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Natural Language Processing

Finite-state automata

Example: Finite-state automaton
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Finite-state automata

Automata are models of computation: they compute
languages.

A finite-state automaton is a five-tuple (@, qo, X, d, F'), where
Y. is a finite set of alphabet symbols, @) is a finite set of
states, qp € @ is the initial state, F' C () is a set of final
(accepting) states and § : Q x X X @ is a relation from states
and alphabet symbols to states.
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Finite-state automata

The reflexive transitive extension of the transition relation ¢

A~

is a new relation, §, defined as follows:

A~

e for every state g € @, (q,€,q9) €6

e for every string w € X* and letter a € X, if (¢, w,q’) € )
and (¢’,a,q"”) € 6 then (q,w - a,q"”) € .
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Finite-state automata

Example: Paths

For the finite-state automaton:

@< @@, ©

A~

0 is the following set of triples:

AQov €, QOV“ AQH“ €, QHV“ AQM“ €, Qwv“ AQfo: €, Qwv“
AQO“ c, QHVu AQH“ a, Qwv“ AQM“ w“ Qwv“ AQM“ T, Qwv“
AQou ca, Qwvv AQHu Q.m“ Qwvg AQT ar, Qwv“

(

qo0, QDN.“ Qwvu AQO“ car, Qwv
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Finite-state automata

Example: Some finite

state automata
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Finite-state automata

A string w is accepted by the automaton A = (@, qo, X, 9, F)
if and only if there exists a state ¢y € F such that 6(go, w) =

ay-

The language accepted by a finite-state automaton is the set
of all string it accepts.

Example: Language
The language of the finite-state automaton:

® <@ @,

is {cat, car}.
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Finite-state automata

Example: Some finite-state automata

®-*(@) {a}
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Finite-state automata

Example: Some finite-state automata
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Finite-state automata

Example: Some finite-state automata
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Finite-state automata

Example: Some finite-state automata

@F@Qg {a, aa, aaa, aaaa, ...}
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Finite-state automata

Example: Some finite-state automata

@)

M*
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Finite-state automata

An extension: e-moves.
The transition relation ¢ is extended to: § C Q x (XU{e}) xQ
Example: Automata with e-moves

The language accepted by the following automaton is
{do, undo, done, undone}:

U n d 0 n e
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Finite-state automata

Example: Finite-state automata and regular expressions
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Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized
by finite-state automata is the class of regular languages.
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Operations on finite-state automata

Concatenation

Union

Intersection

Minimization

Determinization
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Minimization and determinization
Example: Equivalent automata
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Applications of finite-state automata in
language processing

A naive morphological analyzer:
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Applications of finite-state automata in
language processing
Lexicon:

o@.ﬁm
.Q\o‘.o[vo[vo‘v@
go, gone, going: 9.0 . m_e.

9,
O——©
This automaton can then be determinized and minimized:

n g

1,00
go, gone, going : g_o \: e

O—O0——0——0
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Regular relations

While regular expressions are sufficiently expressive for many
natural language applications, it is sometimes useful to define
relations over two sets of strings.
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Regular relations
Part-of-speech tagging:
I know some new tricks

PRON V DET ADJ N

said the Cat in the Hat
V DET N P DET N
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Regular relations
Singular-to-plural mapping:

cat hat ox child mouse sheep goose
cats hats oxen children mice  sheep geese
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Regular relations

Morphological analysis:

I know some new
[-PRON-1-sg know-V-pres some-DET-indef new-ADJ
tricks said the Cat
trick-N-pl say-V-past the-DET-def cat-N-sg
in the Hat
in-P the-DET-def hat-N-sg
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Finite-state transducers

A finite-state transducer is a six-tuple (Q,qo, X1, X2, 0, F').
Similarly to automata, @ is a finite set of states, gy € @
is the initial state, F* C @ is the set of final (or accepting)
states, X1 and X5 are alphabets: finite sets of symbols, not
necessarily disjoint (or different).

g4 ao_mgo_mgmumgm”m@
@m“mg\f\sgm_mgm_m@%“ﬁﬁ
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Finite-state transducers
Shorthand notation:

o:€e 0:¢€ S c
o o o

g
S h e e p

[¢] [¢] [¢] o o ©

Adding e-moves:

g ,oie ote s e .
\m h e e p
(] (@] (@] O O (]
o T €:€e €:m
(@] (@] O ]
m

0:1 U:€ S:c¢C
(@] (@] (@]
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Finite-state transducers

Example: The uppercase transducer

a:Ab:B,c:C,...

®

Example: English-to-French

€e:h a:a t:t
[e) [e) [e) [e)

c:c
/ooubom;om_momuso

o)

Natural Language Processing 25

Finite-state transducers

The language of a finite-state transducer is a language of
pairs: a binary relation over ¥ x 3. The language is defined
analogously to how the language of an automaton is defined.
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Properties of finite-state transducers
Given a transducer (Q, qo, 21, X2, 9, F'),

e its underlying automaton is (Q, qo, X1 X Xo,d’, F'), where
AQT AQJWV“QMV € %\ iff AQT a, @u Qwv € 4]

e its upper automaton is (@, qo, 21, 1, F'), where (¢1,a,q2) €
91 iff for some b € X9, (¢q1,a,b,q2) €6

e its lower automaton is (Q, o, X2, 62, F'), where (q1,b, g2) €
o iff for some a € X, (q1,a,b,q2) € 6
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Properties of finite-state transducers

A transducer T is functional if for every w € X7, T(w) is
either empty or a singleton.

Transducers are closed under union: if 77 and 15 are
transducers, there exists a transducer T' such that for every
w e X7, T(w) =Ti(w) UTs(w).

Transducers are closed under inversion: if T is a transducer,
there exists a transducer T~! such that for every w € X%,
T Y w)={ueX}|weT(u)}

The inverse transducer is (Q,qo, X2,%1,6 1, F), where
(q1,a,b,q2) € 671 iff (q1,b,a,q2) € 6.
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Properties of finite-state transducers

Transducers are not closed under intersection.

c:.a €:b €:a c:b
CQ CQ L CD
‘m.@‘ o.@‘

1Ty 15

Ti(c™) = {a™™ | m > 0}
Tr(c™) = {a™b™ | m > 0} =
T, NTy(c") = {a™b™}

Transducers with no e-moves are closed under intersection.
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Properties of finite-state transducers

Transducers are closed under composition: if T7 and T5 are
transducers, there exists a transducer 1" such that for every
w € X7, T(w) = Ti(Tz2(w)).

The number of states in the composition transducer might be

Q1 % Q2.
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Properties of finite-state transducers

Computationally efficient

Denote regular relations

Closed under concatenation, Kleene-star, union

Not closed under intersection (and hence complementation)

Closed under composition

Weights



