
Unification Grammars and Off-Line Parsability

Efrat Jaeger and Nissim Francez
Department of Computer Science

Technion, Israel Institute of Technology
32000 Haifa, Israel

Shuly Wintner
Department of Computer Science

University of Haifa
31905 Haifa, Israel

Abstract

Unification grammars are known to be Turing-equivalent; given a grammarG and a wordw, it
is undecidable whetherw ∈ L(G). In order to ensure decidability, several constraints on grammars,
commonly known asoff-line parsability (OLP), were suggested, such that the recognition problem is de-
cidable for grammars which satisfy OLP. An open question is whether it is decidable if a given grammar
satisfies OLP. In this paper we investigate various definitions of OLP and discuss their inter-relations,
proving that some of the OLP variants are indeed undecidable. We then present a novel, decidable OLP
constraint which is more liberal than the existing decidable ones.

1 Introduction

Context-free grammars are considered to lack the expressive power needed for modeling the syntax of
natural languages. Unification grammars have originated asan extension of context-free grammars, the basic
idea being to augment the context-free rules with non context-free annotations (feature structures) in order
to express some additional information. Unification grammars have the ability to describe phonological,
morphological, syntactic and semantic properties of languages and thus they are linguistically plausible for
modeling natural languages. Today, several formalisms of unification grammars exist, some of which do not
assume an explicit context-free backbone.

The recognition problem(also known as the membership problem), for a grammarG and a stringw, is
whetherw ∈ L(G). Theparsing problem, for a grammarG and a stringw, is to determine all the structural
descriptions (usually, trees) that are assigned byG to w. Unification grammars are Turing equivalent in
their generative capacity: determining whether a given string is generated by a given grammar is as hard
as deciding whether a Turing machine halts on the empty input(Johnson, 1988). Therefore, the recogni-
tion problem for unification grammars is undecidable in the general case. In order to ensure decidability
of the recognition problem, several constraints on grammars, commonly known as theoff-line parsability
constraints (OLP), were suggested, such that the recognition problem is decidable for OLP unification gram-
mars. Several variants of OLP are known (Pereira and Warren,1983; Johnson, 1988; Haas, 1989; Torenvliet
and Trautwein, 1995; Shieber, 1992; Wintner and Francez, 1999; Kuhn, 1999); in section 3 we present many
of the OLP variants and show how they ensure the decidabilityof the membership problem. These variants
are analyzed, and their inter-relations are proven, in section 4.

Our main concern in the work is a computational investigation of the properties of OLP constraints.
Some of the OLP variants were conjectured (Haas, 1989; Torenvliet and Trautwein, 1995) to be undecidable:
it is undecidable whether a unification grammar satisfies theconstraint. However, there exists no proof of
this conjecture in the literature. Some OLP variantsare decidable, but these conditions are too restrictive;

1

there is a large class of non-OLP grammars for which the membership problem is decidable. In particular,
the decidable OLP definitions are limited only to unificationgrammars which assume an explicit context-
free backbone. One of our contributions is providing undecidability proofs for four of the undecidable OLP
variants (section 5). The major contribution of this paper is providing a novel, decidable OLP constraint,
presented in section 6. Our constraint is more liberal than the existing decidable constraints as it applies to
all unification grammar formalisms, and it can be tested effectively.

2 Unification grammars

We assume familiarity with theories of feature structures as formulated, e.g., by Shieber (1992) or Carpenter
(1992). For our purposes here feature structures can be typed or untyped, as our results are valid in both
cases. We summarize below the few concepts that are needed for the rest of this paper in order to set up
notation.

A multi-rooted structure(MRS) of lengthn is a sequence ofn feature structures, with possible reentran-
cies among elements of the sequence. We use the common AVM notation for depicting feature structures
and MRSs, where reentrancies are indicated by boxed numbers, as in the following example of an MRS of
length 3. Features are elements of a finite, non-empty set FEATS and are printed inSMALLCAPS; atoms are
elements of a finite, non-empty set ATOMS and are printed initalics:






LIST :







HD : 1

[

F : a

G : b

]

TL : 2













[

LIST : 2

]

[

LIST :

[

HD : 1

TL : elist

]]

Meta-variablesA,B range over feature structures andσ, ρ over MRSs. An MRSσ can be viewed as an
ordered sequence〈A1, . . . , An〉 of (not necessarily disjoint) feature structures. We identify MRSs of length 1
with feature structures.

Feature structures and MRSs are partially ordered bysubsumption, denoted ‘v’. The least upper bound
with respect to subsumption is theunificationoperator, denoted ‘t’ (we use the term ‘unification’ both for
the operator and for the result of its application). Unification is a partial operator; whenA t B is undefined
we say that the unificationfails. Unification is lifted to MRSs: given two MRSsσ andρ, it is possible to
unify the i-th element ofσ with the j-th element ofρ. This operation, calledunification in contextand
denoted(σ, i) t (ρ, j), yields two modified variants ofσ andρ: as the unification is donein the contextof
the entire MRSs, other elements might be affected. Hence, the result of unification in context (when it is
defined) is a pair(σ′, ρ′).

In the sequel we distinguish between two kinds of unificationgrammars: those with an explicit context-
free skeleton are referred to asskeletalunification grammars, whereas grammars with no explicit backbone
are referred to asgeneral. We begin with a definition of general unification grammars; these are defined
over a signature consisting of FEATS, ATOMS and a finite setΣ of terminal symbols.

2.1 General unification grammars

Definition 1. A general unification grammaris a tupleG = 〈R,L, As〉 where:

• R is a finite set of rules, each of which is an MRS of lengthn ≥ 1, with a designated first element, the
headof the rule, followed by itsbody. The head and body are separated by an arrow (→).

• L is a lexicon, which associates with every terminal symbolai a finite set of feature structures,L(a).

2

• As is a feature structure, thestart symbol.

Figure 1 depicts an example unification grammar,Gww, over the sets FEATS = {LIST, HD, TL},
ATOMS = {s, elist, ta, tb} and Σ = {a, b}. The grammar has two rules, each an MRS of length 3,
and two lexical entries, one for each element ofΣ.

As =

[

LIST :

[

HD : s
TL : elist

]]

R =



















[

LIST :

[

HD : s
TL : elist

]]

−→
[

LIST : 3
] [

LIST : 3
]

[

LIST :

[

HD : 1

TL : 2

]]

−→
[

LIST : 2
]

[

LIST :

[

HD : 1

TL : elist

]]



















L(a) =

{[

LIST :

[

HD : ta
TL : elist

]]}

L(b) =

{[

LIST :

[

HD : tb
TL : elist

]]}

Figure 1: An example unification grammar,Gww

To define thelanguagegenerated by a unification grammarG, we extend the notion offorms: a form
is simply an MRS. A formσA = 〈A1, . . . , Ak〉 immediately derivesanother formσB = 〈B1, . . . , Bm〉
(denoted byσA ⇒ σB) iff there exists a ruleρ ∈ R of lengthn that licenses the derivation. The head of
the rule is matched against some elementAi in σA using unification in context:(ρ, 1) t (σA, i) = (ρ′, σ′

A).
If the unification does not fail,σB is obtained by replacing thei-th element ofσ′

A with the body ofρ′. The
reflexive transitive closure of ‘⇒’ is denoted by ‘∗⇒’.

Definition 2. Thelanguageof a (general) unification grammarG is L(G) = {w ∈ Σ∗ | w = a1 · · · an and
〈As〉

∗
⇒ σl such thatσl is unifiable with〈A1, . . . , An〉 }, whereAi ∈ L(ai) for 1 ≤ i ≤ n.

As an example, consider again the grammarGww of figure 1. The following is a derivation sequence
for the stringbaba with this grammar. Note that the scope of variables is limited to a single MRS; multiple
occurrences of the same tag in a single form denote reentrancy, whereas across forms they are unrelated.

As =

[

LIST :

[

HD : s
TL : elist

]]

apply rule 1 to the single element of the form

σ1 =
[

LIST : 3

] [

LIST : 3

]

apply rule 2 to the second element

σ2 =

[

LIST :

[

HD : 1

TL : 2

]]

[

LIST : 2

]

[

LIST :

[

HD : 1

TL : elist

]]

apply rule 2 to first element

σ3 =
[

LIST : 2

]

[

LIST :

[

HD : 1

TL : elist

]]

[

LIST : 2

]

[

LIST :

[

HD : 1

TL : elist

]]

Now consider the MRS obtained by concatenating (the single elements of)〈L(b),L(a),L(b),L(a)〉:

σl =

[

LIST :

[

HD : tb
TL : elist

]] [

LIST :

[

HD : ta
TL : elist

]] [

LIST :

[

HD : tb
TL : elist

]] [

LIST :

[

HD : ta
TL : elist

]]

3

[

LIST :

[

HD : s
TL : elist

]]

[

LIST : 3

]

[

LIST : 3

[

HD : 1

TL : 2

]]

[

LIST : 2

[

HD : tb

TL : elist

]] [

LIST :

[

HD : 1

TL : elist

]]

[

LIST : 2

]

[

LIST :

[

HD : 1 ta

TL : elist

]]

b a b a

Figure 2: A derivation tree forbaba

Sinceσl andσ3 are unifiable, the stringbaba is in L(Gww). In fact,L(Gww) = {ww | w ∈ {a, b}∗}.
The notion of derivationtreescan be naturally extended from context-free grammars to unification

grammars. The nodes of a tree are feature structures, ratherthan atomic non-terminal symbols. However,
care must be taken when reentrancies are concerned: the scope of variables must be theentire tree. The
leaves of the tree constitute an MRS, thei-th element of which is unifiable with a lexical entry of thei-th
word of the input. For example, figure 2 depicts the derivation tree associated byGww to the stringbaba.
Note that an alternative definition for derivation trees (employed later in definition 8 and referred to aspartial
derivation trees) admits trees whose frontier isnot necessarily unifiable with lexical items, corresponding to
partial derivations.

2.2 Skeletal grammars

Skeletal grammarsassume an explicitcontext-free backbone(or skeleton), and can be viewed as an extension
of context-free grammars, where every category is associated with an informative feature structure. They
are defined over a signature which includes, in addition toΣ, FEATS and ATOMS, a finite, non-empty set
CATS of categories1 with a distinguished element,S. An extended categoryis a pair〈A,C〉 whereA is a
feature structure andC ∈ CATS is a category. Thecontext-free backboneof a skeletal grammar is obtained
by ignoring all feature structures of the grammar rules and considering only the categories.

Definition 3. A skeletal grammaris a tupleG = 〈R,L, As〉 where:

• R is a finite set of rules, each of which is an MRS of length n≥ 1 (with a designated first element,
the head of the rule), and a sequence of lengthn of categories over the parameterCATS (The first
category represents the head’s category).

• L is a lexicon, which associates with every terminalai a finite setL(a) of extended categories〈A,C〉,
whereA is a feature structure andC ∈ CATS is a category.

• As = 〈A,S〉 is the start symbol (an extended initial category).

Figure 3 depicts an example skeletal grammar,Gabc.

1Known also as non-terminal symbols of a context-free grammar.

4

CATS = {S, A, B, C}

As = 〈
[

LEN : s
]

, S〉

R =











































[

LEN : s
]

−→
[

LEN : 1
] [

LEN : 1
] [

LEN : 1
]

S −→ A B C

[

LEN :
[

LEN : 1
]]

−→
[

LEN : 1
] [

LEN : elist
]

A −→ A A

[

LEN :
[

LEN : 1
]]

−→
[

LEN : 1
] [

LEN : elist
]

B −→ B B

[

LEN :
[

LEN : 1
]]

−→
[

LEN : 1
] [

LEN : elist
]

C −→ C C











































L(a) =
{

〈
[

LEN : elist
]

, A〉
}

L(b) =
{

〈
[

LEN : elist
]

, B〉
}

L(c) =
{

〈
[

LEN : elist
]

, C〉
}

Figure 3: An example skeletal grammar,Gabc

A skeletal formis a pair〈σ, ~C〉, whereσ is an MRS of lengthn and ~C is a sequence ofn categories
(Ci ∈ CATS for 1 ≤ i ≤ n). A skeletal form〈σA, ~CA〉 immediately derives〈σB, ~CB〉 iff there exists a
skeletal rule〈ρ′, ~CR〉 ∈ R that licenses the derivation (i.e.,σA ⇒ σB through thei-th element ofσA and
~CB is obtained by replacing thei-th element of~CA by the body of~CR). Thelanguageof a skeletal grammar
is defined similarly to general unification grammars using skeletal forms instead of MRSs. For example,
L(Gabc) = {anbncn | n > 0}. A skeletal derivation treeis a pair consisting of a unification grammar tree
and a context-free tree; the two trees are isomorphic.

The context-free backbone of a skeletal derivation tree is called aconstituent structure(c-structure). In
a constituent structure, anon-branching derivation chainis a branch of the tree all of whose nodes have out-
degree 1 (induced by the application of unit rules, i.e., rules with a single element in their bodies). When a
constituent structure includes two nodes which are labeledby the same category and span exactly the same
substring2, we say that it contains acyclic branch. Note that if a grammar has noε-rules, a constituent
structure contains a cyclic branch if and only if it has non-branching derivation chain in which the same
category occurs more than once (annotating more than one node).

3 Off-line parsability constraints

The motivation behind all OLP definitions is to rule out grammars which license trees in which unbounded
amount of material is generated without expanding the frontier word. This can happen due to two kinds
of rules: ε-rules, whose bodies are empty, and unit rules, whose bodiesconsist of a single element. With
context-free grammars the removal of rules which can cause an unbounded growth is always possible. In
particular, one can always remove cyclic sequences of unit rules. However, with unification grammars such
a procedure turns out to be more problematic. It is not trivial to determine when a sequence of unit rules
is, indeed, cyclic; and when a rule is redundant. The definitions we discuss below try to approximate the
procedure of determining whether a grammar contains such “problematic” rules.

Of course, it is always possible to ensure the decidability of the membership problem for unification

2By “span the same substring” we mean that the frontier dominated by both nodes is identical, not merely two copies of the
same string.

5

grammars by constraining the expressive power of the grammars. For example, it is well known (Gazdar
and Pullum, 1985; Berwick, 1987) that when the size of feature structures is guaranteed to be bounded (e.g.,
when no recursion is allowed in feature structures), unification grammars are equivalent in their generative
capacity to context-free grammars; this is basically the motivation behind the linguistic theory GPSG (Gaz-
dar et al., 1985). Another extreme case would be to disallowε-rules and unit rules altogether. Here we are
interested in a much less dramatic decrease of expressive power; in other words, OLP definitions attempt
to constrain the set of grammars such that the membership problem becomes decidable, yet the expressive
power of the grammars is only minimally reduced.

In this section we present several variants of OLP constraints suggested in the literature. Some of the
constraints (Pereira and Warren, 1983; Kaplan and Bresnan,1982; Johnson, 1988; Kuhn, 1999) apply only
to skeletal grammars since they explicitly refer to categories, which are undetermined for general unification
grammars. Others (Haas, 1989; Shieber, 1992; Torenvliet and Trautwein, 1995; Wintner and Francez, 1999)
are applicable to both skeletal and general unification grammars. Some of the OLP constraints refer to OLP
grammars, while others impose a restriction on allowable derivation trees rather than grammars. In this
work we are concerned with OLP grammars, therefore, in definition 5, we extend these constraints from
derivations to grammars.

One way to ensure that parsing with a unification grammarG terminate on every input is by guaranteeing
that for every wordw and every treeτ which G induces onw, the depth ofτ is bounded by some known
function of the length ofw.

Lemma 1 (The bounding lemma).For every unification grammarG, if a computable functionfG exists
which can be efficiently computed fromG, such that for every wordw and every treeτ induced byG on w,
the depth ofτ , d(τ), is such thatd(τ) < fG(|w|), then membership forG is decidable.

Proof. For a given wordw, since the number of grammar rules is finite, and the depth of every tree induced
by G on w is bounded, the set of all such trees is finite, and its cardinality is bounded by a computable
function of |w|. Therefore an effective exhaustive search algorithm enumerates the members of this set of
trees. If a tree is found by the algorithm, thenw ∈ L(G); otherwise,w 6∈ L(G) since every tree forw must
not be deeper thanfG(|w|).

As noted above, the OLP definitions discussed below attempt to provide a bounding functionfG which
bounds the depth of trees admitted byG (as a function of the tree’s width). Notice that the above lemma
does not only require theexistenceof a bounding functionfG; in order for the function to be used for
terminating the exhaustive search, it must be effectively computed for every grammarG. However, some
OLP definitions only require the existence of a bounding function, possibly assuming that the grammar
designer will provide it with every grammar. For such definitions, the algorithm alluded to in the bounding
lemma is inapplicable.

Furthermore, note that the bounding lemma not only ensures the decidability of the recognition problem,
but also the decidability of the parsing problem: ifall the trees that are induced by a grammar are bounded
in depth, then the exhaustive search algorithm is guaranteed to produce all of them in finite time. A more
liberal version of the lemma would require only that for every wordw ∈ L(G), at least onetree induced by
G onw is depth bounded. This would still ensure the decidability of the recognition problem, but not of the
parsing problem.

6

3.1 OLP constraints for skeletal grammars

One of the first definitions of OLP constraints was suggested by Pereira and Warren (1983) for ensuring
termination of general proof procedures for definite clausesets. Although the constraint was designed for
DCGs, where the predicate names constitute an explicit context-free backbone, it can be rephrased in terms
of skeletal grammars as follows:

Definition 4 (Pereira and Warren’s OLP constraint for skeletal grammars (OLPPW)). A skeletal gram-
mar is off-line parsable iff its context-free skeleton is not infinitely ambiguous.

We next prove that the depth of every derivation tree admitted by anOLPPW grammar is bounded by
the number of syntactic categories in the grammar times the size of the tree’s yield.

Lemma 2. A finitely-ambiguous context-free grammar cannot admit a derivation tree which contains a
cyclic branch.

Proof. Let G be a finitely-ambiguous context-free grammar. Assume towards a contradiction that a treeτ
induced byG on some wordw contains a cyclic branch. Then there exist two nodes inτ , u andv, such that
u andv are labeled by the same categoryX and span the same substringw′ of w. Without loss of generality,
assume thatu dominatesv. Sinceu andv are equally labeled, the same sequence of rule applicationswhich
was used to derivev from u can be applied again fromv, resulting in a subtree with a nodev1, also labeled
X, on its frontier. Sinceu andv span the same substring, so doesv1. Now the same process can be repeated,
indefinitely, fromv1, to generate an infinite number of trees with longer cyclic branches over the wordw, in
contradiction to the assumption of finite ambiguity.

Lemma 3. If τ is a constituent structure induced by anOLPPW grammarG on a wordw of lengthl, then
the depth ofτ is bounded by(|CATS| + 1) × (l + 1).

Proof. Let G be anOLPPW grammar. LetG′ be the context-free backbone ofG. By definition, G′ is
finitely ambiguous, and hence by lemma 2 it cannot admit a derivation tree which contains a cyclic branch.
We first show that the length of any path from the root to a lexical item inτ is bounded byl× (|CATS|+ 1).
Let π = u0u1 · · · un be a path inτ from the rootu0 to a leafun. Let N be the set of all nodesui in π which
span exactly the same substring asui+1. Let N̄ be the set of all nodes inπ which are not inN . N̄ has at
mostl−1 nodes, since any nodeui in N̄ spans a frontier which includes the frontier spanned byui+1 and at
least one other lexical item not spanned byui+1. By lemma 2,τ has no cyclic branches. Hence the maximal
length of a subpath ofπ consisting of nodes fromN is |CATS|. In other words,π consists of subpaths of
maximal length|CATS|, separated by nodes from̄N . Since|N̄ | ≤ l− 1, there are at mostl such subpaths in
π. Therefore, the maximal length ofπ is l × |CATS| (subpaths of nodes fromN) plus(l − 1) (nodes from
N̄), i.e., l × (|CATS| + 1) − 1. As for leaves inτ which are labeled byε, these can add one more branch
of length at most|CATS| to any path from the root, again by lemma 2. Hence the depth ofτ is bounded by
(|CATS| + 1) × (l + 1).

Corollary 4. Membership is decidable forOLPPW grammars.

Proof. From the above lemma and the bounding lemma.

An additional OLP definition is based on Kaplan and Bresnan (1982). They suggest a linguistically
motivated OLP constraint which refers to valid derivationsfor the Lexical-Functional Grammar formalism
(LFG), a skeletal grammar formalism. Unlike the previous OLP definition, for LFG no notion of an OLP

7

grammarwas proposed. Instead, LFG defines OLPderivations: for a given stringw, a c-structure is not
OLP if it has two nodes,u andv, of the same category, whereu dominatesv andu andv span exactly the
same substring ofw; in other words, a c-structure is not OLP if it contains a cyclic branch. Of course, there
can be other derivations ofw which are OLP.

Given an OLP definition for derivations, it can be extended togrammars in (at least) two manners:

Definition 5 (OLP∆ grammar). LetOLP∆ be a condition on derivation trees.

1. A grammarG is off-line parsable iff for everyw ∈ L(G) everyderivation tree forw satisfiesOLP∆.

2. A grammarG is off-line parsable iff for everyw ∈ L(G) there existsa derivation tree which satisfies
OLP∆.

The first definition is very strict, licensing grammars whichcan only generate OLP derivation trees. The
second definition is more liberal, allowing non-OLP derivation trees as long as there exists at least one OLP
derivation tree for every word of the grammar’s language. Using the algorithm sketched in the bounding
lemma, the second definition can ensure the decidability of the recognition problem (determining whether
w ∈ L(G)), whereas the first definition can also ensure the decidability of parsing (finding all the trees
induced byG onw).

LFG is not a standard rewriting system, and the definition ofL(G) is more involved than our basic
definition in section 2. That is,w ∈ L(G) only if there exists an OLP derivation tree forw; the structures
induced onw by G are the structures induced by the OLP derivations only. Other possible (non-OLP)
derivations are simply ignored. LFG introduces two kinds ofε’s, controlled and optionalityε’s, which are
used in descriptions of natural languages. General unification grammars are not necessarily designed for
natural languages and thus the distinction between theε kinds does not necessarily exist. Hence, we use a
variant of Kaplan and Bresnan’s constraint, suggested by Johnson (1988, pp. 95-97), eliminating allε’s of
any kind.

Definition 6 (Johnson’s OLP constraint (OLPJO)). A constituent structure satisfiesOLPJO iff:

• it does not include a cyclic branch; and

• no leaf is labeled byε.

Johnson’s constraint, as well as the next OLP variant discussed below, is based on Kaplan and Bresnan’s
OLP for LFG and hence imposes a restriction on allowable c-structures, rather than on the grammar itself.
Johnson provides no explicit definition of an OLP grammar. Weuse definition 5 and define two conditions
on grammars: grammars that satisfy the first and second interpretations ofOLPJO according to definition 5
are referred to asOLPJO∀

andOLPJO∃
, respectively. Note thatOLPJO∀

implies that the grammar can-
not include any usableε-rules, whereasOLPJO∃

allows such rules but requires that for each word in the
language there exist at least one derivation which uses noε-rules.

Lemma 5. The depth of anyOLPJO derivation tree for a string ofl symbols is bounded byl×(|CATS|+1).

Proof. Similar to lemma 3.

Corollary 6. Membership is decidable forOLPJO∃
andOLPJO∀

grammars.

Proof. From lemma 5 and the bounding lemma.

8

Furthermore, the exhaustive search algorithm of the bounding lemma ensures also that the parsing prob-
lem is decidable forOLPJO∀

grammars (but not forOLPJO∃
grammars).

The next constraint, proposed by Kuhn (1999), is also based on Kaplan and Bresnan’s constraint and
is also defined in terms of OLPderivations; OLP grammardefinitions are according to definition 5. The
constraint uses the notion of ‘categories’ and thus is applicable only to skeletal grammars. X-bar theory
grammars (Chomsky, 1975) are claimed to have a strong linguistic justification in describing natural lan-
guages. However, both Kaplan and Bresnan’s and Johnson’s constraints disallow some valid X-bar deriva-
tions. Kuhn (1999) refers to the problem from a linguist’s point of view. The purpose of his constraint
is to expand the class of derivation trees which satisfy Kaplan and Bresnan’s constraint in order to allow
X-bar derivations. As Kuhn (1999) does not explicitly referto ε-rules, we assume, similarly to Johnson’s
constraint, that such rules cannot be used in OLP derivations.

Kuhn (1999) shows some examples of X-bar theory derivation trees of German and Italian sentences
which contain the same category twice in a non-branching dominance chain. However, he observes that in
these trees, same-category nodes on a non-branching chain occur with different f-annotations. This gives
rise to the following definition:

Definition 7 (Kuhn’s OLP constraint). A c-structures derivation is OLP iff no category appears twice in
a non-branching dominance chainwith the same f-annotation.

The condition does not require that the feature structures to which same-category nodes on a chain
are mapped be different; rather, the annotations (or equations) from which these feature structures are con-
structed are required to differ. This implies that while cyclic branches are allowed in derivations, they cannot
involve multiple applications of the same rule. This extension changes the bounding function ofOLPJO

from l× (|CATS|+1) to l× (u+1), whereu is the number of unit rules in the grammar. Sinceu is constant
for every grammar, lemma 5 can be used to ensure decidabilityin this case, too.

The main problem of analyzing Kuhn’s definition is that the language of a grammar is not defined the
way we defined it in section 2. As noted above, LFG defines the language of a grammar as those words that
are derivable by OLP derivations. Comparing this definitionwith the one we use throughout this work is
complicated, and therefore we exclude Kuhn’s OLP constraint from this analysis.

3.2 OLP constraints for general unification grammars

Constraints that apply to general unification grammars apply, a fortiori, also to skeletal ones. The first
such constraint was suggested by Haas (1989). Based on the observation that not every natural unification
grammar has an obvious context-free backbone, Haas suggested a constraint for guaranteeing the solvability
of the parsing problem which is applicable to all unificationgrammar formalisms. Haas’ definition allows
derivation trees with nonterminals at their leaves, thus allowing partial derivations.

Definition 8 (Haas’ Depth-boundedness (DB)). A unification grammar is depth-bounded iff for every
l > 0 there is ad > 0 such thatevery(partial or complete) parse tree for a sentential form ofl symbols has
depth less thand.

This definition of a depth-bounded grammar requires the existence of a functiond, such that every
derivation tree’s depth for a sentential form ofl symbols is bounded byd(l), but it provides no explicit
information aboutd. This condition ensures the finiteness of the set of all treesfor a wordw ∈ L(G),
but provides no bound on the size of the set. Hence, ifw ∈ L(G), an exhaustive search will find a tree
for w, but there is no criterion for terminating the search with a negative result (the usual situation forRE

9

problems). Note also that depth-boundedness takes as a definition a condition which is a consequence of
previous definitions (e.g.,OLPPW).

Returning toOLPPW , recall that it applies only to skeletal grammars, as general unification gram-
mars do not necessarily have an explicit context-free skeleton. A natural extension of Pereira and Warren’s
definition to general unification grammar formalisms is finite ambiguity.

Definition 9 (Finite ambiguity for unification grammars (FA)). A unification grammarG is OLPFA iff
for every stringw there exist only a finite number of derivation trees.

Unlike OLPPW , and similarly to depth-boundedness, finite ambiguity for general unification grammars
does not ensure the decidability of the membership problem since it does not provide a specific function for
bounding the search space.

An additional OLP definition, defined in terms of logical constraint based grammar formalisms, is sug-
gested by Shieber (1992, pp. 79–82). Rephrased in our terms,this definition is as follows:

Definition 10 (Shieber’s OLP (OLPS)). A grammarG is off-line parsable iff there exists a finite-ranged
functionF over feature structures such thatF (A) v A for all A and there are no derivation trees admitted
byG in which nodesA andB span the same substring andF (A) = F (B).

In fact, the requirement thatF (A) subsumeA is not necessary for our purposes and was left only for
compatibility with the original definition. This constraint bounds the depth of every derivation tree by the
range ofF times the size of the tree’s yield. Thus the number of different trees whose yield is a given string
is finite.

Lemma 7. The depth of anyOLPS derivation tree for a string of lengthl is at mostl × (|range(F)| + 1).

Proof. Same as lemma 3, the only difference being that here the linear function ofl which bounds the depth
of trees isl × (|range(F)| + 1).

Again, given a bounding functionF , decidability of membership via exhaustive search is ensured by the
bounding lemma; but when no such function is given, exhaustive search is not guaranteed to terminate.

In order to extend OLP definitions from formalisms that assume a context-free skeleton to general uni-
fication grammars, Torenvliet and Trautwein (1995) suggesta more liberal constraint,honest parsability,
which is applicable to all unification grammar formalisms. This constraint is similar to depth bounded-
ness, with two differences: (1) depth boundedness requiresthatall trees be depth bounded, whereas honest
parsability only requiresone such tree; and (2) honest parsability requires that the depth of the tree be
bounded by a polynomial in its width, while depth boundedness allows any function.

Definition 11 (Honest parsability constraint (HP)). A grammarG satisfies the Honest Parsability Con-
straint (HPC) iff there exists a polynomialp such that for eachw ∈ L(G) there existsa derivation with at
mostp(|w|) steps.

The definition ensures that for every string of the grammar’slanguage there exist at least one derivation
tree whose depth is polynomial (in the size of the derived string). Whenp is explicitly given, this condition
guarantees the decidability of the membership problem by the bounding lemma: all derivations can be built
in parallel in increasing length, until lengthp(|w|) is reached. Whenp is not given, this condition cannot
guarantee it. The requirement thatp be a polynomial, and not just any function, is there to guarantee that
the recognition problem forHP is NP , and is not needed for proving decidability.

10

4 A hierarchy of OLP definitions

In this section we compare the different OLP definitions discussed in the previous section. First, we present
some examples of grammars which will be used as reference in the subsequent discussion, and then discuss
the OLP properties of each of these grammars. The examples use a straightforward encoding of lists as
feature structures: a list is represented by brackets, listitems are separated by a comma, an empty list is
denoted by〈 〉 and〈head| tail 〉 represents a list whose first item ishead, followed bytail.

Notice that although some of the examples use general unification grammars, they all have a context-
free backbone (through the featureCAT), and thus can be viewed as skeletal grammars when definitions that
apply only to skeletal grammars are investigated. For example, the general unification rule:

[

CAT : p

LIST : 1

]

−→

[

CAT : p

LIST : 〈tb | 1 〉

]

can be viewed as the skeletal rule:
[

LIST : 1

]

−→
[

LIST : 〈tb | 1 〉
]

P −→ Q

4.1 Some grammar examples

A unification grammar,GFA, generating the language3 b+, is depicted in figure 4. The featureCAT stands
for ‘category’, andLIST is a list of lexical symbols. The stringb is the only terminal item in the lexicon,
therefore every string generated by the grammar consists ofb’s only. The second rule adds items to a list at
each derivation step. The fourth rule removes items from thelist.4 With each removal a feature structure
is added to the form which can be unified with (in fact, is identical to) the lexical entry ofb; this process
continues until a list of one item is reached. The grammar is unambiguous; a string ofn occurrences ofb
has exactly one parse tree whose depth is2n + 1. Therefore,GFA is FA andHP . GFA is neitherDB nor
OLPS ; it may generate arbitrarily deep partial derivation trees(containing lists of increasing length) whose
frontiers consist of only one symbol, and thus there exists no finite-ranged function mapping each feature
structure on such a derivation to a finite set of feature structures. GFA is neitherOLPJO nor OLPPW ;
in order to generate the stringbl for l > 1, its second rule must be applied at least once, resulting in a
non-branching dominance chain in which the categoryp appears more than once, and thus the context-free
backbone is infinitely ambiguous.

Figure 5 presents a unification grammar,Ginf, generating the language{b}. The grammar rules must
be applied according to their order as defined by the values ofthe featureCAT. The second rule adds items
to theLIST list, the fourth rule removes items from the list, and ab is generated once the list consists of one
item. There exist infinitely many derivation trees, of arbitrary depths, for the stringb, for any natural number
of applications of the second rule. Therefore,Ginf is neitherDB norFA norOLPS . Ginf is OLPJO∃

and
HP ; there exists a derivation tree for the stringb of depth 3.Ginf is neitherOLPPW nor OLPJO∀

; it may
generate derivation trees in which the categoryp appears more than once in a non-branching dominance
chain, and thus its context-free backbone is infinitely ambiguous.

A unification grammar,GDB , generating the languageb+, is shown in figure 6. A string ofn occurrences
of b has exactly one parse tree whose depth is2n. The featureDEPTHCOUNT is a list that represents the

3We use regular expressions and set notation interchangeably to denote languages.
4Removing an item from a listwithin a feature structure, as in this rule, must not be confused with removing a feature structure

from a form, which is the result of applying anε-rule.

11

As =
[

CAT : s
]

R =































































ρ1 :
[

CAT : s
]

−→

[

CAT : p

LIST : 〈tb 〉

]

ρ2 :

[

CAT : p

LIST : 1

]

−→

[

CAT : p

LIST : 〈tb | 1 〉

]

ρ3 :

[

CAT : p

LIST : 1

]

−→

[

CAT : q

LIST : 1

]

ρ4 :

[

CAT : q

LIST : 〈tb | 1 〉

]

−→

[

CAT : q

LIST : 1

] [

CAT : q

LIST : 〈tb 〉

]































































L(b) =

{[

CAT : q

LIST : 〈tb 〉

]}

Figure 4: A unification grammar,GFA

As =

[

CAT : s

LIST : 〈s 〉

]

R =































































ρ1 :

[

CAT : s

LIST : 〈s 〉

]

−→

[

CAT : p

LIST : 〈tb 〉

]

ρ2 :

[

CAT : p

LIST : 1

]

−→

[

CAT : p

LIST : 〈tb | 1 〉

]

ρ3 :

[

CAT : p

LIST : 1

]

−→

[

CAT : q

LIST : 1

]

ρ4 :

[

CAT : q

LIST : 〈tb | 1 〉

]

−→

[

CAT : q

LIST : 1

]































































L(b) =

{[

CAT : q

LIST : 〈tb 〉

]}

Figure 5: A unification grammar,Ginf

current depth of the derivation tree (i.e, the number of derivation steps from the root). In each derivation
step an item is added to theDEPTHCOUNT list, but no items may ever be removed from it. The feature
INNERCOUNT is a list that represents the number of derivation steps before generating the nextb symbol.
Every application of the second rule doubles the depth of theINNERCOUNT list with respect to its length
after the previous application of the rule. Thus the number of derivation steps for generating eachb is always
twice the number of steps for generating its predecessor. Therefore, for every sentential form of lengthn,
the depth of any partial derivation tree is bounded by an exponential function ofn (approximately2n).
ThusGDB is DB andFA. GDB is notHP ; no w ∈ L(GDB) has a polynomial (in|w|) depth derivation
tree. GDB is not OLPS ; in order to generate the stringbl exactly2l derivation steps must be applied, in
order to generatebl+1 exactly 2l+1 derivation steps must be applied. Between the generation ofthe lth

and(l + 1)th symbols there must be2l derivation steps of nodes spanning the same yield for every natural

12

numberl. Therefore, there exist no finite-ranged mapping function satisfying the conditions.GDB is neither
OLPJO norOLPPW ; in order to generate the stringbl for l > 1, its third rule must be applied at least once,
resulting in a non-branching dominance chain in which the categoryp appears more than once, and thus the
context-free backbone is infinitely ambiguous.

As =

[

CAT : s

depthCount : 〈 〉
innerCount : 〈 〉

]

R =















































































ρ1 :

[

CAT : s

depthCount : 〈 〉
innerCount : 〈 〉

]

→

[

CAT : p

depthCount : 〈tb 〉
innerCount : 〈 〉

]

ρ2 :





CAT : p

depthCount : 1
innerCount : 〈 〉



→





CAT : p

depthCount : 〈tb | 1 〉

innerCount : 1





[

CAT : l

lex : tb

]

ρ3 :





CAT : p

depthCount : 1

innerCount : 〈tb | 2 〉



→





CAT : p

depthCount : 〈tb | 1 〉

innerCount : 2





ρ4 :





CAT : p

depthCount : 〈tb | 1 〉
innerCount : 〈 〉



→

[

CAT : l

lex : tb

]















































































L(b) =

{[

CAT : l

lex : tb

]}

Figure 6: A unification grammar,GDB

A skeletal unification grammar,GJ\PW , generating the language{a, b}, is presented in Figure 7. An
a is generated from the categoryP and ab from the categoryQ. The first and third rules are initial rules;
after applying the first rule, the only applicable rule is thesecond rule, generating ab, then no other rule may
be applied. After applying the third rule, the only applicable rule is the fourth rule, generating ana, then
no other rule may be applied. Therefore, the grammar can onlygenerate the two derivation trees shown in
the figure. Since both derivations areOLPJO, the grammar is bothOLPJO∀

andOLPJO∃
. GJ\PW is not

OLPPW as its context-free backbone can generate a unary branchingchain ofP − Q − P .
Figure 8 depicts a skeletal grammar,GS1

. It is easy to verify that the given derivation is the only possible
derivation admitted byGS1

. The derivation is of depth2, therefore the grammar is bothOLPS andHP (for

OLPS , the finite-ranged function should map
[

F : s
]

and
[

F :
[

F : s
]]

to themselves and any other feature
structure to the empty feature structure).

To summarize the above discussion, the table of figure 9 liststhe off-line parsability properties of the
example grammars. Empty entries in the table are not needed for the evaluation.

4.2 The relationships between the OLP variants

This section compares the OLP variants and defines a hierarchy among them, referring to the grammar
examples given above. The propositions in this section refer to the properties of the example grammars, as
summarized in figure 9.

Proposition 8. No OLP constraint implies any of theOLPJO constraints.

13

CATS = {S, P, Q}

As = 〈
[

LIST : 〈 〉
]

, S〉

R =











































ρ1 :
[

LIST : 〈 〉
]

−→
[

LIST : 〈 〉
]

S −→ P

ρ2 :
[

LIST : 〈 〉
]

−→
[

LIST : 〈tb 〉
]

P −→ Q

ρ3 :
[

LIST : 〈 〉
]

−→
[

LIST : 〈 〉
]

S −→ Q

ρ4 :
[

LIST : 〈 〉
]

−→
[

LIST : 〈ta 〉
]

Q −→ P











































L(a) =
{

〈
[

LIST : 〈ta 〉
]

, P 〉
}

L(b) =
{

〈
[

LIST : 〈tb 〉
]

, Q〉
}

〈
[

LIST : 〈 〉
]

, S〉

〈
[

LIST : 〈 〉
]

, P 〉

〈
[

LIST : 〈tb 〉
]

, Q〉

b

〈
[

LIST : 〈 〉
]

, S〉

〈
[

LIST : 〈 〉
]

, Q〉

〈
[

LIST : 〈ta 〉
]

, P 〉

a

Figure 7: AnOLPJO grammarGJ\PW , L(GJ\PW) = {a, b}

CATS = {S}

As = 〈
[

F : s
]

, S〉

R =
{ [

F : 1
]

−→
[

F :
[

F : 1
]]

S −→ S
}

L(b) =
{

〈
[

F :
[

F : s
]]

, S〉
}

〈
[

F : s
]

, S〉

〈
[

F :
[

F : s
]]

, S〉

b

Figure 8: AnOLPS grammar,GS1

Since Johnson’s condition is the only one disallowingε-rules in derivations, none of the other constraints
implies eitherOLPJO constraint.

Proposition 9. If G is DB thenG is FA.

Proof. Let G be DB. Then there exists a functionf such that for everyw ∈ L(G), the depthd of any
derivation tree forw satisfiesd ≤ f(|w|). Hence there are only finitely many trees forw, andG is FA.

Proposition 10. AnOLPJO grammarG is not necessarily anOLPPW grammar.

Grammar Fig. FA HP DB OLPS OLPJO∀
OLPJO∃

OLPPW

GFA 4 + + – – – – –
Ginf 5 – + – – – + –

GDB 6 + – + – – – –
GJ\PW 7 + + –
GS1

8 + +

Figure 9: Off-line parsability properties of the example grammars

14

Proof. The grammarGJ\PW of figure 7 isOLPJO, but it is notOLPPW .

Proposition 11. If G is OLPPW or OLPJO∀
thenG is DB, FA andHP .

Proof. Let G be either anOLPPW or anOLPJO∀
grammar. By lemma 3 and lemma 5, the depth of any

derivation tree (partial/non-partial) admitted byG is bounded by a linear function of the size of its yield.
Therefore, for every sentential form of lengthl every derivation tree’s depth is bounded by a linear function
of l and there exist only a finite number of derivation trees up to any finite depth.

Proposition 12. If G is OLPPW or OLPJO∀
thenG is OLPS

Proof. If G is OLPPW or OLPJO∀
then it cannot generate a derivation tree in which two nodes have the

same category and span the same yield. Therefore, the function F with the finite range{
[

CAT : X
]

| X ∈

CATS}, given by:

∀X ∈ CATS : F

([

CAT : X
...

])

=
[

CAT : X
]

is such that for everyA, F (A) v A and it is ensured that, in every derivation tree, every two nodes spanning
the same yield are mapped byF to a different image. Note that the fact thatF (A) v A is not used here.

Proposition 13. A DB or FA grammarG is not necessarily anOLPPW grammar.

Proof. The grammarGDB of figure 6 is depth-bounded and finitely ambiguous. Its context-free backbone
can generate a unary branching chain ofP ’s which immediately leads to infinite ambiguity.

Proposition 14. AnOLPS or HP grammarG is not necessarily anOLPPW grammar.

Proof. The grammarGS1
of figure 8 is bothOLPS andHP . It is notOLPPW , as its context-free backbone

can generate a unary branching chain ofS’s.

Proposition 15. AnOLPJO∃
grammarG is not necessarilyDB nor FA nor OLPS .

Proof. The grammarGinf of figure 5 isOLPJO∃
; there exists anOLPJO derivation for the stringb (by

applying the first and third rules). ButGinf may generate infinitely many non-branching derivation trees of
arbitrary depths for the stringb and thus it is neitherDB norFA norOLPS .

Proposition 16. If G is OLPJO thenG is HP .

Proof. If G is OLPJO, then for everyw ∈ L(G) there exists at least oneOLPJO derivation. By lemma 5,
the derivation’s depth is bounded by a linear function of thelength ofw, therefore, for everyw ∈ L(G)
there exists a polynomial function of|w| bounding the derivation’s depth.

Proposition 17. AnFA grammarG is not necessarily aDB grammar.

Proof. The grammarGFA of figure 4 is finitely ambiguous; the grammar induces a finite number of deriva-
tion trees on every string. The grammar is not depth-bounded; the definition of depth boundedness allows
partial derivation trees with non-terminals at their leaves, therefore the second rule may be applied repeat-
edly many times, generating arbitrarily deep parse trees whose frontier is a sequence of non-terminals of
length1.

Proposition 18. A DB grammarG is not necessarily anOLPS grammar.

15

Proof. The grammarGDB of figure 6 is depth-bounded, but it is notOLPS .

Proposition 19. AnOLPS grammarG is not necessarily aDB grammar.

Proof. The grammarGS1
of figure 8 isOLPS . It is not depth-bounded, as its sole rule may be applied

repeatedly many times, resulting in arbitrarily deep parsetrees whose frontier has only one symbol.

Proposition 20. A DB or FA grammarG is not necessarily anHP grammar.

Proof. The grammarGDB of figure 6 is depth-bounded; every string of lengthn has a unique parse tree of
depth2n and there exist no arbitrarily deep partial trees with non-terminals at their leaves. The grammar is
not anHP grammar; for everyw ∈ L(GDB) every parse tree is of an exponential depth (in|w|).

Proposition 21. AnHP grammarG is not necessarilyDB nor FA.

Proof. The grammarGinf of figure 5 is anHP grammar; for every string there exists a derivation tree of a
polynomial depth in the size of the string. The grammar is neitherDB nor FA; it may generate infinitely
many derivation trees of arbitrary depths for the stringb.

Proposition 22. If G is OLPS thenG is FA andHP .

Proof. By lemma 7, ifG is OLPS then the depth of every derivation tree for a string of lengthl is bounded
by |range(F)| × l (whereF is a finite-ranged function satisfying the constraint). Since |range(F)| is
independent ofl, there exists a polynomial function in the size of the stringbounding its derivations’ depth.
HenceG is HP . Since the depth ofeverytree is thus bounded, only finitely many trees are possible, hence
G is FA.

Proposition 23. AnFA or HP grammarG is not necessarily anOLPS grammar.

Proof. The grammarGFA of figure 4 is bothFA andHP , but it is notOLPS .

Figure 10 depicts the inter-relations hierarchy diagram ofthe OLP variants, separated for skeletal and
general unification grammars. The hierarchy is based on the above analysis where the arrows represent the
discussed implications; an arrow fromC1 to C2 implies that any grammar satisfyingC1 also satisfiesC2.

OLP forskeletalgrammars: OLP forgeneralunification grammars:

DB FA HP

OLPS OLPJO∃

OLPPW OLPJO∀

DB FA HP

OLPS

Figure 10: Inter-relations Hierarchy diagram

16

5 Undecidability proofs

The problem of deciding whether a given grammar is OLP was conjectured to be undecidable (Haas, 1989;
Torenvliet and Trautwein, 1995), but no proof has ever been provided. We present undecidability proofs for
four OLP definitions: Johnson’s OLP (OLPJO), Finite Ambiguity (FA), Depth-Boundedness (DB) and
Shieber’s OLP (OLPS).

In order to prove thatOLPJO, DB and OLPS are undecidable we use Johnson’s (1988) reduction
from the Turing machine halting problem (on the empty input)to the recognition problem for unification
grammars. The reduction defines a unification grammar,GM , for every (deterministic) Turing machine,M ,
such that the grammar contains only unit rules and can generate at most one complete derivation tree;GM

generates the wordhalt if and only if the machine accepts the empty input string.

L(GM) =

{

{halt} if M terminates on the empty input
∅ if M does not terminate on the empty input

A characteristic feature of the grammarGM , for everyM , is that its rules are all unit rules, and hence the
derivation trees it induces are all non-branching. Furthermore, due to the fact that the Turing machine is
deterministic (in particular, since its transition function is uniquely defined for every combination of state
and tape symbol), the constructed grammar is such that for every derivation whose frontier is a non-terminal,
exactly one grammar rule can be applied to that non-terminal.

We show that any algorithm decidingOLPJO, FA, DB or OLPS can be used as a subroutine in an
algorithm which solves the empty input halting problem.

5.1 Undecidability of OLPJO

Theorem 24. Given a unification grammarG, it is undecidable whetherG is OLPJO∀
or whetherG is

OLPJO∃
.

Proof. Assume towards a contradiction that an algorithmA exists for decidingOLPJO∀
(or OLPJO∃

).
Construct an algorithmB to decide the empty input halting problem, which is known to be undecidable,
with B operating as follows: on inputM = (Q,Σ, [, δ, s, h), a Turing machine:

1. ConstructGM , simulating the operation ofM on the empty input, as described above.

2. Run algorithmA onGM .

3. • If GM is determined byA not to beOLPJO: then there exists some wordw ∈ L(GM) for
which every (in the case ofOLPJO∀

) or at least one (in the case ofOLPJO∃
) derivation tree is

notOLPJO. In any case, there exists some word inL(GM), and this word must behalt. Hence
M terminates on the empty input.

• If GM is determined byA to beOLPJO: by corollary 6, membership is decidable forGM .
Decide whetherhalt ∈ L(GM). If it is, M terminates on the empty input; otherwise,M does
not terminate on the empty input.

17

5.2 Undecidability of Finite Ambiguity

Theorem 25. Given a unification grammarG and a stringw, it is undecidable whether the number of
derivation treesG induces onw is finite.

Proof. Assume towards a contradiction that there exists an algorithm,AFA, deciding whetherw has a finite
number of derivation trees admitted byG. Construct an algorithm,BFA, to decide the membership problem
(contradicting Johnson’s (1988) theorem), withBFA operating as follows.

On inputG,w whereG = 〈R,L, As〉 is a unification grammar andw is a string:

1. ConstructG′ = 〈R′,L′, A′s〉 such thatL′ = L, A′s = As andR′ = R ∪ {As ⇒ As}. Observe that
L(G) = L(G′), independently of whether or not the ruleAs ⇒ As is inR.

2. Run algorithmAFA onG′, w.

3. w ∈ L(G) iff G′ induces an infinite number of derivation trees onw.

If G′ can only generate a finite number of derivation trees for a string w, then this number is 0. Suppose
that there exists a derivation tree forw admitted byG′. By applying the ruleAs ⇒ As, G′ can generate
infinitely many derivation trees forw, contradicting the algorithm’s outcome. Therefore,L(G′) = ∅ and
sinceL(G′) = L(G), alsoL(G) = ∅ and hencew 6∈ L(G).

If G′ can generate infinitely many derivation trees for a stringw, then there exists at least one derivation
tree forw admitted byG′ which does not contain any applications of the ruleAs ⇒ As (since the rule
only loops over the start symbol) and therefore there existsa derivation tree forw admitted byG; hence
w ∈ L(G).

Corollary 26. Finite Ambiguity is undecidable.

Proof. By theorem 25, it is undecidable whetherG can generate a finite number of derivation trees on a
stringw. Therefore it is undecidable whether for everyw (overΣ, the grammar’s terminal symbols) there
exist a finite number of derivation trees.

5.3 Undecidability of Depth-Boundedness

Theorem 27. depth-boundedness is undecidable.

Proof. Assume toward a contradiction that there exists an algorithm, ADB, for deciding depth-boundedness.
The algorithm decides whether there exists a functionf bounding the depth of each derivation tree for
a sentential form of lengthn by f(n). Construct an algorithm,BDB, to decide the empty input halting
problem, which is known to be undecidable, withBDB operating as follows.

On inputM = (Q,Σ, [, δ, s, h), a Turing machine:

1. ConstructGM , simulating the operation ofM on the empty input, as described above.

2. Run algorithmADB onGM .

3. M terminates on the empty input iffGM is depth-bounded.

18

If GM is depth-bounded thenM terminates on the empty input: sinceGM is depth bounded it can only
generate, for a given word, finitely many (partial) non-branching derivation trees. One of these derivation
trees must end in a terminal, because if all the trees had a frontier of a non-terminal, then for each such tree
a grammar rule could have been applied (due to the ‘total’ character of the grammar), resulting in infinitely
many trees. Since the grammar has only one terminal,halt, halt ∈ L(GM) andM terminates on the empty
input.

If GM is not depth-bounded, thenGM generates infinitely many non-branching partial derivation trees,
none of which ends with a terminal. Assume towards a contradiction thatGM can generate a complete
derivation tree. Therefore, sinceδ is deterministic and undefined on the final state, andGM simulates it,
while reaching a final state, there is no next applicable rule. HenceGM may only generate a finite set of
partial derivation trees (where each is a sub-tree of the complete derivation tree), a contradiction. Therefore,
GM may not generate any complete derivation trees and thushalt 6∈ L(G) (M does not terminate on the
empty input).

5.4 Undecidability of OLPS

Theorem 28. OLPS is undecidable.

Proof. Assume towards a contradiction that there exists an algorithm,AS , for deciding whether a grammar
satisfiesOLPS , that is, deciding whether there exists a finite-ranged function F such thatF (A) v A for all
A and there are no derivation trees admitted byG in which a node〈u〉 dominates a node〈v〉, both are roots
of sub-trees with an identical yield andF (u) = F (v). Construct an algorithm,BS , to decide the empty
input halting problem, which is known to be undecidable, with BS operating as follows.

On inputM = (Q,Σ, [, δ, s, h), a Turing machine:

1. ConstructGM , simulating the operation ofM on the empty input, as described above.

2. ConstructG′
M by adding the ruleAs ⇒ As to GM ’s set of rules:R′

M = RM ∪ {As ⇒ As} (in this
case, the ruleAs ⇒ As cannot be inRM , by the construction ofGM).

3. Run algorithmAS onG′
M .

4. M terminates on the empty input iffG′
M is notOLPS .

If G′
M is OLPS then there exists no derivation tree forhalt admitted byG′

M . Suppose that one exists;
then by applying the ruleAs ⇒ As, G′

M can generate infinitely many derivation trees for the stringhalt

of arbitrary depths, and hence no finite-ranged function exists which maps each two nodes on a derivation
with the same yield to a different image, contradicting the algorithm’s outcome. Therefore, there exists no
derivation tree forhalt admitted byGM , halt 6∈ L(GM) (M does not terminate on the empty input).

If G′
M is not OLPS, then there exist a derivation tree admitted byG′

M for which every finite-ranged
function must map at least two nodes spanning the same yield to the same image. Particularly, sincehalt is
the only terminal symbol,G′

M induces a derivation tree onhalt. By the construction ofG′
M , there exists a

derivation tree forhalt admitted byGM , halt ∈ L(GM) (M terminates on the empty input).

6 A novel OLP constraint - OLPD

In this section we present our main contribution, a decidable OLP constraint. Our constraint applies to both
skeletal and general unification grammars and, unlike all the definitions that apply to general unification

19

grammars, it can be tested efficiently. We also provide some improvements to our constraint. The optimized
constraint is more liberal than all the previously proposeddecidable OLP constraints, since it is applicable
to general unification grammars as well as to skeletal grammars. Thus more grammars are rendered off-line
parsable. As we shall show, every grammar that is off-line parsable by any of the decidable constraints is
also off-line parsable by our constraint (but not vice versa).

6.1 A decidable definition of OLP (version 1)

The OLP constraint proposed here,OLPD1
, disallows grammars which can generate derivation trees in

which the same rule may be applied more than once from two different nodes dominating the same yield. In
this version we assume that grammars include noε-rules, but a more liberal constraint allowing them is given
in section 6.4. Since grammars do not includeε-rules, the definition only addresses unit rule chains (unlike
context-free grammars, these chains cannot be eliminated). Unlike the undecidable constraints discussed
above, our constraint is a static property of the grammar, which can be tested off-line, without resorting to
possible derivations of the input string.

Definition 12. A sequence of unit rulesR1, . . . , Rk (k ≥ 1) is cyclicly unifiable iff there exists a sequence
of feature structures5 σ1, . . . , σk+2 such that for1 ≤ i ≤ k, σi ⇒ σi+1 by the ruleRi, andσk+1 ⇒ σk+2

byR1.

Figure 11 displays two grammar rules,ρ1, ρ2. The sequence〈ρ1, ρ2〉 is cyclicly unifiable, e.g. by

〈σ1 =

[

CAT : p

F : a

]

, σ2 =

[

CAT : q

F : a

]

, σ3 =
[

F : b
]

, σ4 =

[

CAT : q

F : b

]

〉.

σ1 is unifiable withρ1’s head,σ1 ⇒ σ2 by ρ1, σ2 ⇒ σ3 by ρ2, and thenσ3 ⇒ σ4 by ρ1.
The sequence〈ρ2, ρ1〉 is not cyclicly unifiable; whateverρ2 applies to, the resulting feature structure is

[

F : b
]

; then, applyingρ1 necessarily yields

[

CAT : q

F : b

]

, which is incompatible with the head ofρ2. Hence

ρ2 cannot be applied again.

R =











ρ1 :

[

CAT : p

F : 1

]

−→

[

CAT : q

F : 1

]

ρ2 :
[

F : a
]

−→
[

F : b
]











Figure 11: Cyclicly unifiability example

Definition 13 (A decidable OLP constraint (OLPD1
)). A grammarG is OLPD1

iff it contains no cyclicly
unifiable sequences.

Lemma 29. If a grammarG contains no cyclicly unifiable sequences,G does not license any derivation
tree with a non-branching dominance chain in which the same rule is used more than once.

Proof. Assume towards a contradiction that a unit ruleρ1 is used more than once in a non-branching dom-
inance chain. Therefore, there exists a sequence of MRSsσ1, . . . , σk+2, the chain nodes on the derivation
tree, and a sequence of unit rulesρ1, . . . , ρk, such that for1 ≤ i ≤ k, σi ⇒ σi+1 by ρi, andσk+1 ⇒ σk+2

by ρ1. Thus, the grammar contains a cyclicly unifiable sequence, acontradiction.

5Formally, these should be MRSs of length 1, which are identified with feature structures here.

20

Lemma 30. The depth of every derivation tree whose yield is of lengthn admitted by anOLPD1
grammar

G is bounded by(u + 1) × n, whereu is the number ofG’s unit rules.

Proof. Since the grammar contains no cyclicly unifiable sequences,by lemma 29 no rule may be applied
more than once in a non-branching dominance chain. Therefore, the depth of any generated non-branching
dominance chain is bounded byu. Thus in every derivation tree admitted byG, everyu consecutive appli-
cations of unit rules (at most) are followed by either a leaf or an application of a non-unit rule expanding
the yield (recall that noε-rules are allowed). Therefore, the depth of every derivation tree is at most(u + 1)
times the size of its yield.

Corollary 31. The membership problem is decidable forOLPD1
grammars.

Proof. From lemma 30 and the bounding lemma.

Theorem 32. It is decidable whether a grammar isOLPD1
.

Proof. An algorithm for the problem is given in the next section.

6.2 An algorithm for deciding OLPD1

In order to detect cyclicly unifiable sequences, only unit rules need be considered. The algorithm uses a
graph annotation and searches for cycles in the graph.

We first create aunit rules graph, URG, which is a directed graph representing unifiability; everyvertex
is a unit rule, and an edge leads fromu to v iff the body of u is unifiable with the head ofv (the body
is of length1). The head and the single element in the body of a unit ruleρi are represented byHi, Bi

respectively. Obviously, the graph is finite.
Then, we search theURGfor cycles, which may indicate a cyclicly unifiable sequence. For each cycle,

we approximate its operation by consecutively applying allits vertices in order to verify whether they form
a cyclicly unifiable sequence. Approximation is done by applying the rules according to the order of the
sequence, starting with the empty feature structure.

This process is only an approximation, since the cycle edgesrepresent unifiability between the head and
body of each two consecutive cycle vertices, but they are notnecessarily indicative of a cyclicly unifiable
sequence. It is not guaranteed that after applying several rules, unifiability between the resulting feature
structure and the head of the next rule still holds. Approximation of the cycle is done beginning each time
with a different cycle vertex. It is possible that by beginning the approximation with some vertex, the cycle’s
vertices form a cyclicly unifiable sequence, but for others they do not, as exemplified by figure 11.

Note that even if a grammar contains cyclicly unifiable sequences, it does not necessarily imply that
any of the cycle vertices may ever be applied. Thus, the constraint may be ruling out grammars for which
recognition is decidable, but it is still a decidable constraint and allows (along with the improvements) more
grammars than the previously proposed decidable constraints. The algorithm is listed in figure 12.

Since any cyclicly unifiable sequence is represented as a cycle in theURG, only cycles of vertices
should be considered. Once a cycle is detected, it does not necessarily imply that its vertices form a cyclicly
unifiable sequence. We approximate the cycle’s operation using the functionis cyclicly unifiableon each
cyclic rotation of its vertices. The function applies each of the rules consecutively using unification in
context (as defined in page 2). If one of the rules may not be applied (the resulting feature structure is not
unifiable with the rule’s head) it returnsfalse; if all rules have been applied successfully, the function returns
true.

21

An algorithm for deciding OLPD1

scan grammar(G): Boolean
Input : A unification grammarG.
Output : true iff G is OLPD1

.

Construct a directed unit rules graph,URG, where

Each vertex is a unit ruleρ ∈ R where|ρ| = 2.

There exists a directed edge from vertex〈H1, B1〉 toward vertex〈H2, B2〉
iff B1 is unifiable withH2.

For each cycleC =C1, . . . , Ck, C1 in URG (where theCi-s are nodes):

for i from 0 to k − 1

Let V1 . . . Vk be the cyclic rotation ofC, i positions to the right.

If is cyclicly unifiable(V1 , . . . , Vk) returnfalse
Returntrue.

is cyclicly unifiable(V1, . . . , Vk): Boolean
FS = [] /* the most general feature structure */

for i from 1 to k

Vi = 〈Hi, Bi〉 is the current rule.

if FS t Hi fails returnfalse

else((FS, 1) t (Vi, 1) = 〈FS′, V ′
i 〉),whereV ′

i = 〈H ′
i, B

′
i〉

FS = B′
i /* unification in context */

if FS t H1 fails returnfalse

Returntrue

Figure 12: An algorithm for decidingOLPD1

6.2.1 Correctness of the algorithm

Lemma 33. If a sequence of unit rules does not appear as a cycle in theURG, then it is not cyclicly
unifiable.

Proof. Let R1, . . . , Rk be a cyclicly unifiable sequence, letHi,Bi be the head and body of eachRi respec-
tively. Therefore, there exists a sequenceσ1, . . . , σk+2, such that for each1 ≤ i ≤ k − 1, Bi v σi+1 and
σi+1 is unifiable withHi+1, thereforeBi is unifiable withHi+1. Furthermore,Bk v σk+1, σk+1 is unifiable
with H1, and thereforeBk is unifiable withH1. ThusR1, . . . , Rk represent a cycle in theURG. Therefore,
if a sequence of rules does not form a cycle in theURG, it is not a cyclicly unifiable sequence.

Lemma 34. is cyclicly unifiable(V1, . . . , Vk) returnstrue iff V1, . . . , Vk is a cyclicly unifiable sequence.

Proof. If is cyclicly unifiable(V1 , . . . , Vk) returnstrue, then all rulesV1, . . . , Vk have been applied and
V1 may be applied again. The variableFS contains the resulting feature structure after applying each
rule. Consider all ofFS intermediate values, letFSi be the value ofFS after applyingVi and all its

22

predecessors. SinceFSk is unifiable withV1, V1 may be applied again; letFSk+1 be the resulting feature
structure. Consider the sequence〈σ1, . . . , σk+2〉 = 〈〈[]〉, 〈FS1〉, . . . , 〈FSk+1〉〉, for 1 ≤ i ≤ k, σi ⇒ σi+1

by Ri, andσk+1 ⇒ σk+2 by R1, therefore, by definitionV1, . . . , Vk is a cyclicly unifiable sequence.
If is cyclicly unifiable(V1 , . . . , Vk) returnsfalse, then either there exists some ruleVi, whose head is not

unifiable with the resulting feature structureFS, or all rules have been applied and the resultingFS is not
unifiable with the head ofV1. Assume that after applying some rules,Vj may not be applied. Since the
simulation begins with the most general feature structure,the sequence〈〈[]〉, 〈FS1〉, . . . , 〈FSj−1〉〉 is the
most general sequence after applyingV1, . . . , Vj−1: for any other sequence〈〈FS′

0〉, 〈FS′
1〉, . . . , 〈FS′

j−1〉〉
such that eachFS′

i−1 ⇒ FS′
i by Vi, eachFSi v FS′

i. Hence, ifFSj−1 is not unifiable withVj ’s head then
neither isFS′

j−1, and there exists no sequence of MRSs satisfying the constraint. ThereforeV1, . . . , Vk is
not a cyclicly unifiable sequence.

Theorem 35. The algorithm returnstrue iff G is OLPD1
.

Proof. In order to check whetherG contains cyclicly unifiable sequences, only unit rules needbe considered.
By lemma 33, since a cyclicly unifiable sequence is always represented by a cycle in theURG, all cyclicly
unifiable sequences are always detected.

On each cycle,is cyclicly unifiable is applied from each of the cycle’s vertices. By lemma 34, the
function returnstrue only for cyclicly unifiable sequences. Therefore, if the algorithm returnstrue, then all
cycles have been tested and none of their vertices orderingsrepresent a cyclicly unifiable sequence, thus the
grammar contains no cyclicly unifiable sequences and isOLPD1

.
If the algorithm returnsfalse thenis cyclicly unifiablereturnedtrue on a set of vertices, by lemma 34,

this set represents a cyclicly unifiable sequence, thus the grammar contains at least one cyclicly unifiable
sequence and is notOLPD1

.

6.2.2 Complexity of the algorithm

Assume that a grammarG hasn unit rules. ThereforeURG containsn vertices and at mostn2 edges. The

number of possible cycles of anyk vertices (including all cyclic rotations) is bounded byk! ×

(

n

k

)

. The

number of operations done byis cyclicly unifiable is linear ink (the number of vertices). Therefore the
complexity of the algorithm is inΘ(n!). As we expect “natural” grammars for natural languages to contain
a small number of unit rules,n is expected to be small.

6.3 Evaluation ofOLPD1

In this section we compareOLPD1
with the other constraints discussed above, in order to place it in the

hierarchy of figure 10.OLPD1
is applicable to both skeletal and general unification grammars. Ignoring

ε-rules, it is more liberal than the previously proposed decidable definitions that are limited to skeletal
formalisms only, and unlike all definitions that are applicable to general unification grammars,OLPD1

can
be tested effectively.

The grammarsGww of figure 1 andGabc of figure 3 areOLPD1
; they include no unit rules, therefore no

non-branching dominance chains can be generated. ThusOLPD1
allows non-context-free grammars.

Any OLPJO∀
grammar is alsoOLPD1

; since anOLPJO∀
grammar cannot generate a derivation tree in

which the same category appears twice in a non-branching dominance chain, no rule may be applied more
than once in a non-branching dominance chain.

23

An OLPJO∃
grammarG is not necessarilyOLPD1

. In anOLPJO∃
grammar for everyw ∈ L(G) there

exists an OLP derivation tree, butG can still generate non-OLP derivation trees. The grammarGinf of
figure 5 isOLPJO∃

, but it is notOLPD1
as its second rule is cyclicly unifiable.

An OLPPW grammar is not necessarilyOLPD1
as it may containε-rules. OLPD1

admits grammars
whose c-structure may contain a non-branching dominance chain in which the same category appears twice
as long as it is generated by a non-cyclicly unifiable sequence of rules. Furthermore, it does not assume an
explicit context-free skeleton. Figure 13 presents an example OLPD1

grammar which is neitherOLPJO

norOLPPW .

R =

{

[

F : s
]

−→
[

F : a
]

S −→ P

[

F : a
]

−→
[

F : b
]

P −→ P

}

L(b) =
{

〈
[

F : b
]

, P 〉
}

Figure 13: AnOLPD1
grammar,GD

The following discussion shows that neitherHP nor DB nor FA imply OLPD1
. The grammarsGFA

of figure 4, which isHP andFA, andGinf of figure 5, which isHP , are notOLPD1
; e.g., by their second

rule,
[

CAT : p

WORD : 1

]

−→

[

CAT : p

WORD : 〈tb | 1 〉

]

and the following set of feature structures:
{[

CAT : p

WORD : 〈tb〉

]

,

[

CAT : p

WORD : 〈tb, tb〉

]

,

[

CAT : p

WORD : 〈tb, tb, tb〉

]}

The grammarGDB of figure 6 isDB andFA, but it is notOLPD1
as its third rule is cyclicly unifiable. By

lemma 30, ifG is OLPD1
, then the depth of every derivation tree for a string ofn symbols is bounded by a

linear function ofn, thereforeG is alsoHP , DB andFA.
An OLPS grammarG is not necessarilyOLPD1

. Figure 14 depicts anOLPS grammar generating the
language{b+}. A string ofn occurrences ofb has a derivation tree of depth3× n. The depth of every non-
branching chain is3, therefore there exists a finite-ranged functionF (e.g., mapping each feature structure
to itself) such that no two nodes on a derivation tree spanning the same yield are mapped to the same feature
structure. The grammar is notOLPD1

, since its first rule may be applied twice consecutively, resulting in a
cyclicly unifiable sequence. In section 6.4 we present an improvement toOLPD1

which admitsGS .
OLPD1

is a restriction on derivation trees such that no two nodes ona derivation tree spanning the same
yield are unifiable with the same rule’s head, whereasOLPS is a restriction on derivation trees such that no
two nodes on a derivation tree spanning the same yield are mapped to the same image. We conjecture that
anOLPD1

grammar is not necessarilyOLPS , but we have not been able to come up with a proof yet.
Figure 15 depicts the revised OLP inter-relations hierarchy diagram includingOLPD1

.
The class ofOLPD1

grammars can never be equal to any of the other OLP classes forgeneral unification
grammars. Since the constraints for general unification grammars are undecidable, if any of these classes
were equal to the class ofOLPD1

, then using the algorithm for decidingOLPD1
, we could also decide

whether a grammar satisfies the other constraint which is undecidable.

24

As =
[

F : 〈tb , tb 〉
]

R =

{

ρ1 :
[

F : 〈tb | 1 〉
]

−→
[

F : 1
]

ρ2 :
[

F : 〈 〉
]

−→
[

F : 〈tb , tb 〉
] [

F : tb
]

}

L(b) =
{[

F : tb
]}

[

F : 〈tb , tb 〉
]

[

F : 〈tb 〉
]

[

F : 〈 〉
]

[

F : 〈tb , tb 〉
] [

F : tb
]

...

Figure 14: AnOLPS grammar,GS and its derivation form

OLP forskeletalgrammars: OLP forgeneralunification grammars:

DB FA HP

OLPS OLPD1
OLPJO∃

OLPPW OLPJO∀

DB FA HP

OLPS OLPD1

Figure 15: Revised hierarchy diagram withOLPD1

Assume that a grammarG contains a cyclicly unifiable sequence of rules,R1, . . . , Rk. Whether any
of these rules may ever be applied in any derivation tree admitted by G is not known to the algorithm.
Therefore,G is notOLPD1

although recognition may still be decidable for it.OLPD1
does not allow any

unit rule sequences in which the same rule may be applied morethan once. There might be some unit rule
sequences in which at some point, after applying the sequence rules repeatedly several times, unifiability
between the resulting feature structure and the head of the next rule may no longer hold, hence the sequence
is harmless for decidability. In the next section we proposean improvement ofOLPD1

calledOLPD×l

which allows such grammars.

6.4 Improvements

OLPD1
does not permit grammars which containε-rules. Asε’s play a major role in many natural language

descriptions, we present in this section some improvementsto OLPD1
allowing ε-rules. We show that the

improved constraints are more liberal than the existing decidable constraints.

6.4.1 A decidable definition of OLP (version 2)

Let F be the set of all rules heads. LetE′ be the set consisting of the heads of all rules that may never derive
anε: there exists no sub-derivation tree whose root is an element of E′ and whose yield isε. We create a set
of ε-derivables, E, to be the complement ofE′ consisting of the heads of all the rules that may derive anε:
E = F \ E′.

25

Definition 14 (ε-derivables set,E). Given a grammarG = 〈R,L, As〉, let Ed be defined as follows:

• E1 = {A | A ⇒ ε ∈ R}

• For d > 1, Ed = {A | A ⇒ A1 · · ·An ∈ R and there exists a sequenceB1 . . . Bn such that for each
1 ≤ i ≤ n, Bi ∈ Edi

for somedi < d} and〈A1, . . . , An〉 is unifiable with〈B1, . . . , Bn〉

LetE =
⋃

1≤d≤|R| Ed.

Lemma 36. E is finite and can be computed in polynomial time (in|R|).

Proof. E contains at most all rules’ heads, therefore the size ofE is at most|R|. EachEi is computed
incrementally beginning withE1. In order to computeEi, i > 1, all rules’ bodies should be checked for
unifiability with elements ofEd for 1 ≤ d < i. The union of these sets contains at most|R| elements. Let
l be the maximum rule’s length, therefore for each rule, at most (l − 1) × |R| unifiability checks should be
made. Thus eachEi can be computed in at most(l−1)×|R|2 steps and thereforeE is computed in at most
(l − 1) × |R|3 steps ((l − 1) × |R|2 × dmax).

Lemma 37. If A 6∈ E, whereA is some rule’s head, thenA may never derive the empty string.

Proof. Assume towards a contradiction thatA may derive the empty string. Therefore there exists a deriva-
tion tree of some depthn whose root isA and each of its leaves isε. We next prove that each internal vertex
on the derivation tree is unifiable with elements ofE. We define the internal verticeslevelas follows: the
root is on levell = n, all internal vertices on depthn − i are on levell = i (a bottom-up view).

The proof is by induction onl, the tree’s level.Forl = 1, since all vertices in level0 (i.e., the leaves)
areε’s, all of their mothers are unifiable withε-rule heads. Thus all internal vertices on level 1 are unifiable
with elements ofE (in fact, ofE1).

Assume that the induction hypothesis holds for alli, 1 ≤ i < l, so that all internal vertices up to level
i are unifiable with elements ofE. For i = l, each node on levell is unifiable with some rule’s head,A
whereA ⇒ A1, . . . , Am ∈ R. By the induction hypothesis, all ofA1, . . . , Am are unifiable with elements
of E (since they are on levell − 1), therefore, by definition,A ∈ E. Thus each internal node on levell is
unifiable with elements ofE. Therefore all daughters of the rootA are unifiable with elements ofE, hence
A ∈ E, a contradiction.

In this OLP version, as in the previous one, we want to excludegrammars which generate derivation
trees in which the same rule may be applied more than once fromtwo different nodes dominating the same
yield. Since a grammar may containε-rules, it is not enough to search for unit rule chains. Therefore, we
reformulate theε-elimination algorithm (Hopcroft and Ullman, 1979, pp. 90–92) for context-free grammars
to apply to general unification grammars.

Definition 15. Given a grammarG = 〈R,L, As〉, UR(G) is the following set of rules:

• For each ruleρ ∈ R, if ρ is a unit rule, thenρ ∈ UR(G).

• For each ruleA ⇒ A1 . . . An ∈ R, if all of the body elements are unifiable with elements ofE, then
for 1 ≤ i ≤ n, A ⇒ Ai ∈ UR(G).

• For each ruleA ⇒ A1 . . . An ∈ R, if all of the body elements but one (Ai) are unifiable with elements
of E, thenA ⇒ Ai ∈ UR(G).

26

The purpose of the second clause is to prevent multiple applications of the same rule in a sub-derivation
tree whose yield isε (for example, the context-free grammar of figure 16(a)), thus ruling out grammars
generating unboundedly deep sub-derivation trees whose yield consists ofε’s only. The purpose of the third
clause is to consider rules which may generate sub-derivation trees whose yield is of length1 as unit rules,
thus preventing multiple applications of the same rule in sub-derivation trees dominating the same yield (For
example the context-free grammar of figure 16(b)).

P → PP P → PQ

P → ε P → b

Q → ε

(a) (b)

Figure 16: Motivation forUR(G) rules

Definition 16 (A decidable OLP constraint (OLPD2
)). A grammarG is OLPD2

iff it contains no cyclicly
unifiable sequences ofUR(G) rules.

As =

[

CAT : s

WORD : 〈s 〉

]

R =











































































[

CAT : s

WORD : 〈s 〉

]

−→

[

CAT : p

WORD : 〈tb 〉

]

[

CAT : p

WORD : 1

]

−→

[

CAT : p

WORD : 〈tb | 1 〉

] [

CAT : p

WORD : 〈tb 〉

]

[

CAT : p

WORD : 1

]

−→

[

CAT : q

WORD : 1

]

[

CAT : q

WORD : 〈tb | 1 〉

]

−→

[

CAT : q

WORD : 1

] [

CAT : q

WORD : 〈tb 〉

]

[

CAT : p

WORD : 〈tb 〉

]

−→ ε











































































L(b) =

{[

CAT : q

WORD : 〈tb 〉

]}

Figure 17: Cyclicly unifiability example

Figure 17 shows a grammar exampleG such that

E =

{[

CAT : p

WORD : 〈tb 〉

]

,

[

CAT : p

WORD : []

]

,

[

CAT : s

WORD : 〈s 〉

]}

andUR(G) is listed in figure 18. In this example,ρ1, ρ4 andρ5 are unit rules and thus belong toUR(G).
ρ2 andρ3 are added toUR(G) on account of the grammar’s second rule, since both its body elements are
ε-unifiable (the second bullet of definition 15).

27

UR(G) =



































































































ρ1 :

[

CAT : s

WORD : 〈s 〉

]

−→

[

CAT : p

WORD : 〈tb 〉

]

ρ2 :

[

CAT : p

WORD : 1

]

−→

[

CAT : p

WORD : 〈tb | 1 〉

]

ρ3 :

[

CAT : p

WORD : []

]

−→

[

CAT : p

WORD : 〈tb 〉

]

ρ4 :

[

CAT : p

WORD : 1

]

−→

[

CAT : q

WORD : 1

]

ρ5 :

[

CAT : p

WORD : 〈tb 〉

]

−→ ε



































































































Figure 18:UR(G)

The sequence〈ρ2〉 is cyclicly unifiable, for example, by
{[

CAT : p

WORD : 〈tb〉

]

,

[

CAT : p

WORD : 〈tb, tb〉

]

,

[

CAT : p

WORD : 〈tb, tb, tb〉

]}

The sequence〈ρ3〉 is also cyclicly unifiable, for example, by
{[

CAT : p

WORD : 〈tb〉

]

,

[

CAT : p

WORD : 〈tb〉

]

,

[

CAT : p

WORD : 〈tb〉

]}

Lemma 38. LetG be anOLPD2
grammar.G does not license any derivation trees in which the same rule

is applied more than once from two different nodes dominating the same yield.

Proof. Assume towards a contradiction that anOLPD2
grammarG can generate a derivation tree which

contains a sub-derivation in which the same rule is applied more than once from two nodes dominating
the same yield. LetA be the dominating feature structure from which the first application of a ruleρ is
applied. LetB be its descendant from whichρ may be applied again dominating the same yield. Such a
sub-derivation can result only by consecutive applications of unit rules,ε-deriving rules and rules whose
body elements (all but one) derive anε (all other rules must expand the derivation’s yield).

Let V1, . . . , Vk be the applied rules andFS1, . . . , FSk−1 be the feature structures on the path leading
from A to B. We construct the sequenceV ′

1 , . . . , V
′
k as follows, for each1 ≤ i ≤ k:

• If Vi is a unit rule thenV ′
i = Vi.

• If Vi = A ⇒ A1, . . . , An, A ∈ E andFSi is thej-th daughter on the derivation tree after applying
Vi, thenV ′

i = A ⇒ Aj.

• If Vi = A ⇒ A1, . . . , An, and all of the body elements butAj are unifiable with elements ofE, then
V ′

i = A ⇒ Aj (the derivation step fromFSi−1 to FSi must have been byAj , otherwise sinceAj is
nonε-derivable,A andB would not span the same yield).

28

Thus each ofV ′
1 , . . . , V

′
k belongs toUR(G) and all of them may be applied consecutively resulting in

FS1, . . . , FSk−1, B. SinceV1 is applied more than once, the head ofV ′
1 is unifiable withB, henceV ′

1 may
be applied again resulting inFS. Therefore, the sequenceV ′

1 , . . . , V ′
k is cyclicly unifiable, as evidenced

by A,FS1, . . . , FSk−1, B, FS. HenceG contains a cyclicly unifiable sequence and it is notOLPD2
, a

contradiction.

Lemma 39. The depth of anyOLPD2
derivation tree for a string ofn symbols is bounded by|R| × n.

Proof. Let G be anOLPD2
grammar. By lemma 38, the maximum depth of a sub-derivation dominating

the same yield is bounded by|R|, thus in every derivation tree after at most|R| derivation steps, in which all
nodes dominate the same yield, there must be either a terminating node or an application of a rule expanding
the yield. Therefore, in order to generate a string ofn symbols, the depth of every derivation tree is at most
|R| × n.

Corollary 40. The membership problem is decidable forOLPD2
grammars.

Proof. From lemma 39 and the bounding lemma.

Theorem 41. It is decidable whether a grammar isOLPD2
.

Proof. Since the setUR(G) consists of unit rules only, the algorithm for decidingOLPD1
of section 6.2

can be also used for decidingOLPD2
where each vertex in theURG graph is aUR(G) rule.

6.4.2 Evaluation ofOLPD2

OLPD2
is more liberal thanOLPD1

; since the set of unit rules is a subset ofUR(G), any grammar satisfying
OLPD1

would also satisfyOLPD2
. Unlike version 1, anyOLPPW grammarG is alsoOLPD2

; assume
towards a contradiction thatG contains cyclicly unifiable sequences, thus the same rule may be applied
more than once from two different nodes dominating the same yield, resulting in an infinitely ambiguous
context-free backbone (by lemma 2), a contradiction.

OLPD2
is still not as liberal as the undecidable constraints, but it can be tested efficiently. Figure 19

depicts the revised inter-relations hierarchy diagram of the OLP definitions includingOLPD2
.

OLP forskeletalgrammars: OLP forgeneralunification grammars:

DB FA HP

OLPS OLPD2
OLPJO∃

OLPD1

OLPPW OLPJO∀

DB FA HP

OLPS OLPD2

OLPD1

Figure 19: Revised hierarchy diagram,OLPD2

29

6.4.3 A decidable definition of OLP (version 3)

We extend the class ofOLPD2
grammars by allowingUR(G) rules which may be applied at most a constant

number of times. The improved constraint is calledOLPD×l, wherel is an arbitrary number:

Definition 17. A sequence ofUR(G) rulesR1, . . . , Rk is l-cyclicly-unifiable iff (R1, . . . , Rk)
l is cyclicly

unifiable.

Definition 18. A grammarG is OLPD×l iff it contains no l-cyclicly-unifiable sequences.

The grammar of figure 14 is notOLPD2
, but it isOLPD×2, as its first rule may be applied repeatedly at

most twice. Therefore, the sequence〈ρ1, ρ1〉 is not cyclicly unifiable.
Decidability of membership is guaranteed forOLPD×l grammars; since the grammar contains no l-

cyclicly-unifiable sequences, the depth of any sub-derivation dominating the same yield is bounded byl

times the number of grammar rules (wherel is a constant number). Therefore, the depth of every derivation
tree whose yield is of lengthn admitted by anOLPD×l grammarG is bounded by(l × |R|) × n.

OLPD×l is decidable; the algorithm for decidingOLPD1
can be extended in order to decideOLPD×l,

the only difference being (beside usingUR(G) instead of the grammar’s unit rules) that on each cycle
is cyclicly unifiable is called with some cyclic rotation of(V1, . . . , Vk)

l. The functionis cyclicly unifiable
is unchanged.

7 Conclusions

In this paper (which is a revised, extended version of Jaeger, Francez, and Wintner (2002)) we explore
several variants of the OLP constraint, analyze and comparethem. We provide proofs of undecidability for
four variants. Our main contribution is the definition of a novel OLP constraint whichis decidable. Our
constraint is applicable to both skeletal and general unification grammars. It is more liberal than the existing
decidable constraints and, unlike all definitions that are applicable to general unification grammars, it can be
tested efficiently. Along with our constraint we also provide an algorithm for deciding whether a grammar
satisfies it, as well as an evaluation of our constraint compared with the other OLP variants.

Acknowledgments

The work of Nissim Francez was partially funded by the vice-president’s fund for the promotion of re-
search at the Technion. The work of Shuly Wintner was supported by the Israeli Science Foundation (grant
no. 136/01).

References

Berwick, Robert C. 1987. Computational complexity, mathematical linguistics, and linguistic theory. In
Alexis Manaster-Ramer, editor,Mathematics of Language. John Benjamins, Amsterdam/Philadelphia,
pages 1–17.

Carpenter, Bob. 1992.The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press.

30

Chomsky, Noam. 1975. Remarks on nominalization. In Donald Davidson and Gilbert H. Harman, editors,
The Logic of Grammar. Dickenson Publishing Co., Encino, California, pages 262–289.

Gazdar, Gerald and Geoffrey K. Pullum. 1985. Computationally relevant properties of natural languages
and their grammars.New Generation Computing, 3:273–306.

Gazdar, Gerald. E., Ewan Klein, Jeoffrey K. Pullum, and IvanA. Sag. 1985.Generalized Phrase Structure
Grammar. Harvard University Press, Cambridge, Mass.

Haas, Andrew. 1989. A parsing algorithm for unification grammar. Computational Linguistics, 15(4):219–
232, December.

Hopcroft, John E. and Jeffrey D. Ullman. 1979.Introduction to automata theory, languages and compu-
tation. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Company, Reading,
Mass.

Jaeger, Efrat, Nissim Francez, and Shuly Wintner. 2002. Guaranteeing parsing termination of unification
grammars. InProceedgins of COLING’02, pages 397–403, August.

Johnson, Mark. 1988.Attribute-Value Logic and the Theory of Grammar, volume 16 ofCSLI Lecture Notes.
CSLI, Stanford, California.

Kaplan, Ronald and Joan Bresnan. 1982. Lexical functional grammar: A formal system for grammatical
representation. In J. Bresnan, editor,The Mental Representation of Grammatical Relations. MIT Press,
Cambridge, Mass., pages 173–281.

Kuhn, Jonas. 1999. Towards a simple architecture for the structure-function mapping. In Miriam Butt
and Tracy Holloway King, editors,The Proceedings of the LFG ’99 Conference. CSLI Publications,
Stanford.

Pereira, Fernando C. N. and David H. D. Warren. 1983. Parsingas deduction. InProceedings of the 21st
Annual Meeting of the Association for Computational Linguistics, pages 137–144, June.

Shieber, Stuart M. 1992.Constraint-Based Grammar Formalisms. MIT Press, Cambridge, Mass.

Torenvliet, Leen and Marten Trautwein. 1995. A note on the complexity of restricted attribute-value gram-
mars. ILLC Research Report and Technical Notes Series CT-95-02, University of Amsterdam, Amster-
dam.

Wintner, Shuly and Nissim Francez. 1999. Off-line parsability and the well-foundedness of subsumption.
Journal of Logic, Language and Information, 8(1):1–16, January.

31

