
Computational Implementation of Non-Concatenative Morphology

Yael Cohen-Sygal
Dept. of Computer Science

University of Haifa
yaelc@cs.haifa.ac.il

Dale Gerdemann
Seminar für Sprachwissenschaft

Universität Tübingen
dg@sfs.uni-tuebingen.de

Shuly Wintner
Dept. of Computer Science

University of Haifa
shuly@cs.haifa.ac.il

Abstract

We introduce finite state registered au-
tomata, a new computational model
within the framework of finite state
(FS) technology that accounts for non-
concatenative morphological processes
such as word formation in Semitic
languages. It extends existing FS
techniques, which are presently sub-
optimal for describing such phenom-
ena. We define the new model, prove
its mathematical properties and exem-
plify its usability by describing some
non-concatenative phenomena.

1 Introduction

While much of the inflectional morphology of
Semitic languages can be rather straightforwardly
described using concatenation as the primary op-
eration, the main word formation process in such
languages is inherently non-concatenative. The
standard account describes words in Semitic lan-
guages as combinations of two morphemes: a root
and a pattern.1 The root consists of consonants
only, by default three (although longer roots are
known). The pattern is a combination of vow-
els and, possibly, consonants too, with ‘slots’ into
which the root consonants can be inserted. Words
are created by interdigitating roots into patterns:
the first consonant of the root is inserted into the

1An additional morpheme, vocalization, is used to ab-
stract the pattern further; for the present purposes, this dis-
tinction is irrelevant.

first consonantal slot of the pattern, the second root
consonant fills the second slot and the third fills
the last slot. As an example, consider the He-
brew roots g.d.l, k.t.b and r.$.m and the patterns
haCCaCa, hitCaCCut and miCCaC, where the
‘C’s indicate the slots. When the roots combine
with these patterns the resulting lexemes are hag-
dala, hitgadlut, migdal, haktaba, hitkatbut, miktab,
har$ama, hitra$mut, mir$am, respectively. After
the root combines with the pattern, some morpho-
phonological alternations take place, which may
be non-trivial but are mostly concatenative.

Another non-concatenative process is redupli-
cation: the process in which a morpheme or part
of it is duplicated. Full reduplication is used as
a pluralization process in Malay and Indonesian;
partial reduplication is found in Chamorro to indi-
cate intensivity. It can also be found in Hebrew as
a diminutive formation of nouns and adjectives:

keleb
dog

klablab
puppy

$apan
rabbit

$panpan
bunny

zaqan
beard

zqanqan
goatee

$axor
black

$xarxar
dark

qatan
little

qtantan
tiny

Finite-state (FS) technology is considered ad-
equate for describing the morphological pro-
cesses of the world’s languages since the
pioneering works of Koskenniemi (1983) and
Kaplan and Kay (1994). Several toolboxes pro-
vide extended regular expression description lan-
guages and compilers of the expressions to fi-
nite state automata (FSAs) and transducers (FSTs)
(Karttunen et al., 1996; Mohri, 1996; van No-
ord and Gerdemann, 2001). While FS approaches
for NLP have generally been very successful, it

is widely recognized that they are less suitable
for non-concatenative phenomena; in particular,
FS techniques are assumed not to be able to ef-
ficiently account for the non-concatenative word
formation processes that Semitic languages ex-
hibit (Lavie et al., 1988). The major problem that
we tackle in this work is medium-distance depen-
dencies, whereby some elements that are related to
each other in some deep-level representation (e.g.,
the consonants of the root) are separated on the
surface. These phenomena do not lie outside the
descriptive power of FS systems: a na ı̈ve imple-
mentation will construct an FSA with an accepting
path for each word. However, such an implemen-
tation can result in huge networks that are ineffi-
cient to process, as the following examples show.

Example 1. Consider the three Hebrew patterns
discussed above. In Hebrew, the patterns are writ-
ten hCCCh, htCCCut and mCCC, respectively,2

i.e., the consonants are inserted into the C slots
as one unit. For simplicity we use this represen-
tation here. An FSA accepting all the possible
combinations of roots and these three patterns is
illustrated in Figure 1.3 In the general case, for� roots and � patterns, the number of its states
is � �������	��
�� � �� or ��� ��� �
 (in some
cases where an affix appears in several patterns
or roots the number will be somewhat smaller).
Evidently, the three basic different paths that re-
sult from the three patterns have the same ‘body’,
accounting for the roots. Attempting to avoid the
duplication of paths, the FSA in Figure 2 accepts
the language that is denoted by the regular expres-
sion ����� � � ����
 � ����� ���
 ����� � � �! "
 . The num-
ber of states here is �#���$�&% , i.e., independent
of the number of patterns (and the same holds for
the number of arcs). The problem of such an au-
tomaton is that it also accepts invalid words such
as the pattern mCCCut. In other words, it ignores
the dependencies which hold between prefixes and
suffixes of the same pattern. Since FS devices have
no memory, save for the states, there is no simple
way to account for these dependencies.

2Many of the vowels are not explicitly depicted in the He-
brew script.

3This is an over-simplified example; in practice, the pro-
cess of combining roots with patterns is highly idiosyncratic,
like other derivational morphological processes.

�

�

�

��� �'�

...

...

...

Figure 1: Na ı̈ve FSA with duplicated paths

�

�

�
���

...

�'�

Figure 2: Over-generating FSA

Similar problems are caused by reduplication.

Example 2. Let (be a finite alphabet. The lan-
guage)+* ,.-/- 0$- 12(4365 is known to be
trans-regular; however,)879*:,.-/-;0<-=1>(3
and 0 -�0�*@?A5 for some constant ? is regular. Rec-
ognizing)B7 is a finite approximation of the gen-
eral problem of recognizing) . As the amount of
reduplication in natural languages is in practice
limited, the descriptive power of)�7 is sufficient
for describing such phenomena (by constructing
)C7 for small number of different ? ’s). An FSA for
) 7 can be constructed by listing a path for each
accepted string: since (and ? are finite, the num-
ber of words in)D7 is finite. The main drawback of
such an automaton is the growth in its number of
states and arcs as 0E(F0 and ? increase: the number
of strings in) 7 is 0E(G0 7 . Thus, FS techniques can
describe reduplication, but they do so inefficiently
regarding their space complexity.

In this work we create a novel FS model which
facilitates the expression of medium-distance de-
pendencies such as interdigitation and reduplica-
tion in an efficient way. Our main motivation is
theoretical improvements, i.e., reducing the com-
plexity of the number of states and arcs in the net-
works; we believe that these will result in prac-
tical improvements. We define the model for-
mally, show that it is equivalent to FSAs and de-
fine many closure properties directly. For lack of
space, some of the proofs and examples are sup-
pressed here (see Cohen-Sygal (Forthcoming) for
more details). We also provide a dedicated regu-
lar expression operator for interdigitation. We ex-
emplify the usefulness of the model by efficiently
accounting for the motivating examples (as this is
still work in progress, some examples are not fully
worked-out yet).

2 Related work

In spite of the common view that FS technol-
ogy is in general inadequate for describing non-
concatenative processes, several works deal with
the above-mentioned problems in various ways.

Kiraz (2000) expands the traditional two-level
model of Koskenniemi (1983) into ? -tape au-
tomata, following the insight of Kay (1987) and
Kataja and Koskenniemi (1988). The idea is to
use more than two levels of expression: the sur-
face level employs one representation, but the lex-
ical form employs multiple representations (e.g.,
root, pattern, etc.) and therefore can be divided
into different levels, one for each representation.
Elements that are separated on the surface (such
as the root’s consonants) are adjacent on a par-
ticular lexical level. Kiraz (2000) does not dis-
cuss the space complexity of the resulting machine
compared to the na ı̈ve one, but it seems that the
number of states still increases with the number of
roots and patterns. Moreover, the ? -tape model re-
quires specification of dependencies between sym-
bols in different levels, which may be non-trivial.

Beesley (1998) suggests a way to constrain de-
pendencies between separated morphemes. The
method, called flag diacritics, adds features to
symbols in regular expressions to enforce depen-
dencies between separated parts of a string. The
dependencies are forced by different kinds of uni-

fication actions. In this way, a small amount of
finite memory is added to networks, thus keep-
ing the total size of the network relatively small.
While our proposal is similar in spirit, we provide
a complete mathematical and computational anal-
ysis of such extended networks, including a con-
struction of the main closure properties and com-
pilation of dedicated regular expression operators,
whereas Beesley (1998) only provides usage ex-
amples. We also prove that our model is regular.

Beesley and Karttunen (2000) describe a tech-
nique, compile-replace, for constructing FSTs,
which involves reapplying the regular-expression
compiler to its own output. The compile-replace
algorithm facilitates a compact definition of non-
concatenative morphological processes. However,
since such expressions compile to the na ı̈ve net-
works, no space is saved. Furthermore, this is a
compile-time mechanism rather than a theoretical
and mathematically founded solution.

Other works (Blank, 1985; Blank, 1989; Kor-
nai, 1999) aim to extend the FS model by adding
a limited amount of memory. As their main objec-
tive is not to account for medium-distance depen-
dencies, they are not of immediate relevance here.

3 Finite state registered automata

We define a novel model which facilitates the ex-
pression of medium-distance dependencies. It is
reminiscent of Kaminski and Francez (1994)4 in
the sense that it augments FSAs with finite mem-
ory (registers) in a restricted way that saves space
but does not add expressivity. The number of reg-
isters is finite, usually small, and eliminates the
need to duplicate paths as it enables the FSA to ‘re-
member’ a finite number of symbols. In addition
to being associated with an alphabet symbol, each
arc is also associated with an action on the regis-
ters: read (�), which allows traversing an arc only
if a designated register contains a specific symbol;
and write (�), which writes a specific symbol into
a designated register while traversing an arc.

3.1 Definitions and examples

Definition 1. A finite state registered automaton
(FSRA) is a tuple � *������
	���"(��
����?������
��� where

4Kaminski and Francez (1994) define automata over infi-
nite alphabets and use registers to store alphabet symbols.

� is a finite set of states; 	 � 1 � is the initial state;
(is the finite language alphabet; � is a finite (reg-
isters) alphabet not including ‘

�
’; ? 1�����,�� 5

is the number of registers; �	� � � � (
� , 5
/�
,���� �	5 � ,�� ������� ��?A5 � � ��� , � 5
/� � is the
transition relation and ��� � is the set of final
states. The initial content of the registers is

� 7���� ,
i.e., the initial value of all the registers is ‘empty’.

The intuitive meaning of � is as follows: when��� � , ��� ��� � � � � � ��� ���
 1 � means that � can move
from state � to state � upon reading the input sym-
bol � . If � � * � , the move requires that the con-
tents of register

�
be � ; if � � * � , the move writes

� into register
�
. If

� *�� , � � and � are ignored; we
use the shorthand notation ��� ��� ���
 for such transi-
tions. Note that FSRAs are non-deterministic.

A configuration of � is a pair � 	 ���
 , where
	!1 � and � 1 � ���!, � 5
 7���� (is the current
state and � represents the registers content). The
set of all configurations of � is denoted by ��� .
The pair 	 �� * � 	 �� � 7����
 is called the initial con-
figuration, and configurations with the first com-
ponent in � are called final configurations. The
set of final configurations is denoted by � � .

Let �#*@� � � � �� ��7 and !�*�! �"!#� ���! 7 . Given
a symbol $1 (%��, 5 and an FSRA � , we say
that a configuration ��� ���
 entails a configuration
�����&!
 , denoted ��� ���
('*)#+ , �����&!
 , iff the automaton
can move from ��� ���
 to �����&!
 when scanning the
input $ (or without any input, when $ *) in one
step. That is, either ��� �-$ �
��� � ��� ���
 1 � for some
�/. � . ? and � 1 � and ��*0! and �#18*�!�1 *2� ;
or ��� �-$ � � � � ��� ���
 1 � for some �3. � .	? and
� 1 � and for all 4 1 ,�� �����55 ��?A5 such that 476* �

,
�98 *�!�8 and !:1 *%� .

A run of � on - is a sequence of configurations; � ��55 � ;=< such that ; � * 	��� , ;>< 1��?� , for every
4 , �@.A4�. � , ; 8CB � 'D)FE�+ ,�; 8 and ->*G$H��55I$ < .
Notice that 0 -�0 might be less than � since some of
the $D1 might be . An FSRA � accepts a word -
if there exists a run of � on - .

Example 3. Consider again example 1. An ef-
ficient FSRA accepting all and only the possi-
ble combinations of � roots and � *KJ patterns
is shown in Figure 3. The register alphabet is
,�� � � �9L� �9M 5 , where �N1 represents the

�
-th pattern.

The number of states is ���F��% (just like the FSA
of Figure 2), that is, � � �
 , and in particular inde-

pendent of � . The number of arcs is also reduced
from � � ��� �
 to � � � � �
 .

� � � ���� � �

 �
������ �9M

� �
������ � �

� � � ���� � M
� � � � ���� �9L

...

��� �
������ �OL

Figure 3: FSRA
Example 4. Consider now a representation of He-
brew where all vowels are explicit, e.g., the pat-
tern hitCaCeC. Consider also the roots g.d.l, k.t.b,
r.$.m. A minimal FSA for the combinations of
these roots and this pattern is given in Figure 4; it
has fifteen states. If the number of roots is � , a gen-
eral FSA accepting the combinations of roots with
this pattern will have %�� � J states and P � � � arcs.
The FSRA of Figure 5 also accepts the same lan-
guage (the register alphabet indicates the roots); it
has 7 states and will have 7 states for any number
of roots. The number of arcs is reduced to J �/� J .

Q R S

� � � 4 Q � S T
Q U S

V

�

W

�

Figure 4: FSA for the pattern hitCaCeC

3.2 Equivalence to regular languages

FSRAs and FSAs recognize the same class of lan-
guages. Clearly, every FSA has an equivalent
FSRA: given an FSA � , add to � one register
to construct an equivalent FSRA �YX . Since every
transition ��� ��� ���
 in an FSRA is a shorthand no-
tation for ��� ��� �
����� � � ���
 , every transition in � is
also a transition in � X . Trivially) � � X
 *&)/� �
 .

For the reverse direction, construct an FSA
equivalent to a given FSRA. In FSRAs ? , � and
� are finite, hence the number of configurations
is finite. The FSA’s states are the configurations
of the FSRA and the transition function simulates
the entailment relation. Notice that entailment be-
tween configurations in an FSRA is dependent on
(only, similarly to the transition function in an

� � � Q S

V � � ���� V R W

� � � ���� � U �

4 � � ����-4 � T

R �
������ V R W

U �
������ � U �

���
������-4 � T

W �
������ V R W

� �
������ � U �
T �
������-4 � T

Figure 5: FSRA for the pattern hitCaCeC

FSA. The constructed FSA is non-deterministic,
with possible -moves.

Proposition 1. FSRAs are equivalent to FSAs.

Proof. Let � * ��� �
	 ��"(�
����?������
��� be an
FSRA. Construct a finite state automaton �(X�*
��� X �
	 X� �"(��� X �
� X � where � X *�� � , 	 X� * 	��� , � X *
� � and ��XB* , ����X �-$���� X
 0*$ 1&� (� , 5
 , ��X ��� X 1
� X , and � X 'D)#+ , � X 5 . The proof that)/� �
 *&)/� � X

is suppressed for lack of space.

Notice that the number of configurations in � is
0 ��0 � � 0 � 0 � �
 7���� , therefore the growth in the
number of states when constructing � X from �
might be in the worst case exponential in the num-
ber of registers. In other words, the move from
FSAs to FSRAs can yield an exponential reduc-
tion in the size of the network.

3.3 Multiple register actions

The FSRA model defined above allows only one
register operation on each transition. We extend it
to allow up to 4 register operations on each tran-
sition, where 4 is determined for each automaton
separately. The register operations are defined as a
sequence (rather than a set), in order to allow more
than one operation on the same register over one
transition. FSRA-k allows further reduction of the
net size for some automata as well as other advan-
tages that are discussed below. Let � ; � � � ? � 7 *
,���� �	5 � ,�� ���� � ���� ��?A5 � � �	��, � 5
 , and Q 1 be
meta-variables over elements of � ; � � � ? � 7 .
Definition 2. An order-k FSRA (FSRA-k) is
a tuple � * �����
	���"(��
����?��-4 �����
��� where
���
	�� �"(��
����?��
� and the initial contents of the reg-
isters are as before, 4�1 � is the maximum number
of register operations allowed on each arc, and

� � � � � (��, 5
 �
8�

��� � , �
Q � ��55 � Q � � 5 � � .

� is extended to allow each transition to be as-
sociated with a series of up to 4 operations on
the registers. Each operation has the same mean-
ing as before. The register operations are done
in the order in which they are specified. Thus,
��� ��� ��� Q ����55 � Q 1 � ���
 1 � where

� . 4 implies that
if � is in state � , the input symbol is � and all the
register operations Q � ��55 � Q 1 are executed success-
fully, then � may enter state � .
Proposition 2. FSRA-k and FSRAs recognize the
same class of languages.

Proof. Every FSRA is an FSRA-k for 4 * � .
For the reverse direction, construct an equivalent
FSRA � X given an FSRA-k � . Each transition in
A is replaced by a series of transitions in A’, each
of which performs one operation on the registers.
The first transition in the series deals with the in-
put symbol and the rest are -transitions. This con-
struction requires additional states to enable the
addition of transitions. Each transition in A that is
replaced adds as many states as the number of reg-
ister operations performed on this transition mi-
nus one. The formal construction and equivalence
proof are omitted for lack of space.

FSRA-k is a very space-efficient finite state de-
vice. The next proposition shows how ordinary
finite state automata can be encoded efficiently
by FSRA-2. Given an FSA � , an equivalent
FSRA-2 � X is constructed. � X has three states,
,�	:X� �
	�� �
	 7 � 5 , and one register (formally, it has 2
registers but register 0 is never used). State 	��
functions as a representative for the final states in
� , 	 7 � – as a representative for the non-final ones
and 	 X� is the initial state. The registers alphabet
consists of the states of � . Each arc in � has an
equivalent arc in � X with two register operations.
The first reads the current state of � from the reg-
ister and the second writes the new state into the

register. If the source state of a transition in � is a
final state then the source state of the correspond-
ing transition in ��X is 	 � ; if the source state of a
transition in � is a non-final state then the source
state of the corresponding transition in � X is 	 7 � .
The same holds also for the target states. The pur-
pose of the initial state is to write the initial state
of � into the register . In this way �HX simulates the
behavior of � . Notice that the number of arcs in
� X equals the number of arcs in � plus one.

Proposition 3. Every FSA has an equivalent
FSRA-2 with three states and one register.

Proof. Let � * �����
	 � �"(�����
��� be an FSA
and

� � � � , 	 � �
	 7 � 5 be a total func-
tion defined by

� � 	
 * 	 � if 	 1 � ,� � 	
 * 	 7 � otherwise. Construct an FSRA-
2 � X * ��� X �
	 X� �"(X �
� X ���� � ��� X �
� X � where � X *
,�	 X� �
	 7 � �
	�� 5 , (X * (, � * � , � X *9,�	�� 5 and � *
, � � ���
 ��� ��� ������ � � ����� ������ � � � ���
�
 0 ��� ��� ���
 1
��5 � , � 	:X� � ����� ����
	 �� � � � 	 �
�
 5 . The equivalence
proof is suppressed.

3.4 Closure properties

The equivalence of FSAs and FSRAs immediately
implies that FSRAs maintain the closure prop-
erties of regular languages. Thus, performing
the regular operations on FSRAs can be easily
done by converting them first into FSAs. How-
ever, as shown above, such a conversion may
result in an exponential increase in the size of
the automaton, invalidating the advantages of this
new model. Therefore, we show how these op-
erations can be done directly on FSRAs. The
constructions are mostly based on the standard
ones with some essential modifications. Let
�?� * ��� � �
	 �� �"(� �
�(� ��?H� ���C� �
�(��� and � L *
��� L �
	 L� �"(L �
� L ��? L ��� L �
� L � be FSRAs.

To recognize) � � �
 �) � � L
 , construct an
FSRA � * ��� �
	 � �"(�
����?������
��� where 	 ���1
� �9� � L and �9*9,�	 � 5H� � �O� � L ; (* (�*��(L ;
� * �(�Y� � L ; ?!* ��Q�� ,.?H� ��? L 5 ; � * �(�(� ��L ;
and �F* � � � � L � , � 	 � � �
	 ��
 �6� 	 � � �
	 L�
 5 . Notice
that in any specific run of � , the computation goes
through just one of the original automata, so the
set of registers can be used for strings of) � ���
 or
)/� � L
 , as needed.

For concatenation, construct an FSRA � *

�����
	���"(�
����?������
��� to recognize)/� � �
	�)/� � L

where: � * � ��� � L ; 	 ��* 	 �� ; (* (� ��(L ;
� * �Y� � ��L ; ? * ?�� � ? L ; � * ��L ; and � *
�C��� , � � � �
	 L�
 0 � 1 ��� 5 � , ��� ��� � � � � � � ?H� ��� ���
 0
��� ��� � � � � � ��� ���
 1 �"L�5 . The first ?�� registers (af-
ter register 0) are used for recognizing strings of
)/� �?�
 , and the rest are used for) � �(L
 .

For Kleene closure, add register operations to
clear the contents of the registers between two sub-
sequent traversals of the original automaton. Con-
struct an FSRA-n � * ��� �
	 � �"(�
����?���?������
��� to
recognize)/� � �
 3 , where 	 � * 	 �� ; (* (� ;
� * �Y� ; ? * ?�� ; �;* �(� ��,�	 ��5 ; and �&*
�C� ��, � � � ����� ���� � � ���� ����� ��?�� � � �
	 �
 0 � 1
� 5 . The intuitive meaning of � is that ��� handles a
substring from) � � �
 , then the added arcs delete
the contents of the registers, leaving them ready to
handle the next substring from)/� � �
 .

For intersection, construct an FSRA-2 � *
�����
	���"(�
����?�� � �����
��� to recognize)/� � �
�

)/� � L
 . The construction simulates the runs of �(�
and � L simultaneously. Each transition is associ-
ated with two register operations, one for each au-
tomaton. The number of the registers is the sum of
the registers in the two automata. In � , the first ? �
registers after register 0 simulate the behavior of
the registers of � � and the next ?*L registers sim-
ulate the behavior of the registers of � L . In this
way a word is accepted by the intersection automa-
ton iff it is accepted by each one of the automata
separately. Thus, � * � � � � L ; 	 ��* � 	 �� �
	 L�
 ;
(* (�
 (L ; � * �Y�-��� L ; ?�*@?H� � ? L ; �9* ��� �
��L ; and � * , ������� � ��L
 ��� ��� � � ��� � � ���*� � ��� � �9L � � L �
?H� ���#L�� �6���=������L
�
 0������ ��� ��� � � ��� � � ���*��� ���=�
 1 �C�
and ��� L ��� ��� � � L � � L ��� L � ��� L
 1 � L 5 .

Notice that each transition in � is associated
with exactly two register operations. Moreover,
each register operation is associated with a differ-
ent register, thus there cannot be two � operations
on the same register. This guarantees that no in-
formation is lost during the simulation of the two
intersected automata.

3.5 Regular expression expansion

We introduce a new regular expression operator,
splice, for interdigitation, and show how expres-
sions using it are compiled into FSRAs. The op-
erator accepts a set of strings of length ? over (3 ,

representing a set of roots, and a list of patterns,
each containing exactly ? ‘slots’, and yields a set
containing all the strings created by splicing the
roots into the slots in the patterns.

Definition 3. Let (be such that � � , � 5 ��� � � ��� �1
(. Define the splice operation to be of the form
, � $ � + � ������-$ � + 7 � ���� ��� $�� + � ���� �-$�� + 7 � 5��

, ���D� + �	� ������D� + 7���� � ����������*8 + � � ��
���*8 + 7���� � 5
where ?912� is the number of slots (represented
by ‘� ’); � 1
� is the number of roots; 4 1
� is
the number of patterns; $ 1 � 1 (3 and � 1 � 1 (3 .

The first operand is a set of roots to be inserted
into the slots of the second operand, a set of pat-
terns. The slots are represented by the symbol ‘� ’.
Such expressions are compiled into the FSRA of
Figure 6, where �#1 represents the

�
-th pattern and

$ 1 – the
�
-th root. Only moves from 	 � to 	:� and

from 	:� to 	�L write into the registers; other arcs
are associated with � operations only. This FSRA
has 3 registers where registers 1 and 2 ‘remember’
the pattern and the root, respectively. It will have 3
registers and � ? ��� states for any number of roots,
patterns and slots.

Consider now the general case where $ 1 � and
�N1 � can be strings of letters. In this case, arcs of the
FSRA defined above are simply replaced by paths:
where an arc in the above definition is labeled by
the letter $O1 � it is replaced by a sequence of arcs
labeled by the word $N1 � , and similarly for � 1 � .

Example 5. Consider the Hebrew roots g.d.l,
k.t.b, r.$.m and the patterns hitCaCeC, miCCaC
and haCCaCa. The following expression yields
the set of all lexemes obtained by splicing the roots
into the patterns: , � V � R � W � ��� 4 ��� � T � ��� � � U � � � 5��
, ��� � ��� Q � S � � � � � � �� Q � � � ��� Q ��� Q � Q � 5 . We
suppress the FSRA this expression compiles into.

3.6 Reduplication

To account for reduplication we extend FSRAs
to efficiently accept) 7 of example 2. FSRAs
have to be extended in order to be able to identify
a pattern without actually distinguishing between
different symbols in that pattern. The extended
model, FSRA*, is created from FSRAs by intro-
ducing a new symbol, ‘*’, assumed not to belong
to (, and by forcing � to be equal to (. The ‘*’ in-
dicates equality between the input symbol and the

designated register content, eliminating the need
to duplicate paths for different symbols.

Definition 4. Let ���1@(. An FSRA* is an FSRA
where (* � and the transition relation is ex-
tended to be � ��� � � (
� , ����5
 � ,���� �	5 �
,�� ���������?A5 � � (� , � ����5
 � � .

The extended meaning of � is as follows: let
��� ��� � � � � � ��� ���
 1 � . If � and � are not ‘*’, the
meaning of the transition is as before. If � *��
then the transition can be taken only if the input
symbol is � ; similarly, if �#*�� then the transition
can be taken only if the contents of the

�
-th register

is � . Finally, if both � and � are ’*’, the transition
can be taken only if the input symbol and the

�
-th

register’s contents are identical.
An FSRA* for the language) 7 , ?�* % , is given

in Figure 7. In the general case, the number of
registers is n+1; registers ����� ��? ‘remember’ the
first ? input symbols to be duplicated. Notice that
the number of states depends only on ? and not
on the size of (. The language ,.-/- 0 0 -�0�. ?A5
for some ? 1 � can be generated by a union of
FSRA*, each one generating) 7 for some

� . ? .
� � � ������ � � � � � ��� � � � �-J ��� � � � � % ���

� �
��������� �
��� � ���� �
���-J ���� �
��� % ���
Figure 7: FSRA* for)A7 , ?�* %

4 Conclusions

We presented a novel FS model which efficiently
accounts for medium-distance dependencies in-
troduced by non-concatenative morphology. Our
main objective was to overcome the inherent space
inefficiency of existing approaches, while main-
taining the desirable properties of FS techniques,
such as the closure properties of FS networks. We
provided a complete model, along with its mathe-
matical and computational analysis, and exempli-
fied its usefulness through concrete examples; in
particular, we showed a dedicated operator for in-
terdigitation and how it compiles to an FSRA.

The greatest appeal of FS technology for NLP
is time efficiency. To maintain linear recognition
time, automata must be determinized. We still do
not have a determinization algorithm for FSRAs,
although the examples we presented all guarantee

	 � 	�� 	�L 	�L 7 B � 	�L 7 	�L 7����

�D� + � � � ���� �D�

�*L + � � � ���� �9L
...

�*8 + � � � ���� �*8

$ � + � � � � � �-$ �

$ L + � � � � � �-$ L
...$ � + � � � � � �-$ �

$Y� + 7 �
��� � �-$Y�

$�L + 7 �
��� � �-$�L
...$�� + 7 �
��� � �-$��

�D� + 7���� �
������ � �

�9L + 7���� �
������ �*L
...

�*8 + 7���� �
������ �*8

� � �

Figure 6: FSRA resulting from splice

linear recognition time. We intend to extend the
results reported here by providing constructions
for determinization, as well as for other closure
properties (e.g., complementation). Future work
also includes an extension of regular expressions
to allow direct access to registers and dedicated
operators for other non-concatenative phenomena.

We also extended the FSRA model to transduc-
ers. FSRTs are space-efficient devices that can be
used to analyze, for example, Hebrew lexemes,
providing their roots and patterns. For lack of
space, we cannot exemplify this model here; how-
ever, it is a straight-forward extension of FSRAs.

Acknowledgments

We are grateful to the anonymous reviewers for
detailed comments. This work was supported by
the Israeli Science Foundation (grant no. 136/01).

References
Kenneth R. Beesley and Lauri Karttunen. 2000. Finite-

state non-concatenative morphotactics. In Proceed-
ings of the fifth workshop of the ACL special inter-
est group in computational phonology, SIGPHON-
2000, Luxembourg, August.

Kenneth R. Beesley. 1998. Constraining separated
morphotactic dependencies in finite-state grammars.
In FSMNLP-98., pages 118–127, Bilkent, Turkey.

Glenn D. Blank. 1985. A new kind of finite-state au-
tomaton: Register vector grammar. In IJCAI-1985,
pages 749–755.

Glenn D. Blank. 1989. A finite and real-time processor
for natural language. Communications of the ACM,
32(10):1174–1189.

Yael Cohen-Sygal. Forthcoming. Computational
implementation of non-concatenative morphology.
Master’s thesis, University of Haifa.

Michael Kaminski and Nissim Francez. 1994. Finite
memory automata. Theoretical Computer Science,
134(2):329–364, November.

Ronald M. Kaplan and Martin Kay. 1994. Regu-
lar models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378, September.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefen-
stette, and Anne Schiller. 1996. Regular expres-
sions for language engineering. Natural Language
Engineering, 2(4):305–328.

Laura Kataja and Kimmo Koskenniemi. 1988. Finite-
state description of Semitic morphology: A case
study of Ancient Akkadian. In COLING, pages
313–315.

Martin Kay. 1987. Nonconcatenative finite-state mor-
phology. In Proceedings of the Third Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 2–10.

George Anton Kiraz. 2000. Multitiered nonlinear
morphology using multitape finite automata: a case
study on Syriac and Arabic. Computational Linguis-
tics, 26(1):77–105, March.

András Kornai. 1999. Vectorized finite state au-
tomata. In András Kornai, editor, Extended Finite
State Models of Language, Studies in Natural Lan-
guage Processing, chapter 10, pages 95–107. Cam-
bridge University Press.

Kimmo Koskenniemi. 1983. Two-Level Morphol-
ogy: a General Computational Model for Word-
Form Recognition and Production. The Department
of General Linguistics, University of Helsinki.

Alon Lavie, Alon Itai, Uzzi Ornan, and Mori Rimon.
1988. On the applicability of two-level morphol-
ogy to the inflection of Hebrew verbs. In Proceed-
ings of the International Conference of the ALLC,
Jerusalem, Israel.

Mehryar Mohri. 1996. On some applications of finite-
state automata theory to natural language process-
ing. Natural Language Engineering, 2(1):61–80.

Gertjan van Noord and Dale Gerdemann. 2001. An
extendible regular expression compiler for finite-
state approaches in natural language processing. In
O. Boldt and H. J ürgensen, editors, Automata Imple-
mentation, number 2214 in Lecture Notes in Com-
puter Science. Springer.

