NYYav Mav Ty

V) YOW

Natural Language Processing

Finite-state automata

Example: Finite-state automaton

@ AQO“QTQM“QMWW
Y ={c¢a,t,r}
F= Q&

)

- AAQD“ ¢C, QHV“ AQT a, Qwvv AQM“ w“ Qwv“ AQM“ r, Qwvw

@D @, ®

Natural Language Processing 1

Finite-state automata

Automata are models of computation: they compute
languages.

A finite-state automaton is a five-tuple (@, qo, X, d, F'), where
Y. is a finite set of alphabet symbols, @) is a finite set of
states, qp € @ is the initial state, F' C () is a set of final
(accepting) states and § : Q x X X @ is a relation from states
and alphabet symbols to states.

Natural Language Processing 3

Finite-state automata

The reflexive transitive extension of the transition relation ¢

A~

is a new relation, §, defined as follows:

A~

e for every state g € @, (q,€,q9) €6

e for every string w € X* and letter a € X, if (¢, w,q’) € )
and (¢’,a,q"”) € 6 then (q,w - a,q"”) € .



Natural Language Processing

Finite-state automata

Example: Paths

For the finite-state automaton:

@< @@, ©

A~

0 is the following set of triples:

AQov €, QOV“ AQH“ €, QHV“ AQM“ €, Qwv“ AQfo: €, Qwv“
AQO“ c, QHVu AQH“ a, Qwv“ AQM“ w“ Qwv“ AQM“ T, Qwv“
AQou ca, Qwvv AQHu Q.m“ Qwvg AQT ar, Qwv“

(

qo0, QDN.“ Qwvu AQO“ car, Qwv

Natural Language Processing

Finite-state automata

Example: Some finite

state automata

@)

Natural Language Processing 5

Finite-state automata

A string w is accepted by the automaton A = (@, qo, X, 9, F)
if and only if there exists a state ¢y € F such that 6(go, w) =

ay-

The language accepted by a finite-state automaton is the set
of all string it accepts.

Example: Language
The language of the finite-state automaton:

® <@ @,

is {cat, car}.

Natural Language Processing 7

Finite-state automata

Example: Some finite-state automata

®-*(@) {a}



Natural Language Processing

Finite-state automata

Example: Some finite-state automata

Natural Language Processing

10

Finite-state automata

Example: Some finite-state automata

@) =

Natural Language Processing

Finite-state automata

Example: Some finite-state automata

@F@Qg {a, aa, aaa, aaaa, ...}

Natural Language Processing

11

Finite-state automata

Example: Some finite-state automata

@)

M*



Natural Language Processing 12

Finite-state automata

An extension: e-moves.
The transition relation ¢ is extended to: § C Q x (XU{e}) xQ
Example: Automata with e-moves

The language accepted by the following automaton is
{do, undo, done, undone}:

U n d 0 n e

Natural Language Processing 14

Finite-state automata

Example: Finite-state automata and regular expressions

0 @)

a @-*(@)

()1 @@+ ®)
(m-e)- (0)") - w) @sﬁmmﬁwg@

("b
.

((a+(e+ (i + (0 +u)))))"

)
IS

e

Natural Language Processing 13

Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized
by finite-state automata is the class of regular languages.

Natural Language Processing 15

Operations on finite-state automata

Concatenation

Union

Intersection

Minimization

Determinization



Natural Language Processing

16

Minimization and determinization
Example: Equivalent automata

> O@OM«@
?
Aq g o \: e

O— 00— ——0——0

o t n 9

.Q O—O0—O0—0——®

Ay, (9, 0. m e

O—O0—O0——0——@

o,

Natural Language Processing

18

Applications of finite-state automata in
language processing

A naive morphological analyzer:

Natural Language Processing 17

Applications of finite-state automata in
language processing
Lexicon:

o@.ﬁm
.Q\o‘.o[vo[vo‘v@
go, gone, going: 9.0 . m_e.

9,
O——©
This automaton can then be determinized and minimized:

n g

1,00
go, gone, going : g_o \: e

O—O0——0——0

Natural Language Processing 19

Regular relations

While regular expressions are sufficiently expressive for many
natural language applications, it is sometimes useful to define
relations over two sets of strings.



Natural Language Processing 20

Regular relations
Part-of-speech tagging:
I know some new tricks

PRON V DET ADJ N

said the Cat in the Hat
V DET N P DET N

Natural Language Processing 22

Regular relations
Singular-to-plural mapping:

cat hat ox child mouse sheep goose
cats hats oxen children mice  sheep geese

Natural Language Processing 21

Regular relations

Morphological analysis:

I know some new
[-PRON-1-sg know-V-pres some-DET-indef new-ADJ
tricks said the Cat
trick-N-pl say-V-past the-DET-def cat-N-sg
in the Hat
in-P the-DET-def hat-N-sg

Natural Language Processing 23

Finite-state transducers

A finite-state transducer is a six-tuple (Q,qo, X1, X2, 0, F').
Similarly to automata, @ is a finite set of states, gy € @
is the initial state, F* C @ is the set of final (or accepting)
states, X1 and X5 are alphabets: finite sets of symbols, not
necessarily disjoint (or different).

g4 ao_mgo_mgmumgm”m@
@m“mg\f\sgm_mgm_m@%“ﬁﬁ




Natural Language Processing 24

Finite-state transducers
Shorthand notation:

o:€e 0:¢€ S c
o o o

g
S h e e p

[¢] [¢] [¢] o o ©

Adding e-moves:

g ,oie ote s e .
\m h e e p
(] (@] (@] O O (]
o T €:€e €:m
(@] (@] O ]
m

0:1 U:€ S:c¢C
(@] (@] (@]

@

(e]

Natural Language Processing 26

Finite-state transducers

Example: The uppercase transducer

a:Ab:B,c:C,...

®

Example: English-to-French

€e:h a:a t:t
[e) [e) [e) [e)

c:c
/ooubom;om_momuso

o)

Natural Language Processing 25

Finite-state transducers

The language of a finite-state transducer is a language of
pairs: a binary relation over ¥ x 3. The language is defined
analogously to how the language of an automaton is defined.

Natural Language Processing 27

Properties of finite-state transducers
Given a transducer (Q, qo, 21, X2, 9, F'),

e its underlying automaton is (Q, qo, X1 X Xo,d’, F'), where
AQT AQJWV“QMV € %\ iff AQT a, @u Qwv € 4]

e its upper automaton is (@, qo, 21, 1, F'), where (¢1,a,q2) €
91 iff for some b € X9, (¢q1,a,b,q2) €6

e its lower automaton is (Q, o, X2, 62, F'), where (q1,b, g2) €
o iff for some a € X, (q1,a,b,q2) € 6



Natural Language Processing 28

Properties of finite-state transducers

A transducer T is functional if for every w € X7, T(w) is
either empty or a singleton.

Transducers are closed under union: if 77 and 15 are
transducers, there exists a transducer T' such that for every
w e X7, T(w) =Ti(w) UTs(w).

Transducers are closed under inversion: if T is a transducer,
there exists a transducer T~! such that for every w € X%,
T Y w)={ueX}|weT(u)}

The inverse transducer is (Q,qo, X2,%1,6 1, F), where
(q1,a,b,q2) € 671 iff (q1,b,a,q2) € 6.

Natural Language Processing 30

Properties of finite-state transducers

Transducers are not closed under intersection.

c:.a €:b €:a c:b
CQ CQ L CD
‘m.@‘ o.@‘

1Ty 15

Ti(c™) = {a™™ | m > 0}
Tr(c™) = {a™b™ | m > 0} =
T, NTy(c") = {a™b™}

Transducers with no e-moves are closed under intersection.

Natural Language Processing 29

Properties of finite-state transducers

Transducers are closed under composition: if T7 and T5 are
transducers, there exists a transducer 1" such that for every
w € X7, T(w) = Ti(Tz2(w)).

The number of states in the composition transducer might be

Q1 % Q2.

Natural Language Processing 31

Properties of finite-state transducers

Computationally efficient

Denote regular relations

Closed under concatenation, Kleene-star, union

Not closed under intersection (and hence complementation)

Closed under composition

Weights



