עיבוד שפות טבעיות

שולי וינטנר

Finite-state automata

Example: Finite-state automaton

- $Q = \{q_0, q_1, q_2, q_3\}$ $\Sigma = \{c, a, t, r\}$ $F = \{q_3\}$
- $\delta = \{\langle q_0, c, q_1 \rangle, \langle q_1, a, q_2 \rangle, \langle q_2, t, q_3 \rangle, \langle q_2, r, q_3 \rangle\}$

$$q_0$$
 c q_1 a q_2 r q_3

Finite-state automata

languages. Automata are models of computation: they compute

states, $q_0 \in Q$ is the initial state, $F \subseteq Q$ is a set of final and alphabet symbols to states. (accepting) states and $\delta: Q \times \Sigma \times Q$ is a relation from states Σ is a finite set of **alphabet** symbols, Q is a finite set of A finite-state automaton is a five-tuple $\langle Q, q_0, \Sigma, \delta, F \rangle$, where

Finite-state automata

is a new relation, $\hat{\delta}$, defined as follows: The reflexive transitive extension of the transition relation δ

- for every state $q \in Q$, $(q,\epsilon,q) \in \hat{\delta}$
- ullet for every string $w\in \Sigma^*$ and letter $a\in \Sigma$, if $(q,w,q')\in \hat{\delta}$ and $(q',a,q'')\in\delta$ then $(q,w\cdot a,q'')\in\hat{\delta}.$

Finite-state automata

Example: Paths

For the finite-state automaton:

 $\hat{\delta}$ is the following set of triples:

$$\langle q_0, \epsilon, q_0 \rangle, \langle q_1, \epsilon, q_1 \rangle, \langle q_2, \epsilon, q_2 \rangle, \langle q_3, \epsilon, q_3 \rangle, \langle q_0, c, q_1 \rangle, \langle q_1, a, q_2 \rangle, \langle q_2, t, q_3 \rangle, \langle q_2, r, q_3 \rangle, \langle q_0, ca, q_2 \rangle, \langle q_1, at, q_3 \rangle, \langle q_1, ar, q_3 \rangle, \langle q_0, cat, q_3 \rangle, \langle q_0, car, q_3 \rangle$$

Natural Language Processing

Finite-state automata

Example: Some finite-state automata

 (q_0)

0

<u>!</u>

Finite-state automata

A string w is accepted by the automaton $A=\langle Q,q_0,\Sigma,\delta,F\rangle$ if and only if there exists a state $q_f\in F$ such that $\hat{\delta}(q_0,w)=q_f$.

The language accepted by a finite-state automaton is the set of all string it accepts.

Example: Language

The language of the finite-state automaton:

$$q_0 \stackrel{c}{-} q_1 \stackrel{a}{-} q_2 \stackrel{t}{r} (q_1 \stackrel{c}{-} q_2 \stackrel{c}{-} q_$$

is $\{cat, car\}$

ral Language Processing

Finite-state automata

Example: Some finite-state automata

$$)$$
— (q_1)

 $\{a\}$

Finite-state automata

Example: Some finite-state automata

 $\{\epsilon\}$

Finite-state automata

Example: Some finite-state automata

 $\{a, aa, aaa, aaaa, \ldots\}$

Finite-state automata

Natural Language Processing

Example: Some finite-state automata

 a_*

Finite-state automata

Natural Language Processing

Example: Some finite-state automata

 \sum_{*}

Finite-state automata

An extension: ϵ -moves.

The transition relation δ is extended to: $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$

Example: Automata with ϵ -moves

The language accepted by the following automaton is $\{do, undo, done, undone\}$:

$$\underbrace{q_0 \overset{u}{\underset{\epsilon}{\overset{}}} (q_1) \overset{n}{\underset{\epsilon}{\overset{}}} (q_2) \overset{d}{\underset{\epsilon}{\overset{}}} (q_3) \overset{o}{\underset{\epsilon}{\overset{}}} (q_4) \overset{n}{\underset{\epsilon}{\overset{}}} (q_5) \overset{e}{\underset{\epsilon}{\overset{}}} (q_6)}$$

Natural Language Processing

14

Finite-state automata

Example: Finite-state automata and regular expressions

0

 (q_0)

 $((c\cdot a)\cdot t)$

 q_0 $\stackrel{C}{\longrightarrow}$ q_1 $\stackrel{a}{\longrightarrow}$ q_2 $\stackrel{t}{\longrightarrow}$ q_3

 $(((m \cdot e) \cdot (o)^*) \cdot w)$

$$q_0 \xrightarrow{m} q_1 \xrightarrow{e} q_2 \xrightarrow{w} q_3$$

$$((a + (e + (i + (o + u)))))$$

$$((a + (e + (i + (o + u)))))^*$$
 (90) a, e, i, o, u

Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized by finite-state automata is the class of regular languages.

Operations on finite-state automata

- Concatenation
- Union
- Intersection
- Minimization
- Determinization

Minimization and determinization

Example: Equivalent automata

$$A_1$$
 $\overset{i}{\circ}$ $\overset{o}{\circ}$ $\overset{o}{\circ}$ $\overset{o}{\circ}$ $\overset{e}{\circ}$

ural Language Processing

.

Applications of finite-state automata in language processing

A naïve morphological analyzer:

$$\begin{array}{c|c}
g & o & i & n & g & -V-prp \\
\hline
 & n & e & -V & -psp \\
\hline
 & e & -V & -inf \\
\hline
 & -inf & e
\end{array}$$

riauriai kanguage i rukessiiig

Applications of finite-state automata in language processing

Lexicon:

$$go, \, gone, \, going: \begin{array}{c} g \\ \underbrace{g}_{\circ} \underbrace{o}_{\circ} \underbrace{n}_{\circ} \underbrace{n}_{\circ} \underbrace{e}_{\circ} \\ \underbrace{g}_{\circ} \underbrace{o}_{\circ} \underbrace{n}_{\circ} \underbrace{e}_{\circ} \end{array}$$

This automaton can then be determinized and minimized:

ral Language Processing

Regular relations

While regular expressions are sufficiently expressive for many natural language applications, it is sometimes useful to define relations over two sets of strings.

Regular relations

Part-of-speech tagging:

l know some PRON V DET new tricks

ADJ

said DET Cat ₽ 5 DET the Hat

Natural Language Processing

Natural Language Processing

Regular relations

Singular-to-plural mapping:

cats cat hats oxen children mice hat 8 child mouse sheep sheep geese goose

Regular relations

Morphological analysis:

in-P tricks trick-N-pl I-PRON-1-sg say-V-past said the know-V-pres the-DET-def hat-N-sg know some-DET-indef the-DET-def some new-ADJ cat-N-sg Cat

Finite-state transducers

states, Σ_1 and Σ_2 are alphabets: finite sets of symbols, not Similarly to automata, Q is a finite set of states, $q_0 \in Q$ necessarily disjoint (or different). is the initial state, $F\subseteq Q$ is the set of final (or accepting) A finite-state transducer is a six-tuple $\langle Q, q_0, \Sigma_1, \Sigma_2, \delta, F \rangle$.

$$g:g \longrightarrow (q_1) \xrightarrow{o:e} (q_2) \xrightarrow{o:e} (q_3) \xrightarrow{s:s} (q_4) \xrightarrow{e:e} (q_5)$$

$$q_6 \xrightarrow{s:s} (q_7) \xrightarrow{h:h} (q_8) \xrightarrow{e:e} (q_9) \xrightarrow{e:e} (q_{10}) \xrightarrow{p:p} (q_{11})$$

Finite-state transducers

Shorthand notation:

Adding ϵ -moves:

Finite-state transducers

Example: The uppercase transducer

$$a:A,b:B,c:C,\dots$$

Example: English-to-French

$$c: c \circ \underbrace{e: h}_{\circ} \circ \underbrace{a: a}_{\circ} \underbrace{t: t}_{\circ}$$

$$\underbrace{o: h}_{\circ} \circ \underbrace{g: i}_{\circ} \underbrace{e: e}_{\circ} \underbrace{e: n}_{\circ}$$

Finite-state transducers

The language of a finite-state transducer is a language of pairs: a binary relation over $\Sigma_1^* \times \Sigma_2^*$. The language is defined analogously to how the language of an automaton is defined.

Properties of finite-state transducers

Given a transducer $\langle Q, q_0, \Sigma_1, \Sigma_2, \delta, F \rangle$,

- its underlying automaton is $\langle Q,q_0,\Sigma_1\times\Sigma_2,\delta',F\rangle$, where $(q_1,(a,b),q_2)\in\delta'$ iff $(q_1,a,b,q_2)\in\delta$
- its upper automaton is $\langle Q, q_0, \Sigma_1, \delta_1, F \rangle$, where $(q_1, a, q_2) \in \delta_1$ iff for some $b \in \Sigma_2$, $(q_1, a, b, q_2) \in \delta$
- its lower automaton is $\langle Q,q_0,\Sigma_2,\delta_2,F\rangle$, where $(q_1,b,q_2)\in \delta_2$ iff for some $a\in \Sigma_a$, $(q_1,a,b,q_2)\in \delta$

Properties of finite-state transducers

A transducer T is functional if for every $w \in \Sigma_1^*$, T(w) is either empty or a singleton.

Transducers are closed under union: if T_1 and T_2 are transducers, there exists a transducer T such that for every $w\in \Sigma_1^*$, $T(w)=T_1(w)\cup T_2(w)$.

Transducers are closed under inversion: if T is a transducer, there exists a transducer T^{-1} such that for every $w \in \Sigma_1^*$, $T^{-1}(w) = \{u \in \Sigma_2^* \mid w \in T(u)\}.$

The inverse transducer is $\langle Q, q_0, \Sigma_2, \Sigma_1, \delta^{-1}, F \rangle$, where $(q_1, a, b, q_2) \in \delta^{-1}$ iff $(q_1, b, a, q_2) \in \delta$.

itural Language Processing

ę

Properties of finite-state transducers

Transducers are not closed under intersection

$$T_{1}(c^{n}) = \{a^{n}b^{m} \mid m \ge 0\}$$

$$T_{2}(c^{n}) = \{a^{m}b^{n} \mid m \ge 0\} \Rightarrow$$

$$T_{1} \cap T_{2}(c^{n}) = \{a^{n}b^{n}\}$$

Transducers with no ϵ -moves are closed under intersection.

Natural Language Processing 29

Properties of finite-state transducers

Transducers are closed under composition: if T_1 and T_2 are transducers, there exists a transducer T such that for every $w \in \Sigma_1^*$, $T(w) = T_1(T_2(w))$.

The number of states in the composition transducer might be $|Q_1 \times Q_2|$.

Properties of finite-state transducers

- Computationally efficient
- Denote regular relations
- Closed under concatenation, Kleene-star, union
- Not closed under intersection (and hence complementation)
- Closed under composition
- Weights