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Abstract

We propose a formal, computational model of early syntactic acquisition, based

on stochastic finite-state automata. The model learns from adult and child utter-

ances and generalizes them such that novel utterances can be produced. Unlike

much work in computational grammar induction, our model is informed by several

well-established psycholinguistic principles, which are implemented as biases in the

learning process. Unlike some works in cognitive psycholinguistics, our model is

mathematically well-defined and robustly evaluated. We demonstrate the ability of

the model to generalize by evaluating it on several corpora of child-adult interac-

tions.



1 Introduction

One of the most fascinating and fundamental questions in linguistics is how children

acquire their native language. Much research in psycholinguistics sheds light on this

puzzling process; we propose a formal, computational model of early syntactic acquisition,

focusing on structures emerging in the first three years of life. We present an algorithm

that inputs adult and child utterances and outputs a compact representation of the

syntactic knowledge of the child exposed to the input, in the form of a highly restricted

stochastic finite-state automaton.

Unlike much work in computational grammar induction, our model is informed by

several well-established psycholinguistic principles, which are implemented as biases in

the learning process. Unlike some works in cognitive psycholinguistics, our model is

mathematically well-defined and robustly evaluated. We demonstrate the ability of the

model to generalize by evaluating it on several corpora of child-adult interactions. We

thus consolidate formal, empirical and cognitive approaches to language learning and

harness them to better explain early stages of human language acquisition.

We review related work in Section 2, focusing on a particular method in Section 3.

Then, we present our learning algorithm in Section 4. We define it mathematically and

formally prove some of its properties. In Section 5 we evaluate the performance of the

algorithm. We conclude with suggestions for future work.

2 Computational Models of Language Learning

Computational models of language learning are the focus of two quite different (and in-

dependent) fields of study (Adriaans and van Zaanen, 2006; Alishahi, 2011). One line

of research falls under the category of grammar induction or, more specifically, computa-

tional grammar inference. Here, the goal is to devise algorithms that can learn accurate

and compact models for identification of language (i.e., grammars) from finite sets of

examples. Such approaches are usually not cognitively motivated, and their relevance to
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child language acquisition is questionable. The other research direction is motivated by

the quest for a cognitively plausible explanation of child language acquisition. Such works

may use computational models to either implement cognitive theories or evaluate them

(or both), but are sometimes lacking in accuracy and robust evaluation. Sections 2.2

and 2.3 survey some representative works in both paradigms. We begin, however, by

reviewing the use of corpora in child language research and the issue of evaluation.

2.1 Review of Research Methodology

The task that we focus on is language learning: a learner, be it a child or a computer

program, is presented with data, in the form of raw utterances. The learner’s task is to

generalize the data and induce a model of the grammatical utterances (in other words,

a grammar). The success of the learner can be evaluated by testing its grammar on

new utterances. Two aspects of the grammar can be tested: its ability to generate new

utterances; and its ability to assign a valid structure to the grammatical utterances. We

describe here the corpora and the evaluation methods that are used by researchers from

the two fields of study mentioned above.

2.1.1 The Use of Corpora in Language Learning Research

Language learning algorithms need input data (e.g., sequence of utterances from a spec-

ified language) in order to generate the language model (the grammar) and evaluate it.

For this need, grammar induction tasks standardly use the manually-annotated sentences

from the Penn Tree Bank (Marcus et al., 1993), whose data are taken from the Wall Street

Journal (WSJ). The Penn Tree Bank is a large annotated corpus consisting of over 4.5

million words of American English. This corpus is annotated for part-of-speech (POS)

and for skeletal syntactic structure. The POS tag-set contains 36 POS tags and 12 other

tags for punctuation and currency symbols (a detailed list of the tag-set is at Marcus

et al. (1993), page 319). Such annotated corpora are valuable for automatic construction

of statistical models and for evaluating the adequacy of parsing models.

2



Some grammar induction algorithms only use the sequences of POS tags from the WSJ

corpus, ignoring the actual words as the training data for the language learning algorithm.

Furthermore, training material in this paradigm may consist of the utterances in the WSJ

whose length is less than 10 words (WSJ10), a genre that is not well-defined linguistically,

and quite likely irrelevant for language acquisition investigations (Berwick, 2009).

Cognitively-motivated models of language acquisition, in contrast, typically utilize

transcripts of spontaneous speech, mainly based on recordings of child-adult interactions

that are collected and maintained as part of the Child Language Data Exchange Sys-

tem (CHILDES). The CHILDES database (MacWhinney, 2000) contains transcripts and

media data that were collected from conversations between young children and their play-

mates and caretakers. CHILDES is the largest corpus of conversational spoken language

data which is publicly available worldwide (http://childes.psy.cmu.edu). All of the

data in the system are consistently coded using a single transcript format called CHAT.

Moreover, for several languages, the corpora have been tagged for part of speech using an

automatic tagging program called MOR. The output of MOR includes two lines for each

utterance. The main line lists the speaker’s production and the MOR line provides the

part of speech of each word, along with morphological analysis of affixes, such as the past

tense mark (-PAST) on the verb. The GRASP program (Sagae et al., 2010), which adds

syntactic dependency relation tags, is currently also available from the CHILDES website

(http://www.cs.cmu.edu/~sagae/childesparser/). The English section of CHILDES

is now fully annotated with morphological and syntactic tags. For example:

*ATT: you did so .

%mor: pro|you aux|do&PAST adv|so .

%xgra: 1|2|SUBJ 2|0|AUX-ROOT 3|2|JCT 4|2|PUNCT

In the above example each word has part-of-speech tag (first line) and syntactic tag

(second line), expressed as a labeled dependency on some other word in the same utter-

ance.

A new source of data which contains transcripts of children’s speech has been in use
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by researchers lately (Da̧browska and Lieven, 2005). This corpus contains transcribed

longitudinal recordings of four children, Annie, Brian, Fraser and Eleanor. Each was

recorded for 6 weeks at ages 2;0 and 3;0. This six-week period resulted in 30 hours of

recordings, which were manually transcribed and annotated. This is an excellent source

of high density information. Unfortunately, this corpus is not available to the research

community.

2.1.2 The Evaluation of Language Learning Models

Data-driven, corpus-based natural language precessing systems must be thoroughly and

robustly evaluated. Several factors make the evaluation of language learning systems

difficult (van Zaanen and Geertzen, 2008). First, the training data provided to the

system (i.e., the corpus used for induction) are usually limited. This is especially true

when child-data are concerned, since even with high-density corpora it is assumed that

the corpus reflects less than 10% of the utterances the child was exposed to during a very

short period (see Rowland et al. (2008)). It is thus hard to evaluate the quality of the

generalizations performed by the system. Second, while it is relatively easy to measure

the ability of the model to account for new utterances, it is much harder to assess the

proportion of the utterances that the model produces and are indeed grammatical.

In the computational linguistics community, language learning models are standardly

evaluated using two measures adopted from Information Retrieval: recall and precision.

Informally, recall measures the ability of the grammar to account for new utterances.

Precision, on the other hand, measures the proportion of the selected items that the

system got right; a task that has been found difficult to handle computationally and often

requires either evaluation based on results obtained from alternative parsers (Berant et al.

(2007)) or on human judgments (Solan et al., 2005; Brodsky et al., 2007). Within the

cognitive linguistic paradigm, language learning models are usually evaluated by human

judgments, rendering the evaluation both limited and subjective.
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2.2 Computational Grammar Induction

In this section we describe works whose motivation is to design computational algorithms

that induce grammars from data. A fundamental concept of such research is language

identification in the limit, originally introduced by Gold (1967), and proven highly influ-

ential in subsequent works. This is a formal framework in which a learner is provided

with a finite set of strings, S+, that belong to some language, L (the positive sample)

and, possibly, a finite set of strings, S−, that do not belong to L (the negative sample).

Learning is viewed as an infinite process. Each time a string from the positive sample is

read, the learner provides a grammar for the language. A learner is said to have identified

a language if given any set of positive (and, possibly, negative) examples of the language,

the learner produces only a finite number of wrong representations, and therefore con-

verges on the correct representation in a finite number of steps. However, the learner

is not necessarily able to announce its correctness since a contrasting example to any

representation could appear as a positive example in the following steps of the learning

process. Gold (1967) proves that the class of regular languages is not learnable in the

limit from positive examples only, but can be successfully identified from both positive

and negative examples.

Following Gold (1967), Oncina and Garćıa (1992) propose a learning algorithm that

identifies in the limit any regular language in polynomial time (in the size of the positive

and negative samples). The input of the algorithm are fixed finite sets of positive and

negative examples of an unknown regular language, L, and the output is a Deterministic

Finite-state Automaton (DFA), M , such that in the limit (when |S+| → ∞ and |S−| →

∞), L(M) = L. The algorithm starts with a Trie (a prefix tree) which is a DFA generating

the positive sample and then proceeds by trying to merge the states of this Trie. By the

definition of a Trie, all the descendants of a node have a common prefix of the string

associated with that node, and the root is associated with the empty string. Hence,

the states in a Trie are lexicographically ordered, first by length and then by alphabetic

order within every length. The algorithm takes advantage of this order and tries to merge

5



states with their (lexically) smaller siblings. The merge is approved only if the induced

automaton rejects the negative examples. If the candidate state for merge has no siblings,

this step is repeated, but now with all smaller states (i.e., in a higher level of the tree).

In this model, generalization of the positive examples is controlled by the negative

sample to prevent merging of incompatible states. However, in the case of child language

acquisition, the assumption is that explicit negative examples are not available (Gold,

1967). Hence, this framework cannot in itself be a plausible model of child language

acquisition. However, as is well known from the language development literature, negative

evidence is implicit in the input provided to the child, both through repetition and

reinforcement (Clark and Lappin, 2011, chapter 3) and more importantly, via statistic

cues: nothing prevents the child from employing a stochastic model of its language, using

the frequency of the input utterances as biases (Clark and Lappin, 2011, chapter 5).

Indeed, to compensate for the lack of negative examples, learning algorithms that

employ stochastic biases were proposed. The idea is that the statistical information of

the positive sample can compensate for the lack of negative examples. In particular,

such algorithms may create stochastic automata from positive examples. The language

generated by the automaton, defined as the set of all strings accepted by the automaton

with probability greater than 0, is a Stochastic Regular Language (SRL).

Carrasco and Oncina (1994) propose a learning algorithm that constructs a Deter-

ministic Stochastic Finite-state Automaton (DSFA) from positive examples of a formal

language in which the probability of every string is drawn from a well defined distribu-

tion. The proposed algorithm first builds the Prefix Tree Acceptor (PTA) with frequencies

(weights) from the positive sample and assigns a probability to each transition. For each

node qi, ni is defined as the number of paths going through qi, fi(a) is defined as the

number of arcs labeled by a outgoing from qi, and fi(#) is defined as the number of paths

ending at node qi. The quotient fi(a)/ni estimates the probability of the transition from

qi labeled by a and fi(#)/ni estimates the probability of qi being an accepting state.

Next, the algorithm tries to merge equivalent nodes in the PTA. Nodes are chosen to
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be candidates for merge in lexicographic order. Two nodes are defined as equivalent if (1)

they have similar outgoing transition probabilities for every symbol in the alphabet; (2)

they have similar termination probabilities (probability that the node is accepting); and

(3) the same holds for their daughters, accessible from the two nodes by same-labeled arcs

(recursively). The model was evaluated on several known SRLs, and experimentally, the

algorithm is efficient and needs relatively small samples in order to identify the regular

language.

The learning algorithm proposed by Carrasco and Oncina (1994) performs very well

in learning formal languages, since usually in formal languages the alphabet (Σ) is a small

set of symbols and the strings in the language are long. In contrast, child language data

are characterized by very large lexicons (the alphabet) and very short strings (the multi-

word utterances). Our proposed learning algorithm is based on this algorithm; but it is

adapted to reflect the properties of child language acquisition. In particular, our merge

criteria are different, as they implement biases motivated by child language research.

Several works attempt to learn context-free languages from data (Lee, 1996). Here,

also according to Gold (1967), learning a CFL from positive data only is undecidable.

As in the case of regular languages, several suggested approaches use statistical models

to overcome the lack of negative examples and induce Probabilistic CFGs from positive

training data.

Stolcke and Omohundro (1994) propose a framework for extracting probabilistic gram-

mars from corpora of positive examples. First, strings that are observed in the data are

incorporated by adding ad-hoc rules to form an initial grammar; then, the grammar

is made more concise by merging some of the rules. This work presents two incarna-

tions of the technique, one in which the models are probabilistic context-free grammars

(PCFGs), and another in which they are hidden Markov models (HMMs). In the former,

rules are merged by identifying non-terminal symbols A and B if the rule A → B is in

the grammar; this is the source of generalization in this model. In the latter, two HMM

states are merged to a state that inherits the union of their transitions (and emission
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probabilities). In both cases, the prior probabilities are optimized by minimizing their

description length. Experiments with the suggested algorithms on natural language data

have yielded mixed results. A fundamental problem is that available data are typically

sparse relative to the complexity of the target grammars, i.e., not all constructions will

be present with sufficient coverage to allow the induction of correct generalizations.

The ADIOS system (Solan et al., 2005) implements a novel algorithm that learns a

complex context-free grammar (CFG) from raw data. Based on a graph representation,

the algorithm performs segmentation and generalization of the input simultaneously. The

system was applied to several types of data, both linguistic (including transcripts of

children and their caregivers) and non-linguistic (protein sequences). The results show

that ADIOS is superior to other grammar induction algorithms that can learn from raw

data.

EMILE (Adriaans, 1992, 2001; Adriaans and Vervoort, 2002) is another algorithm

that learns CFG from raw data. The EMILE model attempts to learn the grammatical

structure of a language from positive examples, without prior knowledge of the grammar.

It is based on the idea that expressions of the same (syntactic) type can be substituted

in the same context, and hence it searches for clusters of expressions and contexts in the

input, interpreting them as grammatical types. The model then generalizes the sample

and learns rules of a context-free grammar.

We maintain that CFG (or PCFG) is too powerful a formalism for modeling early

syntactic knowledge, and a much more constrained model is more fitting to the type

of utterances observed in the data. In our work, learning is based on the linguistic

input provided to the child, which is viewed as positive examples only. The negative

result of Gold (1967) is irrelevant for our work due to the different assumptions: the

learning algorithm can be biased in a way that compensates for the lack of negative

examples. In the above models, the given positive samples (the training data) are first

read in their entirety and then generalized. In contrast, children acquire their knowledge

of language incrementally, processing the utterances they hear one at a time. Hence,
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the suggested models ignore an important facet of child language acquisition, namely

its on-line manner. Crucially, the above works do not give a conspicuous expression of

psycholinguistic observations that attempt to determine generalizations over the course

of child language acquisition (see section 4.1 for more details). Next, we survey the other

research direction, namely works that are motivated by psycholinguistic observations.

2.3 Cognitively Motivated Language Learning Algorithms

We survey in this section some prominent approaches that use computational modeling

either to implement and simulate or to evaluate cognitively-motivated theories of language

acquisition.

In a series of works, Freudenthal et al. (2006, 2007, 2009) develop the MOSAIC

(Model of Syntax Acquisition in Children) paradigm. This model takes as input corpora

of transcribed child-directed speech and learns to produce as output utterances that

become progressively longer as learning proceeds. The model is based on a hierarchical

network in which more deeply embedded nodes represent longer utterances, and where

links connect nodes to form certain generalizations. Unfortunately, the model is not

described with sufficient rigor and precision that would enable its reproduction. One

detail that is emphasized, however, is that the same corpus is given to the learner several

times. This is a very unusual requirement in a model of child language acquisition,

and indeed, according to Freudenthal et al. (2010, page 650), “MOSAIC is best viewed,

not as a realistic model of the language acquisition process itself, but as one of many

possible ways of implementing an utterance-final (and in the current version of the model,

utterance-initial) bias in learning.”

Borensztajn et al. (2008) extract a child’s grammar from transcripts of child speech

and examine grammatical abstraction in child language. The goal is to show that abstrac-

tion increases with age. Grammatical abstraction is defined here as the relative number of

variable slots (utterances that includes variation in the same position) in the productive

units (the nonterminals) of the grammar. The acquisition of constructions with variable
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slots by children leads to the beginning of abstraction and category formation, and marks

the beginning of grammar.

The study is conducted on the Brown (1973) corpus from the CHILDES database.

This corpus contains transcribed longitudinal recordings of three children, Adam, Eve and

Sarah. Each child’s corpus is split into three parts of roughly equal size, representing three

consecutive time periods. Then, child-directed speech, any annotation or comments and

all the incomplete and interrupted sentences are removed. Only grammatical development

within each child is compared, and not between them.

Tree Substitution Grammar (TSG) is used to store the multi-word syntactic prim-

itives as well as single unit primitives. The generative components of a TSG are tree

fragments of arbitrary size and depth. These fragments contain variable slots for syntac-

tic categories, making them suitable for representing abstract constructions, or abstract

rules. TSGs are used extensively in the framework of Data Oriented Parsing (DOP) (Bod,

2006), which facilitates parsing of new sentences using fragments from sentences observed

in a corpus. The probabilities of the fragments are determined using the algorithm of

Borensztajn and Zuidema (2007). Then, standard statistical parsing techniques can be

used to find the most probable derivation of any sentence in a corpus. In this work, DOP

is used as a statistical approach for discovering the constructions in child language. When

the most probable derivation of a child’s utterance is determined, it becomes possible to

quantify the properties of the child’s grammar at various stages.

The results are that the number of nodes, number of nonterminals, number of ter-

minals, depth and other relevant quantities, all increase with age. The main conclusion

is that abstraction, defined as the relative number of non-terminal leaves in multi-word

utterances, increases with age.

The resulting grammars in this work are precise and testable. A main drawback of this

approach, however, is that the learning model assumes that the input is morphologically

and syntactically annotated, implying that abstract structural representations are a pre-

requisite for language acquisition. In the model we propose here, the input consists of
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the utterances the child is exposed to, namely, raw data with no annotation.

Bannard et al. (2009) also extract a grammar from transcripts of child speech using

a computational model. Grammars that reflect children’s speech at 2 and 3 years are

extracted from the corpus, and then novel utterances are generated using these grammars.

They use transcriptions of 28+ hours of two children’s speech; 90% of the transcripts

of each child are used to produce the grammar and the remaining 10% are used for

evaluation. Bannard et al. (2009) define a concrete sign as a single word, a part of an

utterance or the whole utterance. A second kind of sign is an utterance with one or

more slots, which is defined to be a schema. Both concrete signs and schemas can fill

slots. Filling a slot is called INSERT, and this is the only operation employed by their

algorithm.

The rules in the grammar (a context-free grammar over a single non-terminal symbol,

X) are generated based on utterances that share lexical material. For example, assume

that in the corpus the following 2 utterances occur: (i) I have that one, (ii) Mommy-’s

have a tiny one. The rule {X → X have X one } is added to the grammar since X have

X one is defined as a schema with slots, and I, Mummy-’s, that and a tiny are defined as

concrete signs.

The results of this study are that approximately 80% of the test utterances can be

parsed by the resulting grammar. In more detail, the results are: 84% for Brian and 75%

for Annie at age 2 and 70% for Brian and 80% for Annie at age 3. Beside coverage, in

order to check how well the models predict the test data, the perplexity of the models

is calculated. Perplexity is a measure of how well a probability distribution over a set

of events (in this case, words of utterances) matches the distribution of the events seen

in some data, i.e., how surprised a model is by that data. The lower the perplexity, the

better the fit. The perplexity results of the output grammar in this study show that the

model provides a good fit to the data. The details are sketchy, but in order to reliably

compute the perplexity of a language model, huge amounts of data are needed (Jelinek

et al., 1977; Bahl et al., 1983). We define a related but different measure of the fitness of
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our model to test data.

In sum, each of these models, although they are cognitively motivated, is lacking in

terms of modeling early child language acquisition. However, it is clear that taking into

account cognitive principles is advantageous when modeling language acquisition. In this

context,one question that we aim to test is to which extent a purely cognitively motivated

model, one that is not designed from a computational perspective, can yield satisfactory

results. For this purpose, we focus in the next section on the implementation of such a

model.

3 Implementing a Cognitively Motivated Model: The

Traceback Method

Several recent studies (Lieven et al. (2003), Da̧browska and Lieven (2005), Lieven et al.

(2009)) propose the Traceback Method as a model of early language acquisition, explaining

some of the phenomena associated with children’s ability to generalize previously-heard

utterances and generate novel ones. This method is specified in formal terms that make

it amenable to computational implementation; yet it is evaluated in a way that could

benefit from better acquaintance with accepted computational evaluation techniques.

Lieven et al. (2003) lay down the principles of what is later termed “The Traceback

Method” (henceforth, TBM) as a way of tracing “novel utterances in the test corpus back

to strings in the main corpus from which they could have been constructed” (Bannard

and Lieven, 2009)). Lieven et al. (2003) thus define five types of operations which the

child can use to construct a new utterance from fragments of previously-heard linguistic

material: substitute, add-on, drop, insert, and rearrange. They then use these operations

to replicate previous results while focusing on a high-density corpus consisting of 5 hours

of recordings per week for one child at the age of 2;00. Their findings show that only one

third of the multi-word utterances of the child were novel, and three quarters of those can

be accounted for by one operation only, that is, some sort of manipulation on previous
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utterances.

Da̧browska and Lieven (2005) (henceforth, D&L) identify two problems with the pro-

cedure suggested by Lieven et al. (2003): first, “the method does not provide an explicit

description of the child’s linguistic knowledge.” In other words, no explicit model of

linguistic knowledge, or grammar, is defined. Second, “the method is too unconstrained

since the five operations defined by the authors made it possible, in principle, to derive

any utterance from any string.” That is, the model is over-generating. To overcome this

problem, they propose to rely on only two operations: juxtaposition and superimposition,

to account for the acquisition of increasingly more abstract constructions, specifically,

WH questions. Again, D&L use a dense corpus, consisting of four developmental corpora

for two English speaking children, Annie and Brian, each recorded for 6 weeks at the age

of 2;0 and 3;0. Results show that approximately 90% of children’s WH questions can

be produced by this model, and in line with previous studies, that 11%-36% are direct

repeats of utterances that already occurred in the main corpus (11% for Annie and 36%

for Brian at age 2;0). Moreover, at the age of 2;0, the majority of both children’s utter-

ances require only one operation for a successful derivation (55% for Brian and 66% for

Annie). At age 3;0, there are considerably more utterances requiring two or (especially

in the case of Annie) more operations, although a large proportion (25% for Annie and

43% for Brian) of the children’s WH questions can still be derived by applying a single

operation.

It thus seems that the TBM is able to provide a constructivist account for the majority

of the childrens’ interrogative utterances on the basis of a lexically specific grammar that

can be manipulated by two general operations. Importantly, this model has been recently

applied to all child utterances in eight hours worth of speech productions of the same two

children and of two additional English speaking children, with highly consistent results

(Bannard and Lieven (2009), and see also Vogt and Lieven (Forthcoming)). The TBM

was able to trace back between 83.1% to 95% of all child utterances, with around 25-40%

of utterances constituting exact repetitions, and between 36-48% of utterances requiring
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just one operation for derivation. In another recent study, Lieven et al. (2009) corroborate

these results for the case in which the model is only trained on child speech.

The TBM is thus an increasingly applied method which can be used to empirically

study child language acquisition from a usage-based perspective. The question, however,

still remains whether this method is indeed sufficiently constrained. In this section the

generative power of the TBM is computationally evaluated, under the view that com-

putational simulations are a useful tool for systematically representing any information

processing task (Feldman, 2004; Buttery, 2006; Alishahi, 2011). As such, we do not aim

to examine whether the TBM is up to the task of representing the process of language

acquisition more than other suggested approaches. Rather, we focus on identifying the

strengths and drawbacks of the model as they emerge through a computationally sup-

ported investigation.

3.1 Re-implementation of the TBM

The version of the model specified in D&L (and, more recently, in Bannard and Lieven

(2009)) particularly lends itself to such an evaluation since it is clear how to reformulate

it as an algorithm.1 As noted above, the model attempts to generate the child’s novel

utterances using what the child heard or said before. Given a target utterance T , the

model works as follows:

1. Identify all component units with respect to the given target utterance, T . A

component unit is defined as a string u that is a substring of the target utterance,

T , and that occurs at lease twice in the learning corpus.

2. If T is available to the child as a component unit (i.e., it was produced before by

either the child and/or an adult), exit: the derivation is defined by this unit.

3. Otherwise, choose the longest possible string, S, which is a substring of T and

1Unlike most psycholinguistic models, which are more vague and represent grammar implicitly and
informally, sometimes in a very ad-hoc manner.
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which was observed twice or more in the training material, with variation in the

same position; this position is referred to as a slot. The substring S is defined as

the frame. Then, choose the longest available component unit u for the slot; this

unit is referred to as a filler. The derivation is defined as Superimpose(S, u). The

superimposition operation is constrained such that the filler must have the same

semantic label as one of the occurrences of the frame in the training corpus.

4. If no frame was found, choose S to be the longest possible string which is a substring

of T that is available to the child as a component unit.

5. If more words exist in T , repeat the algorithm above from step 2 for the remaining

utterance, R. The derivation is then defined as Juxtapose(Superimpose(S, u), R),

where Juxtapose(x, y) is defined as a linear concatenation of two utterances x and

y according to their order in the target utterance. If no frame was found, the

derivation is defined as Juxtapose(S,R).

Note that the algorithm above implements the “rules” specified by D&L (and re-iterated

in Bannard and Lieven (2009)), and in particular guarantees that derivations use the

minimum number of operations.

As the first step of our computational evaluation, we re-implemented this algorithm,

with some necessary modifications. Not having access to the original dense corpus, we

settled instead for the online corpora of Brown (1973) and Suppes (1974), both available

from CHILDES (MacWhinney, 2000). Similarly to the original method, each corpus was

divided into 2 parts, test and main. The files in each corpus are ordered chronologically;

we consider all child utterances in the last file as the test corpus, and all earlier files,

along with the adult utterances in the last file, as training utterances. The size of each

corpus (the number of multi-word utterances) is detailed in table 1 below.

In addition, all data in the corpora used for the TBM were manually annotated

with semantic labels, following the assumption that children store pairings of phonolog-

ical forms and semantic representations. This annotation includes seven types of tags:
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Corpus main corpus test corpus
Utterances Tokens Utterances Tokens

Eve 19,536 85,350 224 875
Adam 20,443 75,213 792 3,166
Sarah 6,425 23,330 106 252
Nina 38,736 175,748 458 1,632

Table 1: Size of the corpora

REFERENT, PROCESS, ATTRIBUTE, LOCATION, DIRECTION, POSSESSOR, and

UTTERANCE. To approximate these semantic labels, we developed a mapping based

on Part-of-Speech and dependency relation tagging available in CHILDES. These tags

were produced by GRASP (Sagae et al., 2010), a dependency parser for identification

of grammatical relations such as Subject and Object (among others) in child language

transcripts. Our assumption is, following work both in computational cognitive science

and in cognitive linguistics (e.g., Rapaport (1988); Croft (2001)) that such grammatical

relations can be identified with semantic roles of the type used by the TBM. Thus, for ex-

ample, the combination of the Part-of-Speech category PRONOUN with the grammatical

relation SUBJECT yields a good approximation of the tag REFERENT.

The results of our re-implementation, which are summarized in Table 2, show that

between 70% and 88% of the children’s utterances in the test corpus can be derived using

this algorithm. Our results thus show that the bulk of the target data are generated by the

computer program implementing the TBM. They also show that out of the successfully

derived utterances, between 24% (Eve) and 43% (Sarah) were exact repetitions (“Fixed”

strings) of previously heard utterances. It is thus quite striking that even in a corpus of

sparse data, about one third of all test utterances are exact repetitions of utterances that

were previously heard or produced by the child. These results are compatible with those

obtained in all TBM studies mentioned above (and especially in Bannard and Lieven

(2009) who use this method to trace back all the utterances in the child test corpus), and

can be treated as supporting evidence to the claim that children in fact learn chunks from

what they hear. Table 2 also shows that most of the utterances (46%-56%) are derived
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by using Superimposition while only 9%-20% are derived by Juxtaposition. In addition,

similarly to the original results in all TBM studies, most of the test utterances can be

derived using only one or two operations.

Corpus Derived Fixed Superimpose Juxtapose Num. of Ops
size # % # % # % # % 1 2 > 2

Eve 224 155 69.19 37 23.87 87 56.13 32 20.64 95 11 12
Adam 792 675 85.22 183 27.11 312 46.22 185 27.40 362 70 60
Sarah 106 94 88.68 40 42.55 45 47.87 9 9.57 54 0 0
Nina 458 401 87.55 119 29.67 217 54.11 66 16.46 230 27 25

Table 2: Evaluation results, re-implementation of Da̧browska and Lieven (2005)

Our results are still lower than those reported in the original TBM works. For ex-

ample, Bannard and Lieven (2009) were able to generate as many as 95% of all child

utterances. One main reason for this discrepancy could be that our analysis is carried

out on a much sparser corpus, which makes the induction task more difficult for the

system. This confirms the view that relying on a dense corpus affects the variablity of

the syntactic structures in use (Demuth, 2008).2 Moreover, our “semantic” annotation is

done automatically rather than manually: we merely approximate meaning by resorting

to the syntactic annotation of the data. While the annotation of the Eve corpus was

for the most part done manually, the other corpora were annotated automatically, which

means that many of the tags may be wrong. Of course, translating the annotations to

semantic tags introduces yet another level of noise. Even with these caveats, however,

our results are comparable to the original ones.

3.2 Evaluation of the TBM

In lieu of an accepted method for evaluating the precision of language learning algorithms

(see section 2.1.2), we suggest a method to assess the level of over-generation of the model.

To assess over-generation, we repeat the same procedure, training on the same data but

evaluating on child utterances (longer than one word) in reverse word order. This allows

2Our results show a contradicting phenomenon; see section 5.
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us to evaluate the ability of the model to generate presumably ungrammatical utterances.

As can be seen in Table 3, approximately 68-89% of the reversed multi-word utterances

can be derived, indicating a serious over-generation problem.

Corpus fixed Superimpose Juxtapose OP
size # % # % # % # % 1op 2op More

Eve 224 153 68.30 5 3.26 64 41.83 84 54.90 93 28 27
Adam 792 659 83.20 43 6.52 226 34.29 403 61.15 335 146 135
Sarah 106 94 88.68 8 8.51 63 67.02 23 24.47 82 4 0
Nina 458 389 84.93 22 5.65 143 36.76 227 58.35 241 72 54

Table 3: Evaluation results, reversed utterances

Thus, while the TBM is able to learn a significant portion (70-88%) of all child ut-

terances even for a non-dense corpus, this very ability may be interpreted as evidence

of the system’s over-generative power; indeed, it can also produce around three quarters

of what are most likely ungrammatical structures. Consider, for example, the (reversed)

utterance “Boston to go”. This is generated by juxtaposing “Boston” with the compo-

nent “to go”. A single juxtaposition operation suffices also for generating the reversed

utterances “Gloria you’re” and “more no”. Superimposition is used to generate “it eat”

as an instance of the schema “it PROCESS”, where “eat” fills the PROCESS role (the

original utterance, of course, is “eat it”.) And the use of one superimposition and one

juxtaposition generated the utterance “more buy to have” as an instance of the schema

“PROCESS to have”.

Several factors may contribute to this over generation. First, the TBM ignores the

frequency with which utterances are presented to the learner. It thus ignores frequency

effects on the entrenchment of linguistic structures. A model that is more sensitive to

frequency effects may better fit the data (see section 4.1). Second, and more crucially,

there is no principled way to determine the set of operations that the model consists of:

Lieven et al. (1997, 2003) define a set of five operations, which are reduced to two by

D&L (also replicated by Bannard and Lieven (2009)). Lieven et al. (2009) retain two op-

erations, but the superimposition of D&L is here replaced by a slightly different substitute
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operation. Finally, Vogt and Lieven (Forthcoming) use three operations (including both

superimposition and substitution). Third, a major contribution to over-generation stems

from the fact that the number of operations (of any kind) allowed in the derivation of

any target utterance is not limited in any way. Finally, some of the operations probably

need to be more constrained. While superimposition is constrained by the type of the

slot, juxtaposition is not, and in particular, it allows either order of combination. This

means that the child is as likely to concatenate two strings in one order as she is to use

the other. Bannard and Lieven (2009) restrict the application of add by saying that it is

“only allowed if the component unit could, in principle, go at either end of the utterance.”

It is unclear how this is determined (or how the child could know it.)

In conclusion, while the TBM may be a plausible model of early syntactic acquisition,

its evaluation is lacking. We believe that an appropriate computational model of early

language acquisition must be extremely constrained in its expressive power. In the next

section, we present a much more constrained model, based on a restricted variant of

finite-state automata, that can account for the type of generalizations exhibited by early

language learners without resorting to the over-generalization we point to above.

4 A DSFA Model of Early Syntactic Acquisition

We present a model of early syntactic acquisition, based on deterministic stochastic finite-

state automata (DSFA), whose development is influenced by well-established psycholin-

guistic principles detailed in section 4.1. The purpose of our study is to combine seminal

cognitively-motivated child language learning hypotheses with a computational model

based on computational learning theory, and demonstrate that a much less expressive

formalism (here, a constrained finite-state automaton) can suffice for modeling processes

of early child language acquisition. We present in section 4.2 an algorithm for learn-

ing language from data implementing these insights. Like other cognitively-motivated

language learning models, the input to our algorithm is child and caregiver transcribed
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utterances. The output of the algorithm is a (formal) grammar represented as a DSFA,

as in the grammar induction approach; this representation of the child’s syntactic knowl-

edge is thus mathematically well defined (section 4.2). We prove some of the properties

of the algorithm in section 4.3 and exemplify its operation in section 4.4. Results and

evaluation are deferred to section 5.

4.1 Motivating Principles

Our algorithm follows some of the insights of Oncina and Garćıa (1992) and Carrasco and

Oncina (1994), who also construct a DSFA from raw data. We, too, express generalization

by successively merging DSFA states that satisfy a merge criterion. The main innovation

of our work is that the merge criteria we employ reflect the psycholinguistic insights

discussed below.

Language development typically follows a predictable sequence of stages, in increas-

ing complexity and originality of the child’s utterances (Brown, 1973; Elman, 1993). The

incremental trajectory of natural language acquisition processes call for an on-line, incre-

mental computational model which processes its input in chronological order rather than

as an unordered set. Consequently, and unlike many other language learning algorithms,

the DSFA we construct is dependent on the order of the data it receives.

Psycholinguistic research suggests that early language is highly constrained, that ut-

terances are short and repetitive (Brodsky et al., 2007) and that deeply-nested structures

emerge later, and even then are very constrained. In particular, the need for recursion in

child language is very limited (Diessel and Tomasello, 2005; Bannard et al., 2009; Luuk

and Luuk, 2011). Hence, models of early syntactic acquisition that do not allow recursive

structures may perform better than more expressive models. Indeed, one of the features

of our model is acyclicity.

A considerable body of psycholinguistic research has shown that children’s early mul-

tiword utterances are constructed using rote-learned phrases, or lexically based patterns,

which at some point along development evolve into less specific constructions that contain
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some level of abstraction (e.g., MacWhinney (1975); Peters (1983); Lieven et al. (1997);

Tomasello (2003)). Under this suggestion, children learn constructions that contain both

lexically specific frames and open-ended slots or schemas, into which some category of

words can be integrated. This means that before children reach linguistic productiv-

ity, they must first go through stages where most of their knowledge is restricted and

non-novel. Consequently, a computational model of early language acquisition must be

able to generalize previously-heard utterances and generate novel ones using rote-learned

phrases and lexically based patterns.

Also, several studies (Tomasello, 2003; Diessel, 2007; Behrens, 2006) reveal that the

frequency of the input (entrenchment) may provide an explanation for generalization.

Computational models of language acquisition must therefore reflect input frequency.

Under the assumption that children’s early multiword utterances are constructed using

rote-learned phrases, or lexically based patterns, our algorithm relies on similarity of word

contexts in order to find generalizations. State merging occurs in the algorithm as a result

of shared lexical material with or without a slot. In more detail, if the input includes the

utterances w1 w2 w3, w1 w4 w3 and w1 w5 w3 w6, the assumption is that the lexically-

based pattern w1 SLOT w3 is created by the child and that w2, w4, w5 occur in the same

context and are hence in the same syntactic category. The resulting automaton reflects

that by on-line merging of states that have incoming edges labeled by w2, w4, w5. In this

case, only 3 utterances are present, but in the general case, there may be several of them,

and hence their probabilities are also taken into account. The probabilities of w2, w4, w5

are actually calculated using their frequency in the input which is expressed in the model

by weights associated with DSFA edges.

Slobin (1973) lists several principles that govern the way children acquire their early

syntactic structures. One principle (Slobin, 1973, page 197) is that “The standard order

of functor morphemes in the input is preserved in child speech”. Moreover, “word order

in child speech reflects word order in the input language”. Clearly, then, re-ordering

operations should be discouraged in a plausible model of language acquisition. These
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principles are reflected in our algorithm by not allowing any reordering among words.

Both Slobin (1973) and MacWhinney (1978) claim that the child will attempt to

“avoid exceptions”. Specifically, this means that a child will attempt to acquire a single

form to express a single function. Hence, in a probabilistic model of language acquisition,

utterances with unusual lexical form should be less significant than common structures.

In our model, DSFA paths reflecting more frequent input sequences acquire higher prob-

ability than paths corresponding to less frequent utterances, thereby implementing a bias

towards more regular forms.

4.2 The Language Acquisition Algorithm

In this section we present the algorithm formally. We begin by defining some basic

notions.

Definition 1. Deterministic Stochastic Finite Automaton. A DSFA is a quadru-

ple (Q,Σ, P, q0), consisting of an alphabet Σ, a finite set of states Q, an initial state

q0 ∈ Q, and a set P of probabilities pij(w) giving the probability of a w-transition from

node qi to qj, and of probabilities pfj giving the probability that qj is a final state, such

that for every node qi ∈ Q,
∑
qj∈Q

∑
w∈Σ pij(w) + pfi = 1. Furthermore, for every node

qi ∈ Q and symbol w ∈ Σ, there exists at most one node qj such that pij(w) > 0 (the

deterministic limitation).

Definition 2. The transition function. As a result of the deterministic limitation

of the automaton, a transition function, δ : Q × Σ → Q, can be defined. This function

gives the state qk for a given state qi and a symbol w ∈ Σ, if pik(w) > 0. In addition, we

define δ̂ : Q × Σ∗ → Q as follows: δ̂(q, ε) = q for every q ∈ Q; and δ̂(q, w1...wk) = q′ if

δ(q, w1) = q′′ and δ̂(q′′, w2...wk) = q′. Below, we abuse notation by referring to δ̂ as δ.

Definition 3. Language of a DSFA. Let M be a DSFA, and w = w1w2...wn be a

string over the alphabet Σ. w is generated by M if a sequence of states, qi0 , qi1 , ..., qin,

exists in Q such that (1) i0 = 0, (2) qix = δ(qix−1 , wx), for x = 1, ..., n and (3) pfin > 0. As
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a result of the deterministic nature of the automaton, if such a sequence of states exists,

it is unique. The probability of this sequence is p(qi0 , qi1 , ..., qin) =
∏n−1
j=0 pij ,ij+1

× pfin.

Consequently, the probability p(w) is defined as p(w) = p(qi0 , qi1 , ..., qin). The language

of the DSFA is L(M) = {(w, p(w)) | p(w) > 0}

The learning algorithm is presented in figure 1. Its input is a sequence of strings (the

training or main corpus); its output is a DSFA.

Input: Sequence of strings (the main corpus)
Output: Stochastic DFA

1 Let M = (Q,Σ, P, q0) be the automaton including one path from q0 ∈ Q to
qend ∈ Q, representing the first utterance in the input; final(qend)← 1;

2 foreach q ∈ Q do in(q)← 1; final(q)← 0;
3 foreach edge (qi, σ, qj) ∈ M do weight(qi, σ, qj)← 1 ;
4 foreach utterance w = w1 w2 ... wn in the input do
5 in(q0) + +;
6 foreach i← 1 to n do
7 Let q = δ(q0, w1...wi−1);
8 if δ(q, wi) is defined then
9 Let q′ = δ(q, wi);

10 if i 6= n and q′ = qend then
11 r ← AddNode(q, wi); Change (q, wi, q

′) to (q, wi, r);
in(r) = weight(q, wi, q

′); in(qend)− = weight(q, wi, q
′);

final(r) = weight(q, wi, q
′); final(qend)− = weight(q, wi, q

′);
continue;

12 weight(q, wi, q
′)++; in(q′)++ ;

13 if i = n then final(q′)++ ;
14 if i 6= n and for some σ ∈ Σ and r′ ∈ Q, δ(q, σ) = r′ and

δ(r′, wi+1) = r′′ for some r′′ ∈ Q then Merge(q′, r′) ;

15 else
16 if i 6= n and for some w ∈ Σ and r ∈ Q, δ(q, w) = r and δ(r, wi+1) is

defined then
17 Add an edge (q, wi, r) with weight(q, wi, r) = 1; in(r) + + ;

18 else
19 if i 6= n then AddNode(q, wi) ;
20 else Add an edge (q, wi, qend) to δ with weight(q, wi, qend) = 1;

in(qend)++; final(qend)++;

21 foreach edge (qi, σ, qj) in M do pi,j(σ)← (weight(qi, σ, qj)/in(qi)) ;

22 foreach node qi ∈ Q do pfi ← (final(qi)/in(qi)) ;

Algorithm 1: Language Acquisition Algorithm

As the positive instances (the training utterances) come in, each utterance is added
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Input: M , a DSFA, q ∈ Q, w ∈ Σ
Output: New node in M

1 Add a fresh node r to Q;
2 Add an edge (q, w, r) to δ;
3 weight(q, w, r)← 1 ;
4 in(r)← 1;
5 final(r)← 0;
6 return r;

Algorithm 2: Add Node

Input: M , a DSFA, and Two states q1, q2 to be merged in M
Output: boolean

1 Assumption: q1, q2 are siblings, i.e., for some a, b ∈ Σ there exists q ∈ Q such that
δ(q, a) = q1 and δ(q, b) = q2;

2 foreach a ∈ Σ such that δ(q1, a) and δ(q2, a) are defined do
3 Let q′1 = δ(q1, a) and q′2 = δ(q2, a); Let wi = weight(q1, a, q

′
1) and

wj = weight(q2, a, q
′
2);

4 if different(in(q1), wi, in(q2), wj) then return false;
5 if different(in(q′1), final(q′1), in(q′2), final(q′2)) then return false;
6 if Not Merge(q′1, q

′
2) then return false;

7 foreach edge (r, σ, q2) in M do add an edge (r, σ, q1) to M with the same weight;
8 foreach edge (q2, σ, q) in M do add an edge (q1, σ, q) to M with the same weight;
9 in(q1)+ = in(q2); final(q1)+ = final(q2); remove q2 and all its incoming and

outgoing edges;
10 return true;

Algorithm 3: Merge

to the automaton by adding its words one by one. Then, this utterance is represented in

the resulting automaton by a path, leading from the initial state to a final state, whose

arcs are labeled by the words that make up the given utterance. During the construction

of the automaton, while each string in the input is added as a path to the automaton,

for every node qi ∈ Q two quantities are manipulated: in(qi) is the number of strings in

the input whose prefix is represented by a path leading from q0 to qi; and final(qi) is the

Input: n1 = in(q1), w1 = weight(q1) or final(q1), n2 = in(q2), w2 = weight(q2) or
final(q2)

Output: boolean

1 return
∣∣∣w1

n1
− w2

n2

∣∣∣ > √
1
2
log 2

α
( 1√

n1
+ 1√

n2
)

Algorithm 4: Different (Carrasco and Oncina, 1994)
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number of strings in the input which are represented in the automaton by a path leading

from q0 to qi. In addition, for every edge (qi, σ, qj) we define a weight, weight(qi, σ, qj),

as the number of strings in the input which are represented in the automaton by a path

that includes the edge (qi, σ, qj).

During the addition of an utterance to the automaton, successive state merging is

done online according to a merge criterion that implements generalization. Merge is not

done between two nodes at different levels in the automaton (different distances from q0)

to avoid the creation of cycles.

Consider algorithm 1. Utterances in the main corpus are added to the DSFA one

by one (step 4). Each utterance w = w1w2...wn is added by adding each of its words

successively (step 6– 20). Adding a word wi can result in either of three outcomes: (1)

adding weight to an existing edge (labeled by wi, step 12 in the algorithm); (2) adding

an edge between two existing states (steps 16–17); or (3) adding a new edge between an

existing state and a newly added state (steps 10, 19).

Outcomes (1), (2) add a new word as part of an existing path in the automaton,

thereby merging part of the current utterance with material already represented in the

automaton. We refer to this process as online merge. Note that outcome (2) also im-

plements a generalization. For example, assume that the input includes two utterances:

w1 w2 w3 w4 and w1 w5 w3. Initially, the DSFA includes only one path q0, q1, q2, q3, q4

which represents the first utterances in the input:

q0start q1 q2 q3 q4

w1(1) w2(1) w3(1) w4(1)

Then, when the algorithm processes the next utterance, for i = 2, a new edge

(q1, w5, q2) is added between two existing states as a result of steps 16–17 and the DFSA

is now:

q0start q1 q2 q3 q4

w1(2)

w2(1)

w5(1)

w3(2) w4(1)
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Indeed, in this case, online merge causes a generalization: the DSFA generates the

utterances w1 w5 w3 w4 and w1 w5 w3 which did not occur in the input.

The algorithm successively maps words in the current utterance to existing paths in

the automaton, starting in q0 for the first word. The main loop of the algorithm (step 6)

handles the i-th word wi by trying to add it as an outgoing edge from state q (step 7).

First, the algorithm checks if wi matches the label of an outgoing edge from q (step 8).

If it does, an online merge occurs: instead of adding the new word as a new edge, it

is merged with an existing edge in the automaton. Online merge is performed locally

between an edge that should represent one word in the input utterance and an existing

edge in the automaton, so it explicitly ends when the input utterance ends.

Implementing even more generalizations, the algorithm also performs an offline merge,

which is another type of state merging using the Merge function (step 14). Offline merge

occurs between two existing paths in the automaton. Each path represents one or more

utterances that have already been processed by the algorithm. When the algorithm

determines that two sister states, q1, q2, are “similar”(in term of their outgoing edges, see

below), offline state merging is performed: all edges that enter q2 are changed to point to

q1, all edges that leave q2 are changed to become outgoing edges from q1, and q2 is removed

from the automaton (steps 7–8 in algorithm 3). Offline merge also involves recursive calls

to check the descendant nodes of the two merged nodes. Hence, offline merge actually

merges paths rather than single edges. Offline merge involves only a finite number of

recursive calls, because when qi, qj are candidates for an offline merge, necessarily for some

w1, w2 ∈ Σ there exists q ∈ Q such that δ(q, w1) = qi and δ(q, w2) = qj (conditions 8, 14 in

algorithm 1). In other words, offline state merging is only done between siblings. Offline

merge is performed on similar states: statistical similarity is verified using an algorithm

called Different (algorithm 4) which is adapted from Carrasco and Oncina (1994). This

algorithm checks the similarity between the labels and the probabilities of all outgoing

edges from a given pair of nodes. When this similarity measure exceeds a given threshold,

merge is licensed.
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At the end of the algorithm (step 21), when each string in the main corpus is repre-

sented by a path (starting at q0) in the output automaton, the transition probabilities

are calculated. We follow Carrasco and Oncina (1994) and define the probability of an

edge (qi, σ, qj) as its weight (weight(qi, σ, qj)) divided by in(qi).

4.3 Properties of the Algorithm

We now prove some properties of the algorithm. In the following discussion, let M =

〈q,Σ, P, q0〉 be the result of applying algorithm 1 to a non-empty sequence of utterances.

Lemma 1. M is connected.

Proof. The algorithm starts from a connected directed graph (representing the first ut-

terance in the input) and each time a new state is added, an edge from some existing

state to this new state is created (steps 11, 19 in the algorithm). Also, there is no step

that deletes edges.

We now show that M is acyclic. Specifically, we show that the algorithm starts from

an acyclic directed graph and adds edges (q, w, r) such that q, r ∈ Q only if a path from

q to r already exists in the graph.

Lemma 2. When algorithm 1 adds an edge (q, wi, r) to the automaton, either some edge

(q, wj, r) already exists or r is a new node.

Proof. The algorithm only adds an edge between two existing nodes in step 17 and in the

Merge function. Step 17 adds the edge (q, wi, r) such that q, r ∈ Q. It is only performed

if for some w ∈ Σ and r ∈ Q, δ(q, w) = r (step 16).

In addition, the Merge algorithm (algorithm 3) can add edges between existing states.

In step 14 of algorithm 1, Merge is called with q′ and r′; this is conditioned on q′ =

δ(q, wi) and δ(q, wj) = r′. Consequently, if an edge (q, wj, q
′) is added by Merge, this is

conditioned by an already existing edge (q, wi, q
′).

Corollary 1. M is acyclic.
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Proof. The algorithm starts from an acyclic automaton (representing the first utterance

in the input) in which q0 ∈ Q is the initial state and qend ∈ Q is the final state. By

lemma 2, when an edge (q, wi, r) is added to the automaton either r is a new node with

no outgoing edges, or some edge (q, wj, r) already exists. Hence no edge is added that

can close a cycle.

Another important point is the deterministic character of the model.

Lemma 3. If algorithm 1 adds an edge (q, w, r) to the automaton, no edge (q, w, r′) exists

in the automaton such that r 6= r′.

Proof. The algorithm starts with a deterministic automaton and adds a new edge explic-

itly in steps 17, 20, and implicitly by calling the utility functions AddNode and Merge. In

steps 17, 20 a new edge (q, wi, r) is added only if δ(q, wi) is not defined (this condition is

verified in step 8 of the algorithm and the addition of an edge is only in the else section),

so the lemma holds for these cases.

The utility function AddNode (algorithm 2) is called twice from algorithm 1. The

first call (step 11) adds the edge (q, wi, r) and is conditioned by an already existing edge

(q, wi, qend), but these two edges are immediately merged. The second call to AddNode

(step 19) adds the edge (q, wi, r) and is performed only if δ(q, wi) is not defined (this

condition is verified in step 8 of the algorithm and the second call to AddNode is only in

the else section).

When two states qi, qj ∈ Q are found to be compatible and are merged, the resulting

automaton could in principle become non-deterministic. For this to happen, there should

be two edges (qi, w, r) and (qj, w, r
′) for some w ∈ Σ such that r 6= r′. If this were the

case, the Merge function would continue recursively and merge the states r, r′ as a result

of step 2–6 in algorithm 3. Note that the merge of qi, qj occurs only if r, r′ are compatible

and merged as well (step 6 in algorithm 3). Hence, if two edges (qi, w, r) and (qj, w, r
′)

exist and merge occurs for qi and qj, it is assured that at the end of this merge there is

only one transition to a next state labeled by w ∈ Σ.
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Corollary 2. M is deterministic.

Having established that M is a connected, acyclic, deterministic graph, we now prove

that it is indeed a DSFA.

Lemma 4. Let M, q, w be the input and r be the output of the function AddNode. Then,

in(r) =
∑

(q′,w′,r)∈M weight(q′, w′, r).

Proof. AddNode adds the node r to M , with in(r) = 1 and final(r) = 0. Addition-

ally, it sets q as the only node connected to r with w(q, w, r) = 1. Consequently,∑
(q′,w′,r)∈M weight(q′, w′, r) = w(q, w, r) = 1 = in(r).

Lemma 5. Let M = 〈Q,Σ, P, q0〉 , q1, q2 be the input of the function Merge. The following

is invariant of the Merge algorithm: For every q 6= q0 ∈ Q, in(q) =
∑

(q′,w,q)∈M weight(q′, w, q).

Proof. Observe that the function Merge only affects in(q1) and in(q2) and does not change

weights of any edge in M . Steps 2–6 can only result in the function returning without

affecting any node. If conditions 2–6 do not hold, all the incoming edges to q2 are changed

to go to q1 and all the out edges from q2 are changed to leave q1 (steps 7–8). Then (step 9),

in(q1) is changed to be the sum of in(q1) and in(q2). If the invariant holds on entering the

function, in(q1) =
∑

(q′,w,q1)∈M weight(q′, w, q1) and in(q2) =
∑

(q′,w,q2)∈M weight(q′, w, q2).

Consequently, after the algorithm terminates, in(q1) =
∑

(q′,w,q)∈M weight(q′, w, q), as

required, and q2 is deleted from M (step 9).

Lemma 6. Let Mk = 〈q,Σ, P, q0〉 be the automaton created by algorithm 1 after k > 0

input utterances (step 20). For each q 6= q0 ∈ Q, in(q) is the sum of the weights of all

incoming edges to q: in(q) =
∑

(q′,w,q)∈Mk
weight(q′, w, q).

Proof. By induction on k.

Base: For k = 1, consider steps 1–2 of the algorithm. At the end of step 2, for every

state q ∈ Q, q 6= q0, the in-degree of q is 1, in(q) is 1 and for every edge (qi, σ, qj),

weight(qi, σ, qj) is 1; hence the lemma holds for k = 1.
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Step: Assume that the lemma holds for k. Let w = w1...wn be the k + 1-th input

utterance. The following operations can take place (for each i, 1 ≤ i ≤ n):

• Steps 8–15: if i 6= n and q′ = qend, a new node r is added and the lemma holds

as a result of lemma 4. Then, (q, wi, q
′) is deleted, and in its stead (q, wi, r) is

added. At the same time, in(r) is set to weight(q, wi, q
′) and in(qend) is subtracted

weight(q, wi, q
′). By the induction hypothesis, in(qend) was the sum of the weights

of all incoming edges to qend. Hence, after (q, wi, q
′) is deleted and in(qend) is

subtracted weight(q, wi, q
′), the lemma still holds. In addition, r is a new node

and by adding (q, wi, r) and at the same time setting in(r) to weight(q, wi, q
′), the

lemma holds for r as well. Otherwise, if i = n or q′ 6= qend, since δ(q, wi) is defined

and q′ = δ(q, wi), weight(q, wi, q
′) is incremented by 1 and at the same time in(q′) is

incremented by 1 (step 12). By the induction hypothesis, in(q′) was the sum of the

weights of all incoming edges to q′. Hence, after weight(q, wi, q
′) is incremented by

1 and in(q′) is incremented by 1, the lemma still holds. If the condition of step 14

is satisfied, the function Merge is called and the lemma still holds as a result of

lemma 5.

• Steps 16–20: if the condition of step 16 is satisfied, an edge (q, wi, r) is added

with weight(q, wi, r) = 1 and at the same time in(r) is incremented by 1. By the

induction hypothesis, in(r) was the sum of the weights of all incoming edges to r.

Hence, after adding new income edge to r with weight = 1 and adding 1 to in(r),

the lemma still holds. Otherwise, if i 6= n, the function AddNode is called and the

lemma holds as a result of lemma 4. Otherwise, a new incoming edge to qend is

added, (q, wi, qend), with weight(q, wi, qend) = 1 and at the same time in(qend) is

incremented by 1. By the induction hypothesis, in(qend) was the sum of the weights

of all incoming edges to qend. Hence, after adding new income edge to qend with

weight = 1 and adding 1 to in(qend), the lemma still holds.
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Lemma 7. Let Mk = 〈q,Σ, P, q0〉 be the automaton created by algorithm 1 after k >

0 input utterances (step 20). For each q ∈ Q, in(q) =
∑

(q,w,q′)∈Mk
weight(q, w, q′) +

final(q).

Proof. By induction on k.

Base: For k = 1, consider steps 1–2 of the algorithm. At the end of step 2, for every

state q ∈ Q, q 6= qend, the out-degree of q is 1, in(q) is 1 and final(q) is 0 and for

every edge (qj, σ, qi), weight(qj, σ, qi) is 1; hence the lemma holds for every state q ∈ Q,

q 6= qend. For qend, its out-degree is 0, in(qend) is 1 and final(qend) is 1; hence the lemma

holds for k = 1.

Step: Assume that the lemma holds for k. Let w = w1...wn be the k + 1-th input

utterance. Consider the loop on i in steps 6–20; we prove that for every q ∈ Q, in(q) is

incremented by 1 in the j-th iteration if and only if either final(q) is incremented by 1

in the same iteration or
∑

(q,w,q′)∈Mk+1
weight(q, w, q′) is incremented by 1 in the j + 1-th

iteration.

• Steps 8–15: in(q′) is incremented by 1 in step 12 and in the same iteration if i = n,

final(q′) is incremented by 1. If i 6= n, one of the following can occur in the next

iteration:

– Steps 8–15: if δ(q, wi) is defined, weight(q, wi, q
′), i.e.,

∑
(q,w,q′)∈Mk+1

weight(q, w, q′)

is incremented by 1.

– Steps 16–20: if the condition of step 16 is satisfied, an edge (q, wi, r) is added

with weight(q, wi, r) = 1, i.e.,
∑

(q,w,q′)∈Mk+1
weight(q, w, q′) is incremented by

1.

• Steps 16–20: in(r) is incremented by 1 in step 17. This is under the condition that

i 6= n. Then, in the next iteration, one of the following can occur:

– Steps 8–15: if δ(q, wi) is defined, weight(q, wi, q
′), i.e.

∑
(q,w,q′)∈Mk+1

weight(q, w, q′)

is incremented by 1.
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– Steps 16–20: if the condition of step 16 is satisfied, an edge (q, wi, r) is added

with weight(q, wi, r) = 1, i.e.,
∑

(q,w,q′)∈Mk+1
weight(q, w, q′) is incremented by

1.

Also, in step 20, in(qend) is incremented by 1 and in the same step final(qend) is

incremented by 1.

By the induction hypothesis, the lemma holds for k. As a result of the above, in

the k + 1-th input utterance, for every q ∈ Q, in(q) is incremented by 1 in the j-

th iteration if and only if either final(q) is incremented by 1 in the same iteration or∑
(q,w,q′)∈Mk+1

weight(q, w, q′) is incremented by 1 in the j + 1-th iteration. Hence the

lemma holds for k + 1.

Corollary 3. M is a DSFA

Proof. By lemma 7, for every node qi,
∑out(qi)
j=1 weight(qi, wj, qj) + final(qi) = in(qi).

Hence, for every qi,
∑out(qi)
j=1 (weight(qi, wj, qj)/in(qi)) + (final(qi)/in(qi)) = 1 (dividing

by in(qi)). According to step 21 of the algorithm, pij(w) = (weight(qi, w, qj)/in(qi)) and

pfi = (final(qi)/in(qi)). If the edge (qi, w, qj) does not exist, it means that pij(w) =

0 for every w ∈ Σ. Therefore, for every node qi ∈ Q,
∑
qj∈Q

∑
w∈Σ pij(w) + pfi = 1.

Consequently, the output of the algorithm is DSFA.

4.4 Examples

As an example of the operation of the algorithm, consider a corpus consisting of the

following utterances:

Eve wants a cookie

Eve wants this milk

Mommy wants this cookie

First, an automaton is built to represent the first utterance (the numbers on the edges

stand for the value of weight):
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q0start q1 q2 q3 q4

Eve(1) wants(1) a(1) cookie(1)

Properties of all qi ∈ Q: in(qi) = 1 for 0 ≤ i ≤ 4, final(qi) = 0 for 0 ≤ i ≤ 3 and

final(q4) = 1.

Next, the utterance Eve wants this milk is added. The first two words; ‘Eve wants’

induce only changes in the weights, following step 8. Then, the suffix this milk produces

new states and a path that ends at qend = q4 as a result of steps 19 and 11; the automaton

after adding Eve wants this milk is:

q0start q1 q2

q3

q4

q5

Eve(2) wants(2)

a(1)

this(1)

cookie(1)

milk(1)

Properties of all qi ∈ Q: in(qi) = 2 for 0 ≤ i ≤ 2, in(qi) = 1 for i = 3, 5, final(qi) = 0

for i = 0, 1, 2, 3, 5, in(q4) = 2, final(q4) = 2.

When the string Mommy wants this cookie is added to the automaton, Mommy is

added as an edge between existing states, due to step 16 in the algorithm. Then, the

word wants only causes weight increment as in step 8. When the word this is added, it

causes weight increment in addition to merge as a result of condition 14. This is because

the algorithm finds that q3 already has an output edge labeled by the word cookie which

is also the next word in the current input string, and therefore merges q3 and q5. The

resulting automaton is:

q0start q1 q2 q3 q4

Eve(2)

Mommy(1)

wants(3)

a(1)

this(2)

cookie(2)

milk(1)

Properties of all qi ∈ Q: in(qi) = 3 for 0 ≤ i ≤ 3, in(q4) = 2, final(qi) = 0 for
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0 ≤ i ≤ 3, final(q4) = 2

Finally, as a result of step 21 of the algorithm, the probabilities are calculated and

the resulting automaton is:

q0start q1 q2 q3 q4

Eve(2/3)

Mommy(1/3)

wants(3/3)

a(1/3)

this(2/3)

cookie(2/3)

milk(1/3)

Note that the string s = Mommy wants this milk, which does not occur in the input, is

accepted by the DFSA with p(s) = p0,1(Mommy)×p1,2(wants)×p2,3(this)×p3,4(milk)×

pf4 = 1
3
× 3

3
× 2

3
× 1

3
× 2

2
= 2
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5 Results and Evaluation

We apply our algorithm to several American English corpora available from CHILDES

(MacWhinney, 2000), reflecting child–adult interactions involving children from age 1;6

to 3;0. Specifically, we use the Brown (1973) and the Suppes (1974) corpora. Each

corpus is an independent experiment. We also use a one-month slice of the (British

English) Thomas dense corpus (Lieven et al., 2009). This corpus is divided into two

parts: Thomas-A and Thomas-B. Both record the same child, but Thomas-A is denser

than Thomas-B. Thomas-A reflects a very intensive period in which Thomas is recorded

for one hour, five times a week, every week for the entire period. In Thomas-B, Thomas

is recorded for one hour, one week in every month. The use of this corpus will help us

test the claim that data density has an effect on the learning outcome.

The files in each corpus are ordered chronologically; the test material in each case

consists of the multi-word (length > 2) child utterances in the last file of the corpus;

training material consists of all adult multi-word utterances in all earlier files, as well

as the adult utterances in the last file. This reflects the assumption that children learn

mainly from the input directed to them.

We execute Algorithm 1 on each of the training corpora. The result is a DSFA
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accepting vastly more utterances than the input ones (since the DSFA is acyclic, this is

still a finite number). Details on the corpora and the resulting DSFA are listed in Table 4.

Corpus Age Training (CDS only) Test |L(M)|
Utterances Tokens Utterances Tokens Utterances

Eve 1;6—2;3 11,640 54,419 224 875 3e+24
Adam 2;3—3;0 8,606 40,310 792 3,166 2e+23
Sarah 2;3—2;7 4,125 17,182 106 252 5e+16
Nina 1;11—2;5 16,076 85,549 458 1,632 1e+28
Thomas-A 3;1–3;2 19,659 109,537 357 1,269 3e+32
Thomas-B 3;3–3;7 17,581 98,552 436 2,192 4e+32

Table 4: Size of the corpora and the resulting DSFA. Training data: CDS

To evaluate the recall of the model, we count the number of utterances in the test

corpus that are accepted by the DSFA produced by the algorithm, and report the ratio

of accepted utterances to the total number of test utterances. We also report the average

utterance probability (see Definition 3) and its standard deviation (StD); the average

probability and StD of only the accepted utterances; and the average per-word probability

and StD of accepted utterances. The per-word probability of an utterance is calculated by

summing the probabilities of the edges in the path accepting this utterance in the DSFA

and dividing this sum by the length of the utterance. The results, which are summarized

in table 5, show that between 59–79% of the child’s utterances, depending on the test

corpus, can be derived. Given the small size of the training corpora and their sparse

nature, these are excellent results, comparable with the best reported results on this task

(which, on much denser corpora, amount to 70-84% recall, see section 2.3).

Of course, excellent recall is always possible, at the expense of poor precision. As

noted above, evaluating precision is more difficult. In order to assess the over-generation

potential of our model, we create a corresponding corpus for each child corpus, containing

all the utterances in the test corpus in reverse word order.3 Since English is relatively

rigid-order, many of these reversed utterances are clearly ungrammatical. We then test

each DSFA on the reversed test-set. The results are shown in Table 5; only approxi-

3This is similar to our evaluation of the TBM, see section 3.2.
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Corpus Test Accepted Utterance Prob. Accepted Prob. Per-word Prob.
# % Avg. StD Avg. StD Avg. StD

Eve 224 176 78.57 25 19 32 22 150,839 46,875
(reversed) 98 43.75 3 2 7 2 71,443 6,014
Adam 792 471 59.47 70 48 117 62 177,296 36,771
(reversed) 278 35.10 7 5 20 8 86,091 7,846
Sarah 106 62 58.49 19 3 33 4 96,398 7,182
(reversed) 31 29.24 8 3 28 5 107,464 9,815
Nina 458 353 77.07 13 7 16 8 106,849 74,816
(reversed) 166 36.24 0.2 0.1 0.5 0.1 63,712 5,402
Thomas-A 357 277 69.75 49 18 71 22 130,749 12,061
(reversed) 171 47.89 9 4 19 5 69,434 6,649
Thomas-B 436 280 64.22 45 19 70 23 133,973 19,172
(reversed) 212 48.63 15 10 31 14 91,113 16,130

Table 5: Evaluation results (training on CDS only). Probabilities and StD must be
multiplied by 10−7

mately 29–48% of the reversed utterances are accepted by the DSFA. More significantly,

the average probability of the reversed utterances is dramatically lower than the average

probability of the actual child utterances in each case: the latter is between 3 and 65

times higher than the former. These differences are retained also when only the accepted

utterances are averaged, and when the per-word averages are compared. Note that these

results hold for six different corpora. In all corpora the average probability of the re-

versed utterances is dramatically lower than the average probability of the actual child

utterances.

Although it is assumed that children learn mainly from adult input, there is room to

also test the model in a scenario where learning is from child and adult utterances. In

this case, the training sets are larger, but presumably include less accurate data. The

size of each corpus (the number of multi-word utterances in the corpora) is detailed in

table 6 below.

The results, which are summarized in table 5, show that between 68–85% of the

child’s utterances, depending on the test corpus, can be derived while training data is CS

and CDS. The results also show that a larger training set (e.g., the Nina corpus) yields

higher recall. More significantly, only approximately 40–60% of the reversed utterances
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Corpus Training Test |L(M)|
Utterances Tokens Utterances Tokens Utterances

Eve 19,536 85,350 224 875 6.8e+26
Adam 20,443 75,213 792 3,166 1.9e+24
Sarah 6,425 23,330 106 252 1.2e+17
Nina 38,736 175,748 458 1,632 8.5e+29
Thomas-A 25,776 132,836 357 1,269 1.2e+33
Thomas-B 25,110 131,652 436 2,192 1.56e+34

Table 6: Size of the corpora and the resulting DSFA. Training data: CDS and CS

are accepted by the DSFA and the average probability of the reversed utterances is

dramatically lower than the average probability of the actual child utterances in each

case: the latter is between 3 and 30 times (about one order of magnitude) higher than

the former. These differences are retained also when only the accepted utterances are

averaged, and when the per-word averages are compared. Comparing these results with

the previous ones, where training data are only CDS, shows that when the training data

is sparser but more accurate (CDS only), recall decreases slightly but over-generation

much less so.

Corpus Test Accepted Utterance Prob. Accepted Prob. Per-word Prob.
# % Avg. StD Avg. StD Avg. StD

Eve 224 181 80.80 26 17 34 21 139,629 44,722
(reversed) 117 52.23 9 6 16 9 71,608 5,712
Adam 792 555 70.08 255 186 363 221 212,617 57,154
(reversed) 474 59.85 22 16 36 21 88,713 26,088
Sarah 106 72 67.92 83 16 123 18 171,088 110,451
(reversed) 41 38.68 15 5 38 8 81,211 65,940
Nina 458 389 84.93 34 17 40 19 120,337 74,169
(reversed) 276 60.26 1 5 2 6 88,455 7,107
Thomas-A 357 277 77.59 79 26 102 29 135,230 11,773
(reversed) 201 56.30 12 5 22 7 62,656 5,541
Thomas-B 436 326 74.77 66 28 88 32 141,397 13,617
(reversed) 258 59.17 16 9 28 12 80,726 5,721

Table 7: Evaluation results (training on CDS and CS). Probabilities and StD must be
multiplied by 10−7

We also examine the number of novel utterances in the input, since exact repetitions

are trivially accepted by the model and if most utterances of the test corpus are exact
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repetitions, excellent recall is trivial. In Table 8 we report the number of exact repetitions

(non-novel utterances) in the test corpus. Note that all repeated utterance are non-novel,

but in our model, sub-strings of input utterances are not necessarily themselves accepted

utterances. The results show that in all corpora novel utterances are more than 75% of

the test corpus.

Corpus Test Exact repetitions
# %

Eve 224 7 3.12
Adam 792 79 9.97
Sarah 106 27 25.47
Nina 458 39 8.51
Thomas-A 357 51 14.28
Thomas-B 436 54 12.38

Table 8: The amount of exact repetitions in test corpus

5.1 Clustering of Words

A bi-product of learning is clustering of words that occur in similar contexts. In the

output DSFA edges between two specified states are, in most cases, labeled by words in

the same category. As a particular example, the DSFA constructed from the Eve training

corpus includes a path consisting of three edges; the first is labeled by I (weight = 1293)

and you (1171), among others; the second is labeled by several verbs, including want

(229) and have (302). The third edge, which leads to an accepting state, has dozens

of labels, including nut (12), flower (9), crayons (8), plate (7), truck (7), train (6), etc.

As another example, the edges between two states are labeled by duck(2), dog(1) and

squirrel(1). Another example is two states that are connected by edges labeled by verbs

(in base form): go(4), see(3), get(3), find(3), play(3), drink(3), want(2), catch(1) and

walk(1). One more evidence is some edges that lead from one state to the end state that

are labeled by table(3), briefcase(1), spoon(1), wastebasket(1), box(1), napkin(1) and

chair(1). Such examples abound, and indicate a certain natural categorization of words

according to their contexts in the input.
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5.2 Comparison to Other Learning Systems

We compare the evaluation results of our model to the results of two other learning

algorithms: ADIOS (Solan et al., 2005) and EMILE (Adriaans, 1992, 2001; Adriaans and

Vervoort, 2002) (for more details, see section 2.2).

In order to execute these algorithms we use the ADIOS demo available at http:

//adios.tau.ac.il/algorithm.html and an implementation of EMILE.4 Since we use

demos of the programs, both systems are limited by the amount of training data they

can learn from, due to memory restrictions. Hence, the training data for the evaluation

of the results include only 730 CDS utterances from the last file of the Eve corpus and

the test corpus consists of 224 child utterances in the same file. Table 9 shows the results

of the three algorithms.

system corpus Accepted Utterance Prob.
# % Avg. StD

EMILE Test 33 15%
Reverse 0 0%

ADIOS Test 39 17%
Reverse 1 0%

Our Test 56 25% 794e-07 323e-07
Reverse 12 5% 121e-07 8e-07

Table 9: Comparison of The Results

The results show that the recall of our algorithm is about 50% higher than the others

(25% compare with 15-17%). In addition, although our algorithm succeeded to generate

12 out of 224 reversed-order utterances, the average probability of the reverse utterances

is dramatically lower than the average probability of the test utterances: the latter is

approximatly 7 times higher than the former.

4We are grateful to Bilal Saleh and Emeel Byadse for their implementation of the EMILE system.
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6 Conclusion

We presented a formal, computational model of early syntactic acquisition. Inspired

by various psycholinguistic observations, our model implements well-established findings

of cognitive psychology as architectural features and constraining biases. At the same

time, its mathematical properties are well understood, and it lends itself to rigorous

computational evaluation. Indeed, we demonstrate that the language learning algorithm

we propose can learn the early language of five different children with high accuracy. This

work thus consolidates insights from cognitive science, psycholinguistics and computer

science to provide a cognitively plausible computational model of language acquisition,

limited to the earliest syntactic structures.

This work can be extended in various directions. First, the importance of morphol-

ogy in syntactic acquisition is unquestionable. Our model currently ignores morphology

altogether and views all words as atomic tokens. In the future, we intend to refine the

model in a way that will facilitate the acquisition of morphology and syntax in tan-

dem; obviously, finite-state automata are adequate computational devices for expressing

the morphological structure of natural languages, so we are confident that only a rather

orthodox, natural extension of our current model would be required.

Our algorithm currently creates acyclic automata. While we strongly believe that

iteration and recursion are extremely constrained in actual natural language use, a model

that allows cycles (corresponding to recurring structures) but constrains the number of

times such cycles can be traversed, is clearly a more elegant way of expressing the structure

of natural languages. This direction is left for future research.

Finally, we only evaluated our model on English. Several corpora of child–adult

interactions are now available in over 25 languages, and we certainly intend to evaluate

our algorithm on more languages in the future. We are quite confident that the results

will remain as robust.
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