עיבוד שפות טבעיות

שולי וינטנר

Natural Language Processing

Finite-state technology

Finite-state automata are not only a good model for representing the lexicon, they are also perfectly adequate for representing dictionaries (lexicons+additional information), describing morphological processes that involve concatenation etc.

A natural extension of finite-state automata – finite-state transducers – is a perfect model for most processes known in morphology and phonology, including non-segmental ones.

Language Processing

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency.

The solution: trie (word tree)

Access time: O(|w|). Space requirement: $O(\sum_{w} |w|)$.

A trie can be augmented to store also a morphologica dictionary specifying concatenative affixes, especially suffixes In this case it is better to turn the tree into a graph.

The obtained model is that of finite-state automata.

rai Language Processing

Formal language theory — definitions

Formal languages are defined with respect to a given *alphabet*, which is a finite set of symbols, each of which is called a *letter*.

A finite sequence of letters is called a string

Example: Strings

Let $\Sigma=\{0,1\}$ be an alphabet. Then all binary numbers are strings over $\Sigma.$

If $\Sigma=\{a,b,c,d,\ldots,y,z\}$ is an alphabet then cat, incredulous and supercalifragilistic expialidocious are strings, as are tac, qqq and kjshdflkwjehr.

Formal language theory – definitions

and is denoted ϵ in w. The unique string of length 0 is called the *empty string* The length of a string w , denoted |w| , is the number of letters

concatenation of w_1 and w_2 , denoted $w_1 \cdot w_2$, is the string If $w_1 =$ $\langle x_1, \dots, x_n, y_1, \dots, y_m \rangle$. $|w_1 \cdot w_2| = |w_1| + |w_2|$. $\langle x_1,\ldots,x_n \rangle$ and w_2 $= \langle y_1, \ldots, y_m
angle$,

For every string w, $w \cdot \epsilon = \epsilon \cdot w = w$

Formal language theory — definitions

 $w^{n-1} \cdot w$ way: for every string w, $w^0=\epsilon$. Then, for n>0, $w^n=\epsilon$ An exponent operator over strings is defined in the following

Example: Exponent

 $w \cdot w = gogo$, $w^3 = gogogo$ and so on. If w = go, then $w^0 = \epsilon$, $w^1 = w = go$, $w^2 = w^1 \cdot w =$

Formal language theory – definitions

Example: Concatenation

and $master \cdot master = mastermaster$. Similarly, $learn \cdot s =$ master mind = mastermind, mind master = mindmasterlearns, learn \cdot ed = learned and learn \cdot ing = learning. Let $\Sigma = \{a, b, c, d, \dots, y, z\}$ be an alphabet.

Formal language theory — definitions

writing w in the reverse order. Thus, if $w=\langle x_1,x_2,\ldots,x_n \rangle$, $w^R = \langle x_n, x_{n-1}, \dots, x_1 \rangle.$ The $\mathit{reversal}$ of a string w is denoted w^R and is obtained by

 $1 \le i \le j \le n$, $\langle x_i, \dots x_j \rangle$ is a substring of w. occur in w. If $w=\langle x_1,\ldots,x_n\rangle$ then for any i,j such that taking contiguous symbols of \boldsymbol{w} in the order in which they Given a string w, a *substring* of w is a sequence formed by

 $w=w_l\cdot w_c\cdot w_r$ then w_l is a prefix of w and w_r is a suffix of Two special cases of substrings are prefix and suffix: if

Natural Language Processing 8

Formal language theory – definitions

Example: Substrings

Let $\Sigma = \{a,b,c,d,\ldots,y,z\}$ be an alphabet and w = indistinguishable a string over Σ . Then ϵ , in, indis, indistinguish and indistinguishable are prefixes of w, while ϵ , e, able, distinguishable and indistinguishable are suffixes of w. Substrings that are neither prefixes nor suffixes include distinguish, gui and is.

1

5

Formal language theory — definitions

Example: Languages

Let $\Sigma = \{a, b, c, ..., y, z\}$. Then Σ^* is the set of all strings over the Latin alphabet. Any subset of this set is a language. In particular, the following are formal languages:

tural Language Processing 9

Formal language theory — definitions

Given an alphabet Σ , the set of all strings over Σ is denoted by Σ^* .

A formal language over an alphabet Σ is a subset of Σ^*

Formal language theory - definitions

Formal language theory — definitions

- **>**
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;
- the set of strings whose length is less than 17 letters;
- the set of single-letter strings;
- the set $\{i, you, he, she, it, we, they\}$;
- the set of words occurring in Joyce's Ulysses
- the empty set;

Note that the first five languages are infinite while the last five are finite.

Natural Language Processing

Formal language theory — definitions

The string operations can be lifted to languages.

If L is a language then the *reversal* of L, denoted L^R , is the language $\{w \mid w^R \in L\}$.

If L_1 and L_2 are languages, then

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$$

Example: Language operations

$$L_1=\{\emph{i, you, he, she, it, we, they}\},$$
 $L_2=\{\emph{smile, sleep}\}.$

Then ${L_1}^R=\{i\text{, uoy, eh, ehs, ti, ew, yeht}\}$ and ${L_1\cdot L_2}=\{i\text{smile, yousmile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep, shesleep, itsleep, wesleep, theysleep}.$

tural Language Processing

Formal language theory — definitions

The *Kleene closure* of L and is denoted L^* and is defined as $\bigcup_{i=0}^{\infty} L^i$.

$$L^{+} = \bigcup_{i=1}^{\infty} L^{i}.$$

Example: Kleene closure

Let
$$L=\{dog, cat\}$$
. Observe that $L^0=\{\epsilon\}$, $L^1=\{dog, cat\}$, $L^2=\{catcat, catdog, dogcat, dogdog\}$, etc. Thus L^* contains, among its infinite set of strings, the strings ϵ , cat , dog , $catcat$, $catdog$, $dogcat$, $dogdog$, $catcatcat$, $catdogcat$, $dogcatcat$, $dogdogcat$, etc.

The notation for Σ^* should now become clear: it is simply a special case of L^* , where $L=\Sigma$.

tural Language Processing 13

Formal language theory – definitions

If L is a language then $L^0=\{\epsilon\}$. Then, for i>0, $L^i=L\cdot L^{i-1}$.

Example: Language exponentiation

Let L be the set of words $\{bau, haus, hof, frau\}$. Then $L^0=\{\epsilon\}, L^1=L$ and $L^2=\{baubau, bauhaus, bauhof, baufrau, hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau, frauhaus, frauhof, fraufrau<math>\}$.

Natural Language Processing

Regular expressions

Regular expressions are a formalism for defining (formal) languages. Their "syntax" is formally defined and is relatively simple. Their "semantics" is sets of strings: the denotation of a regular expression is a set of strings in some formal language.

Regular expressions

Regular expressions are defined recursively as follows:

- ullet \emptyset is a regular expression
- ullet ϵ is a regular expression
- if $a \in \Sigma$ is a letter then a is a regular expression
- if r_1 and r_2 are regular expressions then so are (r_1+r_2) and $(r_1 \cdot r_2)$
- if r is a regular expression then so is $(r)^*$
- ullet nothing else is a regular expression over Σ

Regular expressions

strings defined as follows: For every regular expression r its denotation, $[\![r]\!]$, is a set of

- $\llbracket \emptyset \rrbracket = \emptyset$
- $\bullet \ \llbracket \epsilon \rrbracket = \{ \epsilon \}$
- ullet if $a\in\Sigma$ is a letter then $[\![a]\!]=\{a\}$
- if r_1 and r_2 are regular expressions whose denotations are $[\![r_1]\!]$ and $[\![r_2]\!]$, respectively, then $[\![(r_1+r_2)]\!]=[\![r_1]\!]\cup[\![r_2]\!]$, $[\![(r_1\cdot r_2)]\!]=[\![r_1]\!]\cdot[\![r_2]\!]$ and $[\![(r_1)^*]\!]=[\![r_1]\!]^*$

Regular expressions

Example: Regular expressions

expressions over this alphabet are: Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular

- $((c \cdot a) \cdot t)$ $(((m \cdot e) \cdot (o)^*) \cdot w)$ (a + (e + (i + (o + u))))• $((a + (e + (i + (o + u)))))^*$

Regular expressions

Example: Regular expressions and their denotations

 $((c \cdot a) \cdot t)$ $(((m \cdot e) \cdot (o)^*) \cdot w)$ the set containing all strings of 0 or more vowels (a + (e + (i + (o + u))))((a + (e + (i + (o + u)))))* $\{$ mew, meow, meoow, meooow, $\ldots \}$ $\begin{cases} a \\ c \cdot a \cdot t \end{cases}$ $\{a,e,i,o,u\}$

Natural Language Processing 20

Regular expressions

Example: Regular expressions

Given the alphabet of all English letters, $\Sigma=\{a,b,c,\ldots,y,z\}$, the language Σ^* is denoted by the regular expression Σ^* .

The set of all strings which contain a vowel is denoted by $\Sigma^* \cdot (a+e+i+o+u) \cdot \Sigma^*$

The set of all strings that begin in "un" is denoted by $(un)\Sigma^*$.

The set of strings that end in either "tion" or "sion" is denoted by $\Sigma^* \cdot (s+t) \cdot (ion)$.

Note that all these languages are infinite.

al Language Frocessing

22

Properties of regular languages

Regular languages are closed under:

- Union
- Intersection
- Complementation
- Difference
- Concatenation
- Kleene-star
- Substitution and homomorphism

0-0-0-0

Properties of regular languages

Closure properties:

A class of languages $\mathcal L$ is said to be closed under some operation ' \bullet ' if and only if whenever two languages L_1 , L_2 are in the class $(L_1,L_2\in\mathcal L)$, also the result of performing the operation on the two languages is in this class: $L_1\bullet L_2\in\mathcal L$.