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Abstract

Polarized unification grammar (PUG) is a linguistic formalism which uses polarities to better

control the way grammar fragments interact. The grammar combination operation of PUG was

conjectured to be associative. We show that PUG grammar combination is not associative, and

even attaching polarities to objects does not make it order-independent. Moreover, we prove

that no non-trivial polarity system exists for which grammar combination is associative. We

then redefine the grammar combination operator, moving to the powerset domain, in a way that

guarantees associativity. The method we propose is general and is applicable to a variety of

tree-based grammar formalisms.

1 Introduction

Development of large-scale grammars for natural languages is an active area of research in human

language technology. Such grammars are developed not only for purposes of theoretical linguistic

research, but also for natural language applications such as machine translation, speech genera-

tion, etc. Wide-coverage grammars are being developed for various languages in several theoretical

frameworks. Grammar development is a complex enterprise: It is not unusual for a single grammar

to be developed by a team including several linguists, computational linguists and computer sci-
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entists. The scale of grammars can be overwhelming and syntactic structures can be redundantly

repeated throughout the grammar. As large-scale grammars introduce issues of modularity, various

techniques were introduced to better control the way in which grammar fragments interact.

We focus on tree-based formalisms, inspired by and extending tree-adjoining grammars (TAG,

Joshi, Levy, and Takahashi (1975)). A wide-coverage TAG may contain hundreds or even thousands

of elementary trees, and syntactic structure can be redundantly repeated in many trees (XTAG

Research Group, 2001; Abeillé, Candito, and Kinyon, 2000). Consequently, maintenance and

extension of such grammars is a complex task. To address these issues, several high-level formalisms

were developed (Vijay-Shanker, 1992; Candito, 1996; Duchier and Gardent, 1999; Kallmeyer, 2001).

These formalisms take the metagrammar approach, where the basic units are tree descriptions (i.e.,

formulas denoting sets of trees) rather than trees. Parmentier et al. (2007) extend this approach as

their basic units are descriptions of sets ot trees (i.e., forests) and not merely trees. Tree descriptions

are constructed by a tree logic and combined through conjunction or inheritance (depending on the

formalism). The set of minimal trees that satisfy the resulting descriptions are the TAG elementary

trees. In this way modular construction of grammars is supported, where a module is merely a tree

description and modules are combined by means of the control tree logic.

When trees are semantic objects, the denotation of tree descriptions, there can be various ways

to refer to nodes in the trees in order to control the possible combination of grammar modules.

In the metagrammar paradigm, where grammar fragments are tree descriptions, Candito (1996)

associates with each node in a description a name, such that nodes with the same name must denote

the same entity and therefore must be identified. The names of nodes are thus the only channel of

interaction between two descriptions. Furthermore, these names can only be used to identify two

nodes, but not to set nodes apart. Crabbé and Duchier (2004) propose to replace node naming by

a coloring scheme, where nodes are colored black, white or red. When two trees are combined, a

black node may be unified with zero, one or more white nodes and produce a black node; a white

node must be unified with a black one producing a black node; and a red node cannot be unified

with any other node. Furthermore, a satisfying model must be saturated, i.e., one in which all the
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nodes are either black or red. In this way some combinations can be forced and others prevented.

This mechanism is extended in Interaction Grammars (Perrier, 2000), where each node is

decorated by a set of polarity features. A polarity feature consists of a feature, arbitrarily determined

by the grammar writer, and a polarity, which can be either positive, negative or neutral. A positive

value represents an available resource and a negative value represents an expected resource. Two

feature-polarity pairs can combine only if their feature is identical and their polarities are opposite

(i.e., one is negative and the other is positive); the result is a feature-polarity pair consisting of the

same feature and the neutral polarity. Two nodes can be identified only if their polarity features

can combine. A solution is a tree whose features are all neutralized. Bonfante, Guillaume, and

Perrier (2004) use this method to optimize parsing where polarities are used to efficiently filter

lexical selections.

The concept of polarities is further elaborated in Polarized Unification Grammars (PUG, Ka-

hane (2006)). A PUG is defined over a system of polarities (P, ·) where P is a set (of polarities) and

‘·’ is an associative and commutative product over P . A PUG generates a set of finite structures

(e.g., trees) over objects (e.g., nodes) which are determined for each grammar separately. The

objects are associated with polarities, and structures are combined by identifying some of their ob-

jects. The combination is sanctioned by polarities: objects can only be identified if their polarities

are unifiable; the resulting object has the unified polarity. A non-empty, strict subset of the set

of polarities, called the set of neutral polarities, determines which of the resulting structures are

valid: A polarized structure is saturated if all its polarities are neutral, and the language generated

by the grammar includes the saturated structures that result from all the possible combinations of

elementary structures. PUG is a powerful and flexible formalism which was shown to be capable

of simulating many grammar formalisms, including TAG, LFG, HPSG, etc.

PUG provides a more general polarity scheme than the mechanisms of polarity features and

coloring, since the grammar designer has the freedom to define the system of polarities, whereas

other systems pre-define it. Another difference is that while tree descriptions and Interaction

Grammars are limited to trees or sets of trees, PUG manipulates arbitrary structures and objects.
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In other tree-based grammars, if two nodes are identified then their predecessors must be identified

as well (to maintain a tree structure). Even if sets of trees are allowed, identification of nodes

is sanctioned to maintain a tree-based structure (e.g., a tree or a forest). Additionally, polarities

are attached only to the tree nodes. In PUG, structures can be arbitrary (e.g., general graphs,

directed or non-directed, DAGS etc.) and any two objects can be identified as long as their

polarities are consistent. Furthermore, polarities are attached to all objects. For example, if

the structures are graphs, then polarities are attached to both the nodes and the edges. However,

unlike other tree-based formalisms, PUG does not take the metagrammar approach: the basic units

are grammatical objects (e.g., trees or graphs) rather than grammatical descriptions (e.g., formulas

describing grammatical objects).

The grammar combination operation of PUG was conjectured to be associative (Kahane and

Lareau, 2005; Kahane, 2006). In this paper we show that it is not; even attaching polarities

to objects does not render grammar combination order-independent. In section 2 we formalize

the tree combination operation of PUG and set a common notation. We limit the discussion to

the case of trees, rather than the arbitrary objects of PUG, for the sake of simplicity; all our

results can easily be extended to arbitrary structures and objects (e.g., graphs and their nodes and

edges). In section 3 we show that existing polarity systems do not guarantee associativity. This

is not accidental: we prove that no non-trivial polarity system can guarantee the associativity of

grammar combination. We analyze the reasons for this in section 4 and introduce new definitions,

based on a move from trees to forests, which induce an associative grammar combination operator.

The immediate contribution of this short paper is thus the identification—and correction—of a

significant flaw in this otherwise powerful and flexible formalism. Moreover, the method we propose

is general, and therefore applicable to a variety of formalisms. In section 5 we show that our results

can be used to define an alternative semantics for XMG (Duchier, Le Roux, and Parmentier, 2004;

Crabbé, 2005), a commonly used metagrammar formalism. We then conclude with suggestions for

future research.
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2 Tree combination in PUG

To the best of our knowledge, no formal definition of PUG was published and the formalism is only

discussed informally (Kahane and Lareau, 2005; Kahane, 2006). We therefore begin by defining the

formalism and its combination operation, both with and without polarities, to establish a common

notation.

Definition 1. A tree 〈V,E, r〉 is a connected, undirected, acyclic graph with vertices V , edges E

and a unique root r ∈ V .

Every pair of nodes in a tree is connected by a unique path, and the edges have a natural

orientation, toward or away from the root. Let 〈V,E, r〉 be a tree and let v ∈ V . Any vertex u

which is located on the single path from r to v is an ancestor of v, and v is a descendant of u. If

the last arc on the path from r to v is (u, v) then u is the parent of v and v is the child of u. The

meta-variable T ranges over trees and V,E, r over their components. The meta-variable T ranges

over sets of trees.

Definition 2. Two trees T1, T2 are disjoint if V1 ∩ V2 = ∅. Two sets of trees T1,T2 are disjoint

if for all T1 ∈ T1, T2 ∈ T2, V1 ∩ V2 = ∅.

Definition 3. Two trees T1 = 〈V1, E1, r1〉, T2 = 〈V2, E2, r2〉 are isomorphic, denoted T1∼T2,

if there exists a total one to one and onto function i : V1 → V2 such that i(r1) = r2 and for all

u, v ∈ V1, (u, v) ∈ E1 iff (i(u), i(v)) ∈ E2. Two sets of trees T1,T2 are isomorphic, denoted T1
∼=T2,

if there exist total functions i1 : T1 → T2 and i2 : T2 → T1 such that for all T ∈ T1, T∼ i1(T ) and

for all T ∈ T2, T∼ i2(T ).

Next, we define how two trees are combined. An equivalence relation over the nodes of the

two trees states which nodes should be identified. In the result of the combination, nodes are

equivalence classes of that relation and arcs connect nodes that are connected in their members.

The equivalence relation is sanctioned in a way that guarantees that the resulting graph is indeed

a tree.
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Definition 4. Let T1 = 〈V1, E1, r1〉, T2 = 〈V2, E2, r2〉 be two disjoint trees. An equivalence relation

‘
t
≈’ over V1 ∪ V2 is legal if all the following hold:1

1. for all v1, v2 ∈ V1 ∪ V2, if v1
t
≈v2 and v1 6= v2 then either v1 ∈ V1 and v2 ∈ V2 or v1 ∈ V2 and

v2 ∈ V1

2. for all u1, v1, u2, v2 ∈ V1 ∪ V2, if v1
t
≈v2, u1 is the parent of v1 and u2 is the parent of v2, then

u1
t
≈u2

3. there exists v ∈ V1 ∪ V2 such that |[v] t
≈
| > 1

Eqt(T1, T2) is the set of legal equivalence relations over V1 ∪ V2.

The first condition of definition 4 states that when two nodes are identified, they must belong

to different trees. The second condition requires that when two nodes are identified, all their

ancestors must identify as well. Finally, the last condition requires that at least two nodes (each

from a different tree) be identified. The first two conditions guarantee that the resulting graph is

acyclic and the third guarantees that it is connected.2

Definition 5. Let T1 = 〈V1, E1, r1〉, T2 = 〈V2, E2, r2〉 be two disjoint trees and let ‘
t
≈’ be a legal

equivalence relation over V1 ∪V2. The tree combination of T1, T2 with respect to ‘
t
≈’, denoted

T1 + t
≈

T2, is a tree T = 〈V,E, r〉, where:

• V = {[v] t
≈

| v ∈ V1 ∪ V2}

• E = {([u] t
≈

, [v] t
≈

) | (u, v) ∈ E1 ∪ E2}

• r =















[r1] t
≈

if [r1] t
≈

= {r1} or [r1] t
≈

= {r1, r2}

[r2] t
≈

otherwise

1If ‘≡’ is an equivalence relation then [v]≡ is the equivalence class of v with respect to ‘≡’.
2The second condition is not an original requirement of PUG; it is added for the case in which the basic structures

are trees to guarantee that the resulting graph is indeed a tree.
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When two trees are combined, nodes belonging to the same equivalence class are identified.

Since the equivalence relation is legal, the resulting graph is indeed a tree. Observe that since the

equivalence relation is legal, either the two roots are identified; or one of them is identified with

a non-root node and the other remains alone. In the former case, the root of the new tree is the

node created from the identification of the two roots; in the latter case, the new root is the root

whose equivalence class is a singleton. In definition 5, a systematic replacement of r1 and r2 in the

definition of r would have yielded the same result.

Example 1. Figure 1 depicts three trees, T1, T2, T3. T and T ′ are tree combinations of T1 and T2.

T is obtained by identifying q1 with q3 and q2 with q4. Notice that since q2 is identified with q4, q1

must be identified with q3 to maintain a tree structure (condition 2 of definition 4). T ′ is obtained

by identifying q2 with q3. T ′′ is not a tree combination of T2 and T3 since it identifies q6 with q7,

which belong to the same tree, T3, in contradiction to condition 1 of definition 4.

T1 T2 T3

bq1 bq3 bq5

bq2 bq4 bq6 bq7

T T ′ T ′′

bq1, q3 bq1 bq3, q5

bq2, q4 bq2, q3 bq4, q6, q7

bq4

Figure 1: Tree combination

Definition 6. Let T1,T2 be two disjoint sets of trees. The tree combination of T1,T2, denoted

T1

t
+T2, is the set of trees

T =
⋃

T1 ∈ T1, T2 ∈ T2

t
≈ ∈ Eqt(T1, T2)

T1 + t
≈

T2

The tree combination operation takes as input two sets of trees and yields a set of trees which
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includes all the tree combinations of any possible pair of trees belonging to the two different sets

with respect to any possible legal equivalence relations. Notice that the definitions allows multiple

isomorphic trees in the same set of trees, which may result in inefficient processing. It is assumed

that the grammar designer is responsible for avoiding such inefficiency.

Example 2. The sets of trees defined by {T1}
t
+{T2} and {T2}

t
+{T3} (Figure 1) are depicted in

Figures 2 and 3, respectively.

bq1, q3 bq1 bq3 bq1, q3

bq2, q4 bq2, q3 bq1, q4 bq2 bq4

bq4 bq2

Figure 2: {T1}
t
+{T2}

bq3, q5 bq3, q5 bq3, q5

bq4 bq6 bq7 bq4, q6 bq7 bq6 bq4, q7

bq5 bq5 bq3

bq3, q6 bq7 bq6 bq3, q7 bq4, q5

bq4 bq4 bq6 bq7

Figure 3: {T2}
t
+{T3}

This combination operation is extended by attaching polarities to nodes (Crabbé and Duchier,

2004; Perrier, 2000; Kahane, 2006). In a polarized framework, an extra condition for the identifica-

tion of two nodes is that their polarities combine; in this case a new node (obtained by identifying
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two nodes) has a polarity which is the product of the polarities of the two identified nodes.

Definition 7. A system of polarities is a pair (P, ·), where P is a non-empty set and ‘·’ is a

commutative and associative product over P × P .

In the sequel, if (P, ·) is a system of polarities and a, b ∈ P , ab↓ means that the combination

of a and b is defined and ab↑ means that a and b cannot combine. For the following discussion we

assume that a system of polarities (P, ·) has been specified.

Definition 8. A polarized tree 〈V,E, r, p〉 is a tree in which each node is assigned a polarity

through a total function p : V → P . If 〈V,E, r, p〉 is a polarized tree then 〈V,E, r〉 is its underlying

tree. Two polarized trees are disjoint if their underlying trees are disjoint.

Definition 9. Two polarized trees T1 = 〈V1, E1, r1, p1〉, T2 = 〈V2, E2, r2, p2〉 are isomorphic,

denoted T1∼T2, if their underlying trees are isomorphic and, additionally, for all v ∈ V1, p1(v) =

p2(i(v)). The definition of isomorphism of sets of trees is trivially extended to sets of polarized

trees.

Definition 10. Let T1 = 〈V1, E1, r1, p1〉, T2 = 〈V2, E2, r2, p2〉 be two disjoint polarized trees. An

equivalence relation ‘
t
≈’ over V1 ∪ V2 is legal if it is legal over the underlying trees of T1 and T2

and, additionally, for all v1 ∈ V1 and v2 ∈ V2, if v1
t
≈v2, then p1(v1) · p2(v2)↓. Eqt(T1, T2) is the set

of legal equivalence relations over V1 ∪ V2.

Definition 11. Let T1 = 〈V1, E1, r1, p1〉, T2 = 〈V2, E2, r2, p2〉 be two disjoint polarized trees and let

‘
t
≈’ be a legal equivalence relation over V1 ∪ V2. The polarized tree combination of T1, T2 with

respect to ‘
t
≈’, denoted T1 + t

≈
T2, is a tree T = 〈V,E, r, p〉 where V,E and r are as in definition

5, and for all [v] t
≈

∈ V ,

p([v] t
≈

) =















(p1 ∪ p2)(v) if [v] t
≈

= {v}

(p1 ∪ p2)(v) · (p1 ∪ p2)(u) if [v] t
≈

= {v, u} and u 6= v

Notice that since ‘
t
≈’ is legal, p is well defined. The definition of tree combination of sets of

trees, denoted ‘
t
+’, is trivially extended to sets of polarized trees.
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The language of a PUG consists of the neutral structures obtained by combining the initial

structure and a finite number of elementary structures. In the derivation process, elementary

structures combine successively, each new elementary structure combining with at least one object

of the previous result.

Definition 12. A Polarized Unification Grammar (PUG) is a structure G = 〈T0,T , (P, ·)〉

where T is a set of polarized trees, T0 ∈ T is the initial tree and (P, ·) is the system of polarities

over which the polarized tree combination is defined.

Let Ai be a sequence of tree sets where A0 = {T0}
t
+T and for all i, i ≥ 1, Ai = Ai−1

t
+T . The

language generated by G, denoted L(G), is L(G) =
⋃

i∈N

Ai.

PUG is a powerful grammatical formalism that was shown to be capable of simulating various

linguistic theories (Kahane, 2006). It can be instrumental for grammar engineering, and in particu-

lar for modular development of large-scale grammars, where grammar fragments are developed sep-

arately and are combined using the basic combination operation defined above. A pre-requisite for

such an application is obviously that the grammar combination operation be associative: one would

naturally expect that, if ‘◦’ is a grammar combination operator, then G1 ◦(G2 ◦G3) =(G1 ◦G2)◦G3

for any three grammars (and, therefore, L(G1 ◦ (G2 ◦ G3)) = L((G1 ◦ G2) ◦ G3)).

The grammar combination operation of PUG was indeed conjectured to be associative (Kahane

and Lareau, 2005; Kahane, 2006). The present paper makes two main contributions: In the next

section we show that the combination operation defined above is not associative. In section 4 we

introduce an alternative combination operation which we prove to be associative. We thus remedy

the shortcoming of the original definition, and render PUG a more suitable formalism for modular

grammar development.

3 Tree combination is not associative

In this section we show that tree combination as defined above, with or without polarities, is

not associative. In the examples below, the relation which determines how polarities combine is
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indeed associative; it is the tree combination operation which uses polarities that is shown to be

non-associative.

3.1 Non-polarized tree combination

Theorem 1. (Non-polarized) tree combination is a non-associative operation: there exist sets of

trees T1,T2,T3 such that T1

t
+(T2

t
+T3)6∼=(T1

t
+T2)

t
+T3.

Proof. Consider again T1, T2, T3 of Figure 1 and the sets of trees defined by {T1}
t
+{T2} and

{T2}
t
+{T3}, depicted in Figures 2 and 3, respectively. T4 of Figure 4 is a member of {T2}

t
+{T3},

obtained by identifying q3 of T2 and q6 of T3. Similarly, T5 of Figure 4 is a member of {T1}
t
+{T4}.

Hence T5 ∈ {T1}
t
+({T2}

t
+{T3}). However, T5 (or any tree isomorphic to it) is not a member of

({T1}
t
+{T2})

t
+{T3}.

bq5 bq5

T4 : bq3, q6 bq7 T5 : bq3, q6 bq1, q7

bq4 bq4 bq2

Figure 4: Non-polarized tree combination

3.2 Colors

Crabbé and Duchier (2004) use colors to sanction tree node identification. Their color combination

table is presented in Figure 5. W , B and R denote white, black and red, respectively, and ⊥

represents the impossibility to combine.

Theorem 2. The color scheme of Figure 5 does not guarantee associativity: Let (P, ·) be the system

of Figure 5. Then there exist sets of trees T1,T2,T3 such that T1

t
+(T2

t
+T3)6∼=(T1

t
+T2)

t
+T3.
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· W B R

W W B ⊥

B B ⊥ ⊥

R ⊥ ⊥ ⊥

Figure 5: Color combination table

Proof. Consider Figure 6. The results of combining {T9}, {T10}, {T11} in different orders demon-

strate that ({T9}
t
+{T10})

t
+{T11}6∼={T9}

t
+({T10}

t
+{T11}).

Notice that in Figure 6 all the intermediate and final solutions are saturated. Therefore, the

saturation rule does not guarantee associativity.

T9 : B T10 : B T11 : W

W B R

{T9}
t
+{T10} ({T9}

t
+{T10})

t
+{T11} {T10}

t
+{T11} {T9}

t
+({T10}

t
+{T11})

B B B B B B B B

B B R B B B R B B B

B B B R B R B R B

R R

Figure 6: Tree combination with colors
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3.3 Polarities

Kahane and Lareau (2005) and Kahane (2006) use two systems of polarities which are depicted

in Figure 7. The first system includes three polarities, gray, white and black, where the neutral

polarities are black and gray. A black node may be unified with 0, 1 or more gray or white nodes

and produce a black node; a white node may absorb 0, 1 or more gray or white nodes but eventually

must be unified with a black one producing a black node; and a gray node may be absorbed into

a white or a black node. The second system extends the first by adding two more non-neutral

polarities, plus and minus, which may absorb 0, 1 or more white or gray nodes but eventually a

plus node must be unified with a minus node to produce a black node.

·

⊥

· − +

− +

− +

− − − ⊥ ⊥

+ + + ⊥ ⊥

⊥ ⊥ ⊥

Figure 7: PUG polarity systems

Theorem 3. PUG combination with either of the polarity systems of Figure 7 is not associative.

Proof. Consider Figure 8. Clearly, {T12}
t
+({T13}

t
+{T14})6∼=({T12}

t
+{T13})

t
+{T14}.

3.4 General Polarity Systems

We showed above that some existing polarity systems yield non-associative grammar combination

operators. This is not accidental; in what follows we show that the only polarity scheme that
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T12 : T13 : T14 :

{T12}
t
+{T13} ({T12}

t
+{T13})

t
+{T14} {T13}

t
+{T14} {T12}

t
+({T13}

t
+{T14})

Figure 8: Tree combination with polarities

induces associative tree combination is trivial: the one in which no pair of polarities are unifiable.

This scheme is useless for sanctioning tree combination since it disallows any combination.

Definition 13. A system of polarities (P, ·) is trivial if for all a, b ∈ P , ab ↑.

Theorem 4. Let (P, ·) be a system of polarities. If there exists a ∈ P such that aa↓ then the

polarized tree combination based on (P, ·) is not associative.

Proof. Let (P, ·) be a system of polarities and let a ∈ P be such that aa↓. Assume toward a

contradiction that the polarized tree combination based on (P, ·) is associative. Consider T1, T2, T3

of Figure 1 and T5 of Figure 4. Let T ′
1, T

′
2, T

′
3, T

′
5 be polarized trees obtained by attaching the

polarity ‘a’ to all tree nodes of T1, T2, T3, T5, respectively. T ′
5 ∈ {T ′

1}
t
+({T ′

2}
t
+{T ′

3}), but T ′
5 (or any

tree isomorphic to it) is not a member of ({T ′
1}

t
+{T ′

2})
t
+{T ′

3} (see the proof of theorem 1 for the

complete details). Clearly {T ′
1}

t
+({T ′

2}
t
+{T ′

3})6
∼=({T ′

1}
t
+{T ′

2})
t
+{T ′

3}, a contradiction.

Theorem 5. Let (P, ·) be a non-trivial system of polarities. Then the polarized tree combination

based on (P, ·) is not associative.

Proof. Let (P, ·) be a non-trivial system of polarities. If |P | = 1 then let P = {a}. Since P is

non-trivial, aa = a. Then, by theorem 4, (P, ·) is not associative. Now assume that |P | > 1.

Assume toward a contradiction that the polarized tree combination based on (P, ·) is associative.

There are two possible cases:
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1. There exists a ∈ P such that aa↓: Then from theorem 4 it follows that the resulting tree

combination operation is not associative, a contradiction.

2. For all a ∈ P , aa↑: Then since (P, ·) is non-trivial and since |P | > 1, there exist b, c ∈ P

such that b 6= c, bb ↑, cc ↑ and bc ↓. Consider T1, T2, T3 of Figure 9. Of all the trees in

({T1}
t
+{T2})

t
+{T3} and {T1}

t
+({T2}

t
+{T3}), focus on paths of length 3. All possible instan-

tiations of these trees are depicted in Figure 9 (we suppress the intermediate results). Notice

that these trees are only candidate solutions; they are actually accepted only if the polarity

combinations occurring in them are defined. Since bb↑, cc↑ and bc↓, ({T1}
t
+{T2})

t
+{T3}

has no solutions and {T1}
t
+({T2}

t
+{T3}) has one accepted solution (the rightmost tree), a

contradiction.

T1 T2 T3 ({T1}
t
+{T2})

t
+{T3} {T1}

t
+({T2}

t
+{T3})

b c c c b c c b b c c

c b c cb cc bb cc cc cc cc cb

cc cb cc bb cb cc bb cb

b c c c c b c c

Figure 9: Candidate solutions for PUG tree combination

For the sake of completion, we also mention the reverse direction.

Theorem 6. Let (P, ·) be a trivial system of polarities. Then the polarized tree combination based

on (P, ·) is associative.

Proof. If (P, ·) is a trivial system of polarities then any combination of two sets of polarized trees

results in the empty set (no solutions). Evidently, polarized tree combination based on (P, ·) is
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associative.

Corollary 7. Let (P, ·) be a system of polarities. Then polarized tree combination based on (P, ·)

is associative if and only if (P, ·) is trivial.

3.5 Practical consequences

Evidently, (polarized) tree combination induces a non-associative grammar combination for PUG.

In some cases the result of the non-associativity is plain overgeneration: For example, in Fig-

ure 6, ({T9}
t
+{T10})

t
+{T11} strictly includes (and, consequently, overgenerates with respect to)

{T9}
t
+({T10}

t
+{T11}). In general, however, non-associativity results in two non-equal sets: For ex-

ample, consider Figure 9 and its candidate solutions for length-3 paths and assume that cb = bc =

bb = cc = b. The length-3 solutions of this case are depicted in Figure 10. Clearly the resulting sets

are not equal but none of them overgenerates with respect to the other. The non-associativity of

the combination clearly compromises its usability for (modular) development of large-scale gram-

mars: When the grammar designer wrongly assumes that the combination operation is associative,

he or she can take advantage of this misconception to achieve a more efficient computation of the

combination. This may lead to an incorrect result (which may sometimes over- or undergenerate

with respect to the correct result). Such problems may be difficult to locate due to the size of the

grammar.

When a combination is associative, the grammar designer is free to conceptualize about the

combination of grammar fragments in any order; we trust that this makes the formalism more

“friendly” to the grammar engineer, and hence easier to work with. In the next section we analyze

the reasons for the non-associativity and introduce new definitions which induce an associative

grammar combination operator.

4 From trees to forests

Let us now analyze the reasons for the non-associativity of tree combination. Consider again

T1, T2, T3 of Figure 1 and T5 of Figure 4. T5 is a member of {T1}
t
+({T2}

t
+{T3}) but not of
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T1 T2 T3 ({T1}
t
+{T2})

t
+{T3} {T1}

t
+({T2}

t
+{T3})

b c c c b c b b c

c b c b b b b b b

b b b b b b

b c c c b c

Figure 10: Length-3 paths solutions

({T1}
t
+{T2})

t
+{T3}. The reason is that in T5, T1 and T2 are substructures separated by T3. When

T2 and T3 are combined first, T2 connects to one of the nodes of T3; then, when T1 is added, it is

connected to another node of T3. However, when T1 and T2 combine first, they must be connected

through a common node and cannot be separated as they are in T5.

Similarly, considering again T12, T13, T14 of Figure 8 and their combinations, clearly

{T12}
t
+({T13}

t
+{T14})6∼=({T12}

t
+{T13})

t
+{T14}

When T13 and T14 are combined, their two single nodes must identify in order to yield a tree.

However, when T12 and T13 combine first, the single node of T13 can identify with either of the two

nodes of T12. Then, when the resulting tree is combined with T14, the single node of T14 can be

identified with the other node of T12 (the one that was not identified with the node of T13). This

is why ({T12}
t
+{T13})

t
+{T14} overgenerates with respect to {T12}

t
+({T13}

t
+{T14}).

The above cases exemplify the causes for the non-associativity of tree combination: When two

trees are combined, at least two nodes (each from a different tree) must identify. Hence, the two

trees must be connected in the resulting tree. However, other combination orders that allow two

trees to be separated (by other trees) can yield results which cannot be obtained when the two

trees are first combined together.

The solution we propose is inspired by Cohen-Sygal and Wintner (2006) who, in the context
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of typed unification grammars, move to the powerset domain in order to ensure associativity of

grammar combination. Working in the powerset domain, rather than the original entities, enables

the operator to ‘remember’ all the possibilities; then, after the combination, an extra stage is added

in which the original entities are restored.

In the case of tree combination, the basic units should be forests rather than trees; and forest

combination must be defined over sets of forests rather than sets of trees. Forest combination is

defined in much the same way as above: two forests are combined by identifying some of their

nodes. Again, if two nodes are identified then all their ancestors must be identified as well. We

allow two forests to combine even if none of their nodes are identified. Furthermore, similarly to

tree combination, two different nodes in the same forest represent different entities. Therefore,

when two forests are combined, two nodes can be identified only if they belong to the two different

forests.

Definition 14. A forest 〈V,E,R〉 is a finite set of node-disjoint trees with vertices V , edges E

and roots R. If 〈V,E, r〉 is a tree, then 〈V,E, {r}〉 is its corresponding forest.

The meta-variable F ranges over forests and V,E,R over their components. The meta-variable

F ranges over sets of forests. The definition of disjointness is trivially extended to forests and set

of forests.

Definition 15. Two forests F1 = 〈V1, E1, R1〉, F2 = 〈V2, E2, R2〉 are isomorphic, denoted F1∼F2,

if there exists a total one to one and onto function i : V1 → V2 such that for all u, v ∈ V1, (u, v) ∈ E1

iff (i(u), i(v)) ∈ E2; and for all u ∈ V1, u ∈ R1 iff i(u) ∈ R2.

The definition of isomorphism of sets of trees is extended to sets of forests (using the above

definition of forests isomorphism).

Definition 16. Let F1 = 〈V1, E1, R1〉, F2 = 〈V2, E2, R2〉 be two disjoint forests. An equivalence

relation ‘
f
≈’ over V1 ∪ V2 is legal if both:

1. for all v1, v2 ∈ V1 ∪ V2, if v1
f
≈v2 and v1 6= v2 then either v1 ∈ V1 and v2 ∈ V2 or v1 ∈ V2 and

v2 ∈ V1; and
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2. for all u1, v1, u2, v2 ∈ V1 ∪ V2, if v1
f
≈v2, u1 is the parent of v1 and u2 is the parent of v2, then

u1
f
≈u2.

Eqf (F1, F2) is the set of legal equivalence relations over V1 ∪ V2.

Notice that in contrast to definition 4, a legal equivalence relation over forests permits a com-

bination in which no nodes unify. Such a grammar combination amounts to a set union of the two

forests.

Definition 17. Let F1 = 〈V1, E1, R1〉, F2 = 〈V2, E2, R2〉 be two disjoint forests and let ‘
f
≈’ be a

legal equivalence relation over V1 ∪ V2. The forest combination of F1, F2 with respect to ‘
f
≈’,

denoted F1 + f
≈

F2, is a forest F = 〈V,E,R〉, where V and E are as in definition 5, and R = {[r] f
≈

|

for all u ∈ [r] f
≈

, u ∈ R1 ∪ R2}.

When two forests are combined, nodes in the same equivalence class are identified. Since the

equivalence relation is legal, the resulting structure is indeed a forest.

Definition 18. Let F1,F2 be two disjoint sets of forests. The forest combination of F1,F2,

denoted F1

f

+F2, is the set of forests

F =
⋃

F1 ∈ F1, F2 ∈ F2

f
≈ ∈ Eqf (F1, F2)

F1 + f
≈

F2

Example 3. Consider F1, F2 of Figure 11. Three members of {F1}
f

+{F2}, namely F3, F4, F5, are

depicted in Figure 12. F3 is obtained by identifying q5 and q6, F4 is obtained by not identifying any

of the nodes and F5 is the result of identifying q5 with q6 and q1 with q7. Notice that in F5, the two

separated trees of F1 are connected through the single tree of F2. F6 of Figure 12 is not a member

of {F1}
f

+{F2} because it identifies q1 and q5 which belong to the same forest.

Example 4. Consider again T1, T2, T3 of Figure 1 and T5 of Figure 4. Let F1, F2, F3, F5 be

their corresponding forests, respectively. F of Figure 13 is a member of {F1}
f

+{F2} which is ob-

tained by not identifying any of the two forests nodes. F5 is a member of {F}
f

+{F3} which is
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F1 F2

bq1 bq4

bq2 bq3 bq5

bq6

bq7

Figure 11: Two forests to be combined

F3 F4 F5

bq1 bq4

bq2 bq3 bq5, q6

bq7

bq1 bq4 bq6

bq2 bq3 bq5 bq7

bq4

bq5, q6

bq1, q7

bq2 bq3

F6

bq4, q6

bq1, q5, q7

bq2 bq3

Figure 12: Legal and illegal combinations of F1, F2

obtained by identifying the two roots of F with the two leaves of F3. Hence, F5 is a member of both

{F1}
f

+({F2}
f

+{F3}) and ({F1}
f

+{F2})
f

+{F3}.

The forest combination operation can be easily extended to the polarized case. This is done in

the same way tree combination is extended to polarized tree combination: Polarities are attached

to nodes and an extra condition for the identification of two nodes is that their polarities combine;

in that case the new node has the polarity which is the product of the two nodes polarities. The

complete definitions are given in Appendix A.

Example 5. Consider again the systems of polarities depicted in Figure 7 and T12, T13, T14 of

Figure 8. Let F12, F13, F14 be their corresponding forests, respectively. The forest combination of
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F

bq1 bq3

bq2 bq4

Figure 13: A forest combination of F1 and F2

{F12}, {F13}, {F14} is depicted in Figures 14 (intermediate results) and 15. Here,

({F12}
f

+{F13})
f

+{F14}∼={F12}
f

+({F13}
f

+{F14})

{F12}
f

+{F13} {F13}
f

+{F14}

Figure 14: Intermediate results

In order to guarantee the associativity of tree combination we moved from trees to the powerset

domain, i.e., to forests. However, our interest is in the trees rather than the forests. Therefore,

after all the forests are combined, a resolution stage is required in which only desired solutions are

retained. In our case, this is done by eliminating all forests which are not singletons. For example,

executing the resolution stage over the forests of Figure 15, retains only the four forests of the

upper row.

Theorem 8. Forest combination is an associative operation: if F1,F2,F3 are disjoint sets of

forests then ((F1

f

+F2)
f

+F3)∼=(F1

f

+(F2

f

+F3)). This holds both for non-polarized and for polarized

combination, as long as (P, ·) is commutative.
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Figure 15: Forest combination of F12, F13 and F14: ({F12}
f

+{F13})
f

+{F14}∼={F12}
f

+({F13}
f

+{F14})

The proof is given in Appendix B.

Summing up, we showed how to redefine tree combination in PUG in order to guarantee the

associativity of the operation. In this way, the combination operator can be implemented more

flexibly, independently of the order of the arguments, which results in more efficient computation.

In particular, we showed corresponding (but associative!) computations of all the (non-associative)

examples of the previous sections.

5 Forest combination and XMG

The results of the previous section bear relevance to the metagrammar paradigm and specifically

to XMG (Duchier, Le Roux, and Parmentier, 2004; Crabbé, 2005). In particular, the forest-based

grammar combination operation can be instrumental for defining an alternative semantics for XMG,

which we sketch in this section.

XMG provides the grammar writer with a tree-description logic, whose semantics is based on

trees. A given formula denotes an infinite set of trees, each satisfying the conditions of the formula.

This denotation is restricted by considering only the finite set of minimal trees satisfying the

description (Duchier and Gardent, 1999; Duchier and Gardent, 2001). Conceptually, computation

of the minimal tree models of a given formula consists of two stages: The first computes the (infinite

set of) tree models of a formula and the second extracts from these models only the minimal ones.
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The following definitions are based on Duchier and Gardent (1999) and Duchier and Gardent (2001).

Definition 19. A formula φ is an arbitrary conjunction of dominance and labeling constrains

φ ::= φ ∧ φ′ | x ⊳ y | x = y | x⊥y

where x, y are taken from a set of variables.3

The semantics is given by interpretation over finite tree structures.

Definition 20. Let Vφ be the set of variables occurring in a formula φ. A tree solution of φ is

a pair (T, I) where T = 〈V,E, r〉 is a finite tree (a tree model) and I : Vφ 7→ V is a function (an

interpretation) that maps each variable in φ to a node in T . x ⊳ y means that, in the solution

tree T , I(x) must dominate I(y); x = y means that I(x) = I(y); and x⊥y means that I(x) 6= I(y).

The denotation of a formula φ, denoted Sxmg(φ) is the set of its tree solutions {(T, I) | (T, I) is

a tree solution of φ}.

If T is a tree model of φ, then every tree T ′ which contains T as a subtree is also a tree model

of φ. Therefore, there are infinitely many tree models of any formula φ. To restrict the infinite

set to desired trees, minimal (finite) models are considered. Any formula φ has only finitely many

minimal tree models (up to isomorphism).

Definition 21. A tree model T is a minimal tree model4 of φ if all nodes in T interpret at least

one variable in φ. Then extract(Sxmg(φ)) = {T | (T, I) ∈ Sxmg(φ) and T is a minimal tree model

of φ}.

We propose an alternative semantics, denoted Sfc, for tree descriptions, based on the forest

combination operation of section 4. In Sfc a formula denotes the set of minimal forests satisfying

3Duchier and Gardent (1999) and Duchier and Gardent (2001) define several more operators (e.g., precedence and

labeling). For the sake of simplicity we restrict ourselves to the list of operators presented in this definition, but all

the results can be extended to the full list of operators.
4In Duchier and Gardent (1999) and Duchier and Gardent (2001), the definition of minimal tree models is based

on the notion of D-trees (Rambow, Vijay-Shanker, and Weir, 1995). For the sake of simplicity we do not use this

notion, but all the results can be easily extended to D-trees.
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it. Forest combination operates directly on minimal forests in a way that corresponds to formula

conjunction in the syntactic level: The denotation of a conjunction of formulas is the combination

of the denotations of the conjuncts. Here, also, a resolution stage is required, to retain only forests

which are singletons (i.e., trees).

Definition 22. Let Vφ be the set of variables occurring in a formula φ. A forest solution of φ is

a pair (F, I) where F = 〈V,E,R〉 is a finite minimal forest (a forest model) and I : Vφ 7→ V is an

onto function (an interpretation) that maps each variable in φ to a node in F such that all nodes

in F interpret at least one variable in φ. x ⊳ y means that, in the solution forest F , I(x) must

dominate I(y); x = y means that I(x) = I(y); and x⊥y means that I(x) 6= I(y). The denotation

of a formula φ, denoted Sfc(φ), is the set of its forest solutions {(F, I) | (F, I) is a forest solution

of φ}. Define resolve(Sfc(φ)) = {F | (F, I) ∈ Sfc(φ) and F is a singleton}.

Observe that in this semantics a formula can denote only finitely many forests (up to isomor-

phism). The two semantics, Sxmg and Sfc, coincide.

Theorem 9. extract(Sxmg(φ)) = resolve(Sfc(φ))

Proof. Assume T ∈ extract(Sxmg(φ)). Then, there exists an interpretation I from the variables of

φ to the nodes of T such that (T, I) is a tree solution of φ and T is a minimal tree model. Any tree

is also a forest (a singleton) and therefore, T is also a forest model of φ. Hence, (T, I) ∈ Sfc(φ).

Since T is a tree, it follows that (T, I) ∈ resolve(Sfc(φ)).

Now assume that F ∈ resolve(Sfc(φ)). Then, there exists an interpretation I from the variables

of φ to the nodes of F such that (F, I) is a forest solution of φ and F is a tree. Since F is a tree,

(F, I) ∈ Sxmg(φ). (F, I) is a forest solution of φ and therefore F is a minimal model. Hence,

(F, I) ∈ extract(Sxmg(φ)).

Since the two semantics coincide, either one of them can be used in an implementation of XMG.

Specifically, in the existing implementation of XMG the grammar designer is presented with finite

trees only, and the infinite tree models are never explicit. Sfc offers the opportunity to use finite

trees as the bona fide denotation of tree descriptions. This, however, comes with a cost: the number
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of tree fragments can grow very fast, and a sophisticated cashing mechanism will be necessary in

any practical implementation.

Both approaches require a resolution stage; the resolution stage in the forest combination ap-

proach seems to be simpler, requiring only the extraction of singletons from a set. However, it

could also be less efficient, due to the growth in the number of trees and the fact that resolution is

deferred to the end of the computation.

To sum up, the forest combination semantics provides the grammar writer with a formally

defined operation executed directly on the minimal models amounting to the conjunction operation

in the syntactic level of tree descriptions. Whether or not it can be practically beneficial remains

to be seen.

6 Conclusion

We have shown how the tree combination operation in PUG can be redefined to guarantee asso-

ciativity, thus facilitating the use of this powerful and flexible formalism for grammar engineering

and modular grammar development. The key to the solution is a powerset-lift of the domain and

the corresponding operation: Rather than working with trees, manipulating forests provides means

to ‘remember’ all the possible combinations of grammar fragments. Then, after all fragments are

combined, a resolution stage is added to produce the desired results.

This method was used to guarantee associativity in a different domain, namely signature combi-

nation in the context of typed unification grammars (Cohen-Sygal and Wintner, 2006). We believe

that this method is sufficiently general to be applicable to a variety of formalisms. In particular, it

is applicable to the general case of PUG where arbitrary objects and structures are manipulated.

In this case also, the move to the powerset domain by manipulating sets of objects, rather that the

objects themselves, enforces associativity.

While the results presented in this paper are theoretical, they constitute the foundation for

correctly implementing tree-based grammar combination operators in existing formalisms. The

actual integration of these results in a grammar development environment is delegated to future
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work.
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Appendix

A Polarized forest combination

We extend the forest combination operation to the polarized case. This is done in the same way

tree combination is extended to polarized tree combination: Polarities are attached to nodes and

an extra condition for the identification of two nodes is that their polarities combine; in that case

the new node has the polarity which is the product of the two nodes polarities. For the following

discussion we assume that a system of polarities (P, ·) is given.

Definition 23. A polarized forest 〈V,E,R, p〉 is a forest in which each node is associated with

a polarity through a total function p : V → P . If 〈V,E,R, p〉 is a polarized forest then 〈V,E,R〉 is

its underlying forest.

Definition 24. Two polarized forests are disjoint if their underlying forests are disjoint.

Definition 25. Two polarized forest F1 = 〈V1, E1, R1, p1〉, F2 = 〈V2, E2, R2, p2〉 are isomorphic,

denoted F1∼F2, if their underlying forests are isomorphic and, additionally, for all v ∈ V1, p1(v) =

p2(i(v)).

The definition of isomorphism of sets of forests is trivially extended to sets of polarized forests.
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Definition 26. Let F1 = 〈V1, E1, R1, p1〉, F2 = 〈V2, E2, R2, p2〉 be two disjoint polarized forests.

An equivalence relation ‘
f
≈’ over V1 ∪ V2 is legal if it is legal over the underlying forests of F1 and

F2 and, additionally, for all v1 ∈ V1 and v2 ∈ V2, if v1
t
≈v2, then p1(v1) · p2(v2)↓.

Eqf (F1, F2) is the set of legal equivalence relations over V1 ∪ V2.

Definition 27. Let F1 = 〈V1, E1, R1, p1〉, F2 = 〈V2, E2, R2, p2〉 be two disjoint polarized forests and

let ‘
f
≈’ be a legal equivalence relation over V1 ∪ V2. The polarized forest combination of F1, F2

with respect to ‘
f
≈’, denoted F1 + f

≈
F2 is a forest F = 〈V,E,R, p〉 where:

• V,E and R are as in definition 17

• for all [v] f
≈

∈ V , p([v] f
≈

) =



























(p1 ∪ p2)(v) if [v] f
≈

= {v}

(p1 ∪ p2)(v) · (p1 ∪ p2)(u) if [v] f
≈

= {v, u} and

u 6= v

The definition of forest combination of sets of forests is trivially extended to sets of polarized

forests.

B (Polarized) forest combination is associative

We now show that forest combination (both with and without polarities) is an associative operation.

We begin by proving the associativity of the non-polarized case. To do so, we need to show that

if F ∈ ((F1

f

+F2)
f

+F3) then (F1

f

+(F2

f

+F3)) includes an isomorphic forest of F . The isomorphism

is required in order to ignore the irrelevant names of nodes. To be able to refer to any isomorphic

tree of the combination result, we define mutual combination: If F3 is a forest combination of F1

and F2 with respect to some legal equivalence relation then both F1 and F2 are substructures of

F3, and furthermore, F3 contains no redundant information: Every arc and node in F3 belongs to

either of the substructures that are induced by F1 and F2. This property is common for all the

isomorphic trees of F3. Moreover, F1 and F2 induce in all these isomorphic trees the exact same

substructures. F3 and all its isomorphic trees are mutual combinations of F1 and F2.

27



Definition 28. Let F1, F2, F3 be disjoint forests. F3 is a mutual combination of F1 and F2,

denoted F1 ⊕F2 7→ F3, if there exists a total function f : V1 ∪V2 → V3 (a combination function)

such that all the following hold:

• f is onto

• for all u, v ∈ V1 ∪ V2, if u is the parent of v (in either F1 or F2) then f(u) is the parent of

f(v) in F3

• for all u, v ∈ V3, if u is the parent of v in F3 then there exist u′, v′ ∈ V1 ∪ V2 such that u′ is

the parent of v′ (in either F1 or F2), f(u′) = u and f(v′) = v

• for all u, v ∈ V1 ∪ V2, if f(u) = f(v) and u 6= v then either u ∈ V1 and v ∈ V2 or u ∈ V2 and

v ∈ V1

The second condition guarantees that F1 and F2 are substructures of F3. The first and third

conditions guarantee that F3 contains no redundant information. The last condition guarantees

that two different nodes in the same forest (representing different entities) correspond to different

nodes in F3. Lemma 10 and theorem 11 show that indeed mutual combination corresponds to forest

combination.

Lemma 10. If F1, F2, F3, F4 are disjoint forests such that F1⊕F2 7→ F3 and F3∼F4, then F1⊕F2 7→

F4.

Proof. Let F1, F2, F3, F4 be disjoint forests such that F1 ⊕ F2 7→ F3 and F3∼F4. Then there exist

a combination function f : V1 ∪ V2 → V3 and an isomorphism i : V3 → V4. Define h : V1 ∪ V2 → V4

where for all v ∈ V1∪V2, h(v) = i(f(v)). h is a combination function (the actual proof is suppressed)

and hence, F1 ⊕ F2 7→ F4.

Theorem 11. Let F1, F2, F3 be disjoint forests. The following two conditions are equivalent:

• F1 ⊕ F2 7→ F3

28



• there exist a forest F4 and a legal equivalence relation
f
≈ ∈ Eqf (F1, F2) such that F4 =

F1 + f
≈

F2 and F3∼F4

Proof. Let F1, F2, F3 be disjoint forests and assume that there exist a forest F4 and a legal equiva-

lence relation
f
≈ ∈ Eqf (F1, F2) such that F4 = F1 + f

≈
F2 and F3∼F4. Observe that V4 = {[v] f

≈
|v ∈

v1∪V2} and E4 = {([u] f
≈

, [v] f
≈

)|(u, v) ∈ E1∪E2}. Define h : V1∪V2 → V4 where for all v ∈ V1∪V2,

h(v) = [v] f
≈

. h is a combination function and hence, F1⊕F2 7→ F4. Since F4∼F3 and by lemma 10,

F1 ⊕ F2 7→ F3.

Let F1, F2, F3 be disjoint forests and assume that F1 ⊕ F2 7→ F3. Therefore, there exists a

combination function f : V1∪V2 → V3. Define a relation ‘≈’ over V1∪V2 where for all u, v ∈ V1∪V2,

u ≈ v iff f(u) = f(v). Clearly, ‘≈’ is an equivalence relation. Furthermore, ‘≈’ is legal. Now, define

F4 = F1 +≈ F2 and define i : V4 → V3 where for all [v]≈ ∈ V4, i([v]≈) = f(v). Notice that i is well

defined because for all u, v such that u ≈ v, f(u) = f(v). i is an isomorphism of F3 and F4.

Notice that since forest isomorphism is reflexive and by theorem 11, if F1 + f
≈

F2 = F3 then

F1 ⊕ F2 7→ F3.

Theorem 12. Forest combination is an associative operation: if F1,F2,F3 are disjoint sets of

forests then ((F1

f

+F2)
f

+F3)∼=(F1

f

+(F2

f

+F3))

Proof. Let F1,F2,F3 be disjoint sets of forests and assume that F = 〈V,E,R〉 ∈ (F1

f

+F2)
f

+F3.

Then there exist F ′ ∈ F1

f

+F2, F3 ∈ F3 and ≈1∈ Eqf (F ′, F3) such that F ′ +≈1
F3 = F . Therefore

by theorem 11, F ′ ⊕ F3 7→ F , and hence, there exists a combination function f1 : V ′ ∪ V3 →

V . F ′ ∈ F1

f

+F2 and therefore there exist F1 ∈ F1, F2 ∈ F2 and ≈2∈ Eqf (F1, F2) such that

F1 +≈2
F2 = F ′. Therefore by theorem 11, F1 ⊕ F2 7→ F ′ and hence, there exists a combination

function f2 : V1 ∪ V2 → V ′. Define f : V1 ∪ V2 ∪ V3 → V where:

f(v) =











f1(v) v ∈ V3

f1(f2(v)) v ∈ V1 ∪ V2

Let F4 be a graph defined by the restriction of f to V2 ∪ V3, where:
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• V4 = {f(v) | v ∈ V2 ∪ V3}

• E4 = {(f(u), f(v)) | (u, v) ∈ E2 ∪ E3}

• R4 = {f(r) | r ∈ R2 ∪ R3 and for all v ∈ V2 ∪ V3 such that f(v) = f(r), v ∈ R2 ∪ R3}

F4 is a forest and f|V2∪V3
(the restriction of f to V2 ∪V3) is a combination function of F2 and F3 to

F4 (the actual proof is suppressed). Hence, F2 ⊕F3 7→ F4 and therefore by theorem 11, there exist

a forest F5 and a legal equivalence relation ≈3∈ Eqf (F2, F3) such that F5 = F2 +≈3
F3 and F5∼F4.

Hence, F5 ∈ F2

f

+F3. Let i : V5 → V4 be an isomorphism of F5 and F4. Define h : V5 ∪ V1 → V

where:

h(v) =











f(v) v ∈ V1

i(v) v ∈ V5

h is a combination function of F1 and F5 to F . Hence, F1 ⊕F5 7→ F , and therefore by theorem 11,

there exists a forest F ′′ and a legal equivalence relation ≈4∈ Eqf (F1, F5) such that F ′′ = F1 +≈4
F5

and F ′′∼F ′. Hence, F ′′ ∈ F1

f

+(F2

f

+F3) and F ′′∼F ′.

The proof that if F ∈ F1

f

+(F2

f

+F3) then there exists F ′ ∈ (F1

f

+F2)
f

+F3 such that F∼F ′ is

symmetric.

We now prove the associativity of polarized forest combination. The proof idea is similar to the

proof of the non-polarized case. For the following discussion, assume that a system of polarities

(P, ·) has been specified.

Definition 29. Let F1, F2, F3 be disjoint polarized forests. F3 is a mutual combination of F1

and F2, denoted F1 ⊕ F2 7→ F3, if there exists a total function f : V1 ∪ V2 → V3 (a combination

function) such that f is a combination function of the underlying forests, and, additionally, for

all v1, v2 ∈ V1 ∪V2, if f(v1) = f(v2) and v1 6= v2 then (p1 ∪p2)(v1) · (p1 ∪p2)(v2)↓ and (p1 ∪p2)(v1) ·

(p1 ∪ p2)(v2) = p3(f(v1)).

Lemma 13. If F1, F2, F3, F4 are disjoint polarized forests such that F1⊕F2 7→ F3 and F3∼F4, then

F1 ⊕ F2 7→ F4.
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Proof. Similar to the proof of lemma 10.

Theorem 14. Let F1, F2, F3 be disjoint polarized forests. The following two conditions are equiv-

alent:

• there exist a forest F4 and a legal equivalence relation
f
≈ ∈ Eqf (F1, F2) such that F4 =

F1 + f
≈

F2 and F3∼F4

• F1 ⊕ F2 7→ F3

Proof. Similar to the proof of theorem 11.

Theorem 15. Let (P, ·) be a system of polarities. Then polarized forest combination based on (P, ·)

is an associative operation: if F1,F2,F3 are disjoint sets of forests then

((F1

f

+F2)
f

+F3)∼=(F1

f

+(F2

f

+F3))

Proof. Similar to the proof of theorem 12.
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