
zeirah zety ceair

xphpie iley



Natural Language Processing 1

Implementing morphology and phonology



Natural Language Processing 1

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural

language is given as a list of words. Suggest a data structure

that will provide insertion and retrieval of data. As a first

solution, we are looking for time efficiency rather than space

efficiency.



Natural Language Processing 1

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural

language is given as a list of words. Suggest a data structure

that will provide insertion and retrieval of data. As a first

solution, we are looking for time efficiency rather than space

efficiency.

The solution: trie (word tree).



Natural Language Processing 1

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural

language is given as a list of words. Suggest a data structure

that will provide insertion and retrieval of data. As a first

solution, we are looking for time efficiency rather than space

efficiency.

The solution: trie (word tree).

Access time: O(|w|). Space requirement: O(
∑
w |w|).



Natural Language Processing 1

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural

language is given as a list of words. Suggest a data structure

that will provide insertion and retrieval of data. As a first

solution, we are looking for time efficiency rather than space

efficiency.

The solution: trie (word tree).

Access time: O(|w|). Space requirement: O(
∑
w |w|).

A trie can be augmented to store also a morphological

dictionary specifying concatenative affixes, especially suffixes.

In this case it is better to turn the tree into a graph.



Natural Language Processing 1

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural

language is given as a list of words. Suggest a data structure

that will provide insertion and retrieval of data. As a first

solution, we are looking for time efficiency rather than space

efficiency.

The solution: trie (word tree).

Access time: O(|w|). Space requirement: O(
∑
w |w|).

A trie can be augmented to store also a morphological

dictionary specifying concatenative affixes, especially suffixes.

In this case it is better to turn the tree into a graph.

The obtained model is that of finite-state automata.
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Finite-state technology

Finite-state automata are not only a good model for

representing the lexicon, they are also perfectly adequate for

representing dictionaries (lexicons+additional information),

describing morphological processes that involve concatenation

etc.

A natural extension of finite-state automata – finite-state

transducers – is a perfect model for most processes known in

morphology and phonology, including non-segmental ones.
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Formal languages are defined with respect to a given alphabet,

which is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Example: Strings

Let Σ = {0, 1} be an alphabet. Then all binary numbers

are strings over Σ.

If Σ = {a, b, c, d, . . . , y, z} is an alphabet then

cat, incredulous and supercalifragilisticexpialidocious are

strings, as are tac, qqq and kjshdflkwjehr.
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Formal language theory – definitions

The length of a string w, denoted |w|, is the number of letters

in w. The unique string of length 0 is called the empty string

and is denoted ε.

If w1 = 〈x1, . . . , xn〉 and w2 = 〈y1, . . . , ym〉, the

concatenation of w1 and w2, denoted w1 · w2, is the string

〈x1, . . . , xn, y1, . . . , ym〉. |w1 · w2| = |w1|+ |w2|.

For every string w, w · ε = ε · w = w.
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Formal language theory – definitions

Example: Concatenation

Let Σ = {a, b, c, d, . . . , y, z} be an alphabet. Then

master·mind = mastermind, mind·master = mindmaster

and master ·master = mastermaster. Similarly, learn · s =
learns, learn · ed = learned and learn · ing = learning.
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Formal language theory – definitions

An exponent operator over strings is defined in the following

way: for every string w, w0 = ε. Then, for n > 0, wn =
wn−1 · w.

Example: Exponent

If w = go, then w0 = ε, w1 = w = go, w2 = w1 · w =
w · w = gogo, w3 = gogogo and so on.
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Formal language theory – definitions

The reversal of a string w is denoted wR and is obtained by

writing w in the reverse order. Thus, if w = 〈x1, x2, . . . , xn〉,
wR = 〈xn, xn−1, . . . , x1〉.

Given a string w, a substring of w is a sequence formed by

taking contiguous symbols of w in the order in which they

occur in w. If w = 〈x1, . . . , xn〉 then for any i, j such that

1 ≤ i ≤ j ≤ n, 〈xi, . . . xj〉 is a substring of w.

Two special cases of substrings are prefix and suffix : if

w = wl · wc · wr then wl is a prefix of w and wr is a suffix of

w.
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Formal language theory – definitions

Example: Substrings

Let Σ = {a, b, c, d, . . . , y, z} be an alphabet and w =
indistinguishable a string over Σ. Then ε, in, indis,

indistinguish and indistinguishable are prefixes of w,

while ε, e, able, distinguishable and indistinguishable

are suffixes of w. Substrings that are neither prefixes nor

suffixes include distinguish, gui and is.
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Formal language theory – definitions

Given an alphabet Σ, the set of all strings over Σ is denoted

by Σ∗.

A formal language over an alphabet Σ is a subset of Σ∗.
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Formal language theory – definitions

Example: Languages

Let Σ = {a, b, c, . . ., y, z}. Then Σ∗ is the set of all

strings over the Latin alphabet. Any subset of this set

is a language. In particular, the following are formal

languages:
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Formal language theory – definitions

• Σ∗;
• the set of strings consisting of consonants only;

• the set of strings consisting of vowels only;

• the set of strings each of which contains at least one vowel

and at least one consonant;

• the set of palindromes;

• the set of strings whose length is less than 17 letters;

• the set of single-letter strings;

• the set {i, you, he, she, it, we, they};
• the set of words occurring in Joyce’s Ulysses;

• the empty set;

Note that the first five languages are infinite while the

last five are finite.
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Formal language theory – definitions

The string operations can be lifted to languages.

If L is a language then the reversal of L, denoted LR, is the

language {w | wR ∈ L}.

If L1 and L2 are languages, then

L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2}.

Example: Language operations

L1 = {i, you, he, she, it, we, they}, L2 = {smile, sleep}.

Then L1
R = {i, uoy, eh, ehs, ti, ew, yeht} and L1 ·L2 =

{ismile, yousmile, hesmile, shesmile, itsmile, wesmile,

theysmile, isleep, yousleep, hesleep, shesleep, itsleep,

wesleep, theysleep}.
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Formal language theory – definitions

If L is a language then L0 = {ε}.
Then, for i > 0, Li = L · Li−1.

Example: Language exponentiation

Let L be the set of words {bau, haus, hof, frau}. Then

L0 = {ε}, L1 = L and L2 = {baubau, bauhaus, bauhof,

baufrau, hausbau, haushaus, haushof, hausfrau, hofbau,

hofhaus, hofhof, hoffrau, fraubau, frauhaus, frauhof,

fraufrau}.
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Let L = {dog, cat}. Observe that L0 = {ε}, L1 =
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The Kleene closure of L and is denoted L∗ and is defined as⋃∞
i=0L

i.

L+ =
⋃∞
i=1L

i.

Example: Kleene closure

Let L = {dog, cat}. Observe that L0 = {ε}, L1 =
{dog, cat}, L2 = {catcat, catdog, dogcat, dogdog}, etc.

Thus L∗ contains, among its infinite set of strings, the

strings ε, cat, dog, catcat, catdog, dogcat, dogdog,

catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

The notation for Σ∗ should now become clear: it is

simply a special case of L∗, where L = Σ.
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Regular expressions

Regular expressions are a formalism for defining (formal)

languages. Their “syntax” is formally defined and is relatively

simple. Their “semantics” is sets of strings: the denotation

of a regular expression is a set of strings in some formal

language.



Natural Language Processing 16

Regular expressions

Regular expressions are defined recursively as follows:



Natural Language Processing 16

Regular expressions

Regular expressions are defined recursively as follows:

• ∅ is a regular expression



Natural Language Processing 16

Regular expressions

Regular expressions are defined recursively as follows:

• ∅ is a regular expression

• ε is a regular expression



Natural Language Processing 16

Regular expressions

Regular expressions are defined recursively as follows:

• ∅ is a regular expression

• ε is a regular expression

• if a ∈ Σ is a letter then a is a regular expression



Natural Language Processing 16

Regular expressions

Regular expressions are defined recursively as follows:

• ∅ is a regular expression

• ε is a regular expression

• if a ∈ Σ is a letter then a is a regular expression

• if r1 and r2 are regular expressions then so are (r1 + r2)
and (r1 · r2)



Natural Language Processing 16

Regular expressions

Regular expressions are defined recursively as follows:

• ∅ is a regular expression

• ε is a regular expression

• if a ∈ Σ is a letter then a is a regular expression

• if r1 and r2 are regular expressions then so are (r1 + r2)
and (r1 · r2)

• if r is a regular expression then so is (r)∗



Natural Language Processing 16

Regular expressions

Regular expressions are defined recursively as follows:

• ∅ is a regular expression

• ε is a regular expression

• if a ∈ Σ is a letter then a is a regular expression

• if r1 and r2 are regular expressions then so are (r1 + r2)
and (r1 · r2)

• if r is a regular expression then so is (r)∗

• nothing else is a regular expression over Σ.
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Regular expressions

Example: Regular expressions

Let Σ be the alphabet {a, b, c, . . ., y, z}. Some regular

expressions over this alphabet are:

• ∅
• a
• ((c · a) · t)
• (((m · e) · (o)∗) · w)
• (a+ (e+ (i+ (o+ u))))
• ((a+ (e+ (i+ (o+ u)))))∗
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Regular expressions

For every regular expression r its denotation, [[r]], is a set of

strings defined as follows:

• [[∅]] = ∅

• [[ε]] = {ε}

• if a ∈ Σ is a letter then [[a]] = {a}

• if r1 and r2 are regular expressions whose denotations are

[[r1]] and [[r2]], respectively, then [[(r1 + r2)]] = [[r1]] ∪ [[r2]],

[[(r1 · r2)]] = [[r1]] · [[r2]] and [[(r1)∗]] = [[r1]]∗
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Example: Regular expressions and their denotations

∅ ∅
a {a}
((c · a) · t) {c · a · t}
(((m · e) · (o)∗) · w)
{mew, meow, meoow, meooow, meoooow, . . .}

(a+ (e+ (i+ (o+ u)))) {a, e, i, o, u}
((a+ (e+ (i+ (o+ u)))))∗

the set containing all strings of 0 or more vowels
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{a, b, c, . . . , y, z}, the language Σ∗ is denoted by the

regular expression Σ∗.

The set of all strings which contain a vowel is denoted

by Σ∗ · (a+ e+ i+ o+ u) · Σ∗.
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Example: Regular expressions

Given the alphabet of all English letters, Σ =
{a, b, c, . . . , y, z}, the language Σ∗ is denoted by the

regular expression Σ∗.

The set of all strings which contain a vowel is denoted

by Σ∗ · (a+ e+ i+ o+ u) · Σ∗.

The set of all strings that begin in “un” is denoted by

(un)Σ∗.

The set of strings that end in either “tion” or “sion” is

denoted by Σ∗ · (s+ t) · (ion).
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Regular expressions

Example: Regular expressions

Given the alphabet of all English letters, Σ =
{a, b, c, . . . , y, z}, the language Σ∗ is denoted by the

regular expression Σ∗.

The set of all strings which contain a vowel is denoted

by Σ∗ · (a+ e+ i+ o+ u) · Σ∗.

The set of all strings that begin in “un” is denoted by

(un)Σ∗.

The set of strings that end in either “tion” or “sion” is

denoted by Σ∗ · (s+ t) · (ion).

Note that all these languages are infinite.
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Properties of regular languages

Closure properties:

A class of languages L is said to be closed under some

operation ‘•’ if and only if whenever two languages L1, L2 are

in the class (L1, L2 ∈ L), also the result of performing the

operation on the two languages is in this class: L1 • L2 ∈ L.
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Properties of regular languages

Regular languages are closed under:

• Union

• Intersection

• Complementation

• Difference

• Concatenation

• Kleene-star

• Substitution and homomorphism


