
Highly constrained unification grammars

Daniel Feinstein
Department of Computer Science

University of Haifa
31905 Haifa, Israel

dfeinstein@gmail.com

Shuly Wintner
Department of Computer Science

University of Haifa
31905 Haifa, Israel

shuly@cs.haifa.ac.il

April 30, 2008

Abstract

Unification grammars are widely accepted as an expressive means for describing the structure of
natural languages. In general, the recognition problem is undecidable for unification grammars. Even
with restricted variants of the formalism,off-line parsablegrammars, the problem is computationally
hard. We present two natural constraints on unification grammars which limit their expressivity and
allow for efficient processing. We first show thatnon-reentrantunification grammars generate exactly
the class of context-free languages. We then relax the constraint and show thatone-reentrantunification
grammars generate exactly the class of mildly context-sensitive languages. We thus relate the commonly
used and linguistically motivated formalism of unificationgrammars to more restricted, computationally
tractable classes of languages.

1 Introduction

Unification grammars (Shieber, 1986; Shieber, 1992; Carpenter, 1992; Wintner, 2006a) have originated as
an extension of context-free grammars, the basic idea beingto augment the context-free rules with non
context-free annotations (feature structures) in order toexpress additional information. They can describe
phonological, morphological, syntactic and semantic properties of languages simultaneously and are thus
linguistically suitable for modeling natural languages. Several formulations of unification grammars have
been proposed, and they are used extensively by computational linguists to describe the structure of a variety
of natural languages.

Unification grammars (UGs) are Turing complete: determining whether a given string is generated by a
given grammar is as hard as deciding whether a Turing machinehalts on the empty input (Johnson, 1988).
Therefore, the recognition problem for unification grammars is undecidable in the general case. In order
to ensure its decidability, several constraints on unification grammars, commonly known as theoff-line
parsability (OLP) constraints, were suggested, such that the recognition problem is decidable for off-line
parsable grammars (Jaeger, Francez, and Wintner, 2005). The idea behind all the OLP definitions is to rule
out grammars which license trees in which an unbounded amount of material is generated without expanding
the frontier word. This can happen due to two kinds of rules:ǫ-rules (whose bodies are empty) and unit
rules (whose bodies consist of a single element). However, even for unification grammars with no such rules
the recognition problem is NP-hard (Barton, Berwick, and Ristad, 1987).

In order for a grammar formalism to make predictions about the structure of natural language its gener-
ative capacity must be constrained. It is now generally accepted that Context-free Grammars (CFGs) lack



the generative power needed for this purpose (Savitch et al., 1987), due to natural language constructions
such as reduplication, multiple agreement and crossed agreement. Several linguistic formalisms have been
proposed as capable of modeling these phenomena, includingLinear Indexed Grammars (LIG) (Gazdar,
1988), Head Grammars (Pollard, 1984), Tree Adjoining Grammars (TAG) (Joshi, 2003) and Combinatory
Categorial Grammars (Steedman, 2000). In a seminal work, Vijay-Shanker and Weir (1994) prove that all
four formalisms are weakly equivalent. They all generate the class ofmildly context-sensitive languages1

(MCSL), for which recognition algorithms with time complexityO(n6) are known (Vijay-Shanker and Weir,
1993; Satta, 1994). As a result of the weak equivalence of four independently developed (and linguistically
motivated) extensions of CFG, the class MCSL is considered to be linguistically meaningful, a natural class
of languages for characterizing natural languages.

The main objective of this work is to define constraints on UGswhich naturally limit their generative
capacity. We define two natural and easily testable syntactic constraints on UGs which ensure that gram-
mars satisfying them generate the context-free and the mildly context-sensitive languages, respectively. The
contribution of this result is twofold:

• From a theoretical point of view, constraining unification grammars to generate exactly the class
MCSL results in a grammatical formalism which is, on one hand, powerful enough for linguists to
express linguistic generalizations in, and on the other hand as cognitively adequate as the other MCSL

formalisms;

• Practically, such a constraint may provide efficient recognition algorithms for the limited class of
unification grammars, although we do not explore such possibilities in this paper.

This result is closely related to the result of Keller and Weir (1995), who define a version of unification
grammars which is more expressive than MCSL, yet has a polynomial time recognition algorithm. Our work
attempts to address precisely the class MCSL, and the definitions we provide are inherently different.

We define some preliminary notions in section 2 and then show aconstrained version of unification
grammars which generates the class CFL of context-free languages in section 3. Section 4 presents the main
result, namely a restricted version of unification grammarsand a mapping of its grammars to LIG, estab-
lishing the proposition that such grammars generate exactly the class MCSL. We conclude with suggestions
for future research. To facilitate readability, most of theproofs were moved to the appendices.

2 Preliminary notions

2.1 Linear indexed grammars

A CFG is a four-tupleGcf = 〈VN , Vt,R
cf , S〉 whereVt is a set ofterminals, VN is a set ofnon-terminals,

including thestart symbolS, andRcf is a set of productions, assumed to be in a normal form where each
rule has either (zero or more) non-terminals or a single terminal in its body, and where the start symbol never
occurs in the right hand side of rules. The set of all such context-free grammars is denoted CFGS.

In a linear indexed grammar (LIG),2 strings are derived from nonterminals with an associated stack
denotedA[l1 . . . ln], whereA is a nonterminal, eachli is a stack symbol, andl1 is the top of the stack. Since
stacks can grow to be of unbounded size during a derivation, some way of partially specifying unbounded

1The termmildly context-sensitivewas coined by Joshi, Levy, and Takahashi (1975), who used it to refer to a more informal
class of languages. In this paper we use this term to denote the class of tree adjoining languages, a trend which has becomecommon
in the literature.

2The definition is based on Vijay-Shanker and Weir (1994).
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stacks in LIG productions is needed. We useA[l1 . . . ln ∞] to denote a nonterminalA associated with any
stackη whose topn symbols arel1, l2 . . . , ln. The set of all nonterminals inVN , associated with stacks
whose symbols come fromVs, is denotedVN [V ∗

s ].

Definition 1 (LIG). A Linear Indexed Grammaris a five tupleGli = 〈VN , Vt, Vs,R
li, S〉 whereVt, VN

andS are as above,Vs is a finite set of indices (stack symbols) andRli is a finite set of productions in one
of the following two forms:

• fixed stack:N [p1 . . . pn] → α

• unboundedstack:N [p1 . . . pn ∞] → α or N [p1 . . . pn ∞] → αN ′[q1 . . . qm ∞]β

whereN,N ′ ∈ VN , p1 . . . pn, q1 . . . qm ∈ Vs, n,m ≥ 0 andα, β ∈ (Vt ∪ VN [V ∗
s ])∗.

Example 1(LIG). Gli
1 = 〈VN , Vt, Vs,R

li, S〉 is a LIG, where:

• VN = {S,N2, N3}

• Vt = {a, b}

• Vs = Vt

• Rli = {r1, r2, r3, r4, r5, r6, r7}, where

1. r1 = S[ ] → N2[ ]

2. r2 = N2[ ∞] → N2[a ∞]a

3. r3 = N2[ ∞] → N2[b ∞]b

4. r4 = N2[ ∞] → N3[ ∞]

5. r5 = N3[a ∞] → aN3[ ∞]

6. r6 = N3[b ∞] → bN3[ ∞]

7. r7 = N3[ ] → ǫ

A crucial characteristic of LIG is that onlyonecopy of the stack can be copied to asingleelement in the
body of a rule. If more than one copy were allowed, the expressive power would grow beyond MCSL.

Definition 2 (LIG derivation). Given a LIG〈VN , Vt, Vs,R
li, S〉, thederivation relation‘⇒li’ is defined as

follows: for all Ψ1,Ψ2 ∈ (VN [V ∗
s ] ∪ Vt)

∗ andη ∈ V ∗
s ,

• If Ni[p1 . . . pn] → α ∈ Rli then

Ψ1Ni[p1 . . . pn]Ψ2 ⇒li Ψ1αΨ2

• If Ni[p1 . . . pn ∞] → α ∈ Rli then

Ψ1Ni[p1 . . . pnη]Ψ2 ⇒li Ψ1αΨ2

• If Ni[p1 . . . pn ∞] → αNj [q1 . . . qm ∞]β ∈ Rli then

Ψ1Ni[p1 . . . pnη]Ψ2 ⇒li Ψ1αNj [q1 . . . qmη]βΨ2

Thelanguagegenerated byGli is L(Gli) = {w ∈ V ∗
t | S[ ]

∗
⇒li w}, where ‘

∗
⇒li’ is the reflexive, transitive

closure of ‘⇒li’.

Example 2(LIG). For Gli
1 of example 1,L(Gli

1 ) = {ww | w ∈ {a, b}}.
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2.2 Unification grammars

We assume familiarity with theories of feature structures as formulated, e.g., by Wintner (2006a) or Wintner
(2006b). We summarize below the concepts that are needed forthe rest of this paper in order to set up
notation.

Definition 3 (Signature). A signatureis a structureS = 〈ATOMS, FEATS, TAGS〉, whereATOMS is a finite
set of atoms,FEATS is a finite set of features andTAGS is an enumerable set of variables.

Unless explicitly mentioned, the set TAGS of variables is assumed to be{ 1 , 2 , . . .}.

Definition 4 (Feature structures). Given a signatureS, the setFS(S) of feature structures (FSs)is the
least set satisfying the following two clauses:

1. A = Xa ∈ FS(S) for anya ∈ ATOMS andX ∈ TAGS; A is said to beatomicandX is thetagof A.

2. A = X[f1 : A1, . . . , fn : An] ∈ FS(S) for n ≥ 0, X ∈ TAGS, f1, . . . , fn ∈ FEATS and
A1, . . . ,An ∈ FS(S), wherefi 6= fj if i 6= j. A is said to becomplex, and X is the tag of A.
If n = 0, A = X[] is anempty FS.

Meta-variablesA,B,C, with or without subscripts, range overFS.

Example 3(Feature structures). Consider a signature consisting ofATOMS = {a}, FEATS = {F,G}. Then
A1 = 4 a is an FS by the first clause of the definition,A2 = 2 [ ] is an empty FS by the second clause,
A3 = 3

[

F : 4 a
]

is an FS by the second clause, andA4 is a FS by the second clause:

A4 = 1

[

G : 3
[

F : 4 a
]

F : 2 [ ]

]

Tags that occur only once in a FS can be omitted, soA4 above can be written thus:

[

G :
[

F : a
]

F : [ ]

]

Definition 5 (Paths). A path (overFEATS) is a finite sequence of features, and the setPATHS = FEATS∗ is
the collection of all paths.

Meta-variablesπ, µ (with or without subscripts) range over paths.ǫ is the empty path, denoted also by
‘〈〉’. Path concatenation is denoted using either ‘·’ or juxtaposition. A path is a purely syntactic notion:
every sequence of features constitutes a path. Usually, interesting paths are those that can be interpreted as
actual paths in some FS, starting from the outermost level; we useΠA to denote the paths of a FSA. The
value of the pathπ in A, which is a sub-structure ofA, is denotedpval(A, π).

When two different paths in some FSA have the same value we say that they arereentrant.

Definition 6 (Reentrancy). Two pathsπ1 and π2 are reentrant in a FSA if pval(A, π1) = pval(A, π2),

denoted alsoπ1
A

! π2. A FSA is reentrant if there exist two pathsπ1, π2 ∈ ΠA such thatπ1 6= π2 and

π1
A

! π2.

Definition 7 (FS subsumption). Let A1, A2 be FSs over the same signature.A1 subsumesA2, denoted
A1 ⊑ A2, if the following conditions hold:
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1. ΠA1
⊆ ΠA2

; furthermore, if pval(A1, π) is an atomic FS then pval(A2, π) is an atomic FS with the
same atom;

2. if π1
A1
! π2 thenπ1

A2
! π2.

Definition 8 (Unification). Theunification of two FSsA1 andA2, denotedA1⊔A2, is the least upper bound
of A1 andA2 with respect to subsumption. If no upper bound exists, the unification fails, sometimes denoted
A1 ⊔ A2 = ⊤.

FSs can encode lists in a natural way, using ahead|tail notation (dubbedHD|TL in the sequel).

Example 4(Encoding lists as FSs). The list of three elements,〈a, b, c〉, can be encoded as the following FS,
which is over a signature including the featuresHD, TL and the atomsa, b, c, elist:









HD : a

TL :





HD : b

TL :

[

HD : c

TL : elist

]













For the sake of brevity, we use standard list notation when FSs encode lists, with double angular brack-
ets. The FS of example 4 is thus depicted as〈〈a, b, c〉〉. We also provide means for encodingopen-ended
lists, namely lists which do not terminate withelist (and can therefore be extended). We use the notation
〈〈a, b, c| i 〉〉 for the FS









HD : a

TL :





HD : b

TL :

[

HD : c

TL : i

]













We now extend feature structures tomulti-rooted structures; these are basically sequences of FSs, in
which the scope of variables is extended to the entire sequence, enabling paths to be reentrant even if they
leave different elements of the sequence.

Definition 9 (MRS). Given a signatureS, a multi-rooted structure (MRS)of length n ≥ 0 is a sequence
〈A1, . . . ,An〉 such that for eachi, 1 ≤ i ≤ n, Ai is a FS over the signature.

Meta-variablesσ, ρ range over MRSs. The length ofσ is denotedlen(σ). We usually do not distinguish
between a MRS of length 1 and a FS.

Example 5(MRSs). Following is an MRS of length 3:

2
[

F : 9
[

H : 1 [ ]
]]

1

[

F : 8

[

G : 7 a

H : 2 [ ]

]]

6
[

F : 5
[

H : 2 [ ]
]]

Note that the same variable can tag different sub-FSs of different elements in the sequence (e.g.,1 or
2 in example 5). In other words, thescopeof variables is extended from single FSs to MRSs.

The definition ofpathsandpath valuesis naturally extended from FSs to MRSs by adding a parameter
denoting the index of the element in the sequence from which the path leaves. An MRS isreentrant if it
has two distinct paths which share the same value; these two paths may well be “rooted” in two different
elements of the MRS. Since MRSs are sequences, they can be concatenated; we use juxtaposition to denote
MRS concatenation. Ifσ is an MRS, we useσi to denote thei-th element ofσ.
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Definition 10 (MRS subsumption). Letσ, ρ be two MRSs of the same lengthn and over the same signature.
σ subsumesρ, denotedσ ⊑ ρ, if the following conditions hold:

1. for all i, 1 ≤ i ≤ n, σi ⊑ ρi;

2. if 〈i, π1〉
σ

! 〈j, π2〉 then〈i, π1〉
ρ

! 〈j, π2〉.

Example 6(MRS subsumption). Letσ andσ′ be the following two MRSs (of length 3):

σ : 1

[

CAT : np

AGR : 4

]

2





CAT : vp

AGR : 4

[

NUM : sg

PERS: 3rd

]



 3





CAT : np

AGR : 6

[

NUM : sg

PERS: 3rd

]





σ′ : 1

[

CAT : np

AGR : 4

]

2





CAT : vp

AGR : 4

[

NUM : sg

PERS: 3rd

]



 3

[

CAT : np

AGR : 4

]

Thenσ ⊑ σ′ but notσ′ ⊑ σ.

When MRSs are concerned, two variants of unification are defined, one which unifies two same-length
structures and produces their least upper bound with respect to subsumption, and one, calledunification in
context, which combines the information in two feature structures,each of which may be an element in a
larger structure.

Definition 11 (MRS unification). Let σ, ρ be MRSs of the same length,n. Theunification of σ and ρ,
denotedσ ⊔ ρ, is the least upper bound ofσ andρ with respect to MRS subsumption, if it exists.

Definition 12 (Unification in context). Let σ, ρ be two MRSs andi, j be indexes such thati ≤ len(σ) and
j ≤ len(ρ). Then〈σ′, ρ′〉 = (σ, i) ⊔ (ρ, j) iff σ′ = min⊑{σ

′′ | σ ⊑ σ′′ andρj ⊑ σ′′i} andρ′ = min⊑{ρ
′′ |

ρ ⊑ ρ′′ andσi ⊑ ρ′′j}.

Lemma 1. If 〈σ′, ρ′〉 = (σ, i) ⊔ (ρ, j) thenσ′i = ρ′j = σi ⊔ ρj .

Example 7(Unification in context). Let

σ =
[

LIST : 3 [ ]
] [

LIST : 3
]

ρ =

[

LIST :

[

HD : 1

TL : 2

]]

[

LIST : 2
]

[

LIST :

[

HD : 1

TL : elist

]]

The unification in context of the second element ofσ with the first element ofρ is (σ, 2) ⊔ (ρ, 1) = 〈σ′, ρ′〉,
where:

σ′ =
[

LIST : 3
]

[

LIST : 3

[

HD : 1

TL : 2

]]

ρ′ =

[

LIST :

[

HD : 1

TL : 2

]]

[

LIST : 2
]

[

LIST :

[

HD : 1

TL : elist

]]

Definition 13 (Unification grammars). A Unification grammarover a signatureS and a finite setWORDS

of words is a tupleGu = 〈Ru,L,As〉 where:
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• Ru is a finite set of rules, each of which is an MRS of lengthn ≥ 1, with a designated first element,
theheadof the rule, followed by itsbody. The head and body are separated by an arrow (→).

• L is a lexicon, which associates with every wordw ∈ WORDSa finite set of feature structures,L(w).

• As is a feature structure, thestart symbol.

We use meta-variablesGu (with or without subscripts) to denote unification grammars.

Example 8 (Unification grammar). Let Gu
ww be the unification grammar over the signature〈ATOMS,

FEATS, TAGS, WORDS〉, whereFEATS = {LIST, HD, TL}, ATOMS = {s, elist, ta, tb} and WORDS =
{a, b}, defined as:

As =

[

LIST :

[

HD : s

TL : elist

]]

Ru =























[

LIST :

[

HD : s

TL : elist

]]

→
[

LIST : 3
] [

LIST : 3
]

[

LIST :

[

HD : 1

TL : 2

]]

→
[

LIST : 2
]

[

LIST :

[

HD : 1

TL : elist

]]























L(a) =

{[

LIST :

[

HD : ta

TL : elist

]]}

L(b) =

{[

LIST :

[

HD : tb

TL : elist

]]}

To define thelanguagegenerated by a unification grammarGu, we defineformsas MRSs. A form

σA = 〈A1, . . . ,Ak〉 immediately derivesanother formσB = 〈B1, . . . ,Bm〉 (denoted byσA
1
⇒u σB) iff

there exists a ruleρu ∈ Ru of lengthn that licenses the derivation. The head of the rule is matchedagainst
some elementAi in σA using unification in context:(σA, i) ⊔ (ρu, 0) = (σ′

A, ρ′). If the unification does
not fail, σB is obtained by replacing thei-th element ofσ′

A with the body ofρ′. The reflexive transitive

closure of ‘
1
⇒u’ is denoted by ‘

∗
⇒u’. An empty derivation sequence means that an empty sequenceof rules

is applied to the source MRS and is denoted by ‘
0
⇒u’, for exampleσA

0
⇒u σA. A form is sententialif it is

derivable from the start symbol of the grammar.

Definition 14. Thelanguageof a unification grammarGu is L(Gu) = {w1 · · ·wn ∈ WORDS∗ | As ∗
⇒u σl

andσl is unifiable with〈A1, . . . ,An〉}, whereAi ∈ L(wi) for 1 ≤ i ≤ n.

Example 9 (Derivation sequence). As an example, consider again the grammarGu
ww of example 8. The

following is a derivation sequence for the string ‘baba’ with this grammar. Note that the scope of variables
is limited to a single MRS (so that multiple occurrences of the same tag in a single form denote reentrancy,
whereas across forms they are unrelated).

As =

[

LIST :

[

HD : s

TL : elist

]]

apply rule 1 to the single element of the form

σ1 =
[

LIST : 3
] [

LIST : 3
]

apply rule 2 to the second element

σ2 =

[

LIST : 3

[

HD : 1

TL : 2

]]

[

LIST : 2
]

[

LIST :

[

HD : 1

TL : elist

]]

apply rule 2 to the first element

σ3 =
[

LIST : 2
]

[

LIST :

[

HD : 1

TL : elist

]]

[

LIST : 2
]

[

LIST :

[

HD : 1

TL : elist

]]
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Now consider the MRS obtained by concatenating (the single elements of)〈L(b),L(a),L(b),L(a)〉:

σl =

[

LIST :

[

HD : tb

TL : elist

]] [

LIST :

[

HD : ta

TL : elist

]] [

LIST :

[

HD : tb

TL : elist

]] [

LIST :

[

HD : ta

TL : elist

]]

Sinceσl andσ3 are unifiable, the string ‘baba’ is in L(Gu
ww). In fact,L(Gu

ww) = {ww | w ∈ {a, b}+}.

In order to limit the generative capacity of unification grammars we define two constrained versions of
the formalism below. Both limit the number of reentrancies which are allowed between the head of each
grammar rule and its body. Informally, a rule is non-reentrant if no reentrancy tags occur in it. A rule is
one-reentrant if at most one reentrancy tag occurs in it, exactly twice: once in the head of the rule and once
in an element of its body.

Definition 15 (Non-/One-reentrant unification grammars). A unification grammar〈Ru,As,L〉 over the sig-
nature〈ATOMS, FEATS, TAGS, WORDS〉 is non-reentrant iff for any ruleρu ∈ Ru, ρu is non-reentrant. It
is one-reentrantiff for every ruleρu ∈ Ru, ρu includes at most one reentrancy, between the head of the
rule and some element of the body. Formally, it can have at most one (non-trivial, i.e., non-identity) reen-

trancy〈1, π1〉
ρu

! 〈i, π2〉, wherei > 1. Let UGnr, UG1r be the sets of all non-reentrant and one-reentrant
unification grammars, respectively.

One-reentrant unification grammars induce highly constrained (sentential) forms: in such forms, there
are no reentrancies whatsoever, neither between distinct elements nor within a single element. The following
lemma can be proven by a simple induction on the length of a derivation sequence; it follows directly from
the fact that rules in a one-reentrant unification grammar have no reentrancies between elements of their
bodies.

Lemma 2. If τ is a sentential form induced by a one-reentrant grammar thenthere are no reentrancies
between elements ofτ or within an element ofτ .

Since all the feature structures in forms induced by one-reentrant unification grammars are non-reentrant,
unification is simplified.

Lemma 3. LetA andB be unifiable non-reentrant feature structures. ThenC = A⊔B is also a non-reentrant
feature structure, andΠC = ΠA ∪ ΠB .

To simplify some of the constructions, we define a simplified variant of one-reentrant unification gram-
mars, which is equivalent to the original definition. In the sequel we assume that all one-reentrant unification
grammars aresimplified.

Definition 16 (Simplified one-reentrant unification grammars). A one-reentrant unification grammarGu =
〈Ru,As,L〉 over the signatureσ = 〈ATOMS, FEATS, TAGS, WORDS〉 is simplified iff the lexical categories
of words are inconsistent with any feature structure (except themselves). Formally, ifτ is a sentential form
induced byGu andτ i is an element ofτ then for each worda ∈ WORDS, L(a) = {A}, whereA ⊔ τ i 6= ⊤
iff A = τ i.

3 Context-free unification grammars

In this section we define a constraint on unification grammarswhich ensures that grammars satisfying it
generate the class CFL. The constraint disallowsany reentrancies in the rules of the grammar. When rules
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are non-reentrant, applying a rule implies that an exact copy of the body of the rule is inserted into the
generated (sentential) form, not affecting neighboring elements of the form the rule is applied to. The
only difference between rule application in UGnr and the analog operation in CFGS is that the former
requires unification whereas the latter only calls for identity check. This small difference does not affect the
generative power of the formalism, since unification can be pre-compiled in this simple case.

The trivial direction is to map a CFG to a non-reentrant unification grammar, since every CFG is, triv-
ially, such a grammar (where terminal and non-terminal symbols are viewed as atomic feature structures).
For the reverse direction, we define a mapping from UGnr to CFGS. The non-terminals of the CFG in the
image of the mapping are the set of all feature structures defined in the source unification grammar.

Definition 17. Let ug2cfg: UGnr 7→ CFGSbe amapping ofUGnr to CFGS, such that ifGu = 〈Ru,As,L〉
is over the signature〈ATOMS, FEATS, TAGS, WORDS〉 then ug2cfg(Gu) = 〈VN , Vt,R

cf , Scf 〉, where:

• VN = {Ai | A0 → A1 . . . An ∈ Ru, i ≥ 0} ∪ {A | A ∈ L(a), a ∈ ATOMS} ∪ {As}. VN is the set of
all the feature structures occurring in any of the rules or the lexicon ofGu.

• Scf = As

• Vt = WORDS

• Rcf consists of the following rules:

1. Let A0 → A1 . . . An ∈ Ru and B ∈ L(b). If for somei, 1 ≤ i ≤ n, Ai ⊔ B 6= ⊤, then
Ai → b ∈ Rcf

2. If A0 → A1 . . . An ∈ Ru andAs ⊔ A0 6= ⊤ thenScf → A1 . . . An ∈ Rcf .

3. Let ρu
1 = A0 → A1 . . . An and ρu

2 = B0 → B1 . . . Bm, whereρu
1 , ρu

2 ∈ Ru. If for somei,
1 ≤ i ≤ n, Ai ⊔ B0 6= ⊤, then the ruleAi → B1 . . . Bm ∈ Rcf

SinceRu andL are finite, so isVN . Vt is finite because WORDS is, andRcf is finite becauseRu andL
are. The size ofug2cfg(Gu) is polynomial in the size ofGu.

Example 10(Mapping from UGnr to CFGS). LetGu = 〈Ru,As,L〉 be a non-reentrant unification gram-
mar for the language{anbn | 0 ≤ n} over the signature〈ATOMS, FEATS, TAGS, WORDS〉, such that:

• ATOMS = {v, u,w}

• FEATS = {F1, F2}

• WORDS= {a, b}

• As =

[

F1 : w

F2 : w

]

• L(a) = {

[

F1 : [ ]
F2 : v

]

} andL(b) = {

[

F1 : [ ]
F2 : u

]

}

• The set of rulesRu is defined as:

1.

[

F1 : w

F2 : w

]

→ ε

9



2.

[

F1 : [ ]
F2 : w

]

→

[

F1 : u

F2 : v

] [

F1 : [ ]
F2 : w

] [

F1 : v

F2 : u

]

Then the context-free grammarGcf = 〈VN , Vt,R
cf , Scf 〉 = ug2cfg(Gu) is:

• VN =

{[

F1 : [ ]
F2 : v

]

,

[

F1 : [ ]
F2 : u

]

,

[

F1 : [ ]
F2 : w

]

,

[

F1 : w

F2 : w

]

,

[

F1 : u

F2 : v

]

,

[

F1 : v

F2 : u

]}

• Vt = WORDS= {a, b}

• Scf = As =

[

F1 : w

F2 : w

]

• The set of rulesRcf is defined as:

1.

[

F1 : u

F2 : v

]

→ a

2.

[

F1 : v

F2 : u

]

→ b

3.

[

F1 : w

F2 : w

]

→ ǫ

4.

[

F1 : [ ]
F2 : w

]

→ ǫ

5.

[

F1 : w

F2 : w

]

→

[

F1 : u

F2 : v

] [

F1 : [ ]
F2 : w

] [

F1 : v

F2 : u

]

6.

[

F1 : [ ]
F2 : w

]

→

[

F1 : u

F2 : v

] [

F1 : [ ]
F2 : w

] [

F1 : v

F2 : u

]

By induction on the lengths of the derivation sequences, we prove the following theorem (the full proof
is deferred to appendix A):

Theorem 4. If Gu = 〈Ru,As,L〉 is a non-reentrant unification grammar andGcf = ug2cfg(Gu), then
L(Gcf ) = L(Gu).

Corollary 5. Non-reentrant unification grammars are weakly equivalent to CFGS.

4 Mildly context-sensitive unification grammars

In this section we show thatone-reentrant unification grammarsgenerate exactly the class MCSL. In such
grammars each rule can have at most one reentrancy, reflecting the LIG situation where stacks can be copied
to exactly one daughter in each rule.

4.1 Mapping LIG to UG1r

In order to simulate a given LIG with a unification grammar, a dedicated signature is defined based on the
parameters of the LIG.
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Definition 18. Given a LIG〈VN , Vt, Vs,R
li, S〉, letτ = 〈ATOMS, FEATS, TAGS, WORDS〉, whereATOMS =

VN ∪ Vs ∪ {elist}, FEATS = {HD, TL}, TAGS = { 1 , 2 , . . .}, andWORDS= Vt.

We useτ throughout this section as the signature over which UGs are defined. We use FSs over the
signatureτ to represent and simulate LIG symbols. In particular, FSs will encode lists in the natural way
(see example 4), hence the featuresHD andTL. With this notation in mind, LIG symbols are mapped to FSs
thus:

Definition 19. Let toFs be a mapping of LIG symbols to feature structures, such that:

1. If t ∈ Vt then toFs(t) =

[

HD : t

TL : elist

]

= 〈〈t〉〉

2. If N ∈ VN andpi ∈ Vs, 1 ≤ i ≤ n, then

toFs(N [p1, . . . , pn]) =









HD : N

TL :





HD : p1

TL : · · ·

[

HD : pn

TL : elist

]

· · ·













= 〈〈N, p1, . . . , pn〉〉

The mappingtoFs is extended to sequences of symbols by settingtoFs(αβ) = toFs(α)toFs(β). Note
that toFs is one to one.

When FSs that are images of LIG symbols are concerned, unification is reduced to identity:

Lemma 6. LetX1,X2 ∈ VN [V ∗
s ] ∪ Vt. If toFs(X1) ⊔ toFs(X2) 6= ⊤ then toFs(X1) = toFs(X2).

When a feature structure which encodes an open-ended list (alist that is not terminated byelist, refer
back to example 4) is unifiable with an image of a LIG symbol, the former is a prefix of the latter.

Lemma 7. LetC = 〈〈p1, . . . , pn| i 〉〉 be a non-reentrant feature structure, wherep1, . . . , pn ∈ Vs, and let
X ∈ VN [V ∗

s ] ∪ Vt. ThenC ⊔ toFs(X) 6= ⊤ iff toFs(X) = 〈〈p1, . . . , pn, α〉〉, for someα ∈ V ∗
s .

To simulate LIGs with UGs we represent each symbol in the LIG as a feature structure, encoding the
stacks of LIG non-terminals as lists. Rules that propagate stacks (from mother to daughter) are simulated
by means of reentrancy in the unification grammar.

Definition 20. Let lig2ug be a mapping ofL IGS to UG1r, such that ifGli = 〈VN , Vt, Vs,R
li, S〉 and

Gu = 〈Ru,As,L〉 = lig2ug(Gli) thenGu is defined over the signatureτ (definition 18),As = toFs(S[ ]),
for all t ∈ Vt, L(t) = {toFs(t)} andRu is defined by (refer back to definition 1 for the format of LIG rules):

• A LIG rule of the formX0 → α is mapped to the unification rule toFs(X0) → toFs(α)

• A LIG rule of the formN [p1, . . . , pn ∞] → α N ′[q1, . . . , qm ∞] β is mapped to the unification rule
〈〈N, p1, . . . , pn| 1 〉〉 → toFs(α) 〈〈N ′, q1, . . . , qm| 1 〉〉 toFs(β)

Evidently, lig2ug(Gli) ∈ UG1r for any LIG Gli. Also, the mappinglig2ug of definition 20 is one to
one.

Example 11(Mapping from LIGS to UG1r). We map the LIGGli
1 of example 1 above toGu = lig2ug(Gli)

defined over the signatureτ of definition 18, with the start symbol toFs(S[ ]). The lexicon is defined for the
wordsa andb asL(a) = {〈a〉} andL(b) = {〈b〉}. The set of productionsRli, is defined as follows:
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1. ρu
1 = 〈〈S〉〉 → 〈〈N2〉〉, where the LIG rule isr1 = S[ ] → N2[ ]

2. ρu
2 = 〈〈N2| 1 〉〉 → 〈〈N2, a| 1 〉〉〈〈a〉〉, where the LIG rule isr2 = N2[ ∞] → N2[a ∞]a

3. ρu
3 = 〈〈N2| 1 〉〉 → 〈〈N2, b| 1 〉〉〈〈b〉〉, where the LIG rule isr3 = N2[ ∞] → N2[b ∞]b

4. ρu
4 = 〈〈N2| 1 〉〉 → 〈〈N3| 1 〉〉, where the LIG rule isr4 = N2[ ∞] → N3[ ∞]

5. ρu
5 = 〈〈N3, a| 1 〉〉 → 〈〈a〉〉〈〈N3| 1 〉〉, where the LIG rule isr5 = N3[a ∞] → aN3[ ∞]

6. ρu
6 = 〈〈N3, b| 1 〉〉 → 〈〈b〉〉〈〈N3| 1 〉〉, where the LIG rule isr6 = N3[b ∞] → bN3[ ∞]

7. ρu
7 = 〈〈N3〉〉 → ǫ, where the LIG rule isr7 = N3[ ] → ǫ

The following theorem, whose proof is deferred to appendix B, summarizes this direction of the result:

Theorem 8. If Gli is a LIG andGu = lig2ug(Gli) thenL(Gu) = L(Gli).

4.2 Mapping UG1r to LIG

We are now interested in the reverse direction, namely mapping (one-reentrant) UGs to LIG. The differences
between the two formalisms can be summarized along three dimensions:

The basic elementsUnification grammars manipulate feature structures, and rules (and forms) are MRSs;
whereas LIG manipulates terminals and non-terminals with stacks of elements, and rules (and forms)
are sequences of such symbols.

Rule application In UGs a rule is applied byunification in contextof the rule and a sentential form, both
of which are MRSs, whereas in LIG, the head of a rule and the selected element of a sentential form
must have the same non-terminal symbol and consistent stacks.

Propagation of information in rules In UGs information is shared through reentrancies, whereasin LIG,
information is propagated by copying the stack from the headof the rule to one element of its body.

We show that one-reentrant UGs can all be correctly mapped toLIGs. For the rest of this section we
fix a signature〈ATOMS, FEATS, TAGS, WORDS〉 over which UGs are defined. Let NRFSS be the set of all
non-reentrant FSs over this signature.

One-reentrant UGs induce highly constrained (sentential)forms: in such forms, there are no reentrancies
whatsoever, neither between distinct elements nor within asingle element. Hence all the FSs in forms
induced by a one-reentrant UG are non-reentrant (lemma 2).

Definition 21 (Height). Let A be a feature structure with no reentrancies. Theheight of A, denoted|A|, is
the length of the longest path inA. This is well-defined since non-reentrant feature structures have finitely
many paths. LetGu = 〈Ru,As,L〉 ∈ UG1r be a one-reentrant unification grammar. Themaximum height
of the grammar, maxHt(Gu), is the height of the highest feature structure in the grammar. This is well
defined since all the feature structures of one-reentrant grammars are non-reentrant.

The following lemma (which is proven in appendix C) indicates an important property of one-reentrant
UGs. Informally, in any FS that is an element of a sentential form induced by such grammars, if two paths
are long (specifically, longer than the maximum height of thegrammar), then they must have a long common
prefix.
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Lemma 9. Let Gu = 〈Ru,As,L〉 ∈ UG1r be a one-reentrant unification grammar. LetA be an element
of a sentential form induced byGu. If π · 〈Fj〉 · π1, π · 〈Fk〉 · π2 ∈ ΠA, whereFj , Fk ∈ FEATS, j 6= k and
|π1| ≤ |π2|, then|π1| ≤ maxHt(Gu).

Lemma 9 facilitates a view of all the FSs induced by such a grammar as (unboundedly long) lists of
elements drawn from a finite, predefined set. The set consistsof all features in FEATS and all the non-
reentrant feature structures whose height is limited by themaximal height of the unification grammar. Note
that even with one-reentrant UGs, feature structures can beunboundedly deep. What lemma 9 establishes is
that if a feature structure induced by a one-reentrant unification grammar is deep, then it can be represented
as asingle “trunk” path which is long, and all the sub-structures which“hang” from this trunk are depth-
bounded. We use this property to encode such feature structures ascords.

Definition 22 (Cords). Let Ψ : NRFSS× PATHS 7→ (FEATS ∪ NRFSS)∗ be a mapping such that ifA is a
non-reentrant FS andπ = 〈F1, . . . , Fn〉 ∈ ΠA, then thecord Ψ(A, π) is 〈A1, F1, . . . ,An, Fn,An+1〉, where
for 1 ≤ i ≤ n + 1, Ai is the non-reentrant FSs obtained fromA by removing frompval(A, 〈F1, . . . , Fi−1〉)
the featureFi and its value.

We also define last(Ψ(A, π)) = An+1. Theheightof a cord is defined as|Ψ(A, π)| = max1≤i≤n+1(|Ai|).
For each cordΨ(A, π) we refer toA as thebase feature structureand toπ as thebase path. Thelength of
a cord is the length of the base path.

Example 12(Cords). Let A be a non-reentrant feature structure over the signatureFEATS = {F1, F2, F3},
ATOMS = {a, b}:

A =













F1 : b

F2 :
[

F1 :
[

F2 :
[

F3 : a
]]]

F3 :





F1 : [ ]
F2 : a

F3 :
[

F1 : [ ]
]

















If π = 〈F2, F1〉 then the cord representation ofA on the pathπ is Ψ(A, π) = 〈A1, F2,A2, F1,A3〉, where

A1 =









F1 : b

F3 :





F1 : [ ]
F2 : a

F3 :
[

F1 : [ ]
]













; A2 = [ ] ; A3 =
[

F2 :
[

F3 : a
]]

Ψ(A, π) can be graphically depicted as:

F2 F1

A1 A2 A3

Note that the functionΨ is one to one. In other words, givenΨ(A, π), both A and π are uniquely
determined. The pathπ is determined by the sequence of the features on the cordΨ(A, π), in the order they
occur in the cord. SinceA is non-reentrant, allAi in Ψ(A, π) are non-reentrant feature structures, i.e., trees.
To see thatA is uniquely determined, simply viewπ as a branch of a tree and “hang” the subtreesAi on π,
in the order determined by the features in the cord, to obtaina unique feature structure.
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Lemma 10. Let Gu be a one-reentrant unification grammar and letA be an element of a sentential form
induced byGu. Then there is a pathπ ∈ ΠA such that|Ψ(A, π)| < maxHt(Gu).

Lemma 10 (which is an immediate corollary of lemma 9) impliesthat every FS induced by one-reentrant
grammars (such FSs are necessarily non-reentrant by lemma 2) can be represented as a height-limited cord.
This mapping resolves the first difference between LIG and unification grammars, by providing a represen-
tation of thebasic elements. We use cords as the stack contents of LIG non-terminal symbols: cords can
be unboundedly long, but so can LIG stacks; the crucial pointis that cords are height limited, implying that
they can be represented using afinite number of elements.

We now show how to simulate, in LIG, the unification in contextof a rule and a sentential form. The
first step is to have exactly one non-terminal symbol (in addition to the start symbol); when all non-terminal
symbols are identical, only the content of the stack has to betaken into account. Recall that in order for a
LIG rule to be applicable to a sentential form, the stack of the rule’s head must be aprefix of the stack of
the selected element in the form. The only question is whether the two stacks are equal (fixed rule head) or
not (unbounded rule head). Since the contents of stacks are cords, we need a property relating two cords, on
one hand, with unifiability of their base feature structures, on the other. Lemma 11 (whose proof is deferred
to appendix C) establishes such a property. Informally, if the base path of one cord is a prefix of the base
path of the other cord and all feature structures along the common path of both cords are unifiable, then the
base feature structures of both cords are unifiable. The reverse direction also holds.

Lemma 11. LetA,B ∈ NRFSS be non-reentrant feature structures andπ1, π2 ∈ PATHS be paths such that
π1 ∈ ΠB , π1 · π2 ∈ ΠA, Ψ(A, π1 · π2) = 〈t1, F1, . . . , F|π1|, t|π1|+1, F|π1|+1, . . . , t|π1·π2|+1〉, Ψ(B, π1) =
〈s1, F1, . . . , s|π1|+1〉, and〈F|π1|+1〉 6∈ Πs|π1|+1

. ThenA ⊔ B 6= ⊤ iff for all i, 1 ≤ i ≤ |π1| + 1, si ⊔ ti 6= ⊤.

The length of a cord of an element of a sentential form inducedby the grammar need not be bounded,
but the length of any cord representation of a rule head is limited by the grammar height. By lemma 11,
unifiability of two feature structures can be reduced to a comparison of two cords representing them and only
the prefix of the longer cord (as long as the shorter cord) affects the result. Since the cord representation of
any grammar rule’s head is limited by the height of the grammar we always choose it as the shorter cord in
the comparison.

We now define, for a feature structureC (which is a head of a rule) and some pathπ, the set that includes
all feature structures that are both unifiable withC and can be represented as a cord whose height is limited
by the grammar height and whose base path isπ. We call this set thecompatibility setof C andπ and use
it to define the set of all possible prefixes of cords whose baseFSs are unifiable withC (see definition 24).
Crucially, the compatibility set ofC is finite for any feature structureC since the heights and the lengths of
the cords are limited.

Definition 23 (Compatibility set). Given a non-reentrant feature structureC, a pathπ = 〈F1, . . . , Fn〉 ∈ ΠC

and a natural numberh, thecompatibility set, Γ(C, π, h), is defined as the set of all feature structuresA

such thatC ⊔ A 6= ⊤, π ∈ ΠA, and|Ψ(A, π)| ≤ h.

The compatibility set is defined for a feature structure and agiven path (whenh is taken to be the
grammar height). We now define two similar sets, FH (fixed head) and UH (unbounded head), for a given
FS, independently of a path. When rules of a one-reentrant unification grammar are mapped to LIG rules
(definition 25), FH and UH are used to define heads of fixed and unbounded LIG rules, respectively. A
single unification rule is mapped to asetof LIG rules, each with a different head. The stack of the headis
some member of the sets FH and UH. Each such member is a prefix ofthe stack of potential elements of
sentential forms that the LIG rule can be applied to.
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Definition 24. LetC be a non-reentrant feature structure andh be a natural number. Then:

FH(C, h) = {Ψ(A, π) | π ∈ ΠC ,A ∈ Γ(C, π, h)}
UH(C, h) = {Ψ(A, π) · 〈F〉 | Ψ(A, π) ∈ FH(C, h), pval(C, π) is not atomic,

F ∈ FEATS, and F is not defined in last(Ψ(C ⊔ A, π))}

This accounts for the second difference between LIG and one-reentrant unification grammars, namely
rule application. We now briefly illustrate our account of the last difference, propagation of information
in rules. In UG1r information is shared between the rule’s head and a single element in its body. Let
ρu = 〈C0, . . . ,Cn〉 be a reentrant unification rule in which the pathµe, leaving thee-th element of the body,
is reentrant with the pathµ0 leaving the head. This rule is mapped to asetof LIG rules, corresponding to
the possible rule heads (the sets FH and UH) induced by the compatibility set ofC0. Let r be a member of
this set, and letX0 andXe be the head and thee-th element ofr, respectively. Reentrancy inρu is modeled
in the LIG rule by copying the stack fromX0 to Xe. The major complication is the contents of this stack,
which varies according to the cord representations ofC0 andCe and to the reentrant paths.

Summing up, in a LIG simulating a one-reentrant unification grammar, FSs are represented as stacks of
symbols. The set of stack symbolsVs, therefore, is defined as a set of height bounded non-reentrant FSs.
Also, all the features of the unification grammar are stack symbols.Vs is finite due to the restriction on FSs
(no reentrancies and height-boundedness over the fixed signature). The set of terminals,Vt, is the words of
the unification grammar. There are exactly two non-terminalsymbols,S (the start symbol) andN .

The set of rules is divided to four. Thestart rule only applies once in a derivation; it simulates the
sentential form which is obtained by a zero-length derivation sequence in the unification grammar.Terminal
rulesare a straight-forward implementation of the lexicon in terms of LIG.Non-reentrant rulesare simulated
in a similar way to how rules of a non-reentrant UG are simulated by CFG (section 3). The major difference
is the head of the rule,X0, which is defined as explained above.One-reentrant rulesare simulated similarly
to non-reentrant ones, the only difference being the selected element of the rule body,Xe, which is defined
as follows.

Definition 25. Let ug2lig be amapping ofUG1r to L IGS, such that ifGu = 〈Ru,As,L〉 ∈ UG1r then
ug2lig(Gu) = 〈VN , Vt, Vs,R

li, S〉, whereVN = {N,S} (fresh symbols),Vt = WORDS, Vs = FEATS∪{A |
A ∈ NRFSS, |A| ≤ maxHt(Gu)}, andRli is defined as follows:

1. S[ ] → N [Ψ(As, ε)]

2. For everyw ∈ WORDSsuch thatL(w) = {C0} and for everyπ0 ∈ ΠC0
, the ruleN [Ψ(C0, π0)] → w

is inRli.

3. LetLIGHEAD(C) be{N [η] | η ∈ FH(C, maxHt(Gu))} ∪ {N [η ∞] | η ∈ UH(C, maxHt(Gu))}

4. If 〈C0, . . . ,Cn〉 ∈ Ru is a non-reentrant rule, then for everyX0 ∈ LIGHEAD(C0) the ruleX0 →
N [Ψ(C1, ε)] . . . N [Ψ(Cn, ε)] is inRli.

5. Let ρu = 〈C0, . . . ,Cn〉 ∈ Ru and (0, µ0)
ρu

! (e, µe), where1 ≤ e ≤ n. Then for everyX0 ∈
LIGHEAD(C0) the rule

X0 → N [Ψ(C1, ε)] . . . N [Ψ(Ce−1, ε)]
Xe

N [Ψ(Ce+1, ε)] . . . N [Ψ(Cn, ε)]
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is inRli, whereXe is defined as follows. Letπ0 be the base path of the stack ofX0 andA be the base
feature structure ofX0. Applying the ruleρu to A, define

(〈A〉, 0) ⊔ (ρu, 0) = (〈P0〉, 〈P0, . . . ,Pe, . . . ,Pn〉)

(a) If µ0 is not a prefix ofπ0 thenXe = N [Ψ(Pe, µe)].

(b) If π0 = µ0 · ν, ν ∈ PATHS then

i. If X0 = N [Ψ(A, π0)] thenXe = N [Ψ(Pe, µe · ν)].
ii. If X0 = N [Ψ(A, π0), F ∞] thenXe = N [Ψ(Pe, µe · ν), F ∞].

By inductions on the lengths of the derivations we prove (seeappendix C) that the mapping is correct.

Theorem 12. If Gu ∈ UG1r, thenL(Gu) = L(ug2lig(Gu)).

5 Conclusions

The main contribution of this work is the definition of two constraints on unification grammars which
dramatically limit their expressivity. We prove that non-reentrant unification grammars generate exactly
the class of context-free languages; and that one-reentrant unification grammars generate exactly the class
of mildly context-sensitive languages. We thus obtain two linguistically plausible constrained formalisms
whose computational processing is tractable.

This main result is primarily a formal grammar result, whichmay or may not be relevant to computa-
tional linguists. However, we maintain that it can be easilyadapted such that its consequences to (practical)
computational linguistics are more evident. The motivation behind this observation is that reentrancy only
adds to the expressivity of a grammar formalism when it is potentiallyunbounded, i.e., when infinitely many
feature structures can be the possible values at the end of the reentrant paths. It is therefore possible to mod-
estly extend the class of unification grammars which can be shown to generate exactly the class of mildly
context-sensitive languages, and allow also a limited formof more than one reentrancy among the elements
in a rule, which on one hand can be most useful for grammar writers, but on the other hand adds nothing to
the expressivity of the formalism. We leave the formal details of such an extension to future work.

This work can also be extended in other directions. The mapping of one-reentrant UGs to LIG is highly
verbose, resulting in LIGs with a huge number of rules. We believe that it should be possible to optimize the
mapping such that much smaller LIGs are generated. It would be interesting to experiment with a mapping
of one-reentrant UGs to some other MCSL formalism, notably TAG.

The two constraints on unification grammars (non-reentrantand one-reentrant) are parallel to the first
two classes of the Weir (1992) hierarchy of languages. A possible extension of this work could be a definition
of constraints on unification grammars that would generate all the classes of the hierarchy. Another direction
is an extension of one-reentrant unification grammars, where the reentrancy inside a grammar rule does not
have to be between the head and one element in the body, but canalso be, for example, between two
elements of the body or within an element. Then it is interesting to explore the power of two-reentrant
unification grammars, with limited kinds of reentrancies (as two arbitrary reentrancies suffice to model a
Turing Machine).
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A Mapping UGnr to CFG

Lemma 13. Let Gu = 〈Ru,As,L〉 be a non-reentrant unification grammar over the signature
〈ATOMS, FEATS, WORDS〉 and As ∗

⇒u A1 . . . An be a derivation sequence. Then for allAi there exist a
rule ρu ∈ Ru such thatρu = B0 → B1 . . . Bm and an indexj, 0 < j ≤ m, for whichBj = Ai.

Proof. We prove by induction on the length of the derivation sequence. The induction hypothesis is that if

As k
⇒u A1 . . . An then for allAi, where1 ≤ i ≤ n, there are a ruleρu = B0 → B1 . . . Bm, ρu ∈ Ru and an

indexj such thatBj = Ai. If k = 1, then there is a ruleC → A1 . . . An, As ⊔ C 6= ⊤, and allAi are part of
the rule’s body because a non-reentrant rule does not propagate information from the rule head to the body.
Assume that the hypothesis holds for everyl, 0 < l < k; let the length of the derivation sequence bek. If

As k−1
⇒ u D1 . . . Dm

1
⇒u A1 . . . An then there exist an indexj and a ruleρu = C → Aj . . . An−m+j ∈ Ru

such that:

1. C ⊔ Dj 6= ⊤

2. Di =

{

Ai i < j

Ai+n−m i > j

By the induction hypothesis for allAi, wherei < j or i > n − m + j, there is a rule that containsAi in its
body. ForAi, wherej ≤ i ≤ n − m + j, the ruleρu completes the proof.

Theorem 14(Theorem 4). LetGu = 〈Ru,As,L〉 be a non-reentrant unification grammar over the signature
〈ATOMS, FEATS, WORDS〉 andGcf = 〈VN , Vt,R

cf , Scf 〉 = ug2cfg(Gu). ThenL(Gcf ) = L(Gu).

Proof. We prove by induction on the length of a derivation sequence that As ∗
⇒u A1 . . . An iff Scf ∗

⇒cf

A1 . . . An.

Assume thatAs ∗
⇒u A1 . . . An. The induction hypothesis is that ifAs k

⇒u A1 . . . An thenScf k
⇒cf

A1 . . . An. If k = 1, then there is a ruleC → A1 . . . An, As ⊔ C 6= ⊤, and by the definition ofug2cfg,
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Scf → A1 . . . An ∈ Rcf . ThenScf k=1
⇒ cf A1 . . . An. Assume that the hypothesis holds for everyl,

0 < l < k; let the length of the derivation sequence bek. If As k−1
⇒ u D1 . . . Dm

1
⇒u A1 . . . An then there

exist an indexj and a ruleρu
1 = C → Aj . . . An−m+j ∈ Ru such that:

1. C ⊔ Dj 6= ⊤

2. Di =

{

Ai i < j

Ai+n−m i > j

By lemma 13 there is some ruleρu
2 ∈ Ru such thatDj is an element of its body. Hence, by definition 17

there is a ruler3 = Dj → Aj . . . An−m+j ∈ Rcf which is a result of combiningρu
1 andρu

2 . By the induction

hypothesisScf k−1
⇒ cf D1 . . . Dn, and by application of the ruler3 we obtain:

Scf k
⇒cf D1 . . . Dj−1Aj . . . Aj+n−mDj+1 . . . Dm = A1 . . . An

AssumeScf ∗
⇒cf A1 . . . An.3 The induction hypothesis is that ifScf k

⇒cf A1 . . . An then As k
⇒u

A1 . . . An. If k = 1, then there is a ruleScf → A1 . . . An ∈ Rcf and by definition ofug2cfg(note thatScf

is not a part of any rule body inRcf ), C → A1 . . . An ∈ Ru, whereAs ⊔ C 6= ⊤. ThenAs k=1
⇒ u A1 . . . An.

Assume that the hypothesis holds for everyi, 0 < i < k; let the length of the derivation sequence bek. If

Scf k−1
⇒ cf D1 . . . Dm

1
⇒cf A1 . . . An then there exist an indexj and a ruler1 = Dj → Aj . . . An−m+j ∈

Rcf such that:

Di =

{

Ai i < j

Ai+n−m i > j

By the definition ofug2cfgthere are rulesρu
2 = B0 → B1 . . . Bp, ρu

3 = C → Aj . . . An−m+j in Ru and
an indext, 1 ≤ t ≤ p, such thatBt = Dj andC ⊔ Dj 6= ⊤.

By the induction hypothesis,As k−1
⇒ u D1 . . . Dn, and by application of the ruleρu

3 we obtain:

As k
⇒u D1 . . . Dj−1Aj . . . Aj+n−mDj+1 . . . Dm = A1 . . . An

In sum,As ∗
⇒u A1 . . . An iff Scf ∗

⇒cf A1 . . . An. Hence,L(Gcf ) = L(ug2cfg(Gu)).

B Mapping LIG to UG1r

To show that the unification grammarlig2ug(Gli) correctly simulates the LIG grammarGli we first prove
that every derivation in the latter has a corresponding derivation in the former (theorem 15). Theorem 16
proves the reverse direction.

Theorem 15. LetGli = 〈VN , Vt, Vs,R
li, S〉 be a LIG andGu = 〈Ru,As,L〉 be lig2ug(Gli). If S[ ]

∗
⇒li α

thenAs ∗
⇒u toFs(α), whereα ∈ (VN [V ∗

s ] ∪ Vt)
∗.

Proof. We prove by induction on the length of the derivation sequence. The induction hypothesis is that if

S[ ]
k
⇒li α, thenAs k

⇒u toFs(α). If k = 1, then

3Recall that all elements ofVN are feature structures, and therefore all the elements of a (CFG) sentential form can be represented
asAi, whereAi is a feature structure.
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1. S[ ]
k=1
⇒ li α;

2. Hence,S[ ] → α ∈ Rli;

3. By definition 20,toFs(S) → toFs(α) ∈ Ru;

4. SinceAs = toFs(S) we obtain thatAs → toFs(α) ∈ Ru;

5. Therefore,As k=1
⇒ u toFs(α)

Assume that the hypothesis holds for everyi, 0 < i < k; let the length of the derivation sequence bek.

1. LetS[ ]
k−1
⇒ li γ1 N [p1, . . . , pn] γ2

1
⇒li γ1 α γ2, whereγ1, γ2, α ∈ (VN [V ∗

s ] ∪ Vt)
∗. Let r ∈ Rli be a

LIG rule that is applied toN [p1, . . . , pn] at stepk of the derivation.

2. By the induction hypothesis,As k−1
⇒ u toFs(γ1 Ni[p1, . . . , pn] γ2).

3. By definition 19,

toFs(γ1N [p1, . . . , pn]γ2) = toFs(γ1) toFs(N [p1, . . . , pn]) toFs(γ2)
= toFs(γ1) 〈〈N, p1, . . . , pn〉〉 toFs(γ2)

4. From (2) and (3),As k−1
⇒ u toFs(γ1) 〈〈N, p1, . . . , pn〉〉 toFs(γ2).

5. The ruler can be of either of two forms as follows:

(a) Letr beN [p1, . . . , pn] → α.

i. By definition 20,Ru includes the ruletoFs(N [p1, . . . , pn]) → toFs(α).

ii. This rule is applicable to the form in (4), providingAs k
⇒u toFs(γ1) toFs(α) toFs(γ2).

iii. By definition 19,toFs(γ1) toFs(α) toFs(γ2) = toFs(γ1 α γ2). HenceAs k
⇒u toFs(γ1 α γ2).

(b) Letr beN [p1, . . . , px ∞] → α1 M [q1, . . . , qm ∞] α2, wherex ≤ n, M ∈ VN , q1, . . . , qm ∈ Vs

andα1, α2 ∈ (VN [V ∗
s ] ∪ Vt)

∗.

i. By applying the ruler at the last derivation step in (1) we obtain:

S[ ]
k−1
⇒ li γ1 N [p1, . . . , pn] γ2

1
⇒li γ1 α1 M [q1, . . . , qm, px+1, . . . , pn] α2 γ2

ii. By definition 20,Ru includes the rule

〈〈N, p1, . . . , px| 1 〉〉 → toFs(α1) 〈〈M, q1, . . . , qm| 1 〉〉 toFs(α2)

iii. By applying this rule to the form in (4) we obtain

As k−1
⇒ u toFs(γ1) 〈〈N, p1, . . . , pn〉〉 toFs(γ2)
1
⇒u toFs(γ1) toFs(α1) 〈〈M, q1, . . . , qm, px+1, . . . , pn〉〉 toFs(α2) toFs(γ2)
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iv. By definition 19,

toFs(M [q1, . . . , qm, px+1, . . . , pn]) = 〈〈M, q1, . . . , qm, px+1, . . . , pn〉〉

Hence

As k
⇒u toFs(γ1) toFs(α1) toFs(M [q1, . . . , qm, px+1, . . . , pn]) toFs(α2) toFs(γ2)

v. Therefore,As k
⇒u toFs(γ1 α1 M [q1, . . . , qm, px+1, . . . , pn] α2 γ2).

Theorem 16. Let Gli = 〈VN , Vt, Vs,R
li, S〉 be a LIG andGu = 〈Ru,As,L〉 = lig2ug(Gli) be a one-

reentrant unification grammar. IfAs ∗
⇒u A1 . . . An thenS[ ]

∗
⇒li X1 . . . Xn such that for everyi, 1 ≤ i ≤ n,

Ai = toFs(Xi).

Proof. We prove by induction on the length of the (unification) derivation sequence. The induction hypoth-

esis is that ifAs k
⇒u A1 . . . An, thenS[ ]

k
⇒li X1 . . . Xn such that for everyi, 1 ≤ i ≤ n, Ai = toFs(Xi).

If k = 1, thenAs k=1
⇒ u A1 . . . An. Hence,As → A1 . . . An ∈ Ru. By definition 20,As = toFs(S[ ]).

SincetoFs is a one-to-one mapping we obtain that the unification rule iscreated from the LIG ruleSli[ ] →

X1 . . . Xn ∈ Rli, where for everyi, 1 ≤ i ≤ n, Ai = toFs(Xi). Therefore,Sli[ ]
k
⇒li X1 . . . Xn and for

everyi, 1 ≤ i ≤ n, Ai = toFs(Xi).
Assume that the hypothesis holds for everyl, 0 < l < k; let the length of the derivation sequence bek.

1. Assume thatAs k
⇒u A1 . . . An. ThenAs k−1

⇒ u B1 . . . Bm
1
⇒u A1 . . . An.

2. The last step of the unification derivation is establishedthrough a ruleρu = C0 → C1 . . . Cn−m+1,
ρu ∈ Ru, and an indexj, such that:

(〈B1, . . . ,Bm〉, j) ⊔ (〈C0, . . . ,Cn−m+1〉, 0) =
(〈B1, . . . ,Bj−1,Q,Bj+1, . . . ,Bm〉, 〈Q,Aj , . . . ,Aj+n−m〉)

3. By lemma 2, the sentential form〈A1, . . . ,An〉 has no reentrancies between its elements, hence for
everyi, 1 ≤ i < j, Ai = Bi and fori, j < i ≤ m, Ai+n−m = Bi.

4. By the induction hypothesis, ifAs k−1
⇒ u B1 . . . Bm thenSli[ ]

k−1
⇒ li Y1 . . . Ym and

〈B1, . . . ,Bm〉 = 〈toFs(Y1), . . . , toFs(Ym)〉

5. Hence,As k−1
⇒ u toFs(Y1) . . . toFs(Ym)

1
⇒u A1 . . . An and from (3), for everyi, 1 ≤ i < j, Ai =

toFs(Yi) and fori, j < i ≤ m, Ai+n−m = toFs(Yi).

6. By definition 20, the ruleρu is created from a LIG ruler. We now show that the ruler can be
applied to the elementYj of the LIG sentential form,〈Y1, . . . , Ym〉, and the resulting sentential form,
〈X1, . . . ,Xn〉, for everyi, 1 ≤ i ≤ n, satisfies the equationAi = toFs(Xi). Since from (5), for every
i, 1 ≤ i < j, Ai = toFs(Yi) and fori, j < i ≤ m, Ai+n−m = toFs(Yi), we just need to show that
Ai = toFs(Xi) for everyi, j ≤ i ≤ n − m + j.
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7. By definition of LIG the ruler has one of the following forms:

(a) Letr = Ni[p1, . . . , px] → Z1 . . . Zn−m+1. Hence, by definition 20, the unification ruleρu is

toFs(Ni[p1, . . . , px]) → toFs(Z1) . . . toFs(Zn−m+1)

whereC0 = toFs(Ni[p1, . . . , px]) and for everyi, 1 ≤ i ≤ n − m + 1, Ci = toFs(Zi).
Note that there are no reentrancies between the elements of the unification ruleρu and hence
〈Aj , . . . ,An−m+j〉 = 〈C1, . . . ,Cn−m+1〉.
We now show that the ruler can be applied to the elementYj of the LIG sentential form. Since
C0 ⊔ Bj = C0 ⊔ toFs(Yj) = toFs(Ni[p1, . . . , px]) ⊔ toFs(Yj) 6= ⊤ we obtain, by lemma 6, that

toFs(Yj) = toFs(Ni[p1, . . . , px])

SincetoFs is one-to-one mapping we obtain thatYj = Ni[p1, . . . , px]. Hence the LIG ruler can
be applied toYj.
We now show thatAi = toFs(Xi) for everyi, j ≤ i ≤ n − m + j. We apply the ruler to Yj as
follows:

Y1 . . . Yj . . . Ym
1
⇒li X1 . . . Xj−1Z1 . . . Zn−m+1Xn−m+j+1 . . . Xn

Hence〈Xj , . . . ,Xn−m+j〉 = 〈Z1, . . . , Zn−m+1〉. Therefore,

〈Aj , . . . ,An−m+j〉 = 〈C1, . . . ,Cn−m+1〉
= 〈toFs(Z1), . . . , toFs(Zn−m+1)〉
= 〈toFs(Xj), . . . , toFs(Xn−m+j)〉

(b) Let r = Ni[p1, . . . , px ∞] → Z1 . . . Ze−1 Nf [q1, . . . , qy ∞] Ze+1 . . . Zn−m+1, where1 ≤ e ≤
n − m + 1. Hence, by definition 20, the unification ruleρu is defined as

〈〈Ni, p1, . . . , px| 1 〉〉 → toFs(Z1 . . . Ze−1) 〈〈Nf , q1, . . . , qy| 1 〉〉 toFs(Ze+1 . . . Zn−m+1)

whereC0 = 〈〈Ni, p1, . . . , px| 1 〉〉, Ce = 〈〈Nf , q1, . . . , qy| 1 〉〉 and for everyi, i 6= e, Ci =
toFs(Zi). Note that there is a reentrancy betweenC0 andCe. We now calculate the information
propagated fromBj to Aj+e−1 during the last step of the unification derivation (see 2). Since
C0 ⊔ Bj = C0 ⊔ toFs(Yj) 6= ⊤ we obtain by lemma 7, thattoFs(Yj) = 〈〈Ni, p1, . . . , px, γ〉〉,
whereγ ∈ V ∗

s . Therefore,Aj+e−1 = 〈〈Nf , q1, . . . , qy, γ〉〉.
We now show that the LIG ruler can be applied to the elementYj of the LIG sentential form.
Since toFs is one-to-one andtoFs(Yj) = 〈〈Ni, p1, . . . , px, γ〉〉, Yj = Ni[Ni, p1, . . . , px, γ].
Hence the LIG ruler can be applied toYj.
We now show thatAi = toFs(Xi) for everyi, j ≤ i ≤ n − m + j. We apply the ruler to Yj as
follows:

Y1 . . . Yj . . . Ym
1
⇒li

X1 . . . Xj−1 Z1 . . . Ze−1 Nf [q1, . . . , qy, γ] Ze+1 . . . Zn−m+1 Xn−m+j+1 . . . Xn

Hence〈Xj , . . . ,Xn−m+j〉 = 〈Z1, . . . , Ze−1, Nf [q1, . . . , qy, γ], Ze+1, . . . , Zn−m+1〉. There-
fore,

〈Aj , . . . ,Aj+e−1, . . . ,An−m+j〉
= C1 . . . Ce−1 〈Nf [q1, . . . , qy, γ]〉 Ce+1 . . . Cn−m+1

= toFs(Z1 . . . Ze−1) toFs(Nf [q1, . . . , qy, γ]) toFs(Ze+1 . . . Zn−m+1)
= 〈toFs(Xj), . . . , toFs(Xn−m+j)〉
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Theorem 17(Theorem 8). If Gli = 〈VN , Vt, Vs,R
li, Sli〉 is a LIG then there exists a unification grammar

Gu = lig2ug(Gli) such thatL(Gu) = L(Gli).

Proof. LetGli = 〈VN , Vt, Vs,R
li, N〉 be a LIG andGu = 〈Ru,As,L〉 = lig2ug(Gli). Then by theorem 15,

if S[ ]
∗
⇒li α thenAs ∗

⇒u toFs(α), whereα = w1, . . . , wn ∈ V ∗
t . By definition 20, for everyi, L(wi) =

{toFs(wi)}, hencetoFs(α) = toFs(w1), . . . , toFs(wn). HenceAs ∗
⇒u toFs(w1), . . . , toFs(wn) ∈ L(Gu).

Assume thatAs ∗
⇒u A1, . . . ,An, whereA1, . . . ,An is a pre-terminal sequence andA1, . . . ,An

∗
⇒u

w1, . . . , wn. By theorem 16, there is the LIG derivation sequence such that S[ ]
∗
⇒li X1, . . . ,Xn and for

all i, toFs(Xi) = Ai. By definition 20, each entryL(wi) = {Ai} in the lexicon ofGu is created from a
terminal ruleXi → wi in Rli. Therefore,S[ ]

∗
⇒li X1, . . . ,Xn

∗
⇒li w1, . . . , wn.

C Mapping UG1r to LIG

Lemma 18 (Lemma 9). Let Gu = 〈Ru,As,L〉 ∈ UG1r be a one-reentrant unification grammar. Letλ

be a sentential form derived byGu and A be an element ofλ. If π · 〈Fj〉 · π1, π · 〈Fk〉 · π2 ∈ ΠA, where
Fj, Fk ∈ FEATS, Fj 6= Fk and |π1| ≤ |π2|, then|π1| ≤ maxHt(Gu).

Proof. We prove by induction on the length of the derivation sequence that ifAs ∗
⇒u A1 . . . An, then the

lemma conditions hold. Leth = maxHt(Gu).

The induction hypothesis is that ifAs k
⇒u A1 . . . An, then the lemma conditions hold for anyAl, where

1 ≤ l ≤ n. If k = 0, then by definitionAs 0
⇒u As. Since|As| ≤ h then for anyj,π andπ1, such that

π · 〈Fj〉 · π1 ∈ ΠAs , |π · 〈Fj〉 · π1| ≤ h. Therefore,|π1| < h.
Assume that the hypothesis holds for everyi, 0 ≤ i < k; let the length of the derivation sequence be

k. Let As k−1
⇒ u B1 . . . Bm

1
⇒u A1 . . . An. Then by definition of UG1r derivation, there are an indexj and a

ruleρu = C0 → C1 . . . Cn−m+1, ρu ∈ Ru, such that

(〈C0, . . . ,Cn−m+1〉, 0) ⊔ (〈B1, . . . ,Bm〉, j) = (〈Q0, . . . ,Qn−m+1〉, 〈B1, . . . ,Bj−1,Q0,Bj+1, . . . ,Bm〉)

where

1. 〈A1, . . . ,Aj−1〉 = 〈B1, . . . ,Bj−1〉

2. 〈Aj , . . . ,An−m+j〉 = 〈Q1, . . . ,Qn−m+1〉

3. 〈An−m+j+1, . . . ,An〉 = 〈Bj+1, . . . ,Bm〉

By the induction hypothesis, in cases (1) and (3) the lemma conditions hold forAl, where1 ≤ l < j or
n − m + j + 1 ≤ l ≤ n. We now analyze case (2). SinceGu is one-reentrant there are only two options for
the ruleρu:

1. ρu has no reentrancies;

2. (0, π0)
ρu

! (e, πe), where1 ≤ e ≤ n − m + 1;
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If ρu is non-reentrant,〈C1, . . . ,Cn−m+1〉 = 〈Q1, . . . ,Qn−m+1〉 = 〈Aj , . . . ,An−m+j〉. Hence for anyl,
j ≤ l ≤ n − m + j, |Al| ≤ h. Hence, for anyF, π andπ1, such thatπ · 〈Fj〉 · π1 ∈ ΠAi

, |π · 〈Fj〉 · π1| ≤ h.
Therefore,|π1| < h.

If (0, π0)
ρu

! (e, πe) then by the definition of unification,Ql = Cl if 1 ≤ l < e or e < l ≤ n − m + 1,
hence|Ql| ≤ h. Therefore, the lemma conditions hold for anyQl, wherel 6= e. We now check whether
the lemma conditions hold forQe. The ruleρu, when applied toBj, can result in modifying the body of
the rule,C1 . . . Cn−m+1. However, due to the fact thatρu is one-reentrant, only a single elementCe can be
modified. Furthermore, the only possible modifications toCe are addition of paths and further specification
of atoms (lemma 3). The latter has no effect on path length, sowe focus on the former. The only way for a
pathπe · π to be added is if some pathπ0 · π already exists inBj. Hence, letP be a set of paths such that:

P = {πe · π | π0 · π ∈ ΠBj
}

By definition of unificationΠQe
= P ∪ ΠCe

. To check the lemma conditions we only need to check the
pairs of paths where both members are longer thanh, otherwise the conditions trivially hold. Since for any
pathπ, π ∈ ΠCe

, |π| ≤ h, we check only the pairs of paths fromP to evaluate the lemma conditions. Let
πe · π1, πe · π2 ∈ P ⊆ ΠQe

, where|π1| ≤ |π2|, π1 andπ2 differ in the first feature. By definition ofP ,
π0 · π1, π0 · π2 ∈ ΠBj

. Hence, by the induction hypothesis|π1| ≤ h. Therefore, for any pair of paths inΠQe

the lemma conditions hold.

Lemma 19. LetA andB be two non-reentrant feature structures. LetπA, πB be paths such thatπA ∈ ΠA,
πB ∈ ΠB and last(Ψ(A, πA)) 6∈ ATOMS. And letG be a feature such that〈G〉 6∈ Πlast(Ψ(A,πA)). Then
Ψ(A, πA) · 〈G〉 · Ψ(B, πB) is a cord.

Let Ψ(A, πA) = 〈A1, F1, . . . ,Ai, Fi,Ai+1, . . . , Fn,An+1〉. Then for anyi, 1 ≤ i ≤ n, the sequences
〈A1, F1, . . . ,Ai〉 and〈Ai+1, . . . , Fn,An+1〉 are cords.

Proof. Immediate from the definition of cords.

Lemma 20 (Lemma 11). Let A,B ∈ NRFSS be non-reentrant feature structures andπ1, π2 ∈ PATHS be
paths such that

• π1 ∈ ΠB,

• π1 · π2 ∈ ΠA,

• Ψ(A, π1 · π2) = 〈t1, F1, . . . , F|π1|, t|π1|+1, F|π1|+1, . . . , t|π1·π2|+1〉,

• Ψ(B, π1) = 〈s1, F1, . . . , s|π1|+1〉, and

• 〈F|π1|+1〉 6∈ Πs|π1|+1

then for alli, 1 ≤ i ≤ |π1| + 1, si ⊔ ti 6= ⊤ iff A ⊔ B 6= ⊤.

Proof. Assume that for every1 ≤ i ≤ |π1| + 1, si⊔ti 6= ⊤. Since the prefixes ofΨ(B, π1) andΨ(A, π1 ·π2)
are consistent up toF|π1|+1 and the suffix of the cordΨ(A, π1 · π2) does not occur inΨ(B, π1), and hence
does not contradict withB, the feature structuresA andB are unifiable.

Assume thatA⊔B 6= ⊤. Then all subtrees of the feature structures are consistent. Therefore,si⊔ti 6= ⊤,
for every1 ≤ i ≤ |π1| + 1.
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Corollary 21. Let Ψ(A, πA), Ψ(B, πB), Ψ(C, πA) be cords, where pval(A, πa) is not atomic. LetG be a
feature such that:

• 〈G〉 6∈ Πlast(Ψ(A,πA)) and

• 〈G〉 6∈ Πlast(Ψ(C,πA))

Consider the cordΨ(A, πA) · 〈G〉 · Ψ(B, πB) (by lemma 19, this is well defined) and write it asΨ(D, πA ·
〈G〉 · πB). ThenC ⊔ A 6= ⊤ iff C ⊔ D 6= ⊤.

Theorem 22. Let Gu = 〈Ru,As,L〉 be a one-reentrant unification grammar andAs ∗
⇒u A1 . . . An be

a derivation sequence. IfGli = 〈VN , Vt, Vs,R
li, S〉 = ug2lig(Gu) then there is a sequence of paths

〈π1, . . . , πn〉, such thatS[ ]
∗
⇒li N [Ψ(A1, π1)] . . . N [Ψ(An, πn)].

Proof. We prove by induction on the length of the derivation sequence. The induction hypothesis is that if

As k
⇒u A1 . . . An, then there is a sequence of paths〈π1, . . . , πn〉, such that

S[ ]
k+1
⇒ li N [Ψ(A1, π1)] . . . N [Ψ(An, πn)]

If k = 0, then

1. By the definition of derivation in UG,As 0
⇒u As;

2. By definition 25 case (1), the ruleS[ ] → N [Ψ(As, ε)] is in Rli.

3. Hence,S[ ]
1
⇒li N [Ψ(As, ε)] and N [Ψ(As, ε)] is well defined sinceΨ(As, ε) = 〈As〉, |As| ≤

maxHt(Gu).

Assume that the hypothesis holds for everyi, 0 ≤ i < k. Assume further thatAs k−1
⇒ u D1 . . . Dm

1
⇒u

A1 . . . An.

1. By definition of UG derivation, there are an indexj and a ruleρu = C0 → C1 . . . Cn−m+1, ρu ∈ Ru,
such thatρu is applicable toDj:

(〈C0, . . . ,Cn−m+1〉, 0) ⊔ (〈D1, . . . ,Dm〉, j) = (〈Q0, . . . ,Qn−m+1〉, 〈D1 . . . Dj−1Q0Dj+1 . . . Dm〉)

where

• 〈A1, . . . ,Aj−1〉 = 〈D1, . . . ,Dj−1〉

• 〈Aj , . . . ,An−m+j〉 = 〈Q1, . . . ,Qn−m+1〉

• 〈An−m+j+1, . . . ,An〉 = 〈Dj+1, . . . ,Dm〉

Note that it is only possible to write the MRS〈A1, . . . ,An〉 in such a way due to the fact that the gram-
marGu is one-reentrant: by lemma 2, no reentrancies can occur among two elements in a sentential
form.

2. Hence,As k
⇒u D1 . . . Dj−1Q1 . . . Qn−m+1Dj+1 . . . Dm

3. By the induction hypothesis there is a sequence of paths〈ν1, . . . , νm〉 such that

S[ ]
k
⇒li N [Ψ(D1, ν1)] . . . N [Ψ(Dm, νm)]
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4. We denoteΨ(Dj, νj) as〈B1, F1, . . . ,B|νj |+1〉 (recall thatj is the index of the selected element in the
sentential form).

We now want to show the existence of a ruler ∈ Rli, created fromρu by the mappingug2lig,
which can be applied toj-th element of the LIG sentential form,N [Ψ(Dj , νj)]. We define the feature
structureA to be a “bridge” betweenDj andC0 which together with a pathπ0 (a prefix of the pathνj)
defines the head of the ruler.

5. Letπ0 be a maximal prefix ofνj such thatπ0 ∈ ΠC0
. Recall that〈B1, F1, . . . ,B|π0|+1〉 is a prefix of

Ψ(Dj , νj) becauseπ0 is a prefix ofνj . Let A be such thatΨ(A, π0) = 〈B1, F1, . . . ,B|π0|+1〉. By the
induction hypothesis,Bi ≤ maxHt(Gu), 1 ≤ i ≤ |νj | + 1. We will show thatA is unifiable with both
Dj andC0.

6. We first show thatA ∈ Γ(C0, maxHt(Gu)). SinceDj ⊔ C0 6= ⊤ and A is a substructure ofDj

we obtain thatA ⊔ C0 6= ⊤. Sinceπ0 ∈ ΠA and |Bi| ≤ maxHt(Gu), 1 ≤ i ≤ |νj | + 1, A ∈
Γ(C0, π0, maxHt(Gu)).

7. We now show that there is a LIG ruler, a mapping ofρu, which is applicable toN [Ψ(Dj , νj)]. There
are two possibilities for the relation betweenπ0 andνj (recall thatπ0 is a prefix ofνj):

• If νj = π0 then A = Dj and Ψ(A, π0) = Ψ(Dj, νj). Hence, every rule of the form
N [Ψ(A, π0)] → α is applicable toΨ(Dj, νj). SinceA ∈ Γ(C0, π0, maxHt(Gu)) we ob-
tain thatN [Ψ(A, π0)] ∈ LIGHEAD(C0). Hence, the ruleN [Ψ(A, π0)] → α is in Rli, where
α ∈ (VN [V ∗

s ] ∪ Vt)
∗ is determined byρu.

• If νj 6= π0 then νj = π0 · 〈F|π0|+1, . . . , F|νj |〉. Recall thatpvalB|π0|+1〈F|π0|+1〉 ↑ be-
causeΨ(Dj , νj) = 〈B1, F1, . . . ,B|νj|+1〉 and |π0| + 1 < |νj| + 1. Since Ψ(A, π0) =
〈B1, F1, . . . ,B|π0|+1〉, we obtain that every rule of the formN [Ψ(A, π0), F|π0|+1 ∞] → α is
applicable toN [Ψ(Dj , νj)]. SinceA ∈ Γ(C0, π0, maxHt(Gu)) we obtain that

N [Ψ(A, π0), F|π0|+1 ∞] ∈ LIGHEAD(C0)

Hence, the ruleN [Ψ(A, π0), F|π0|+1 ∞] → α is inRli, whereα ∈ (VN [V ∗
s ]∪Vt)

∗ is determined
by ρu.

8. The LIG ruler whose existence was established in (7) is applied toN [Ψ(Dj, νj)] as follows:

S[ ]
k
⇒li N [Ψ(D1, ν1)] . . . N [Ψ(Dm, νm)]
1
⇒li N [Ψ(D1, ν1)] . . . N [Ψ(Dj−1, νj−1)] Y1 . . . Yn−m+1 N [Ψ(Dj+1, νj+1)] . . . N [Ψ(Dm, νm)]

9. We now investigate the possible outcomes of applying the rule r to the selected element of the sen-
tential form. Letr = X0 → α, whereα ∈ (VN [V ∗

s ] ∪ Vt)
∗. To complete the proof we have to show

that for some sequence of paths〈π1, . . . , πn−m+1〉,

〈Y1, . . . , Yn−m+1〉 = 〈N [Ψ(Q1, π1)], . . . , N [Ψ(Qn−m+1, πn−m+1)]〉

whereQ1, . . . Qn−m+1 are determined by the unification grammar, see (1) above.
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• Assume thatρu has no reentrancies. Hence,Qi = Ci, 1 ≤ i ≤ n − m + 1. By definition 25
case ( 4), the LIG rule body is

α = 〈N [Ψ(C1), ε)], . . . , N [Ψ(Cn−m+1], ε)]〉 = 〈N [Ψ(Q1), ε)], . . . , N [Ψ(Qn−m+1], ε)]〉

Since the ruler does not copy the stack,α = 〈Y1, . . . , Yn−m+1〉. Therefore,

〈Y1, . . . , Yn−m+1〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qn−m+1, ε)]〉

• Assume that(0, µ0)
ρu

! (e, µe), where1 ≤ e ≤ n. Hence,Qi = Ci andYi = N [Ψ(Qi, ε)] is
well defined for alli, i 6= e. By definition 25 case ( 5), the LIG rule body is

α = 〈N [Ψ(C1, ε)], . . . , N [Ψ(Ce−1, ε)],Xe, N [Ψ(Ce+1, ε)], . . . , N [Ψ(Cn−m+1, ε)]〉
= 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe−1, ε)],Xe, N [Ψ(Qe+1, ε)], . . . , N [Ψ(Qn−m+1, ε)]〉

This case is similar to the previous case, with the exceptionof Xe, which may be more compli-
cated due to the propagation of the stack fromX0. We therefore focus onXe (other elements
of α are as above). Recall that by definition 25,〈P0, . . . ,Pn−m+1〉 is a sequence of feature
structures such that

(〈A〉, 0) ⊔ (ρu, 0) = (〈P0〉, 〈P0 . . . Pn−m+1〉)

We now analyze all the possible values ofXe, according to definition 25 case ( 5):

(a) Case 5a: ifµ0 is not a prefix ofπ0 then by definition 25,Xe = N [Ψ(Pe, µe)]. Let π

be the maximal prefix ofπ0 and µ0 such thatµ0 = π · µ′
0. We denoteΨ(C0, π0) as

〈s1, F1, . . . , s|π0|+1〉, and graphically represent it as:

F1 F2 F|π| F|π|+1 F|π0|. . . . . .

µ0

s1 s2 s|π|+1 s|π0|+1

The cordΨ(Dj, νj) with its prefixΨ(A, π0) are represented as follows:

Ψ(A, π0)

F1 F2 F|π| F|π|+1 F|π0| F|π0|+1 F|νj |. . . . . . . . .

B1 B2 B|π|+1 B|π0|+1 B|νj |+1

Note that the caseπ0 = νj is just a special case of the figure above. The cordΨ(Dj⊔C0, νj)
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with its prefixΨ(A ⊔ C0, π0) are represented as follows:

Ψ(A ⊔ C0, π0)

F1 F2 F|π| F|π|+1 F|π0| F|π0|+1 F|νj |. . . . . . . . .

µ0

B1 ⊔ s1 B2 ⊔ s2 B|π|+1 ⊔ s|π|+1 B|π0|+1 ⊔ s|π0|+1 B|νj|+1

Hence,pval(A ⊔ C0, µ0) = pval(B|π|+1 ⊔ s|π|+1, µ
′
0) = pval(Dj ⊔ C0, µ0). By definition

of unification in contextpval(Pe, µe) = pval(A ⊔ C0, µ0) andpval(Qe, µe) = pval(Dj ⊔
C0, µ0). Hence,pval(Pe, µe) = pval(Qe, µe) andQe = Pe. Therefore,

α = 〈Y1, . . . , Yn−m+1〉
= 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, µe)], . . . , N [Ψ(Qn−m+1, ε)]〉

(b) Case 5b: ifµ0 is a prefix ofπ0, let π0 = µ0 · ν, ν ∈ PATHS. Then by definition 25, the
following holds:

– Case 5(b)i:
If X0 = N [Ψ(A, π0)] thenXe = N [Ψ(Pe, µe · ν)]. SinceN [Ψ(A, π0)] is applicable to
N [Ψ(Dj, νj)] we obtain thatπ0 = νj andA = Dj. Hence,Pe = Qe. Therefore,

α = 〈Y1, . . . , Yn−m+1〉
= 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, µe · ν)], . . . , N [Ψ(Qn−m+1, ε)]〉

– Case 5(b)ii:
If X0 = N [Ψ(A, π0), F|π0|+1 ∞] thenXe = N [Ψ(Pe, µe · ν), F|π0|+1 ∞]. Let β =
〈B|π0|+2, F|π0|+2, . . . ,B|νj |+1〉. By definition ofA, Ψ(Dj, νj) = Ψ(A, π0) ·〈F|π0|+1〉·β.
We apply the LIG ruler to N [Ψ(Dj, νj)] and obtain

〈Y1, . . . , Yn−m+1〉
= 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Pe, µe · ν), F|π0|+1, β], . . . , N [Ψ(Qn−m+1, ε)]〉

By definition of unification in contextPe differs fromQe only in the value of the path
µe · ν · 〈F|π0|+1〉. The difference is in the value of the pathµe · ν · 〈F|π0|+1〉, it is not
defined inPe and equalsβ in Qe. Hence,Ψ(Pe, µe · ν) · 〈F|π0|+1〉 · β = Ψ(Qe, µe · ν).
Therefore,

〈Y1, . . . , Yn−m+1〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, νj)], . . . , N [Ψ(Qn−m+1, ε)]〉

Note that in this caseYe is well defined because it was created by applying a LIG rule toa
well defined non-terminal symbol.

Theorem 23. Let Gu = 〈Ru,As,L〉 be a one-reentrant unification grammar andGli =

〈VN , Vt, Vs,R
li, N〉 = ug2lig(Gu) be LIG. If S[ ]

∗
⇒li Y1 . . . Yn, whereYi ∈ VN [V ∗

s ], 1 ≤ i ≤ n,
then there are a sequence of paths〈π1, . . . , πn〉 and a derivation sequenceAs ∗

⇒u A1 . . . An, such that
Yi = N [Ψ(Ai, πi)].
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Proof. We prove by induction on the length of the LIG derivation sequence. The induction hypothesis is

that if S[ ]
k
⇒li Y1 . . . Yn, whereYi ∈ VN [V ∗

s ], 1 ≤ i ≤ n, thenAs k−1
⇒ u A1 . . . An, such that for some

sequence of paths〈π1, . . . , πn〉, Yi = N [Ψ(Ai, πi)], 1 ≤ i ≤ n. If k = 1, then

1. By definition 25, the only rule that may be applied to the start symbolS in Gli is the rule defined by
case (1) of the definition:S[ ] → N [Ψ(As, ε)].

2. Hence, fork = 1, the only derivation sequence isS[ ]
1
⇒li N [Ψ(As, ε)]

3. By the definition of derivation in UG,As 0
⇒u As.

Assume that the hypothesis holds for everyi, 1 ≤ i ≤ k; let the length of the derivation sequence be
k + 1.

1. Assume thatS[ ]
k+1
⇒ li Y1 . . . Yn. ThenS[ ]

k
⇒li Y ′

1 . . . Y ′
m

1
⇒li Y1 . . . Yn.

2. By the induction hypothesis, there exists a sequence of paths 〈ν1, . . . , νm〉 and feature structures

D1, . . . ,Dm, such that for1 ≤ i ≤ m, Y ′
i = N [Ψ(Di, νi)], andAs k−1

⇒ u D1 . . . Dm. We therefore
write:

S[ ]
k
⇒li N [Ψ(D1, ν1)] . . . N [Ψ(Dm, νm)]

1
⇒li Y1 . . . Yn

3. Furthermore, letr = X0 → X1 . . . Xn−m+1 be theGli rule used for the last derivation step, andj be
the index of the element to whichr is applied, such that

N [Ψ(D1, ν1)] . . . N [Ψ(Dm, νm)]
1
⇒li

N [Ψ(D1, ν1)] . . . N [Ψ(Dj−1, νj−1)]Yj . . . Yn−m+jN [Ψ(Dn−m+j+1, νn−m+j+1)] . . . N [Ψ(Dm, νm)]

4. We denoteΨ(Dj, νj) as〈t1, F1, . . . , t|νj |+1〉

5. By definition 25, the rules that may be applied toN [Ψ(Dj, νj)] are created by cases (4) and (5) of the
definition, because the rule created by case (1) is headed by the non-terminal symbolS and the rules
created by case (2) do not derive non-terminal symbols. Letρu = C0 → C1 . . . Cn−m+1 be a rule in
Ru such that the ruler is created fromρu. Note that there may be more than one such rule.

6. We now show thatC0 ⊔ Dj 6= ⊤. In both cases (4) and (5) of definition 25 the head of the ruler, X0,
is a member ofLIGHEAD(C0). Sincer is applicable toN [Ψ(Dj, νj)] we obtain thatX0 has one of
the following forms:

(a) X0 = N [Ψ(Dj, νj)]. By definition 24,Ψ(Dj , νj) ∈ FH(C0, maxHt(Gu)). SinceΨ is a one-to-
one mapping, we obtain thatνj ∈ ΠC0

andDj ∈ Γ(C0, νj , maxHt(Gu)). By definition ofΓ,
Dj ⊔ C0 6= ⊤.

(b) X0 = N [η ∞], whereη is a prefix ofΨ(Dj, νj). Hence, we obtain that

η = 〈t1, F1, . . . , t|π0|+1, F|π0|+1〉

whereπ0 is a prefix ofνj. By definition 24,η ∈ UH(C0, maxHt(Gu)). Hence, there are a path
π0 ∈ ΠC0

and a feature structureA ∈ Γ(C0, π0, maxHt(Gu)) such thatη = Ψ(A, π0) · 〈F|π0|+1〉.
By definition ofΓ, A ⊔ C0 6= ⊤. Therefore, by corollary 21,C0 ⊔ Dj 6= ⊤.
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7. SinceC0 ⊔ Dj 6= ⊤, the ruleρu is applicable toDj as follows:

As k−1
⇒ u D1 . . . Dm
1
⇒u D1 . . . Dj−1Q1 . . . Qn−m+1Dn−m+j+1 . . . Dm

whereQ1, . . . ,Qn−m+1 are feature structures.

8. From (6) above,X0 uniquely definesπ0, A andF|π0|+1. We denoteΨ(C0, π0) as〈s1, F1, . . . , s|π0|+1〉.
Recall that for every1 ≤ i ≤ |π0| + 1, si ⊔ ti 6= ⊤ becauseA ∈ Γ(C0, π0, maxHt(Gu)). Let
〈P0, . . . ,Pn−m+1〉 be the sequence of feature structures such that

(〈A〉, 0) ⊔ (ρu, 0) = (〈P0〉, 〈P0, . . . ,Pn−m+1〉)

9. Now we show that there is a sequence of paths〈π1, . . . , πn−m+1〉 such that

〈Yj, . . . , Yn−m+j〉 = 〈N [Ψ(Q1, π1)], . . . , N [Ψ(Qn−m+1, πn−m+1)]〉

Without loss of generality, ifρu is reentrant we assume that its reentrant path is(e, µe), that is,

(0, µ0)
ρu

! (e, µe), where1 ≤ e ≤ n. By the definition of LIG there are two options for the
rule r:

(a) The ruler does not copy the stack from the head to the body. Hence,〈X1, . . . ,Xn−m+1〉 =
〈Yj , . . . , Yn−m+j〉. Consider the possible sources of the ruler, according to definition 25:

• Case (4):
The rule ρu is non-reentrant. Hence, for1 ≤ i ≤ n − m + 1, Ci = Qi and Xi =
N [Ψ(Ci, ε)] = N [Ψ(Qi, ε)]. Therefore,

〈Yj , . . . , Yn−m+j〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qn−m+1, ε)]〉

• Case (5a):
If µ0 is not a prefix ofπ0 then for alli, i 6= e, Xi = Yi+j−1 = N [Ψ(Ci, ε)] = N [Ψ(Qi, ε)],
andXe = N [Ψ(Pe, µe)]. Let π be the maximal prefix ofπ0 andµ0 such thatµ0 = π · µ′

0.
The cordΨ(Dj ⊔ C0, νj) is graphically represented as:

Ψ(A ⊔ C0, π0)

F1 F2 F|π| F|π|+1 F|π0| F|π0|+1 F|νj |. . . . . . . . .

µ0

t1 ⊔ s1 t2 ⊔ s2 t|π|+1 ⊔ s|π|+1 t|π0|+1 ⊔ s|π0|+1 t|νj |+1

Hence,pval(A ⊔ C0, µ0) = pval(t|π|+1 ⊔ s|π|+1, µ
′
0) = pval(Dj ⊔ C0, µ0). By def-

inition of unification in contextpval(Pe, µe) = pval(A ⊔ C0, µ0) and pval(Qe, µe) =
pval(Dj ⊔ C0, µ0). Hence,pval(Pe, µe) = pval(Qe, µe) andQe = Pe. Therefore,Xe =
N [Ψ(Qe, µe)] and

〈Yj, . . . , Yn−m+j〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, µe)], . . . , N [Ψ(Qn−m+1, ε)]〉

30



• Case (5(b)i):
If π0 = µ0 · ν, ν ∈ PATHS thenXe = N [Ψ(Pe, µe · ν)]. SinceN [Ψ(A, π0)] is applicable
to N [Ψ(Dj , νj)] we obtain thatπ0 = νj and A = Dj. HencePe = Qe. Therefore,
Xe = N [Ψ(Qe, µe · ν)] and

〈Yj , . . . , Yn−m+j〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, µe · ν)], . . . , N [Ψ(Qn−m+1, ε)]〉

(b) The ruler copies the stack fromX0 to Xe. By definition 25,r is created from a reentrant
unification rule,ρu, by case (5(b)ii) of the definition 25. Letνj = π0 ·ν

′
j andπ0 = µ0 ·ν, ν ′

j, ν ∈
PATHS. By the definition for alli, i 6= e, Xi = Yi+j−1 = N [Ψ(Ci, ε)] = N [Ψ(Qi, ε)] and
Xe = N [Ψ(Pe, µe · ν), F|π0|+1 ∞]. Hence we just have to show that for some pathπe ∈ PATHS,
Yj+e−1 = N [Ψ(Qe, πe)]. We will show that this equation holds forπe = µe · ν · ν ′

j . Sinceπ0,
A andF|π0|+1 are uniquely defined byX0 we obtain the following:

• Ψ(C0, π0) = 〈s1, F1, . . . , s|π0|+1〉

• Ψ(Dj , νj) = 〈t1, F1, . . . , t|νj |+1〉

• Ψ(Dj ⊔ C0, νj) = Ψ(Q0, νj) = 〈s1 ⊔ t1, F1, . . . , s|π0|+1 ⊔ t|π0|+1, F|π0|+1, . . . , t|νj |+1〉

• Ψ(A ⊔ C0, π0) = Ψ(P0, π0) = 〈s1 ⊔ t1, F1, . . . , s|π0|+1 ⊔ t|π0|+1〉

• Ψ(Pe, µe · ν) = butLast(Ψ(Ce, µe)) · 〈s|µ0|+1 ⊔ t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 ⊔ t|π0|+1〉

• Ψ(Qe, π0 · ν
′
j) =

butLast(Ψ(Ce, µe)) · 〈s|µ0|+1 ⊔ t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 ⊔ t|π0|+1, F|π0|+1, . . . , t|νj |+1〉

The cordΨ(C0, π0) = 〈s1, F1, . . . , s|π0|+1〉 is graphically represented as:

F1 F2 F|µ0| F|µ0|+1 F|π0|. . . . . .

s1 s2 s|µ0|+1 s|π0|+1

The cordΨ(Dj, νj) = 〈t1, F1, . . . , t|νj |+1〉 whose prefix is the cordΨ(A, νj) is graphically
represented as:

Ψ(A, π0)

F1 F2 F|µ0| F|µ0|+1 F|π0| F|π0|+1 F|νj|. . . . . . . . .

t1 t2 t|µ0|+1 t|π0|+1 t|νj |+1

The cordΨ(Dj ⊔C0, νj) = Ψ(Q0, νj) = 〈s1 ⊔ t1, F1, . . . , s|π0|+1 ⊔ t|π0|+1, F|π0|+1, . . . , t|νj |+1〉
whose prefix is the cordΨ(A ⊔ C0, π0) = Ψ(P0, π0) = 〈s1 ⊔ t1, F1, . . . , s|π0|+1 ⊔ t|π0|+1〉 is
graphically represented as:

Ψ(A ⊔ C0, π0)

F1 F2 F|µ0| F|µ0|+1 F|π0| F|π0|+1 F|νj |. . . . . . . . .

s2 ⊔ t1 s2 ⊔ t2 s|µ0|+1 ⊔ t|µ0|+1 s|π0|+1 ⊔ t|π0|+1 t|νj |+1
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The relation between the cords

Ψ(Pe, µe · ν) = butLast(Ψ(Ce, µe)) · 〈s|µ0|+1 ⊔ t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 ⊔ t|π0|+1〉

and

Ψ(Qe, π0 · ν
′
j) =

butLast(Ψ(Ce, µe)) · 〈s|µ0|+1 ⊔ t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 ⊔ t|π0|+1, F|π0|+1, . . . , t|νj |+1〉

is graphically represented as:

Ψ(Pe, µe · ν)

F|µ0|+1 F|π0| F|π0|+1 F|νj |. . . . . . . . .

butLast(Ψ(Ce, µe)) s|µ0|+1 ⊔ t|µ0|+1 s|π0|+1 ⊔ t|π0|+1 t|νj |+1

Hence,

Ye =N [Ψ(Pe, µe · ν), F|π0|+1, t|π0|+2, F|π0|+2, . . . , t|νj |+1]]

=N [butLast(Ψ(Ce, µe)), s|µ0|+1 ⊔ t|µ0|+1, F|µ0|+1, . . . , s|π0|+1 ⊔ t|π0|+1, F|π0|+1, . . . , t|νj |+1]

=N [Ψ(Qe, π0 · ν
′
j)]

Therefore,

〈Yj , . . . , Yn−m+j〉 = 〈N [Ψ(Q1, ε)], . . . , N [Ψ(Qe, π0 · ν
′
j)], . . . , N [Ψ(Qn−m+1, ε)]〉

Corollary 24 (Theorem 12). LetGu ∈ UG1r, thenL(Gu) = L(ug2lig(Gu)).

Proof. Let Gu = 〈Ru,As,L〉 be a one-reentrant unification grammar andGli = 〈VN , Vt, Vs,R
li, N〉 =

ug2lig(Gu). Then by theorem 22, there is a sequence of paths〈π1, . . . , πn〉 such that

if As ∗
⇒u A1 . . . An thenS[ ]

∗
⇒li N [Ψ(A1, π1)] . . . N [Ψ(An, πn])

WhereAs ∗
⇒u A1 . . . An is a pre-terminal sequence. Assume thatAs ∗

⇒u A1 . . . An
∗
⇒u w1, . . . wn, where

wi ∈ WORDS, 1 ≤ i ≤ n. Hence,L(wi) = {Di} andAi ⊔ Di 6= ⊤. Since the grammar is a simplified
unification grammar (definition 16),Ai = Di. By definition 25 case (2), the ruleN [Ψ(Ai, πi)] → wi is in
Rli. Therefore,S[ ]

∗
⇒li N [Ψ(A1, π1)] . . . N [Ψ(An, πn])

∗
⇒li w1, . . . wn.

By theorem 23, ifS[ ]
∗
⇒li Y1 . . . Yn then there are a sequence of paths〈π1, . . . , πn〉, and a deriva-

tion sequenceAs ∗
⇒u A1 . . . An such that for0 ≤ i ≤ n, Yi = N [Ψ(Ai, πi)]. Assume thatS[ ]

∗
⇒li

N [Ψ(A1, π1)] . . . N [Ψ(An, πn])
∗
⇒li w1, . . . wn, wi ∈ Vt. Then the rulesN [Ψ(Ai, πi)] → wi in Rli,

1 ≤ i ≤ n. By definition 25, each such rule is created from a lexicon entry L(wi) = {Ai}. Hence,
As ∗

⇒u A1 . . . An
∗
⇒u w1, . . . wn.
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