Highly constrained unification grammars

Daniel Feinstein Shuly Wintner
Department of Computer Science Department of Computer Science
University of Haifa University of Haifa
31905 Haifa, Israel 31905 Haifa, Israel
df ei nstei n@nuai | . com shuly@s. hai fa. ac.il

April 30, 2008

Abstract

Unification grammars are widely accepted as an expressiamnsi®r describing the structure of
natural languages. In general, the recognition problenméeaidable for unification grammars. Even
with restricted variants of the formalisroff-line parsablegrammars, the problem is computationally
hard. We present two natural constraints on unification gnars which limit their expressivity and
allow for efficient processing. We first show thatn-reentrantunification grammars generate exactly
the class of context-free languages. We then relax the i@anisand show thadne-reentrantinification
grammars generate exactly the class of mildly contextitemtanguages. We thus relate the commonly
used and linguistically motivated formalism of unificatigrammars to more restricted, computationally
tractable classes of languages.

1 Introduction

Unification grammars (Shieber, 1986; Shieber, 1992; Cagpeh992; Wintner, 2006a) have originated as
an extension of context-free grammars, the basic idea heimygment the context-free rules with non
context-free annotations (feature structures) in ordexfwess additional information. They can describe
phonological, morphological, syntactic and semantic progs of languages simultaneously and are thus
linguistically suitable for modeling natural languagesv&al formulations of unification grammars have
been proposed, and they are used extensively by compuhlilaguists to describe the structure of a variety
of natural languages.

Unification grammars (UGs) are Turing complete: deterngnirinether a given string is generated by a
given grammar is as hard as deciding whether a Turing madttahe on the empty input (Johnson, 1988).
Therefore, the recognition problem for unification gramsniarundecidable in the general case. In order
to ensure its decidability, several constraints on unificagrammars, commonly known as tb#-line
parsability (OLP) constraintswere suggested, such that the recognition problem is deledor off-line
parsable grammars (Jaeger, Francez, and Wintner, 2008)id&a behind all the OLP definitions is to rule
out grammars which license trees in which an unbounded anabumaterial is generated without expanding
the frontier word. This can happen due to two kinds of rulesules (whose bodies are empty) and unit
rules (whose bodies consist of a single element). Howeven for unification grammars with no such rules
the recognition problem is NP-hard (Barton, Berwick, ansté&d, 1987).

In order for a grammar formalism to make predictions aboetstinucture of natural language its gener-
ative capacity must be constrained. It is now generally pteckthat Context-free Grammars (CFGs) lack

the generative power needed for this purpose (Savitch,et@8.7), due to natural language constructions
such as reduplication, multiple agreement and crosse@agmet. Several linguistic formalisms have been
proposed as capable of modeling these phenomena, incliiegr Indexed Grammars (LIG) (Gazdar,
1988), Head Grammars (Pollard, 1984), Tree Adjoining GramsnTAG) (Joshi, 2003) and Combinatory
Categorial Grammars (Steedman, 2000). In a seminal wojayA8hanker and Weir (1994) prove that all
four formalisms are weakly equivalent. They all generatedlass ofmildly context-sensitive languades
(McsL), for which recognition algorithms with time complexi¥(n°) are known (Vijay-Shanker and Weir,
1993; Satta, 1994). As a result of the weak equivalence afifmependently developed (and linguistically
motivated) extensions of CFG, the clas€ 8l is considered to be linguistically meaningful, a naturaksl

of languages for characterizing natural languages.

The main objective of this work is to define constraints on Wsch naturally limit their generative
capacity. We define two natural and easily testable syetactstraints on UGs which ensure that gram-
mars satisfying them generate the context-free and thdynaitohtext-sensitive languages, respectively. The
contribution of this result is twofold:

e From a theoretical point of view, constraining unificatiorammars to generate exactly the class
McsL results in a grammatical formalism which is, on one hand, gaful enough for linguists to
express linguistic generalizations in, and on the othedlzacognitively adequate as the othec 81
formalisms;

e Practically, such a constraint may provide efficient redtgm algorithms for the limited class of
unification grammars, although we do not explore such pibiigib in this paper.

This result is closely related to the result of Keller and W&B95), who define a version of unification
grammars which is more expressive thag 84, yet has a polynomial time recognition algorithm. Our work
attempts to address precisely the clagsayl and the definitions we provide are inherently different.

We define some preliminary notions in section 2 and then shoenatrained version of unification
grammars which generates the claga ©f context-free languages in section 3. Section 4 preshatsiain
result, namely a restricted version of unification gramnaard a mapping of its grammars to LIG, estab-
lishing the proposition that such grammars generate gxteticlass MsL. We conclude with suggestions
for future research. To facilitate readability, most of greofs were moved to the appendices.

2 Preliminary notions

2.1 Linear indexed grammars

A CFG is a four-tupleG¢f = (Vn, Vi, RS S) whereV, is a set ofterminak, Vi is a set ofnon-terminas,
including thestart symbolS, andR¢/ is a set of productions, assumed to be in a normal form wherie ea
rule has either (zero or more) non-terminals or a singleiteahmn its body, and where the start symbol never
occurs in the right hand side of rules. The set of all suchexdfftee grammars is denoted-Gs.

In a linear indexed grammar (LIG)strings are derived from nonterminals with an associatedkst
denotedA[l; ... [,], whereA is a nonterminal, each is a stack symbol, and is the top of the stack. Since
stacks can grow to be of unbounded size during a derivatmmgswvay of partially specifying unbounded

1The termmildly context-sensitivevas coined by Joshi, Levy, and Takahashi (1975), who usedréfer to a more informal
class of languages. In this paper we use this term to denetddbs of tree adjoining languages, a trend which has becommon
in the literature.

2The definition is based on Vijay-Shanker and Weir (1994).

stacks in LIG productions is needed. We usg, . .. [, oo] to denote a nonterminal associated with any
stackn whose topn. symbols ard4,1ls...,I,. The set of all nonterminals iy, associated with stacks
whose symbols come froii;, is denoted/y [V'].

Definition 1 (LIG). A Linear Indexed Grammaris a five tupleG" = (Vn, Vt,Vs,R“,S> whereV,, Vy
and S are as aboveV is a finite set of indices (stack symbols) &R is a finite set of productions in one
of the following two forms:

o fixedstack: N[p;...p,] — «

e unboundedstack: N[p; ...p, o] — aor N[p; ...p, 00| — aN'[q; . .. qm 0]
whereN, N € VN, p1...Pnsq1---qm € Vs,n,m > 0anda, 8 € (V; U VN [VI])* .
Example 1(LIG). GY = (Vy, Vi, Vi, R, S) is a LIG, where:

o Vy ={S, Ny, N3}

o Vi ={ab}

o Vs=V,

o Rl = {r1,ra,73,74,75, 76,77}, Where

1. =S[]— Nof]

2. rg = No[o0] — Nala oola
3. rs3 = NQ[OO] — Ng[b OO]b
4, rq = NQ[OO] — Ng[oo]
5. r5 = N3[a co] — aN3[o0]
6. r¢ = N3[b oo] — bN3[o]
7. 177 =N3[] —e€

A crucial characteristic of LIG is that onlgnecopy of the stack can be copied tgiagleelement in the
body of a rule. If more than one copy were allowed, the expregsower would grow beyond KISL.

Definition 2 (LIG derivation) Given a LIG(Vy, V¢, Vs, R, S), thederivation relation‘=-;;" is defined as
follows: for all ¥;, Uy € (Vn[V]UV;)* andn € V,

o If Ni[p1...pu] — a € Rl then
UiN;[p1...pn|¥o = Ura¥,
o If Ni[p1...pn 0] — a € R then
UiN;[p1 ... pan|¥s = ViaW,
o If Ni[p1...pn 00l = aNjqi...qm o0l € RY then
Ui Ni[p1 . ..panVa =1 Y1aNj[q1 - . . gun] Y2

Thelanguagegenerated byz" is L(G") = {w € V;* | S[] =5 w}, where &, is the reflexive, transitive
closure of =,

Example 2(LIG). For G¥ of example 1L.(G%) = {ww | w € {a,b}}.

2.2 Unification grammars

We assume familiarity with theories of feature structurefoamulated, e.g., by Wintner (2006a) or Wintner
(2006b). We summarize below the concepts that are needdtidaest of this paper in order to set up
notation.

Definition 3 (Signature) A signatureis a structureS = (ATOMS, FEATS, TAGS), whereAToMS is a finite
set of atomsFEATS is a finite set of features anthGs is an enumerable set of variables.

Unless explicitly mentioned, the seads of variables is assumed to BeL] ,[2] ,...}.

Definition 4 (Feature structures)Given a signatureS, the setFS(S) of feature structures (FSs)s the
least set satisfying the following two clauses:

1. A= Xa € FS(S) foranya € AToMmsand X € TAGS; Ais said to beatomicand X is thetag of A.

2.A = X[f1 : A,...,fn : Ay € FS(S) forn > 0, X € TAGS, f1,...,fn € FEATS and
Ai,...,A, € FS(S), wheref; # f;if i # j. Alis said to becomplex and X is thetag of A.
If n =0, A = X[] isanempty FS

Meta-variablesA, B, C, with or without subscripts, range ov&isS.

Example 3 (Feature structures)Consider a signature consisting Afroms = {a}, FEATS = {F,G}. Then
AL = a is an FS by the first clause of the definitigky = [] is an empty FS by the second clause,
As =[3] [F:[4] a] is an FS by the second clause, akglis a FS by the second clause:

. G: F:a
SRIREIA

Tags that occur only once in a FS can be omitted) sabove can be written thus:

[G : [F : a]]

F:[]

Definition 5 (Paths) A path (over FEATS) is a finite sequence of features, and theatHs = FEATS* is
the collection of all paths.

Meta-variablesr, 1 (with or without subscripts) range over patkss the empty path, denoted also by
‘()'. Path concatenation is denoted using eitheof juxtaposition. A path is a purely syntactic notion:
every sequence of features constitutes a path. Usuakyesting paths are those that can be interpreted as
actual paths in some FS, starting from the outermost levelusell, to denote the paths of a S The
value of the pathr in A, which is a sub-structure &, is denotecpval(A, 7).

When two different paths in some FShave the same value we say that theyraentrant

Definition 6 (Reentrancy) Two pathsm; and 7o are reentrantin a FSA if pval(A,m) = pval(A,),

denoted alsor; AR mo. A FSA is reentrant if there exist two paths, o € II5 such thatr; # 75 and
A

T e~ .

Definition 7 (FS subsumption)Let A;, A; be FSs over the same signaturd; subsumesA,, denoted
A1 C A,, if the following conditions hold:

1. IIa, C IIa,; furthermore, if pvalA;,) is an atomic FS then pv@h,, 7) is an atomic FS with the
same atom;

. A A
2. ifm PACS 79 thenm PN 9.

Definition 8 (Unification). Theunification of two FSsA; andA,, denotedA LI A, is the least upper bound
of A; andAs with respect to subsumption. If no upper bound exists, tifecation fails, sometimes denoted
A LUAy =T.

FSs can encode lists in a natural way, usirigeadtail notation (dubbedhiD|TL in the sequel).

Example 4(Encoding lists as FSs)he list of three element&;, b, ¢), can be encoded as the following FS,
which is over a signature including the feature®, TL and the atoms, b, ¢, elist:

HD : a
HD : b

TL : HD : ¢
TL : .
[TL : elzst]

For the sake of brevity, we use standard list notation whendffsode lists, with double angular brack-
ets. The FS of example 4 is thus depicted @sb, c)). We also provide means for encodingen-ended
lists, namely lists which do not terminate wigtist (and can therefore be extended). We use the notation
{{a,b,c[[i])) for the FS

HD :a
HD: b
TL : —_ |:HD20 }
ST [

We now extend feature structuresruilti-rooted structuresthese are basically sequences of FSs, in
which the scope of variables is extended to the entire seguemabling paths to be reentrant even if they
leave different elements of the sequence.

Definition 9 (MRS). Given a signatureS, a multi-rooted structure (MRS)f lengthn > 0 is a sequence
(A1,...,A,) such that for each, 1 <1i < n, A; is a FS over the signature.

Meta-variablesr, p range over MRSs. The length efis denoteden (o). We usually do not distinguish
between a MRS of length 1 and a FS.

Example 5(MRSs) Following is an MRS of length 3:

ArEFE 6 5EY] @EE R

Note that the same variable can tag different sub-FSs ddréifit elements in the sequence (.,or
in example 5). In other words, ttseopeof variables is extended from single FSs to MRSs.

The definition ofpathsandpath valueds naturally extended from FSs to MRSs by adding a parameter
denoting the index of the element in the sequence from whietpath leaves. An MRS igentrantif it
has two distinct paths which share the same value; these dtis pnay well be “rooted” in two different
elements of the MRS. Since MRSs are sequences, they can taeoated; we use juxtaposition to denote
MRS concatenation. i is an MRS, we use* to denote thé-th element of.

5

Definition 10 (MRS subsumption)Leto, p be two MRSs of the same lengtland over the same signature.
o subsume), denotedr C p, if the following conditions hold:

1. foralli,1 <i<n,o’ C p
2. if (i,m) < (j, m2) then(i, m) < (j, ma).

Example 6(MRS subsumption)Leto and o’ be the following two MRSs (of length 3):

[CAT :np] AT . e

o AGR :] AGR : EEZS:, ;gd AGR: 6] EE:{AS:' ;gd]
[CAT:np | cAT - op — AT

/.) [:] '

0 e "m] B fens @ o)| B e g

Theno C ¢’ but note’ C o.

When MRSs are concerned, two variants of unification are égfione which unifies two same-length
structures and produces their least upper bound with regpsabsumption, and one, calledification in
context which combines the information in two feature structuess;h of which may be an element in a
larger structure.

Definition 11 (MRS unification) Let o, p be MRSs of the same length, Theunification of ¢ and p,
denoteds LI p, is the least upper bound efand p with respect to MRS subsumption, if it exists.

Definition 12 (Unification in context) Let o, p be two MRSs and j be indexes such that< [en(c) and
j <len(p). Then(d’, p') = (0,i) U (p,j) iff o/ = minc{o” | 0 C ¢” andp’ C ¢} andp’ = minc{p” |
pC p// and o’ C p”j}.

Lemma 1. If (o/, p') = (0,i) U (p,) theno” = p" = o' LI p/.

Example 7 (Unification in context) Let

o=[usT:[3] []] [usT:[3]]
p= [LIST: [?LD; H [LisT :[2] | [LIST: [?LD; stH

The unification in context of the second element wiith the first element g is (0,2) U (p, 1) = (¢/, p'),
where:
HD :|1
o' = [LisT :[3]] [LIST: [TL:H

o= [LIST: FF; H [LisT :[2] | [LIST: FF; stH

Definition 13 (Unification grammars)A Unification grammarover a signatureS and a finite SeWWORDS
of words is a tuplez* = (R", L, A®) where:

e R" is afinite set of rules, each of which is an MRS of length 1, with a designated first element,
the headof the rule, followed by itbody The head and body are separated by an arrew) (

e L is alexicon, which associates with every worde WORDSsa finite set of feature structures(w).

e A% is afeature structure, thetart symbol
We use meta-variables® (with or without subscripts) to denote unification grammars

Example 8 (Unification grammar) Let G, be the unification grammar over the signatuf@Toms,
FEATS, TAGS, WORDS), where FEATS = {LIST,HD,TL}, ATOMS = {s,elist,ta,tb} and WORDS =
{a, b}, defined as:

s _|HD:s
AT = {LIST' [TL: elist]}
[[HD : s
_LIST: T elz‘stH — [usT:[3]] [usT:[3]]

[[HD:[1] ' [HD:[1]
_LIST L H — [usT:[2]] [LIST ' [TL : elz’stH

co = {[oer:[i21 05 [} e = {00)

To define thelanguagegenerated by a unification gramm@t, we defineformsas MRSs. A form
oa = (Aq,...,Ar) immediately deriveanother formop = (By,...,B,,) (denoted byo 4 :1>u op) iff
there exists a rulg* € R of lengthn that licenses the derivation. The head of the rule is matelgashst
some elemend; in o4 using unification in context(ca,7) LI (p*,0) = (¢4, p’). If the unification does
not fail, o5 is obtained by replacing theth element ofo’, with the body ofp’. The reflexive transitive

RY =

closure of %u' is denoted by =,,’. An empty derivation sequence means that an empty sequémakes

is applied to the source MRS and is denoted &@ for exampleo 4 :0>u o4. Aform is sententialif it is
derivable from the start symbol of the grammar.

Definition 14. Thelanguageof a unification grammagG® is L(G*) = {wy - - - w,, € WORDS" | A® =, o
andoy is unifiable with(A1, ..., A,)}, whereA; € L(w;) for1 <i <n.

Example 9 (Derivation sequence)As an example, consider again the gramnigj,,, of example 8. The
following is a derivation sequence for the strifigiba’ with this grammar. Note that the scope of variables
is limited to a single MRS (so that multiple occurrences efsame tag in a single form denote reentrancy,
whereas across forms they are unrelated).

s _|HD:s .
AS = [LIST : [TL : elist] } apply rule 1 to the single element of the form
op = [usT:[3]] [usT:[3]] apply rule 2 to the second element

02

{LIST : FF; H [LisT :[2] | {LIST : FF; st” apply rule 2 to the first element

_ . [Ho (1] . [no[1]
o3 = [usT:[2]] [LIST. [TL: elist” [LisT :[2] | [LIST. [TL: elistH

7

Now consider the MRS obtained by concatenating (the sirgheents of)L(b), L(a), L(D), L(a)):

_ s - HD : tb LiST - HD : ta LiST - HD : tb LiST - HD : ta
= “|TL : elist T |TL : elist “|TL : elist “|TL : elist

Sinceo; and o3 are unifiable, the stringbaba’ is in L(GY,,). In fact, L(GY,,) = {ww | w € {a,b} T }.

In order to limit the generative capacity of unification graars we define two constrained versions of
the formalism below. Both limit the number of reentrancidsicl are allowed between the head of each
grammar rule and its body. Informally, a rule is non-reemtifno reentrancy tags occur in it. A rule is
one-reentrant if at most one reentrancy tag occurs in ictgxawice: once in the head of the rule and once
in an element of its body.

Definition 15 (Non-/One-reentrant unification grammarg) unification grammafR", A*, L) over the sig-
nature (ATOMS, FEATS, TAGS, WORDS) is non-reentrantiff for any rule p* € R*, p* is non-reentrant. It

is one-reentrantiff for every rulep* € R, p* includes at most one reentrancy, between the head of the
rule and some element of the body. Formally, it can have at m@es (non-trivial, i.e., non-identity) reen-

trancy (1,71) AN (i, m9), wherei > 1. LetUG,,., UG, be the sets of all non-reentrant and one-reentrant
unification grammars, respectively.

One-reentrant unification grammars induce highly consdghi(sentential) forms: in such forms, there
are no reentrancies whatsoever, neither between disteroeats nor within a single element. The following
lemma can be proven by a simple induction on the length of izat&m sequence; it follows directly from
the fact that rules in a one-reentrant unification grammae m reentrancies between elements of their
bodies.

Lemma 2. If 7 is a sentential form induced by a one-reentrant grammar ttineme are no reentrancies
between elements ofor within an element of.

Since all the feature structures in forms induced by onatrast unification grammars are non-reentrant,
unification is simplified.

Lemma 3. LetA andB be unifiable non-reentrant feature structures. Theas AL B is also a non-reentrant
feature structure, andll; = 114 U I1p.

To simplify some of the constructions, we define a simplifiadant of one-reentrant unification gram-
mars, which is equivalent to the original definition. In tlegjgel we assume that all one-reentrant unification
grammars arsimplified

Definition 16 (Simplified one-reentrant unification grammars)one-reentrant unification gramma#* =
(R™, A%, L) over the signature = (ATOMS, FEATS, TAGS, WORDS) is simplifiediff the lexical categories
of words are inconsistent with any feature structure (ektepmselves). Formally, if is a sentential form
induced byG* and ' is an element of then for each word: € WORDS, £(a) = {A}, whereA LI 7 # T
iff A=1"

3 Context-free unification grammars

In this section we define a constraint on unification grammdreh ensures that grammars satisfying it
generate the classrC. The constraint disallowany reentrancies in the rules of the grammar. When rules

8

are non-reentrant, applying a rule implies that an exacy @dghe body of the rule is inserted into the
generated (sentential) form, not affecting neighboringmeints of the form the rule is applied to. The
only difference between rule application in {Gand the analog operation inFGs is that the former
requires unification whereas the latter only calls for idgrmtheck. This small difference does not affect the
generative power of the formalism, since unification canteeqompiled in this simple case.

The trivial direction is to map a CFG to a non-reentrant uatfan grammar, since every CFG is, triv-
ially, such a grammar (where terminal and non-terminal sylsare viewed as atomic feature structures).
For the reverse direction, we define a mapping from, W@ CrGs. The non-terminals of the CFG in the
image of the mapping are the set of all feature structuresetdin the source unification grammar.

Definition 17. Let ug2cfg: UG,,,, — CFGsbe amapping ofUG,,,. to CFGS, such that ifG* = (R", A%, L)
is over the signaturéAToms, FEATS, TAGS, WORDS) then ug2cf¢G*) = (Viy, Vi, R, S¢/), where:

o Vv ={A;|Ao = A1...A, e R%i >0} U{A | A € L(a),a € ATOMS} U {A®}. Vy is the set of
all the feature structures occurring in any of the rules oe thxicon ofG*“.

° Scf — AS
e V, = WORDS
e R°f consists of the following rules:

1. LetAy — A;...A, € R*andB € L(b). If for somei, 1 < i < n, A;UB # T, then
A; —beRY

2. IfAg — Ay...A, € R*andAs U A, # T thenS</ — A;...A, € R,

3. Letp} = Ag — A1... A, andpy = By — B;...B,,, wherep}, pj € R". If for somes,
1<i<n,A;LUBy#T,thenthe ruleA; — By ...B,, € R

SinceR" and . are finite, so id/y. V; is finite because WRDsis, andR¢/ is finite becaus®* and £
are. The size ofig2cfgd G*) is polynomial in the size of:*.

Example 10(Mapping from UG, to CFGS). LetG" = (R*, A%, L) be a non-reentrant unification gram-
mar for the languagga”b™ | 0 < n} over the signaturé AToms, FEATS, TAGS, WORDS), such that:

e ATOMS = {v,u, w}

FEATS = {F1,F2}

WORDS = {a, b}
AS — |:F1 :’LU:|
Fo :w

clo) = ([Ty anace) =211y

v u

The set of ruleRR" is defined as:

1. |:F1:w:| — £
Fo :w

2 Fll[] - Fr:u Flt[] _Flzv
" Fy i w Fo:v| |[Fo:w | |[Fo:u
Then the context-free gramma¥/ = (Viy, Vi, R¢/, S°/) = ug2cfg G*) is:
oV _{Flz[]] [Flz[]} [Flz[]_ [Flzw} [Flzu} [Flzv]}
N — ;)) ; ’
Fo:v Fo:u Fglw_ Fo :w Fo:v Fo:u
e V, = WORDS= {a,b}

° Scf:AS:[Flw:|
Fo:w

e The set of ruleR</ is defined as:

1. Fl:u}—»a
[F2:v
2 Fl:v:|—>b
F2:u
3 Fll’w:|_)€
F2tw
4. |F1 q_,e
_Fgl’w
_Flzw} [Flzu] [Flz[]} [Flzv]
5. —
F2rw Fo:v Fo :w Fo:u
6. IS]}_}[Flzu] [Flz[]} [Flzv]
F2tw Fo:v Fo:w Fo:u

By induction on the lengths of the derivation sequences, egithe following theorem (the full proof
is deferred to appendix A):

Theorem 4. If G* = (R“, A%, L) is a non-reentrant unification grammar ar@/ = ug2cfgG“), then
L(GT) = L(G"Y).

Corollary 5. Non-reentrant unification grammars are weakly equivalerCtGs.

4 Mildly context-sensitive unification grammars

In this section we show thaine-reentrant unification grammagenerate exactly the classddL. In such
grammars each rule can have at most one reentrancy, refléoéin |G situation where stacks can be copied
to exactly one daughter in each rule.

4.1 Mapping LIGto UG,

In order to simulate a given LIG with a unification grammar,egidated signature is defined based on the
parameters of the LIG.

10

Definition 18. Given a LIG(Vy, V;, V,, R!, S), lett = (ATOMS, FEATS, TAGS, WORDS), whereATOMS =
Vi U V; U {elist}, FEATS = {HD,TL}, TAGS = {[1] ,[2] ,...}, andWORDsS = V;.

We user throughout this section as the signature over which UGs efieetl. We use FSs over the
signaturer to represent and simulate LIG symbols. In particular, FSkemicode lists in the natural way
(see example 4), hence the featusesandTL. With this notation in mind, LIG symbols are mapped to FSs
thus:

Definition 19. Let toFs be a mapping of LIG symbols to feature structuresh soat:

1. Ift € V; then toFs$t) = FLD .: ilist

|-

2. If N € Vyandp; € Vi, 1 <i<n,then

HD: N
HD :
tOFS(N[pl,,pn]): TL - 2 HDpn :<<N7p17apn>>
T [TL: elist]

The mappingoFsis extended to sequences of symbols by setiifity «3) = toFS«)toFs(3). Note
thattoFsis one to one.
When FSs that are images of LIG symbols are concerned, uiofica reduced to identity:

Lemma 6. Let X1, Xo € V[V U V. If toFS(X)) LUtoFY X32) # T then toF$.X) = toF(X3).

When a feature structure which encodes an open-ended list hat is not terminated bylist, refer
back to example 4) is unifiable with an image of a LIG symbad, filrmer is a prefix of the latter.

Lemma7. LetC = ((p1,... ,pnym) be a non-reentrant feature structure, whexe. .., p, € V;, and let
X € VWw[Vy]U V.. ThenCLUtoFS(X)) # T iff toFs(X) = ((p1,...,pn,)), for somex € V.

To simulate LIGs with UGs we represent each symbol in the L4@G deature structure, encoding the
stacks of LIG non-terminals as lists. Rules that propagaieks (from mother to daughter) are simulated
by means of reentrancy in the unification grammar.

Definition 20. Let lig2ug be a mapping df IGS to UG, such that ifGY = (Viy,V;, Vs, RY, S) and
G* = (RY, A%, L) = lig2ug(G") thenG* is defined over the signature(definition 18),A* = toFs(S[]),
forall t € Vi, L(t) = {toFs(t)} andR" is defined by (refer back to definition 1 for the format of LIGeg):

e A LIG rule of the formX, — « is mapped to the unification rule toF%,) — toFs«)

e A LIG rule of the formN[py,...,p, o] — a N'[q1,. .., qm oo] B is mapped to the unification rule
((N,pl,...,pn\.) — toFY(«) <(N/,q1,...,qm].) toFs(3)

Evidently, lig2ug(G") € UG, for any LIG G'. Also, the mappindig2ug of definition 20 is one to
one.

Example 11(Mapping from LiGsto UG;,). We map the LIGY of example 1 above 6% = lig2ug(G*)
defined over the signatureof definition 18, with the start symbol tof*§ |). The lexicon is defined for the
wordsa andb asL(a) = {(a)} and£(b) = {(b)}. The set of production&", is defined as follows:

11

S)) = {{(N2)

), where the LIG rule ig; = S[]| — Na[]

1]) — N2,a|.), where the LIG rule is; = N[0o] — Nafa oola
(
(

)
=
I

RS
Ne
I
5

No[[1])) — ((N2,b[1]))((b)), where the LIG rule ig:5 = Na[0o] — Na[b oob

i)
w
I

N3, af[1])) — (<a>>(<N3|)), where the LIG rule ig5 = N3[a 0o] — aN3[o]

s
ot
Il

N3, b[[1])) — ((b))((N3][1])), where the LIG rule i = N3[b oo] — bN3[o0]

N o o &~ w0 N PF
i))
o e
I I

)
~c
I

(
it
(
((N2[[1])) — ((N3][1])), where the LIG rule is.y = Ny[o] — N[o]
it
(
(N

3)) — €, where the LIG rule is; = N3[] — ¢
The following theorem, whose proof is deferred to appendigiBnmarizes this direction of the result:

Theorem 8. If G¥ is a LIG andG* = lig2ug(G") thenL(G") = L(G").

4.2 Mapping UG, to LIG

We are now interested in the reverse direction, namely mgpjoine-reentrant) UGs to LIG. The differences
between the two formalisms can be summarized along threerdiions:

The basic elementsUnification grammars manipulate feature structures, atesd @and forms) are MRSs;
whereas LIG manipulates terminals and non-terminals witbks of elements, and rules (and forms)
are sequences of such symbols.

Rule application In UGs a rule is applied bynification in contexbf the rule and a sentential form, both
of which are MRSs, whereas in LIG, the head of a rule and thectsd element of a sentential form
must have the same non-terminal symbol and consistentsstack

Propagation of information in rules In UGs information is shared through reentrancies, wherebG,
information is propagated by copying the stack from the rafable rule to one element of its body.

We show that one-reentrant UGs can all be correctly mappédiGe. For the rest of this section we
fix a signature{ATomS, FEATS, TAGS, WORDS) over which UGs are defined. LetA¥ss be the set of all
non-reentrant FSs over this signature.

One-reentrant UGs induce highly constrained (senteritief)s: in such forms, there are no reentrancies
whatsoever, neither between distinct elements nor withéingle element. Hence all the FSs in forms
induced by a one-reentrant UG are non-reentrant (lemma 2).

Definition 21 (Height). Let A be a feature structure with no reentrancies. Treghtof A, denotedA|, is

the length of the longest path & This is well-defined since non-reentrant feature striegurave finitely
many paths. Let:* = (R“, A%, L) € UG;, be a one-reentrant unification grammar. Tim@aximum height

of the grammar, maxH&G*), is the height of the highest feature structure in the gramniais is well

defined since all the feature structures of one-reentraatrgnars are non-reentrant.

The following lemma (which is proven in appendix C) indicata important property of one-reentrant
UGs. Informally, in any FS that is an element of a sententiahfinduced by such grammars, if two paths
are long (specifically, longer than the maximum height ofgteenmar), then they must have a long common
prefix.

12

Lemma 9. LetG" = (R“, A%, L) € UG, be a one-reentrant unification grammar. Lete an element
of a sentential form induced Wy". If 7 - (F;) - 1,7 - (Fg) - m2 € 114, WhereF;, F, € FEATS, j # k and
, then|m | < maxH{(G").

|| < |mo

Lemma 9 facilitates a view of all the FSs induced by such a gramas (unboundedly long) lists of
elements drawn from a finite, predefined set. The set condisii features in EATS and all the non-
reentrant feature structures whose height is limited byntagimal height of the unification grammar. Note
that even with one-reentrant UGs, feature structures cambeundedly deep. What lemma 9 establishes is
that if a feature structure induced by a one-reentrant atifin grammar is deep, then it can be represented
as asingle“trunk” path which is long, and all the sub-structures whiblang” from this trunk are depth-
bounded. We use this property to encode such feature stegciiscords

Definition 22 (Cords) LetW : NRFSs x PATHS — (FEATS U NRFSS)* be a mapping such that X is a
non-reentrant FS and = (Fy,...,F,) € 4, then thecord U (A,) is (A1, F1,...,An, Fn, Ant1), Where
for1 <i <n+1,A;is the non-reentrant FSs obtained frokrby removing frompval (A, (F1,...,Fi—1))
the featurer; and its value.

We also define las¥ (A, 7)) = A,,+1. Theheightof a cord is defined aal (A,)| = maxi<j<n+1(]Ad])-
For each cord¥ (A,) we refer toA as thebase feature structur@nd tor as thebase path Thelength of
a cord is the length of the base path.

Example 12(Cords) LetA be a non-reentrant feature structure over the signafegats = {Fy, Fy, F3},
ATOMS = {a, b}:
Fi:b
Fo : [Fl : [FQ: [Fg:a]]]
A= Fqp: H
F3: [Fe:a
F3 : [Fl : [H

If 7 = (Fo, F1) then the cord representation &fon the pathr is (A, 7) = (A1, F2, Ag, F1, A3), where

Flib
AL = Fs :([I] ?AZZH§A3=[F2:[F3:QH
th[Flt[]]

U (A,) can be graphically depicted as:

Fa F1

Al Ay As

Note that the functionl is one to one. In other words, giveh(A,), both A and 7 are uniquely
determined. The path is determined by the sequence of the features on theleohdr), in the order they
occur in the cord. SincA is non-reentrant, alh; in ¥(A,) are non-reentrant feature structures, i.e., trees.
To see tha# is uniquely determined, simply view as a branch of a tree and “hang” the subtr&gen ,
in the order determined by the features in the cord, to olatainique feature structure.

13

Lemma 10. Let G* be a one-reentrant unification grammar and kebe an element of a sentential form
induced byG*. Then there is a path € I14 such that ¥ (A, 7)| < maxH{G").

Lemma 10 (which is an immediate corollary of lemma 9) imptlest every FS induced by one-reentrant
grammars (such FSs are necessarily non-reentrant by lemoaa e represented as a height-limited cord.
This mapping resolves the first difference between LIG arification grammars, by providing a represen-
tation of thebasic elementsWe use cords as the stack contents of LIG non-terminal signloords can
be unboundedly long, but so can LIG stacks; the crucial psititat cords are height limited, implying that
they can be represented usinfjrate number of elements.

We now show how to simulate, in LIG, the unification in conteki rule and a sentential form. The
first step is to have exactly one non-terminal symbol (in &oidito the start symbol); when all non-terminal
symbols are identical, only the content of the stack has tmken into account. Recall that in order for a
LIG rule to be applicable to a sentential form, the stack efthle’s head must be @refix of the stack of
the selected element in the form. The only question is whetteetwo stacks are equal (fixed rule head) or
not (unbounded rule head). Since the contents of stack®aie,ave need a property relating two cords, on
one hand, with unifiability of their base feature structumsthe other. Lemma 11 (whose proof is deferred
to appendix C) establishes such a property. Informallyhéfbase path of one cord is a prefix of the base
path of the other cord and all feature structures along thenoon path of both cords are unifiable, then the
base feature structures of both cords are unifiable. Thesewirection also holds.

Lemma 11. LetA, B € NRFssbe non-reentrant feature structures angd m, € PATHS be paths such that
m € Ilg, m - my € Iy, \I’(A,Trl : 7T2) = <t1, Fi,.. .,F|7r1‘,t‘m|+1, Flag|+15 - - - 7t\7r1-7r2\+1>’ \I’(B,Trl) =
<Sl, Fi,... 75\7r1|+1>’ and<F|m‘+1> 4 Hs\ﬂlHl' ThenA LB *T iffforall 7,1 <i< |7T1| +1,s;Ut; #T.

The length of a cord of an element of a sentential form indumethe grammar need not be bounded,
but the length of any cord representation of a rule head igdidrby the grammar height. By lemma 11,
unifiability of two feature structures can be reduced to agamnson of two cords representing them and only
the prefix of the longer cord (as long as the shorter cordytffine result. Since the cord representation of
any grammar rule’s head is limited by the height of the gramwealways choose it as the shorter cord in
the comparison.

We now define, for a feature structutgwhich is a head of a rule) and some pattthe set that includes
all feature structures that are both unifiable witand can be represented as a cord whose height is limited
by the grammar height and whose base path i8Ve call this set theompatibility setof C and7 and use
it to define the set of all possible prefixes of cords whose B&seare unifiable witlt (see definition 24).
Crucially, the compatibility set of is finite for any feature structur€ since the heights and the lengths of
the cords are limited.

Definition 23 (Compatibility set) Given a non-reentrant feature structutea pathm = (Fy,...,F,) € ll¢
and a natural numbeth, the compatibility setI'(C, 7, h), is defined as the set of all feature structures
suchthatC LIA # T, 7 € I, and |¥ (A, 7)| < h.

The compatibility set is defined for a feature structure argivan path (whert, is taken to be the
grammar height). We now define two similar sets, FH (fixed head UH (unbounded head), for a given
FS, independently of a path. When rules of a one-reentrafitation grammar are mapped to LIG rules
(definition 25), FH and UH are used to define heads of fixed atdwmded LIG rules, respectively. A
single unification rule is mapped tosatof LIG rules, each with a different head. The stack of the hiesad
some member of the sets FH and UH. Each such member is a prefig sfack of potential elements of
sentential forms that the LIG rule can be applied to.

14

Definition 24. Let C be a non-reentrant feature structure ahde a natural number. Then:

FH(C,h) = {Y(A,n)|mellg,AeT(C,m, h)}
UH(C,h) = {¥(A,7)-(F)| ¥ (A, 7)€ FH(C, h),pval(C,) is not atomic,
F € FEATS, andF is not defined in lag® (C U A, 7))}

This accounts for the second difference between LIG andreeetrant unification grammars, namely
rule application We now briefly illustrate our account of the last differenpeopagation of information
in rules In UGy, information is shared between the rule’s head and a singimagit in its body. Let
p* = (Co,...,C,) be areentrant unification rule in which the path leaving thee-th element of the body,
is reentrant with the path, leaving the head. This rule is mapped tsetof LIG rules, corresponding to
the possible rule heads (the sets FH and UH) induced by theatity set ofCy. Letr be a member of
this set, and leX; and X, be the head and theth element of-, respectively. Reentrancy p¥ is modeled
in the LIG rule by copying the stack froo¥, to X.. The major complication is the contents of this stack,
which varies according to the cord representation§,cdndC, and to the reentrant paths.

Summing up, in a LIG simulating a one-reentrant unificaticengmar, FSs are represented as stacks of
symbols. The set of stack symbdls, therefore, is defined as a set of height bounded non-rerffzs.
Also, all the features of the unification grammar are stackl®yls. V; is finite due to the restriction on FSs
(no reentrancies and height-boundedness over the fixedtaig). The set of terminal$;, is the words of
the unification grammar. There are exactly two non-termsyatbols,S (the start symbol) andv.

The set of rules is divided to four. Thetart rule only applies once in a derivation; it simulates the
sentential form which is obtained by a zero-length derdraiequence in the unification grammggrminal
rulesare a straight-forward implementation of the lexicon imisiof LIG.Non-reentrant ruleare simulated
in a similar way to how rules of a non-reentrant UG are sinagldty CFG (section 3). The major difference
is the head of the ruleXy, which is defined as explained abo¥@ne-reentrant ruleare simulated similarly
to non-reentrant ones, the only difference being the sedeglement of the rule body ., which is defined
as follows.

Definition 25. Let ug2lig be amapping of UG;, to LIGS, such that ifG* = (R",A% L) € UGy, then
ug2lig(G*) = (Vw, V4, Vs, R%, S), whereVy = {N, S} (fresh symbols)l; = WORDS, V; = FEATSU{A |
A € NRFss |A| < maxH{G")}, andR" is defined as follows:

1. S[] — N[U(A%,¢)]

2. For everyw € WoRrDsSsuch thatC(w) = {Cy} and for everyr, € Ilc,, the rule N[¥(Cy, mp)] — w
is in RY.

3. LetLiIGHEAD(C) be{N|[n] | n € FH(C, maxH{G"))} U {N[n oc] | n € UH(C, maxH{G"))}

4. If (Co,...,C,) € R*isa non-reentrant rule, then for everyy € LIGHEAD(Cy) the rule Xy —
N[®(Cy,¢e)]... N[¥(Cy,e)] isin RE.

5. Letp" = (Cop,...,C,) € R* and (0, uo) £ (e, tte), Wherel < e < n. Then for everyX, €
LIGHEAD(Cy) the rule
Xo — N[U(Ce)]... N[¥(Ceoq,e)]
Xe
N[¥(Ceqi,6)] ... N[U(Cp,e)]

15

is in R, whereX. is defined as follows. Let, be the base path of the stackX§ and A be the base
feature structure ofXy. Applying the rulep® to A, define

((A),0) U (p",0) = ((Po), (Po, ..., Pe, ..., Pn))
(@) If po is not a prefix ofrg then X, = N[U (P, ue)].
(b) If mg = po - v, v € PATHS then
i. If Xo = N[¥(A,m)]thenX, = N[¥(Pe, . - v)].
i. If Xo= N[V(A,m),Foo]thenX, = N[¥ (P, p. -v),F o]

By inductions on the lengths of the derivations we prove ggeendix C) that the mapping is correct.
Theorem 12. If G* € UGy, thenL(G") = L(ug2lig(G")).

5 Conclusions

The main contribution of this work is the definition of two @&braints on unification grammars which
dramatically limit their expressivity. We prove that na@entrant unification grammars generate exactly
the class of context-free languages; and that one-re¢ntrdfication grammars generate exactly the class
of mildly context-sensitive languages. We thus obtain timgdistically plausible constrained formalisms
whose computational processing is tractable.

This main result is primarily a formal grammar result, whioly or may not be relevant to computa-
tional linguists. However, we maintain that it can be eaatlgpted such that its consequences to (practical)
computational linguistics are more evident. The motivatiehind this observation is that reentrancy only
adds to the expressivity of a grammar formalism when it igptilly unboundedi.e., when infinitely many
feature structures can be the possible values at the end oé¢htrant paths. It is therefore possible to mod-
estly extend the class of unification grammars which can bevstio generate exactly the class of mildly
context-sensitive languages, and allow also a limited fofmore than one reentrancy among the elements
in a rule, which on one hand can be most useful for grammaesgtibut on the other hand adds nothing to
the expressivity of the formalism. We leave the formal detai such an extension to future work.

This work can also be extended in other directions. The nmappi one-reentrant UGs to LIG is highly
verbose, resulting in LIGs with a huge number of rules. Weekelthat it should be possible to optimize the
mapping such that much smaller LIGs are generated. It waelidteresting to experiment with a mapping
of one-reentrant UGs to some otheiclL formalism, notably TAG.

The two constraints on unification grammars (non-reentaaidt one-reentrant) are parallel to the first
two classes of the Weir (1992) hierarchy of languages. Aiptesextension of this work could be a definition
of constraints on unification grammars that would generateeaclasses of the hierarchy. Another direction
is an extension of one-reentrant unification grammars, evtier reentrancy inside a grammar rule does not
have to be between the head and one element in the body, butlsaie, for example, between two
elements of the body or within an element. Then it is intémgsto explore the power of two-reentrant
unification grammars, with limited kinds of reentrancies tao arbitrary reentrancies suffice to model a
Turing Machine).

Acknowledgments

This research was supported by The Israel Science Foundagtiant no. 136/01). We are grateful to Yael
Cohen-Sygal, Nissim Francez and James Rogers for their emtsnand help. We greatly benefited from

16

comments made by an anonymous JoLLI reviewer. This paper éxtended and revised version of Fein-
stein and Wintner (2006).

References

Barton, Jr., G. Edward, Robert C. Berwick, and Eric Svendist1987. The complexity of LFG. In
G. Edward Barton, Jr., Robert C. Berwick, and Eric Sven Rlisalitors,Computational Complexity
and Natural LanguageComputational Models of Cognition and Perception. MIT $8reCambridge,
MA, chapter 3, pages 89-102.

Carpenter, Bob. 1992The Logic of Typed Feature StructuréSambridge Tracts in Theoretical Computer
Science. Cambridge University Press.

Feinstein, Daniel and Shuly Wintner. 2006. Highly consieai unification grammars. IRroceedings of
Coling—ACL 2006 pages 1089-1096, Sydney, Australia, July.

Gazdar, Gerald. 1988. Applicability of indexed grammarsdtural languages. In Uwe Reyle and Chris-
tian Rohrer, editorsNatural Language Parsing and Linguistic Theorié®idel Publishing Company,
Dordrecht, pages 69-94.

Jaeger, Efrat, Nissim Francez, and Shuly Wintner. 2005.fiddion grammars and off-line parsability.
Journal of Logic, Language and Informatioh4(2):199-234.

Johnson, Mark. 1988Attribute-Value Logic and the Theory of Grammemlume 16 ofCSLI Lecture Notes
CSLI, Stanford, California.

Joshi, Aravind K. 2003. Tree-adjoining grammars. In Ruslitkov, editor, The Oxford handbook of
computational linguisticsOxford university Press, chapter 26, pages 483-500.

Joshi, Aravind K., L. Levy, and M. Takahashi. 1975. Tree AdjuGrammars.Journal of Computer and
System Sciences

Keller, Bill and David Weir. 1995. A tractable extension ofdar indexed grammars. Froceedings of
the seventh meeting of the European chapter of the Assmtiftir Computational Linguisticgpages
75-82.

Pollard, Carl. 1984Generalized phrase structure grammars, head grammars ahdal language Ph.D.
thesis, Stanford University.

Satta, Giorgio. 1994. Tree-adjoining grammar parsing asaean matrix multiplication. IfProceedings
of the 20st Annual Meeting of the Association for Computatihinguistics volume 20.

Savitch, Walter J., Emmon Bach, William Marsh, and Gila 8afNaveh, editors. 1987 he formal com-
plexity of natural languagevolume 33 ofStudies in Linguistics and Philosophy. Reidel, Dordrecht.

Shieber, Stuart M. 1986An Introduction to Unification Based Approaches to Gramnimber 4 in CSLI
Lecture Notes. CSLI.

Shieber, Stuart M. 199Zonstraint-Based Grammar FormalismiglIT Press, Cambridge, Mass.

17

Steedman, Mark. 2000The Syntactic Procesd.anguage, Speech and Communication. The MIT Press,
Cambridge, Mass.

Vijay-Shanker, K. and David J. Weir. 1993. Parsing someiraimed grammar formalism&omputational
Linguistics 19(4):591 — 636.

Vijay-Shanker, K. and David J. Weir. 1994. The equivalenttoor extensions of context-free grammars.
Mathematical systems theq37:511-545.

Weir, David J. 1992. A geometric hierarchy beyond contesé-languagesTheoretical Computer Science
104:235-261.

Wintner, Shuly. 2006a. Introduction to unification grammain ZoltanEsik, Carlos Martin-Vide, and
Victor Mitrana, editorsRecent Advances in Formal Languages and Applicativosime 25 ofStudies
in Computational IntelligenceSpringer, chapter 13, pages 321-342.

Wintner, Shuly. 2006b. Unification: Computational issubsKeith Brown, editor,Encyclopedia of Lan-
guage and Linguistigssolume 13. Elsevier, Oxford, second edition, pages 238-25

A Mapping UG, to CFG

Lemma 13. Let G* = (R“ A% L) be a non-reentrant unification grammar over the signature
(ATOMS, FEATS, WORDS) and A =. A;...A, be a derivation sequence. Then for Al there exist a
rule p* € R* such thatp" = By — By ...B,, and anindexj, 0 < j < m, for whichB; = A;.

Proof. We prove by induction on the length of the derivation seqaefihe induction hypothesis is that if
AS :k>u Ai...A, then for allA;, wherel < i < n, there are arule“ = By — By ...B,,, p* € R* and an
index;j such thaB; = A;. If k =1, thenthereisarule€ — A;...A,, AU C# T, and allA; are part of
the rule’s body because a non-reentrant rule does not patgagormation from the rule head to the body.
Assume that the hypothesis holds for ever§ < | < k; let the length of the derivation sequencekbdf

As k:_>1u D;...Dy, :1>u A1 ...A, then there exist an indekand a rulep” = C — A;... A, € R
such that:

1.CUD; #T
2 Dl_{ Ai+n—m Z>]

By the induction hypothesis for all;, wherei < j ori > n — m + j, there is a rule that contairs in its
body. ForA;, wherej <i <n —m + j, the rulep” completes the proof. O

Theorem 14(Theorem 4) LetG* = (R", A%, L) be a non-reentrant unification grammar over the signature
(ATOMS, FEATS, WORDS) and G/ = (Vy, V;, R/, S¢7) = ug2cfd G*). ThenL(Gf) = L(G").

Proof. We prove by induction on the length of a derivation sequeheeA® =, A;...A, iff S =,
A A,

Assume that\® =, A;...A,. The induction hypothesis is that A4* :k>u A;...A, thenScf :k>cf
A .. A, If Kk =1, thenthereisarul€ — A;...A,, AU C # T, and by the definition ofig2cfg

18

Sef — Ay...A, € R. Thens</ k::>10f A1...A,. Assume that the hypothesis holds for evéry

0 < I < k; let the length of the derivation sequencekbdf A k:_>1u Di...Dp, :1>u A; ... A, then there
exist an indexj and arulepf = C — A; ... Ay_myj € R" such that:

1. C|_|Dj7£—|—
2. Dl_{ Ai+n—m i>j

By lemma 13 there is some rupg < R"“ such thatD; is an element of its body. Hence, by definition 17
thereisarule; = D; — A;...A,_nt; € RS which is a result of combining? andp%. By the induction

hypothesiss</ k:_>10f D; ... Dy, and by application of the rule; we obtain:
cf k
S 2 D1 .Dj1A) AjinemDjg1.. . D = AL A,

AssumeSe/ =.; A;...A,.3 The induction hypothesis is that ¢/ :k>cf Ar...A, thenAs £
Ai...A,. If k=1, thenthereis arul&</ — A, ... A, € R and by definition ofug2cfg(note thatse/

is not a part of any rule body iR°f), C — A;...A, € R*, whereAs LI C # T. ThenAs k::>1u A A,
Assume that the hypothesis holds for evérg < i < k; let the length of the derivation sequencekbdf

sef k:_>10f Dy...Dy, :1>cf Ai...A, then there exist an indekand arulery = D; — Aj...A_pyj €
R/ such that:

‘ Aitn—m 1>]

By the definition ofug2cfgthere are rulepy; = By — By ... By, p§ = C — A;j... Ay In R and
anindext, 1 <t <p,suchthaB; = D; andCLD; # T.

By the induction hypothesig* k:_>1u D; ... Dy, and by application of the rulg; we obtain:
A* L. Dy . D_1A; . AjynmDjs1... D= A1 A,

Insum,A® =, Ay ... A, iff S 5. A;...A,. Hence,L(G') = L(ug2cfg G*)). O

B Mapping LIGto UG,

To show that the unification grammbg2ug(G") correctly simulates the LIG grammar? we first prove
that every derivation in the latter has a correspondingvdion in the former (theorem 15). Theorem 16
proves the reverse direction.

Theorem 15. LetG" = (Vy, V;, Vs, RY, S) be a LIG andG™ = (R", A%, L) be lig2ug G¥). If S[] =4 a
thenA® =, toFs(«), wherea € (Vv [V U V;)*.

Proof. We prove by induction on the length of the derivation seqaefithe induction hypothesis is that if
ST] :km- «, thenAs :k>u toFs«). If K =1, then

®Recall that all elements dfy are feature structures, and therefore all the elements@f &) sentential form can be represented
asA;, whereA; is a feature structure.

19

1. 5[1'5% o

2. HenceS[] — a € RY;

3. By definition 20toFs(.S) — toFs(«a) € RY;

4. SinceA® = toFs(S) we obtain tha\®* — toFs(«) € RY;

. ThereforeA® "5', toFs(a