression r its denotation, $\llbracket r \rrbracket$, is a set of strings defined as follows:

Regular expressions

For every regular expression r its denotation, $\llbracket r \rrbracket$, is a set of strings defined as follows:

- $\llbracket \emptyset \rrbracket=\emptyset$

Regular expressions

For every regular expression r its denotation, $\llbracket r \rrbracket$, is a set of strings defined as follows:

- $\llbracket \emptyset \rrbracket=\emptyset$
- $\llbracket \epsilon \rrbracket=\{\epsilon\}$

Regular expressions

For every regular expression r its denotation, $\llbracket r \rrbracket$, is a set of strings defined as follows:

- $\llbracket \emptyset \rrbracket=\emptyset$
- $\llbracket \epsilon \rrbracket=\{\epsilon\}$
- if $a \in \Sigma$ is a letter then $\llbracket a \rrbracket=\{a\}$

Regular expressions

For every regular expression r its denotation, $\llbracket r \rrbracket$, is a set of strings defined as follows:

- $\llbracket \emptyset \rrbracket=\emptyset$
- $\llbracket \epsilon \rrbracket=\{\epsilon\}$
- if $a \in \Sigma$ is a letter then $\llbracket a \rrbracket=\{a\}$
- if r_{1} and r_{2} are regular expressions whose denotations are $\llbracket r_{1} \rrbracket$ and $\llbracket r_{2} \rrbracket$, respectively, then $\llbracket\left(r_{1}+r_{2}\right) \rrbracket=\llbracket r_{1} \rrbracket \cup \llbracket r_{2} \rrbracket$, $\llbracket\left(r_{1} \cdot r_{2}\right) \rrbracket=\llbracket r_{1} \rrbracket \cdot \llbracket r_{2} \rrbracket$ and $\llbracket\left(r_{1}\right)^{*} \rrbracket=\llbracket r_{1} \rrbracket^{*}$

Regular expressions

Example: Regular expressions and their denotations

Regular expressions

Example: Regular expressions and their denotations
\emptyset

Regular expressions

Example: Regular expressions and their denotations
\emptyset
\emptyset

Regular expressions

Example: Regular expressions and their denotations
\emptyset
\emptyset
a

Regular expressions

Example: Regular expressions and their denotations
\emptyset
a
\emptyset
\{a\}

Regular expressions

Example: Regular expressions and their denotations
\emptyset
a
$((c \cdot a) \cdot t)$
\emptyset
$\{a\}$

Regular expressions

Example: Regular expressions and their denotations

$$
\begin{aligned}
& \emptyset \\
& a \\
& ((c \cdot a) \cdot t)
\end{aligned}
$$

$$
\begin{aligned}
& \emptyset \\
& \{a\} \\
& \{c \cdot a \cdot t\}
\end{aligned}
$$

Regular expressions

Example: Regular expressions and their denotations
\emptyset
a
$((c \cdot a) \cdot t)$
$\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$
\emptyset
$\{a\}$
$\{c \cdot a \cdot t\}$

Regular expressions

Example: Regular expressions and their denotations

$$
\begin{array}{ll}
\emptyset & \emptyset \\
a & \{a\} \\
((c \cdot a) \cdot t) & \{c \cdot a \cdot t\} \\
\left.\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right) & \\
\{\text { mew, meow, meoow, meooow, meoooow, } \ldots\}
\end{array}
$$

Regular expressions

Example: Regular expressions and their denotations
\emptyset
a
$((c \cdot a) \cdot t)$ $\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$
\{mew, meow, meoow, meooow, meoooow, ...\}
$(a+(e+(i+(o+u)))) \quad\{a, e, i, o, u\}$

Regular expressions

Example: Regular expressions and their denotations

$$
\begin{array}{ll}
\emptyset & \emptyset \\
a & \{a\} \\
((c \cdot a) \cdot t) & \{c \cdot a \cdot t\} \\
\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right) & \\
\{\text { mew, meow, meoow, meooow, meoooow, } . .\} \\
(a+(e+(i+(o+u))) & \{a, e, i, o, u\} \\
((a+(e+(i+(o+u)))))^{*} &
\end{array}
$$

Regular expressions

Example: Regular expressions and their denotations

$$
\begin{array}{ll}
\emptyset & \emptyset \\
a & \{a\} \\
((c \cdot a) \cdot t) & \{c \cdot a \cdot t\} \\
\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right) & \\
\{\text { mew, meow, meoow, meooow, meoooow, } \ldots\} \\
(a+(e+(i+(o+u)))) & \{a, e, i, o, u\} \\
((a+(e+(i+(o+u)))))^{*} \\
\text { the set containing all strings of } 0 \text { or more vowels }
\end{array}
$$

Regular expressions

Example: Regular expressions Given the alphabet of all English letters, $\Sigma=$ $\{a, b, c, \ldots, y, z\}$, the language Σ^{*} is denoted by the regular expression Σ^{*}.

Regular expressions

Example: Regular expressions Given the alphabet of all English letters, $\Sigma=$ $\{a, b, c, \ldots, y, z\}$, the language Σ^{*} is denoted by the regular expression Σ^{*}.

The set of all strings which contain a vowel is denoted by $\Sigma^{*} \cdot(a+e+i+o+u) \cdot \Sigma^{*}$.

Regular expressions

Example: Regular expressions
Given the alphabet of all English letters, $\Sigma=$ $\{a, b, c, \ldots, y, z\}$, the language Σ^{*} is denoted by the regular expression Σ^{*}.

The set of all strings which contain a vowel is denoted by $\Sigma^{*} \cdot(a+e+i+o+u) \cdot \Sigma^{*}$.

The set of all strings that begin in "un" is denoted by (un) Σ^{*}.

Regular expressions

Example: Regular expressions
Given the alphabet of all English letters, $\Sigma=$ $\{a, b, c, \ldots, y, z\}$, the language Σ^{*} is denoted by the regular expression Σ^{*}.

The set of all strings which contain a vowel is denoted by $\Sigma^{*} \cdot(a+e+i+o+u) \cdot \Sigma^{*}$.

The set of all strings that begin in "un" is denoted by (un) Σ^{*}.

The set of strings that end in either "tion" or "sion" is denoted by $\Sigma^{*} \cdot(s+t) \cdot($ ion $)$.

Regular expressions

Example: Regular expressions
Given the alphabet of all English letters, $\Sigma=$ $\{a, b, c, \ldots, y, z\}$, the language Σ^{*} is denoted by the regular expression Σ^{*}.

The set of all strings which contain a vowel is denoted by $\Sigma^{*} \cdot(a+e+i+o+u) \cdot \Sigma^{*}$.

The set of all strings that begin in "un" is denoted by (un) Σ^{*}.

The set of strings that end in either "tion" or "sion" is denoted by $\Sigma^{*} \cdot(s+t) \cdot($ ion $)$.

Note that all these languages are infinite.

Properties of regular languages

Properties of regular languages

Closure properties:
A class of languages \mathcal{L} is said to be closed under some operation ' \bullet ' if and only if whenever two languages L_{1}, L_{2} are in the class $\left(L_{1}, L_{2} \in \mathcal{L}\right)$, also the result of performing the operation on the two languages is in this class: $L_{1} \bullet L_{2} \in \mathcal{L}$.

Properties of regular languages

Regular languages are closed under:

- Union
- Intersection
- Complementation
- Difference
- Concatenation
- Kleene-star
- Substitution and homomorphism

