Unification Grammars and Off-Line Parsability

Efrat Jaeger and Nissim Francez Shuly Wintner
Department of Computer Science Department of Computer Science
Technion, Israel Institute of Technology University of Haifa
32000 Haifa, Israel 31905 Haifa, Israel
Abstract

Unification grammars are known to be Turing-equivalentegia grammars and a wordw, it
is undecidable whether € L(G). In order to ensure decidability, several constraints @angnars,
commonly known asff-line parsability (OLP)were suggested, such that the recognition problem is de-
cidable for grammars which satisfy OLP. An open questionhistier it is decidable if a given grammar
satisfies OLP. In this paper we investigate various defimitiof OLP and discuss their inter-relations,
proving that some of the OLP variants are indeed undecid&#ethen present a novel, decidable OLP
constraint which is more liberal than the existing decidaiiies.

1 Introduction

Context-free grammars are considered to lack the expeeggiwer needed for modeling the syntax of
natural languages. Unification grammars have originatesh tension of context-free grammars, the basic
idea being to augment the context-free rules with non ca+iter annotations (feature structures) in order
to express some additional information. Unification gramsrtaave the ability to describe phonological,
morphological, syntactic and semantic properties of laggs and thus they are linguistically plausible for
modeling natural languages. Today, several formalismsification grammars exist, some of which do not
assume an explicit context-free backbone.

Therecognition problen{also known as the membership problem), for a gramhand a stringw, is
whetherw € L(G). Theparsing problemfor a grammaxG and a stringw, is to determine all the structural
descriptions (usually, trees) that are assigned-bip w. Unification grammars are Turing equivalent in
their generative capacity: determining whether a giveimgtis generated by a given grammar is as hard
as deciding whether a Turing machine halts on the empty iQmitnson, 1988). Therefore, the recogni-
tion problem for unification grammars is undecidable in teeayal case. In order to ensure decidability
of the recognition problem, several constraints on gramsmasmmonly known as theff-line parsability
constraints (OLP)were suggested, such that the recognition problem is deleidor OLP unification gram-
mars. Several variants of OLP are known (Pereira and Wat@88; Johnson, 1988; Haas, 1989; Torenvliet
and Trautwein, 1995; Shieber, 1992; Wintner and France29;1Ruhn, 1999); in section 3 we present many
of the OLP variants and show how they ensure the decidabilitie membership problem. These variants
are analyzed, and their inter-relations are proven, iri@edt

Our main concern in the work is a computational investigatid the properties of OLP constraints.
Some of the OLP variants were conjectured (Haas, 1989; Wligeand Trautwein, 1995) to be undecidable:
it is undecidable whether a unification grammar satisfiectmstraint. However, there exists no proof of
this conjecture in the literature. Some OLP variaats decidable, but these conditions are too restrictive;

there is a large class of non-OLP grammars for which the meshlgeproblem is decidable. In particular,
the decidable OLP definitions are limited only to unificatgnammars which assume an explicit context-
free backbone. One of our contributions is providing undilility proofs for four of the undecidable OLP
variants (section 5). The major contribution of this pageprioviding a novel, decidable OLP constraint,
presented in section 6. Our constraint is more liberal tharekisting decidable constraints as it applies to
all unification grammar formalisms, and it can be testedcéffely.

2 Unification grammars

We assume familiarity with theories of feature structurefoamulated, e.g., by Shieber (1992) or Carpenter
(1992). For our purposes here feature structures can bd typentyped, as our results are valid in both
cases. We summarize below the few concepts that are needtutkfrest of this paper in order to set up
notation.

A multi-rooted structurédMRS) of lengthn is a sequence of feature structures, with possible reentran-
cies among elements of the sequence. We use the common Adamofor depicting feature structures
and MRSs, where reentrancies are indicated by boxed nurrdseis the following example of an MRS of
length 3. Features are elements of a finite, non-empty s&t$-and are printed iBMALLCAPS; atoms are
elements of a finite, non-empty set@ms and are printed iitalics:

Lsp. [HD (] [Z:;Cg’;] {UST ;} lLIST! lHD iz H

TL : elist
L :
Meta-variablesA, B range over feature structures amgp over MRSs. An MRSy can be viewed as an
ordered sequengely, ..., A,) of (not necessarily disjoint) feature structures. We ideMRSs of length 1

with feature structures.

Feature structures and MRSs are partially orderegutnpsumptiondenoted ='. The least upper bound
with respect to subsumption is thaificationoperator, denoted . (we use the term ‘unification’ both for
the operator and for the result of its application). Unifimats a partial operator; whed LI B is undefined
we say that the unificatiofails. Unification is lifted to MRSs: given two MRSs andp, it is possible to
unify the i-th element ofs with the j-th element ofp. This operation, callednification in contexiand
denoted(o, i) LI (p,), yields two modified variants of andp: as the unification is donia the contexof
the entire MRSs, other elements might be affected. Heneeretbult of unification in context (when it is
defined) is a paifo’, o).

In the sequel we distinguish between two kinds of unificajommmars: those with an explicit context-
free skeleton are referred to siseletalunification grammars, whereas grammars with no explicikbaoe
are referred to ageneral We begin with a definition of general unification grammalsse are defined
over a signature consisting oERTS, AToms and a finite seE of terminal symbols.

2.1 General unification grammars
Definition 1. A general unification grammairis a tupleG = (R, L, A®) where:

e R is afinite set of rules, each of which is an MRS of length 1, with a designated first element, the
headof the rule, followed by itbody. The head and body are separated by an arrew).(

e L is alexicon, which associates with every terminal symbpé finite set of feature structurega).

2

e A?is afeature structure, thstart symbol

Figure 1 depicts an example unification grammay,,,, over the sets EATS = {LIST, HD, TL},
ATOMS = {s, elist, ta, th and>X = {a,b}. The grammar has two rules, each an MRS of length 3,
and two lexical entries, one for each elemenktof

AS = LIST:{HD:S. ”
I TL : elist

{LIST : {:'LD :: Zlist} } — [usT:[3]] [usT:[3]]

|:LIST : [:LD:: } } — [usT:[2]] |:LIST : [:LD:: SJ }

L(a) = {[L'ST: [:f:: Sist} H L) = { [LIST: [:E :: tekl)ist] H

Figure 1: An example unification gramma#,,,,,

To define thdanguagegenerated by a unification gramm@r we extend the notion dbrms a form
is simply an MRS. A formo4 = (A4,..., A;) immediately derivesinother formop = (B1,..., By)
(denoted byr 4 = op) iff there exists a rulep € R of lengthn that licenses the derivation. The head of
the rule is matched against some eleménin o 4 using unification in context{p, 1) U (c.4,i) = (o', 04).
If the unification does not faily 5 is obtained by replacing theth element ot’; with the body ofy’. The
reflexive transitive closure of%’ is denoted by <.

Definition 2. Thelanguageof a (general) unification grammar is L(G) = {w € ¥* |w =a; - - - a,, @and
(A®) = ¢ such thais; is unifiable with(A;, ..., A,) }, where4; € L(q;) for1 < i < n.

As an example, consider again the grammay,, of figure 1. The following is a derivation sequence
for the stringbaba with this grammar. Note that the scope of variables is lithiea single MRS; multiple
occurrences of the same tag in a single form denote reegfrahereas across forms they are unrelated.

s [_|HD:s ,
A® = |LIST: [TL : elist]] apply rule 1 to the single element of the form
o = |usT: } [LlST : } apply rule 2 to the second element

[[mwo:[1] . RECEE .
o9 = |LIST: [TL :]] [LIST } [UST : lTL : elist]] apply rule 2 to first element

1 HD : |1 HD : |1
o5 = |LIST :} [LlST : lTL : stH [LIST :} [LlST : lTL : stH
Now consider the MRS obtained by concatenating (the siriglaents of)(L(b), L(a), L(b), L(a)):

_ st - |HP :tb LsT - |HP ta LsT - |HP: th LsT: |HD® ta
= " |TL : elist “|TL : elist " |TL : elist “|TL : elist

3

HD:S
LIST : ,
l [TL : ellstH
S~

HD : |1
[LIST :} lUST (3] [TL : H
- ~
e
— [HD : b BECHE . . [Ho:[1]ta
lL'ST 2] [TL: elistH [L'ST' [TL: eIistH usT:[2]] l”ST' [TL : elist
| | | |
b a b a

Figure 2: A derivation tree fababa

Sinceo; andos are unifiable, the stringaba is in L(Gyw). In fact, L(G) = {ww | w € {a,b}*}.

The notion of derivatiortreescan be naturally extended from context-free grammars técation
grammars. The nodes of a tree are feature structures, thtreatomic non-terminal symbols. However,
care must be taken when reentrancies are concerned: the stopriables must be thentire tree. The
leaves of the tree constitute an MRS, thil element of which is unifiable with a lexical entry of th¢h
word of the input. For example, figure 2 depicts the derivatiee associated b§,,., to the stringbaba.
Note that an alternative definition for derivation trees oyed later in definition 8 and referred tozestial
derivation trees) admits trees whose frontiemasnecessarily unifiable with lexical items, corresponding to
partial derivations.

2.2 Skeletal grammars

Skeletal grammarassume an explictontext-free backbon@r skeletoi, and can be viewed as an extension
of context-free grammars, where every category is assatiatth an informative feature structure. They
are defined over a signature which includes, in additiok t¢-EATS and Aroms, a finite, non-empty set
CAaTs of categorie$ with a distinguished elemen§,. An extended categorig a pair(A, C) whereA is a
feature structure an@' € CATS is a category. Theontext-free backbonef a skeletal grammar is obtained
by ignoring all feature structures of the grammar rules amsitlering only the categories.

Definition 3. A skeletal grammaiis a tupleG = (R, L, A®) where:

e R is a finite set of rules, each of which is an MRS of length b (with a designated first element,
the head of the rule), and a sequence of lengthf categories over the paramet&ats (The first
category represents the head’s category).

e Lis alexicon, which associates with every termiaga finite set(a) of extended categorigsi, C),
whereA is a feature structure and' € CATS is a category.

e A® = (A, S) is the start symbol (an extended initial category).

Figure 3 depicts an example skeletal gramrnigg,..

IKnown also as non-terminal symbols of a context-free gramma

Catrs={S,A,B,C}

A® = ([LEN: 5], S)

[Len:s] — [ten:[1]] [en:[1]] [en:[1]] S—ABC
| ek @ — e @) fewai] 4—aa
ien: fien:[T)])] — [en:[D)] [ten:elit] B BB
ten: fuen:[1])] — [en:[0)] [eeneis] 00O

£(a) = {([Lenselist] A} £(0) = {([Len:elist] B} £(c) = {{[Len: elist] ,)}
Figure 3: An example skeletal gramméf,;,.

A skeletal formis a pair (o, (7>, whereo is an MRS of lengthn andC is a sequence of categories
(C; € Catsfor1 < i < n). A skeletal form{(o4,C,) immediately derivego, Cp) iff there exists a
skeletal rule<p’,(73> € R that licenses the derivation (i.ery, = op through thei-th element ofr 4 and
Cp is obtained by replacing theth element ol 4 by the body ofC‘R). Thelanguageof a skeletal grammar
is defined similarly to general unification grammars usingletial forms instead of MRSs. For example,
L(Gape) = {a™b™c™ | n > 0}. A skeletal derivation treés a pair consisting of a unification grammar tree
and a context-free tree; the two trees are isomorphic.

The context-free backbone of a skeletal derivation trealied aconstituent structuréc-structure). In
a constituent structure,reon-branching derivation chaiis a branch of the tree all of whose nodes have out-
degree 1 (induced by the application of unit rules, i.egswhith a single element in their bodies). When a
constituent structure includes two nodes which are labeyeithe same category and span exactly the same
substring, we say that it contains eyclic branch Note that if a grammar has nerules, a constituent
structure contains a cyclic branch if and only if it has nearzhing derivation chain in which the same
category occurs more than once (annotating more than ore.nod

3 Off-line parsability constraints

The motivation behind all OLP definitions is to rule out graarswhich license trees in which unbounded
amount of material is generated without expanding the igonword. This can happen due to two kinds
of rules: e-rules, whose bodies are empty, and unit rules, whose badiesist of a single element. With
context-free grammars the removal of rules which can canagnbounded growth is always possible. In
particular, one can always remove cyclic sequences of ulgisr However, with unification grammars such
a procedure turns out to be more problematic. It is not tridadetermine when a sequence of unit rules
is, indeed, cyclic; and when a rule is redundant. The dedimitiwe discuss below try to approximate the
procedure of determining whether a grammar contains suafblgmatic” rules.

Of course, it is always possible to ensure the decidabilitthe membership problem for unification

2By “span the same substring” we mean that the frontier doreihay both nodes is identical, not merely two copies of the
same string.

grammars by constraining the expressive power of the gramnkor example, it is well known (Gazdar
and Pullum, 1985; Berwick, 1987) that when the size of feasiiructures is guaranteed to be bounded (e.qg.,
when no recursion is allowed in feature structures), uriibobagrammars are equivalent in their generative
capacity to context-free grammars; this is basically théivation behind the linguistic theory GPSG (Gaz-
dar et al., 1985). Another extreme case would be to disallowles and unit rules altogether. Here we are
interested in a much less dramatic decrease of expressiverpim other words, OLP definitions attempt
to constrain the set of grammars such that the membershipgondbecomes decidable, yet the expressive
power of the grammars is only minimally reduced.

In this section we present several variants of OLP consfraiuggested in the literature. Some of the
constraints (Pereira and Warren, 1983; Kaplan and Bredi##?2,; Johnson, 1988; Kuhn, 1999) apply only
to skeletal grammars since they explicitly refer to categgmmwhich are undetermined for general unification
grammars. Others (Haas, 1989; Shieber, 1992; TorenvigTeutwein, 1995; Wintner and Francez, 1999)
are applicable to both skeletal and general unification grara. Some of the OLP constraints refer to OLP
grammars, while others impose a restriction on allowablévaliéon trees rather than grammars. In this
work we are concerned with OLP grammars, therefore, in definb, we extend these constraints from
derivations to grammars.

One way to ensure that parsing with a unification gram@germinate on every input is by guaranteeing
that for every wordw and every tree- which G induces orw, the depth ofr is bounded by some known
function of the length ofu.

Lemma 1 (The bounding lemma). For every unification gramma¢, if a computable functiorfs exists
which can be efficiently computed frai such that for every word and every tree- induced byG onw,
the depth ofr, d(7), is such thatd(7) < fa(|wl|), then membership fa¥ is decidable.

Proof. For a given wordwv, since the number of grammar rules is finite, and the deptharfdree induced
by G on w is bounded, the set of all such trees is finite, and its calitina bounded by a computable
function of |w|. Therefore an effective exhaustive search algorithm enat@® the members of this set of
trees. If atree is found by the algorithm, there L(G); otherwiseqw ¢ L(G) since every tree fow must
not be deeper thaf; (|w|). O

As noted above, the OLP definitions discussed below attesnmiovide a bounding functiolfi; which
bounds the depth of trees admitted Gy(as a function of the tree’s width). Notice that the aboverten
does not only require thexistenceof a bounding functionfs; in order for the function to be used for
terminating the exhaustive search, it must be effectivelpputed for every grammar. However, some
OLP definitions only require the existence of a bounding fiang possibly assuming that the grammar
designer will provide it with every grammar. For such defanis, the algorithm alluded to in the bounding
lemma is inapplicable.

Furthermore, note that the bounding lemma not only ensheegdcidability of the recognition problem,
but also the decidability of the parsing problemalif the trees that are induced by a grammar are bounded
in depth, then the exhaustive search algorithm is guardriteproduce all of them in finite time. A more
liberal version of the lemma would require only that for gveordw € L(G), at least ondree induced by
G onw is depth bounded. This would still ensure the decidabilftthe recognition problem, but not of the
parsing problem.

3.1 OLP constraints for skeletal grammars

One of the first definitions of OLP constraints was suggeste®dreira and Warren (1983) for ensuring
termination of general proof procedures for definite clasets. Although the constraint was designed for
DCGs, where the predicate names constitute an expliciegtifitee backbone, it can be rephrased in terms
of skeletal grammars as follows:

Definition 4 (Pereira and Warren’s OLP constraint for skeletal grammars (OL Ppy/)). A skeletal gram-
mar is off-line parsable iff its context-free skeleton is imdinitely ambiguous.

We next prove that the depth of every derivation tree adohitieanO L Ppy, grammar is bounded by
the number of syntactic categories in the grammar timesitieeo$ the tree’s yield.

Lemma 2. A finitely-ambiguous context-free grammar cannot admit d@vedon tree which contains a
cyclic branch.

Proof. Let G be a finitely-ambiguous context-free grammar. Assume tdsvarcontradiction that a tree
induced byGG on some wordv contains a cyclic branch. Then there exist two nodes inandv, such that

u andv are labeled by the same categdfyand span the same substrimgof w. Without loss of generality,
assume that dominates. Sinceu andv are equally labeled, the same sequence of rule applicatibith
was used to derive from « can be applied again from resulting in a subtree with a node, also labeled

X, onits frontier. Sincex andv span the same substring, so dogsNow the same process can be repeated,
indefinitely, fromuq, to generate an infinite number of trees with longer cyclaniches over the word, in
contradiction to the assumption of finite ambiguity. O

Lemma 3. If 7 is a constituent structure induced by &1. Ppy, grammarG on a wordw of lengthl, then
the depth of- is bounded by|CATS| + 1) x (I + 1).

Proof. Let G be anOLPpy, grammar. LetG’ be the context-free backbone @t By definition, G’ is
finitely ambiguous, and hence by lemma 2 it cannot admit avaligoh tree which contains a cyclic branch.
We first show that the length of any path from the root to a kxtem in+ is bounded by x (|CATS| +1).
Letm = uguq - - - u, be a path inr from the rootu, to a leafu,,. Let N be the set of all nodes; in = which
span exactly the same substringias;. Let V be the set of all nodes im which are not inN. N has at
most/ — 1 nodes, since any node in N spans a frontier which includes the frontier spanneadfy and at
least one other lexical item not spannedihy;. By lemma 2,7 has no cyclic branches. Hence the maximal
length of a subpath af consisting of nodes fronV is |CATS|. In other words;r consists of subpaths of
maximal length CATs|, separated by nodes from. Since| N| < [— 1, there are at mostsuch subpaths in
w. Therefore, the maximal length afis [x |CATS| (subpaths of nodes frod¥) plus (I — 1) (nodes from
N), i.e.,l x (|CATS| + 1) — 1. As for leaves inr which are labeled by, these can add one more branch
of length at mostCATs| to any path from the root, again by lemma 2. Hence the depthi®bounded by
(|ICATS|+1) x (I +1). O

Corollary 4. Membership is decidable f@p L Ppy, grammars.
Proof. From the above lemma and the bounding lemma. O

An additional OLP definition is based on Kaplan and Bresn®&82). They suggest a linguistically
motivated OLP constraint which refers to valid derivatidosthe Lexical-Functional Grammar formalism
(LFG), a skeletal grammar formalism. Unlike the previousRadefinition, for LFG no notion of an OLP

grammarwas proposed. Instead, LFG defines Oddrivations for a given stringw, a c-structure is not
OLP if it has two nodesy andv, of the same categorwhereu dominatesy andw andv span exactly the
same substring ab; in other words, a c-structure is not OLP if it contains a iwybkanch. Of course, there
can be other derivations af which are OLP.

Given an OLP definition for derivations, it can be extendegraonmars in (at least) two manners:

Definition 5 (OL PA grammar). LetOLPa be a condition on derivation trees.
1. A grammarG is off-line parsable iff for everw € L(G) everyderivation tree forw satisfiesSO L Pa.

2. A grammairG is off-line parsable iff for every € L(G) there existsa derivation tree which satisfies
OLPA.

The first definition is very strict, licensing grammars whézan only generate OLP derivation trees. The
second definition is more liberal, allowing non-OLP deilivattrees as long as there exists at least one OLP
derivation tree for every word of the grammar’s languageintyshe algorithm sketched in the bounding
lemma, the second definition can ensure the decidabilithe@fécognition problem (determining whether
w € L(Q)), whereas the first definition can also ensure the decithatifi parsing (finding all the trees
induced byG onw).

LFG is not a standard rewriting system, and the definitior. @) is more involved than our basic
definition in section 2. That isp € L(G) only if there exists an OLP derivation tree for the structures
induced onw by G are the structures induced by the OLP derivations only. 1Oplessible (non-OLP)
derivations are simply ignored. LFG introduces two kinds'sf controlled and optionality’s, which are
used in descriptions of natural languages. General unditgrammars are not necessarily designed for
natural languages and thus the distinction between #ieds does not necessarily exist. Hence, we use a
variant of Kaplan and Bresnan’s constraint, suggested bgsim (1988, pp. 95-97), eliminating al of
any kind.

Definition 6 (Johnson’s OLP constraint (OLP;)). A constituent structure satisfi€sL P iff:

e it does not include a cyclic branch; and

e no leaf is labeled by.

Johnson’s constraint, as well as the next OLP variant dégzlibelow, is based on Kaplan and Bresnan'’s
OLP for LFG and hence imposes a restriction on allowablewesires, rather than on the grammar itself.
Johnson provides no explicit definition of an OLP grammar. U definition 5 and define two conditions
on grammars: grammars that satisfy the first and secongietations ofD L P;o according to definition 5
are referred to a® LP;o, andOLP;0,, respectively. Note thaDLP;o, implies that the grammar can-

not include any usable-rules, wherea®) L P;o_ allows such rules but requires that for each word in the
language there exist at least one derivation which usesrales.

Lemma 5. The depth of an@) L P;(derivation tree for a string of symbols is bounded by (|CATS|+1).
Proof. Similar to lemma 3. O
Corollary 6. Membership is decidable f@ L P;o, andOLP;0,, grammars.

Proof. From lemma 5 and the bounding lemma. O

Furthermore, the exhaustive search algorithm of the baignéimma ensures also that the parsing prob-
lem is decidable foO L Pjo, grammars (but not fo® L P;o, grammars).

The next constraint, proposed by Kuhn (1999), is also basedaplan and Bresnan’s constraint and
is also defined in terms of OL&erivations OLP grammardefinitions are according to definition 5. The
constraint uses the notion of ‘categories’ and thus is agple only to skeletal grammars. X-bar theory
grammars (Chomsky, 1975) are claimed to have a strong Btigyustification in describing natural lan-
guages. However, both Kaplan and Bresnan’s and Johnsamstramts disallow some valid X-bar deriva-
tions. Kuhn (1999) refers to the problem from a linguist'snpaf view. The purpose of his constraint
is to expand the class of derivation trees which satisfy Kagind Bresnan’s constraint in order to allow
X-bar derivations. As Kuhn (1999) does not explicitly referc-rules, we assume, similarly to Johnson’s
constraint, that such rules cannot be used in OLP deriv@tion

Kuhn (1999) shows some examples of X-bar theory derivatieast of German and Italian sentences
which contain the same category twice in a non-branchingi@nce chain. However, he observes that in
these trees, same-category nodes on a non-branching awinwith different f-annotations. This gives
rise to the following definition:

Definition 7 (Kuhn’s OLP constraint). A c-structures derivation is OLP iff no category appearscevin
a non-branching dominance chaivith the same f-annotation

The condition does not require that the feature structuweshich same-category nodes on a chain
are mapped be different; rather, the annotations (or ezpstirom which these feature structures are con-
structed are required to differ. This implies that whilelaybranches are allowed in derivations, they cannot
involve multiple applications of the same rule. This extenshanges the bounding function Of. P;o
from{ x (|CATS|+1) tol x (u+ 1), whereu is the number of unit rules in the grammar. Sinde constant
for every grammar, lemma 5 can be used to ensure decidahilibjs case, too.

The main problem of analyzing Kuhn’s definition is that thedaage of a grammar is not defined the
way we defined it in section 2. As noted above, LFG defines thguage of a grammar as those words that
are derivable by OLP derivations. Comparing this definitigth the one we use throughout this work is
complicated, and therefore we exclude Kuhn's OLP condtfeam this analysis.

3.2 OLP constraints for general unification grammars

Constraints that apply to general unification grammarsya@pfortiori, also to skeletal ones. The first
such constraint was suggested by Haas (1989). Based ongbhevation that not every natural unification
grammar has an obvious context-free backbone, Haas sedgesbnstraint for guaranteeing the solvability
of the parsing problem which is applicable to all unificatgmammar formalisms. Haas’ definition allows
derivation trees with nonterminals at their leaves, thienahg partial derivations.

Definition 8 (Haas' Depth-boundedness) B)). A unification grammar is depth-bounded iff for every
I > 0 there is ad > 0 such thatevery(partial or complete) parse tree for a sentential forni gfymbols has
depth less thad.

This definition of a depth-bounded grammar requires thetaxie of a functiond, such that every
derivation tree’s depth for a sentential formio§ymbols is bounded by(l), but it provides no explicit
information aboutd. This condition ensures the finiteness of the set of all tfeest wordw € L(G),
but provides no bound on the size of the set. Hence; & L(G), an exhaustive search will find a tree
for w, but there is no criterion for terminating the search withegative result (the usual situation fRE

problems). Note also that depth-boundedness takes as #&idefancondition which is a consequence of
previous definitions (e.gQ L Ppw).

Returning toO L Ppyy, recall that it applies only to skeletal grammars, as genardication gram-
mars do not necessarily have an explicit context-free sieleA natural extension of Pereira and Warren’s
definition to general unification grammar formalisms is &rambiguity.

Definition 9 (Finite ambiguity for unification grammars (F'A)). A unification grammax is O L Pr 4 iff
for every stringw there exist only a finite number of derivation trees.

Unlike O L Ppyy, and similarly to depth-boundedness, finite ambiguity femeyal unification grammars
does not ensure the decidability of the membership probieae st does not provide a specific function for
bounding the search space.

An additional OLP definition, defined in terms of logical coiast based grammar formalisms, is sug-
gested by Shieber (1992, pp. 79-82). Rephrased in our ténimslefinition is as follows:

Definition 10 (Shieber's OLP (OLPs)). A grammarG is off-line parsable iff there exists a finite-ranged
function F" over feature structures such th&{ A) C A for all A and there are no derivation trees admitted
by G in which nodes4 and B span the same substring afti A) = F(B).

In fact, the requirement that(A) subsumedA is not necessary for our purposes and was left only for
compatibility with the original definition. This constraibounds the depth of every derivation tree by the
range ofF' times the size of the tree’s yield. Thus the number of difieteees whose yield is a given string
is finite.

Lemma 7. The depth of any) L Ps derivation tree for a string of lengthis at most x (|range(F)| + 1).

Proof. Same as lemma 3, the only difference being that here the lineation ofi which bounds the depth
of trees id x (|range(F)| + 1). O

Again, given a bounding functiofi, decidability of membership via exhaustive search is extsby the
bounding lemma; but when no such function is given, exhegisgarch is not guaranteed to terminate.

In order to extend OLP definitions from formalisms that assuntontext-free skeleton to general uni-
fication grammars, Torenvliet and Trautwein (1995) suggestore liberal constraintjonest parsability
which is applicable to all unification grammar formalismshis constraint is similar to depth bounded-
ness, with two differences: (1) depth boundedness reqthiegall trees be depth bounded, whereas honest
parsability only require®ne such tree; and (2) honest parsability requires that thehdepthe tree be
bounded by a polynomial in its width, while depth boundedrafows any function.

Definition 11 (Honest parsability constraint (H P)). A grammarG satisfies the Honest Parsability Con-
straint (HPC) iff there exists a polynomialsuch that for eachw € L(G) there existsa derivation with at
mostp(|w|) steps.

The definition ensures that for every string of the grammlariguage there exist at least one derivation
tree whose depth is polynomial (in the size of the derivedgtr Whenp is explicitly given, this condition
guarantees the decidability of the membership problem éyptunding lemma: all derivations can be built
in parallel in increasing length, until leng{|w|) is reached. Whep is not given, this condition cannot
guarantee it. The requirement thabe a polynomial, and not just any function, is there to guaehat
the recognition problem foF P is N P, and is not needed for proving decidability.

10

4 A hierarchy of OLP definitions

In this section we compare the different OLP definitions uésed in the previous section. First, we present
some examples of grammars which will be used as referente isubsequent discussion, and then discuss
the OLP properties of each of these grammars. The exampéea agaightforward encoding of lists as
feature structures: a list is represented by bracketsitdists are separated by a comma, an empty list is
denoted by) and(head| tail) represents a list whose first itemhiead followed bytail.

Notice that although some of the examples use general uivficgrammars, they all have a context-
free backbone (through the featuraT), and thus can be viewed as skeletal grammars when defiitiah
apply only to skeletal grammars are investigated. For ekxantipe general unification rule:

CAT: p N CAT: p
LIST :[1] LIST : (tb|[1])
can be viewed as the skeletal rule:

[LlST:] — {LIST:(tb|>] P—Q

4.1 Some grammar examples

A unification grammarGr 4, generating the languatjé™, is depicted in figure 4. The featucaT stands

for ‘category’, andLIsT is a list of lexical symbols. The stringyis the only terminal item in the lexicon,
therefore every string generated by the grammar consigts ohly. The second rule adds items to a list at
each derivation step. The fourth rule removes items fromighé With each removal a feature structure
is added to the form which can be unified with (in fact, is ideaitto) the lexical entry ob; this process
continues until a list of one item is reached. The grammanambiguous; a string of occurrences o

has exactly one parse tree whose depftitnis- 1. Therefore G4 is FA andHP. G4 is neitherDB nor

OL Pg; it may generate arbitrarily deep partial derivation tr@mmtaining lists of increasing length) whose
frontiers consist of only one symbol, and thus there existéimite-ranged function mapping each feature
structure on such a derivation to a finite set of feature stras. Gg4 is neitherOLP;o nor OLPpyy;

in order to generate the strig for [> 1, its second rule must be applied at least once, resulting in a
non-branching dominance chain in which the categoappears more than once, and thus the context-free
backbone is infinitely ambiguous.

Figure 5 presents a unification gramm@t,¢, generating the languadé}. The grammar rules must
be applied according to their order as defined by the valuéisedieaturecAt. The second rule adds items
to theLIsT list, the fourth rule removes items from the list, anblia generated once the list consists of one
item. There exist infinitely many derivation trees, of awdniy depths, for the stringy for any natural number
of applications of the second rule. Therefafgy¢ is neitherD B nor F'A nor OLPs. Gipfis OLP;0, and
H P; there exists a derivation tree for the stringf depth 3.Gjn¢ is neitherO L Ppyy norOLPjo,; it may
generate derivation trees in which the categegppears more than once in a non-branching dominance
chain, and thus its context-free backbone is infinitely ayjbus.

A unification grammar'p g, generating the language, is shown in figure 6. A string of occurrences
of b has exactly one parse tree whose dept®’is The featureDEPTHCOUNT is a list that represents the

3We use regular expressions and set notation interchangeatiénote languages.
4Removing an item from a listithin a feature structure, as in this rule, must not be confuseuneinoving a feature structure
from a form, which is the result of applying arrule.

11

A® = [CAT:s]

CAT :

pr: [CAT:S}—>|:LIST:I<)tb>]

) [caT: p
Pz LIST: _) L|5T:<tb|)

_ L L

- [cat:p [cAT: ¢
pa: | LIST: H | LIST :

- [cat: g T CAT: ¢ CAT: ¢
pa _L|5T:(tb|>_H LIST: LIST : (th)

CAT :
L) = { {LIST: (<Itb) } }

Figure 4: A unification grammat; r 4

s CAT: s
A= |:LIST: (s)]

- fear: s CAT: p
pL LisT:(s) |~ |LsT: (tb)

- fecar:p [caT: p
P2 LIST: 7 L|5T:(tb|)
R L L
- fecar:p [caT: ¢
P |LIST: H |LIST:

[caT

. i q 1 CAT: q
pa | LIST: (tb|>_ — [LIST:}
CAT :
L) = { [LIST : ((th)]}

Figure 5: A unification grammag¢

current depth of the derivation tree (i.e, the number ofvdgion steps from the root). In each derivation
step an item is added to tlEPTHCOUNT list, but no items may ever be removed from it. The feature
INNERCOUNT is a list that represents the number of derivation stepsrbéefenerating the nextsymbol.
Every application of the second rule doubles the depth ofNeERCOUNT list with respect to its length
after the previous application of the rule. Thus the numlhdedvation steps for generating edcts always
twice the number of steps for generating its predecessagrefdre, for every sentential form of length
the depth of any partial derivation tree is bounded by an eaptial function ofn. (approximately2™).
ThusGppis DB andFA. Gpg isnotHP; now € L(Gppg) has a polynomial (inw|) depth derivation
tree. Gpp is Not OLPg; in order to generate the strig exactly 2! derivation steps must be applied, in
order to generaté!*! exactly 2/ derivation steps must be applied. Between the generatighedf”
and(l + 1)* symbols there must k& derivation steps of nodes spanning the same yield for e\atyr ai

12

numberl. Therefore, there exist no finite-ranged mapping functaiisg/ing the conditionsG p g is neither
OLP;o norOLPpyy; in order to generate the stridyfor I > 1, its third rule must be applied at least once,
resulting in a non-branching dominance chain in which theg@yp appears more than once, and thus the
context-free backbone is infinitely ambiguous.

CAT : S
A® = |depthCount : (>‘|
innerCount : ()
[CAT : s CAT : p
p1: |depthCount : ()] — | depthCount : (tb)]
LinnerCount : () innerCount : ()
[caT: p CAT : p .
p2 depthCount :] — |:depth00unt : <tb | >] [lce’:-.. ib]
| innerCount : () innerCount : '
R= [CAT : P 1 CAT : P
p3 depthCount : — | depthCount : (tb |)
| innerCount : (tb |)] innerCount :
[caT : P CAT : |
pa c'iepthC’ount : (th | Y| — [lex : tb}
innerCount : () |

co- [

Figure 6: A unification grammat/pp

A skeletal unification grammac; ;\ py, generating the languade, b}, is presented in Figure 7. An
a is generated from the categofyand ab from the categoryy). The first and third rules are initial rules;
after applying the first rule, the only applicable rule is seeond rule, generatinghathen no other rule may
be applied. After applying the third rule, the only appliahule is the fourth rule, generating anthen
no other rule may be applied. Therefore, the grammar cangengrate the two derivation trees shown in
the figure. Since both derivations atd. P;o, the grammar is botW LP;0, andOLPjo,. Gy pw is not
OL Ppyy as its context-free backbone can generate a unary branchéaig of P — @ — P.

Figure 8 depicts a skeletal gramm@is, . It is easy to verify that the given derivation is the only gibte
derivation admitted by+s, . The derivation is of deptB, therefore the grammar is bothL Ps and H P (for
OLPg, the finite-ranged function should m%p: s} and [F : [F : s} } to themselves and any other feature
structure to the empty feature structure).

To summarize the above discussion, the table of figure 9thstoff-line parsability properties of the
example grammars. Empty entries in the table are not need¢lef evaluation.

4.2 The relationships between the OLP variants

This section compares the OLP variants and defines a higrartlong them, referring to the grammar
examples given above. The propositions in this sectiomr tefthe properties of the example grammars, as
summarized in figure 9.

Proposition 8. No OLP constraint implies any of thie P;o constraints.

13

Cats ={S,P,Q}

A =([usT: ()],9)

L(a) = {([usT: (ta)],P)} L(b) = {([LIsT:

pr: [UsT: ()] — [LsT: ()]

p2: [usT: ()] — [LIST:

ps: [UST: ()] — [LisT: ()]

pa: [usT: ()] — [LIST:

Figure 7: AnNOLP;o grammarG n py, L(G npw) = {a, b}

CaTts = {S}

A= ([F:s],S)

R={ [F:[1]] — [F: [F:[1]]]

Q—Pr

()], @)}

S—>S}

([usT:

([uisT:

O]9

()], P)

([usT: (tb)],Q)

Figure 8: AnNOLPg grammarGsg,

([usT:()].9)

([ust: ()], Q)

([usT: (ta)],P)

Since Johnson’s condition is the only one disallowirgles in derivations, none of the other constraints

implies eitherO L P;o constraint.

Proposition 9. If G is DB thenG is F A.

Proposition 10. An O L P;o grammarG is not necessarily aw L Ppyy grammar.

Proof. Let G be DB. Then there exists a functiofi such that for everyv € L(G), the depthd of any
derivation tree forw satisfiesi < f(|w|). Hence there are only finitely many trees forandG is FA. O

| Grammar| Fig. || FA | HP | DB | OLPs | OLPyo, | OLPjo, | OLPpw |

Gra 4 + + — — — — —
Gint i I e - - + -
GDB 6 + — + — — - —
Gnrw 7 + + -
GSI 8 + +

Figure 9: Off-line parsability properties of the examplammars

14

Proof. The grammar= j\ py of figure 7 isOLP;0, but itis notOL Ppy . O
Proposition 11. If G is OLPpw or OLP;o, thenGis DB, FA and HP.

Proof. Let G be either arOL Ppy, or anOLP;0,, grammar. By lemma 3 and lemma 5, the depth of any
derivation tree (partial/non-partial) admitted byis bounded by a linear function of the size of its yield.
Therefore, for every sentential form of lendthvery derivation tree’s depth is bounded by a linear fumctio
of [and there exist only a finite number of derivation trees uptofmite depth. O

Proposition 12. If G is OLPpw or OLP;o, thenG is OLPs

Proof. If G is OLPpw or OLPjo, then it cannot generate a derivation tree in which two nodes tthe
same category and span the same yield. Therefore, thedarictwith the finite rangeg{ [CAT : X} | X €

CATS}, given by:
CAT : X
VXECATS:F([.]): [CAT:X]

is such that for everyl, F(A) C A and itis ensured that, in every derivation tree, every twaescspanning
the same yield are mapped Byto a different image. Note that the fact tHatA) C A is not used here. [

Proposition 13. A DB or F'A grammarG is not necessarily a® L Ppyy grammar.

Proof. The grammaiG pp of figure 6 is depth-bounded and finitely ambiguous. Its cdrtee backbone
can generate a unary branching chaiP& which immediately leads to infinite ambiguity. O

Proposition 14. AnOLPs or HP grammarG is not necessarily aw L Ppy, grammar.

Proof. The grammar=g, of figure 8 is bothDLPs andH P. Itis notO L Ppyy, as its context-free backbone
can generate a unary branching chairbf O

Proposition 15. AnOLPjo, grammarG is not necessarilyD B nor F'A nor OL Ps.

Proof. The grammaiG;s of figure 5 isOLP;o,; there exists a) LP;o derivation for the string (by
applying the first and third rules). Bdtj,s may generate infinitely many non-branching derivationsraie
arbitrary depths for the stringand thus it is neitheD B nor F'A nor OL Ps. O

Proposition 16. If G is OLPjo thenG is HP.

Proof. If G is OLPjo, then for everyw € L(G) there exists at least or@L P derivation. By lemma 5,
the derivation’s depth is bounded by a linear function of lgregth ofw, therefore, for everyw € L(G)
there exists a polynomial function @f| bounding the derivation’s depth. O

Proposition 17. An F'A grammarG is not necessarily & B grammar.

Proof. The grammar 4 of figure 4 is finitely ambiguous; the grammar induces a finitmher of deriva-
tion trees on every string. The grammar is not depth-bountheddefinition of depth boundedness allows
partial derivation trees with non-terminals at their legwiberefore the second rule may be applied repeat-
edly many times, generating arbitrarily deep parse treesselfrontier is a sequence of non-terminals of
length1. O

Proposition 18. A DB grammarG is not necessarily af) L P grammatr.

15

Proof. The grammarpp of figure 6 is depth-bounded, but it is Ot Ps. O
Proposition 19. An O L Ps grammar(is not necessarily & B grammar.

Proof. The grammarGy, of figure 8 isOLPs. It is not depth-bounded, as its sole rule may be applied
repeatedly many times, resulting in arbitrarily deep pamses whose frontier has only one symbol. O

Proposition 20. A DB or F'A grammarG is not necessarily a/ P grammar.

Proof. The grammaiipp of figure 6 is depth-bounded; every string of lengthas a unique parse tree of
depth2™ and there exist no arbitrarily deep partial trees with nermrinals at their leaves. The grammar is
not anH P grammar; for everyv € L(Gpp) every parse tree is of an exponential depth/«if). O

Proposition 21. An H P grammarG is not necessariyD B nor F A.

Proof. The grammatGj,¢ of figure 5 is anH P grammar; for every string there exists a derivation tree of a
polynomial depth in the size of the string. The grammar isheeiD B nor F'A; it may generate infinitely
many derivation trees of arbitrary depths for the stiing O

Proposition 22. If G is OLPs thenG is FA and HP.

Proof. By lemma 7, ifG is O L Ps then the depth of every derivation tree for a string of lergthbounded
by |range(F)| x I (where F' is a finite-ranged function satisfying the constraint). c8ifrange(F')| is
independent of, there exists a polynomial function in the size of the stiognding its derivations’ depth.
HenceG is H P. Since the depth adverytree is thus bounded, only finitely many trees are possilgecé
G is FA. O

Proposition 23. An F'A or H P grammarG is not necessarily a L Ps grammar.
Proof. The grammar= 4 of figure 4 is both" A and H P, but it is notO L Ps. O

Figure 10 depicts the inter-relations hierarchy diagrarnthefOLP variants, separated for skeletal and
general unification grammars. The hierarchy is based onltbeesanalysis where the arrows represent the
discussed implications; an arrow fraf to Cs implies that any grammar satisfying also satisfie€s.

OLP for skeletalgrammars: OLP fogeneralunification grammars:

DB

FA HP

/ DB — FA HP
OLPs OLPjo, /
/ \ [OLPs

OLPpw OLPjo,

Figure 10: Inter-relations Hierarchy diagram

16

5 Undecidability proofs

The problem of deciding whether a given grammar is OLP wagectured to be undecidable (Haas, 1989;
Torenvliet and Trautwein, 1995), but no proof has ever beewiged. We present undecidability proofs for
four OLP definitions: Johnson’s OL®({ P;p), Finite Ambiguity (' A), Depth-BoundednesdXB) and
Shieber’'s OLP QL Ps).

In order to prove thaOLP;o, DB and OLPgs are undecidable we use Johnson’s (1988) reduction
from the Turing machine halting problem (on the empty ingatjhe recognition problem for unification
grammars. The reduction defines a unification gramgy, for every (deterministic) Turing maching/,
such that the grammar contains only unit rules and can geEnatanost one complete derivation trée;,
generates the worlt if and only if the machine accepts the empty input string.

L(Gy) = {halt} if M terminates on the empty input
M7= 0 if M does not terminate on the empty input

A characteristic feature of the gramm@y,, for every M, is that its rules are all unit rules, and hence the
derivation trees it induces are all non-branching. Furttoee, due to the fact that the Turing machine is
deterministic (in particular, since its transition fumetiis uniquely defined for every combination of state
and tape symbol), the constructed grammar is such that éoy elerivation whose frontier is a non-terminal,
exactly one grammar rule can be applied to that non-terminal

We show that any algorithm decidil@L P;o, F A, DB or OLPs can be used as a subroutine in an
algorithm which solves the empty input halting problem.

5.1 Undecidability of OLP;

Theorem 24. Given a unification grammag, it is undecidable whethetr is OLP;o,, or whetherG is
OLPjo,.

Proof. Assume towards a contradiction that an algoritdnexists for decidingDLP;o,, (or OLPjo,).
Construct an algorithnB to decide the empty input halting problem, which is known ¢éoumdecidable,
with B operating as follows: on input/ = (@, X, b, d, s, h), a Turing machine:

1. Construci,,, simulating the operation a¥/ on the empty input, as described above.
2. Run algorithmA on G, .

3. e If Gy is determined byA notto be OLP;o: then there exists some word € L(G)y) for
which every (in the case @)L P;0,,) or at least one (in the case OfL P;o.) derivation tree is
notOLPjo. In any case, there exists some word.ifG), and this word must bealt. Hence
M terminates on the empty input.

e If G,/ is determined byA to be OLPjo: by corollary 6, membership is decidable Gr;,.
Decide whethehalt € L(Gyy). Ifitis, M terminates on the empty input; otherwise, does
not terminate on the empty input.

O

17

5.2 Undecidability of Finite Ambiguity

Theorem 25. Given a unification grammaé and a stringw, it is undecidable whether the number of
derivation tree< induces onw is finite.

Proof. Assume towards a contradiction that there exists an algoritl 4, deciding whethetw has a finite
number of derivation trees admitted 6y Construct an algorithmB g 4, to decide the membership problem
(contradicting Johnson’s (1988) theorem), wil 4 operating as follows.

On inputG,w whereG = (R, L, A®) is a unification grammar and is a string:

1. Construci’ = (R/, L', A’”®) such thatl’ = £, A’ = A% andR' = R U {A4% = A%}. Observe that
L(G) = L(G’"), independently of whether or not the rulé = A®isinR.

2. Run algorithmA 4 on G, w.
3. w € L(Q) iff G’ induces an infinite number of derivation treeswon

If G’ can only generate a finite number of derivation trees foriagstr, then this number is 0. Suppose
that there exists a derivation tree feradmitted byG’. By applying the ruled® = A%, G’ can generate
infinitely many derivation trees faw, contradicting the algorithm’s outcome. Therefofd(z’) = () and
sinceL(G') = L(G), alsoL(G) = () and hencev ¢ L(G).

If G’ can generate infinitely many derivation trees for a stringhen there exists at least one derivation
tree forw admitted byG’” which does not contain any applications of the rdie = A* (since the rule
only loops over the start symbol) and therefore there eddsrivation tree forw admitted byG; hence
w € L(G). O

Corollary 26. Finite Ambiguity is undecidable.

Proof. By theorem 25, it is undecidable wheth@rcan generate a finite number of derivation trees on a
stringw. Therefore it is undecidable whether for everyover Y, the grammar’s terminal symbols) there
exist a finite number of derivation trees. O

5.3 Undecidability of Depth-Boundedness

Theorem 27. depth-boundedness is undecidable.

Proof. Assume toward a contradiction that there exists an algurithy 5, for deciding depth-boundedness.
The algorithm decides whether there exists a functfobounding the depth of each derivation tree for
a sentential form of length by f(n). Construct an algorithmBp 3, to decide the empty input halting
problem, which is known to be undecidable, wiBs g operating as follows.

OninputM = (Q, %,b, 4, s, h), a Turing machine:
1. Construci,,, simulating the operation af/ on the empty input, as described above.
2. Run algorithmApg on Gy, .

3. M terminates on the empty input if), is depth-bounded.

18

If G is depth-bounded thel/ terminates on the empty input: sin€g,; is depth bounded it can only
generate, for a given word, finitely many (partial) non-taf@ing derivation trees. One of these derivation
trees must end in a terminal, because if all the trees hadchdrmf a non-terminal, then for each such tree
a grammar rule could have been applied (due to the ‘totafaztiar of the grammar), resulting in infinitely
many trees. Since the grammar has only one termia#tl, halt € L(G) and M terminates on the empty
input.

If G/ is not depth-bounded, ther,,; generates infinitely many non-branching partial derivatiees,
none of which ends with a terminal. Assume towards a corttiadi thatG; can generate a complete
derivation tree. Therefore, sindeis deterministic and undefined on the final state, &g simulates it,
while reaching a final state, there is no next applicable. rtlenceG); may only generate a finite set of
partial derivation trees (where each is a sub-tree of thepéetmderivation tree), a contradiction. Therefore,
G may not generate any complete derivation trees andihiisZ L(G) (M does not terminate on the
empty input). O

5.4 Undecidability of O L Ps
Theorem 28. OL Pgs is undecidable.

Proof. Assume towards a contradiction that there exists an algorifi s, for deciding whether a grammar
satisfiesD L Pg, that is, deciding whether there exists a finite-rangedtfand” such that¥'(A) C A for all

A and there are no derivation trees admittedzbin which a nodeg(w) dominates a nodé&), both are roots
of sub-trees with an identical yield arfd(u) = F(v). Construct an algorithmBg, to decide the empty
input halting problem, which is known to be undecidable hwits operating as follows.

On inputM = (Q, %,b, 4, s, h), a Turing machine:
1. Construct,,, simulating the operation dff on the empty input, as described above.

2. Construct?’,; by adding the ruled® = A® to Gj,’s set of rules:R); = Ry U {A® = A%} (in this
case, the rulel® = A*® cannot be irR,,, by the construction of7 ;).

3. Run algorithmAs on G',.

4. M terminates on the empty input i, is notOLPs.

If G, is OLPs then there exists no derivation tree ferlit admitted byG’,,. Suppose that one exists;
then by applying the rulel®* = A®, G’,, can generate infinitely many derivation trees for the sttialy
of arbitrary depths, and hence no finite-ranged functiostex¥hich maps each two nodes on a derivation
with the same vyield to a different image, contradicting tlgoathm’s outcome. Therefore, there exists no
derivation tree fohalt admitted byG, halt ¢ L(Gs) (M does not terminate on the empty input).

If G, is notOLPs, then there exist a derivation tree admitted®y, for which every finite-ranged
function must map at least two nodes spanning the same yi¢lietsame image. Particularly, sincgt is
the only terminal symbolk’, induces a derivation tree dralt. By the construction o+, there exists a
derivation tree fohalt admitted byG, halt € L(G) (M terminates on the empty input). O

6 A novel OLP constraint- OLPp

In this section we present our main contribution, a deciel@ilP constraint. Our constraint applies to both
skeletal and general unification grammars and, unlike alldéfinitions that apply to general unification

19

grammars, it can be tested efficiently. We also provide sonpedvements to our constraint. The optimized
constraint is more liberal than all the previously propodedidable OLP constraints, since it is applicable
to general unification grammars as well as to skeletal gramnidous more grammars are rendered off-line
parsable. As we shall show, every grammar that is off-linesgdale by any of the decidable constraints is
also off-line parsable by our constraint (but not vice virsa

6.1 A decidable definition of OLP (version 1)

The OLP constraint proposed he@[Pp,, disallows grammars which can generate derivation trees in
which the same rule may be applied more than once from tweréifit nodes dominating the same yield. In
this version we assume that grammars include-ndes, but a more liberal constraint allowing them is given
in section 6.4. Since grammars do not includeiles, the definition only addresses unit rule chains kenli
context-free grammars, these chains cannot be eliminatéuljke the undecidable constraints discussed
above, our constraint is a static property of the grammaighvban be tested off-line, without resorting to
possible derivations of the input string.

Definition 12. A sequence of unit ruleBy, ..., Ry (k > 1) is cyclicly unifiableiff there exists a sequence
of feature structur€soy, . .., 0,12 such that forl < i < k, 0; = 0,1 by the ruleR;, andoy, 1 = 0j4o
ble

Figure 11 displays two grammar rules,, p2. The sequencép;, p2) is cyclicly unifiable, e.g. by
__|CAT:p __|CAT : q .) __|CAT :q

{or = F:oal’??" |k a]’ag_[F'b}’J‘l_ F: b>'

o1 is unifiable WithpfS head,oc; = o9 by pP1, 02 = 03 by P2, and them3 = 04 by P1-
The sequencép,, p1) is not cyclicly unifiable; whatevep, applies to, the resulting feature structure is

[F : b}; then, applyingp; necessarily yields{?‘T : g , Which is incompatible with the head pf. Hence
p2 cannot be applied again.
CAT:p CAT : q
R E: T IF
p2: [F:a] — [F:Db]

Figure 11: Cyclicly unifiability example

Definition 13 (A decidable OLP constraint (OLPp,)). A grammarG is O L Pp, iff it contains no cyclicly
unifiable sequences.

Lemma 29. If a grammarG contains no cyclicly unifiable sequencés,does not license any derivation
tree with a non-branching dominance chain in which the sankeis used more than once.

Proof. Assume towards a contradiction that a unit rpdds used more than once in a non-branching dom-
inance chain. Therefore, there exists a sequence of MRSS. , 0% 2, the chain nodes on the derivation
tree, and a sequence of unit ruj@s. . ., px, such that fonl <i < k, o, = o;+1 by p;, andoy1 = oo

by p1. Thus, the grammar contains a cyclicly unifiable sequencengradiction. O

5Formally, these should be MRSs of length 1, which are idewtifiith feature structures here.

20

Lemma 30. The depth of every derivation tree whose yield is of lemg#tdimitted by arO L Pp, grammar
G is bounded byu + 1) x n, whereu is the number of’s unit rules.

Proof. Since the grammar contains no cyclicly unifiable sequenog$emma 29 no rule may be applied
more than once in a non-branching dominance chain. Theretoe depth of any generated non-branching
dominance chain is bounded by Thus in every derivation tree admitted 6y everyu consecutive appli-
cations of unit rules (at most) are followed by either a leafie application of a non-unit rule expanding
the yield (recall that ne-rules are allowed). Therefore, the depth of every devatiee is at mostu + 1)
times the size of its yield. O

Corollary 31. The membership problem is decidable df P, grammars.
Proof. From lemma 30 and the bounding lemma. O
Theorem 32. It is decidable whether a grammar 3L Pp, .

Proof. An algorithm for the problem is given in the next section. O

6.2 An algorithm for deciding O L Pp,

In order to detect cyclicly unifiable sequences, only uni¢swineed be considered. The algorithm uses a
graph annotation and searches for cycles in the graph.

We first create anit rules graph, URGwhich is a directed graph representing unifiability; evesptex
is a unit rule, and an edge leads framnto v iff the body of u is unifiable with the head of (the body
is of length1). The head and the single element in the body of a unit pulare represented bif;, B;
respectively. Obviously, the graph is finite.

Then, we search theRG for cycles, which may indicate a cyclicly unifiable sequern€er each cycle,
we approximate its operation by consecutively applyindgtaiertices in order to verify whether they form
a cyclicly unifiable sequence. Approximation is done by ging the rules according to the order of the
sequence, starting with the empty feature structure.

This process is only an approximation, since the cycle etgresent unifiability between the head and
body of each two consecutive cycle vertices, but they arenaogssarily indicative of a cyclicly unifiable
sequence. It is not guaranteed that after applying seveled,runifiability between the resulting feature
structure and the head of the next rule still holds. Appration of the cycle is done beginning each time
with a different cycle vertex. It is possible that by begimmthe approximation with some vertex, the cycle’s
vertices form a cyclicly unifiable sequence, but for othéeytdo not, as exemplified by figure 11.

Note that even if a grammar contains cyclicly unifiable seges, it does not necessarily imply that
any of the cycle vertices may ever be applied. Thus, the @instmay be ruling out grammars for which
recognition is decidable, but it is still a decidable coaistr and allows (along with the improvements) more
grammars than the previously proposed decidable constrdaihe algorithm is listed in figure 12.

Since any cyclicly unifiable sequence is represented as la ayche U RG, only cycles of vertices
should be considered. Once a cycle is detected, it does nessarily imply that its vertices form a cyclicly
unifiable sequence. We approximate the cycle’s operatiorgube functionis_cyclicly_unifiable on each
cyclic rotation of its vertices. The function applies eadhth® rules consecutively using unification in
context (as defined in page 2). If one of the rules may not béeabfihe resulting feature structure is not
unifiable with the rule’s head) it returifialse if all rules have been applied successfully, the functietms
true.

21

An algorithm for deciding OLPp,

scangrammar(G): Boolean

Input: A unification grammar.
Output: true iff Gis OLPp,.

Construct a directed unit rules graghRG, where
Each vertex is a unit rule € R where|p| = 2.

There exists a directed edge from verték, B,) toward vertex(Hs, Bs)
iff By is unifiable withH>.

For each cycle€ =C1,...,Cy, Cy in URG (where theC;-s are nodes):
forifrom0Otok —1
Let V7 ...V, be the cyclic rotation of”, 7 positions to the right.
If is_cyclicly_unifiablg V1, ..., V}) returnfalse
Returntrue.
is_cyclicly_unifiable(14, ..., V}): Boolean
FS=]] I* the most general feature structure */
forifrom1tok
V; = (H;, B;) is the current rule.
if /S U H, fails returnfalse
else((FS,1) U (V;, 1) = (FS', V/)),whereV/ = (H/, B)
FS = B! /* unification in context */
if F'S LI Hy fails returnfalse
Returntrue

Figure 12: An algorithm for decidin@ L Pp,

6.2.1 Correctness of the algorithm

Lemma 33. If a sequence of unit rules does not appear as a cycle inlti=, then it is not cyclicly
unifiable.

Proof. Let Ry, ..., Ry be a cyclicly unifiable sequence, |8, B; be the head and body of eaél respec-
tively. Therefore, there exists a sequenge. . ., o2, such that for each <i < k — 1, B; C 0,4+ and
o;+1 IS unifiable withH, 1, thereforeB; is unifiable withH,, . FurthermoreB;, C o1, 0k1 IS unifiable
with Hq, and therefore3,, is unifiable withH;. ThusRy,..., Ry represent a cycle in thé RG. Therefore,

if a sequence of rules does not form a cycle in&hRG, it is not a cyclicly unifiable sequence. O
Lemma 34. is_cyclicly_unifiablg V1, . .., Vi) returnstrue iff V1, ..., Vi is a cyclicly unifiable sequence.
Proof. If is_cyclicly_unifiablg V1, ..., V;) returnstrue, then all rulesV, ..., Vi have been applied and

V1 may be applied again. The variabléS contains the resulting feature structure after applyinchea
rule. Consider all ofF’S intermediate values, lef'S; be the value off'S after applyingV; and all its

22

predecessors. SindéSy is unifiable withV;, V; may be applied again; 1€t.S;1 be the resulting feature
structure. Consider the sequenieg, . ..,ox12) = (([]), (FS1),..., (FSks1)), forl1 <i <k, o; = 0411
by R;, andoy1 = o120 by Ry, therefore, by definitiovy, ... , Vi is a cyclicly unifiable sequence.

If is_cyclicly_unifiablgV1, ..., Vi) returnsfalse then either there exists some rifg whose head is not
unifiable with the resulting feature structuf&, or all rules have been applied and the resuliifg is not
unifiable with the head o¥;. Assume that after applying some rulé§, may not be applied. Since the
simulation begins with the most general feature structime sequence([|), (F'S1), ..., (FS;_1)) is the
most general sequence after applyiig. .., V;_: for any other sequenc@FSy), (F'S1), ..., (FS;_1))
such that eacl’S; , = F'S; by V;, eachF'S; C F'S;. Hence, ifF'S;_; is not unifiable withV;’s head then
neither isFS§_1, and there exists no sequence of MRSs satisfying the comstiéghereforely, ...,V is
not a cyclicly unifiable sequence. O

Theorem 35. The algorithm returngrue iff G is OLPp,.

Proof. In order to check whethé¥r contains cyclicly unifiable sequences, only unit rules rieedonsidered.
By lemma 33, since a cyclicly unifiable sequence is alwaysessmted by a cycle in tHé RG, all cyclicly
unifiable sequences are always detected.

On each cyclejs_cyclicly unifiable is applied from each of the cycle’s vertices. By lemma 34, the
function returngrue only for cyclicly unifiable sequences. Therefore, if theaalthm returngrue, then all
cycles have been tested and none of their vertices ordenépgssent a cyclicly unifiable sequence, thus the
grammar contains no cyclicly unifiable sequences aralig’p, .

If the algorithm returndalse thenis_cyclicly_unifiablereturnedtrue on a set of vertices, by lemma 34,
this set represents a cyclicly unifiable sequence, thusmdmamar contains at least one cyclicly unifiable
sequence and is NGL Pp, . O

6.2.2 Complexity of the algorithm

Assume that a gramma? hasn unit rules. Thereforé/ RG containsn vertices and at most? edges. The
number of possible cycles of ayvertices (including all cyclic rotations) is bounded blyx Z . The
number of operations done big cyclicly_unifiableis linear ink (the number of vertices). Therefore the
complexity of the algorithm is i®(n!). As we expect “natural” grammars for natural languages tdaio

a small number of unit rules, is expected to be small.

6.3 Evaluation of OLPp,

In this section we compar@ L Pp, with the other constraints discussed above, in order tceplain the
hierarchy of figure 100LPp, is applicable to both skeletal and general unification gransmignoring
e-rules, it is more liberal than the previously proposed daiie definitions that are limited to skeletal
formalisms only, and unlike all definitions that are apgieato general unification grammaiiBL Pp, can
be tested effectively.

The grammarss,,,, of figure 1 and~ ;. of figure 3 areD L Pp, ; they include no unit rules, therefore no
non-branching dominance chains can be generated. i%,, allows non-context-free grammars.

Any OLPjo, grammar is als® L Pp,; since anDLP;o,, grammar cannot generate a derivation tree in
which the same category appears twice in a non-branchingndmace chain, no rule may be applied more
than once in a non-branching dominance chain.

23

An OLPjo, grammarG is not necessarily) L Pp, . In anOLPjo., grammar for everyw € L(G) there
exists an OLP derivation tree, bat can still generate non-OLP derivation trees. The gram@¥gf of
figure 5isOLPjo., butitis notOLPp, as its second rule is cyclicly unifiable.

An OLPpy, grammar is not necessarityLPp, as it may contaire-rules. OLPp, admits grammars
whose c-structure may contain a non-branching dominanai& éfwhich the same category appears twice
as long as it is generated by a non-cyclicly unifiable sege@ficules. Furthermore, it does not assume an
explicit context-free skeleton. Figure 13 presents an g@a® L Pp, grammar which is neithe® LP;o
norOLPpyy.

L(b)={([F:b],P)}
Figure 13: AnOLPp, grammarGp

The following discussion shows that neithéi” nor DB nor F'A imply OLPp,. The grammarssr 4
of figure 4, which isH P and F'A, andGjps of figure 5, which isH P, are notO L Pp, ; e.g., by their second
rule,

CAT: p N CAT: p
WORD : WORD : (th [[1])

and the following set of feature structures:

{

The grammar=pp of figure 6 isDB and F' A, but it is notO L Pp, as its third rule is cyclicly unifiable. By
lemma 30, ifG is OLPp,, then the depth of every derivation tree for a stringeadfymbols is bounded by a
linear function ofn, thereforeGG is alsoH P, DB and F A.

An OLPs grammarG is not necessarily) L Pp,. Figure 14 depicts a® L Ps grammar generating the
language{b™}. A string ofn occurrences o has a derivation tree of depshx n. The depth of every non-
branching chain i8, therefore there exists a finite-ranged functirie.g., mapping each feature structure
to itself) such that no two nodes on a derivation tree spayiia same yield are mapped to the same feature
structure. The grammar is n6tL Pp,, since its first rule may be applied twice consecutivelyultesy in a
cyclicly unifiable sequence. In section 6.4 we present amongment taO L Pp, which admitsGg.

OLPp, is arestriction on derivation trees such that no two nodes @erivation tree spanning the same
yield are unifiable with the same rule’s head, wher@dsPs is a restriction on derivation trees such that no
two nodes on a derivation tree spanning the same yield ar@edap the same image. We conjecture that
anOLPp, grammar is not necessarifyL Ps, but we have not been able to come up with a proof yet.

Figure 15 depicts the revised OLP inter-relations hienadibgram includingD L Pp, .

The class oD L Pp, grammars can never be equal to any of the other OLP classgsrieral unification
grammars. Since the constraints for general unificatiomgrars are undecidable, if any of these classes
were equal to the class @f L Pp,, then using the algorithm for decidinQL Pp,, we could also decide
whether a grammar satisfies the other constraint which isciddble.

CAT: p
WORD : (th) |’

CAT: p
WORD : (th, th) |’

CAT: p
WORD : (tb, th, th)

24

[F:(tb,tb)]

l

A® = [F: (tb,th)] [F: (th)]
N Focto|[])] — [F:[1]] |
R‘{m: D [F:ab,tbmmb}} N
L£(b) = {[F:]} [F:(tb,th)] [F:tb]

Figure 14: AnOLPs grammarGs and its derivation form

OLP forskeletalgrammars: OLP fogeneralunification grammars:

DB— FA HP

SN

orprs OLPp, oLPo,

/ \] / orr. OLPp,

OLPpw OLPJOV
Figure 15: Revised hierarchy diagram witri. Pp,

Assume that a gramma¥ contains a cyclicly unifiable sequence of rulég,, ..., Rx. Whether any
of these rules may ever be applied in any derivation tree by G is not known to the algorithm.
Therefore,GG is notO L Pp, although recognition may still be decidable for@.L Pp, does not allow any
unit rule sequences in which the same rule may be applied thareonce. There might be some unit rule
sequences in which at some point, after applying the segueres repeatedly several times, unifiability
between the resulting feature structure and the head oftkteruie may no longer hold, hence the sequence
is harmless for decidability. In the next section we propasdamprovement of) LPp, calledOLPpy;
which allows such grammars.

6.4 Improvements

OLPp, does not permit grammars which contairules. Ase’s play a major role in many natural language
descriptions, we present in this section some improventerds. Pp, allowing e-rules. We show that the
improved constraints are more liberal than the existingdadxde constraints.

6.4.1 A decidable definition of OLP (version 2)

Let I’ be the set of all rules heads. LEt be the set consisting of the heads of all rules that may neared
ane: there exists no sub-derivation tree whose root is an eleofeli and whose yield is. We create a set
of e-derivables F, to be the complement df’ consisting of the heads of all the rules that may derive:an
E=F\F.

25

Definition 14 (e-derivables set,E). Given a grammars = (R, L, A®), let E; be defined as follows:
° Elz{A|A:>€€R}

e Ford>1,E;={A| A= A;--- A, € R and there exists a sequenég ... B,, such that for each
1 <i<n,B; € Ey forsomed; < d} and(Ay,..., A,) is unifiable with(B, ..., B,,)

LetE = UlSdS\R| E,.
Lemma 36. £ is finite and can be computed in polynomial time|(®{).

Proof. E' contains at most all rules’ heads, therefore the siz& é§ at most|/R|. EachE; is computed
incrementally beginning wittE;. In order to computed~;, i > 1, all rules’ bodies should be checked for
unifiability with elements ofy; for 1 < d < i. The union of these sets contains at m@dtelements. Let

[be the maximum rule’s length, therefore for each rule, attrflos 1) x |R| unifiability checks should be
made. Thus each; can be computed in at mogt— 1) x |R|? steps and therefor® is computed in at most
(I1—1)x |R|®steps (I — 1) x |R|? X dmaz)- O

Lemma 37. If A € E, whereA is some rule’s head, theA may never derive the empty string.

Proof. Assume towards a contradiction th&tmay derive the empty string. Therefore there exists a deriva
tion tree of some depth whose root isA and each of its leaves és We next prove that each internal vertex
on the derivation tree is unifiable with elementstaf We define the internal verticésvel as follows: the
root is on level = n, all internal vertices on depth — i are on level = i (a bottom-up view).

The proof is by induction o, the tree’s level.Fot = 1, since all vertices in leve) (i.e., the leaves)
arec’s, all of their mothers are unifiable withirule heads. Thus all internal vertices on level 1 are urgiab
with elements of& (in fact, of).

Assume that the induction hypothesis holds foriall < ¢ < [, so that all internal vertices up to level
¢ are unifiable with elements df. For: = [, each node on levdlis unifiable with some rule’s head}
whereA = A4,..., A, € R. By the induction hypothesis, all o4, ..., 4,, are unifiable with elements
of F (since they are on levél— 1), therefore, by definitionA € E. Thus each internal node on levak
unifiable with elements of. Therefore all daughters of the rodtare unifiable with elements df, hence
A € E, a contradiction. O

In this OLP version, as in the previous one, we want to exclydenmars which generate derivation
trees in which the same rule may be applied more than oncetfsondifferent nodes dominating the same
yield. Since a grammar may contaifrules, it is not enough to search for unit rule chains. Tluees we
reformulate the-elimination algorithm (Hopcroft and Uliman, 1979, pp. 923} for context-free grammars
to apply to general unification grammars.

Definition 15. Given a grammaG = (R, £, A®), UR(G) is the following set of rules:
e Foreach rulep € R, if p is a unit rule, therp € UR(G).

e Foreachruled = A, ... A, € R, if all of the body elements are unifiable with element& pthen
forl1 <i<n,A= A, € UR(G).

e Foreachruled = A, ... A, € R, if all of the body elements but ond) are unifiable with elements
of E, thenA = A; € UR(G).

26

The purpose of the second clause is to prevent multiple @djains of the same rule in a sub-derivation
tree whose yield is (for example, the context-free grammar of figure 16(a))sthuling out grammars
generating unboundedly deep sub-derivation trees whess gbnsists ot’s only. The purpose of the third
clause is to consider rules which may generate sub-darivatees whose yield is of lengthas unit rules,
thus preventing multiple applications of the same rule imdarivation trees dominating the same yield (For
example the context-free grammar of figure 16(b)).

P — PP P — PQ

P —e P—b
Q—e

(@) (b)

Figure 16: Motivation folJ R(G) rules

Definition 16 (A decidable OLP constraint (OLPp,)). A grammarG is O L Pp, iff it contains no cyclicly
unifiable sequences 6fR(G) rules.

As:|:CAT: s]

WORD : (S)
[caT: s _|eat: p
WORD : (S) WORD : (tb)
[cat: p [cat: p CAT: p
—
_WORD: | WORD : (th |) WORD : (th)
R [car: p [cat: ¢
= —
| WORD : | WORD :
[cat: ¢ 1 CAT: gq CAT: ¢
—
|woRrD: (tb | [1]) | worp:[1]| |woRrD: (tb)
[caT: p .
WORD : (tb) ¢

] CAT :
L) = { |:WORD: ((th)] }

Figure 17: Cyclicly unifiability example

Figure 17 shows a grammar examplesuch that

E—{ CAT : p‘| lCAT: s]}
N WORD: []|’ |[WORD: (S)

andU R(G) is listed in figure 18. In this exampley, p4 and ps are unit rules and thus belong toR(G).
p2 andps are added t@/ R(G) on account of the grammar’s second rule, since both its btmiyents are
e-unifiable (the second bullet of definition 15).

CAT: p
WORD: (tb) |’

27

feat: s CAT: p
P lworbp: (s)| ~ |woRD: (tb)

~feat: p _feat: p
P2+ \worp:[1] WORD : (tb |[1])

UR(G) = p3 - -CAT:][) ‘| —

CAT: »p
WORD :

WORD : (th)

~feat: p _|eAT: g
P lwoRrp: [1] WORD : [1]

CAT :

. po|_
P5 ¢ WORD:<tb>] ¢

Figure 18:UR(G)

The sequencé,) is cyclicly unifiable, for example, by

{

The sequencéps) is also cyclicly unifiable, for example, by

CAT: p CAT: p CAT: p
WORD : (th) | " [WORD: (th) | * |WORD: (tb)

Lemma 38. LetG be anOLPp, grammar.G does not license any derivation trees in which the same rule
is applied more than once from two different nodes domigatie same yield.

CAT: p
" IWORD : (tb, tb)

CAT: p
WORD : (tb) ’

CAT: p
WORD : (tb, th, th)

Proof. Assume towards a contradiction that @i.Pp, grammarG can generate a derivation tree which
contains a sub-derivation in which the same rule is appli@denthan once from two nodes dominating
the same yield. Le#l be the dominating feature structure from which the first @pgibn of a rulep is
applied. LetB be its descendant from whighmay be applied again dominating the same yield. Such a
sub-derivation can result only by consecutive applicatiofunit rules,e-deriving rules and rules whose
body elements (all but one) derive afall other rules must expand the derivation’s yield).

LetV4,...,V, be the applied rules anBl Sy, ..., F'Sy_1 be the feature structures on the path leading
from A to B. We construct the sequent#, ..., V/ as follows, for each < i < k:

e If V;is aunitrule thei/ =V;.

e IfV;=A= A1,...,A,, A € EandF'S; is the j-th daughter on the derivation tree after applying
Vi, thenV/ = A= Aj;.

o If V;=A= Ay,..., Ay, and all of the body elements b4t are unifiable with elements d@f, then
V/ = A = A; (the derivation step fron¥'S;_; to F'S; must have been by ;, otherwise sincel; is
none-derivable,A and B would not span the same yield).

28

Thus each ofl], ..., V/ belongs toUR(G) and all of them may be applied consecutively resulting in
FSy,...,FS_1, B. SinceV; is applied more than once, the head/gfis unifiable withB, hencel’/ may

be applied again resulting if'S. Therefore, the sequendd, ..., V/ is cyclicly unifiable, as evidenced
by A, FSy,...,FS;_1,B,FS. HenceG contains a cyclicly unifiable sequence and it is 6t Pp,, a
contradiction. O

Lemma 39. The depth of any) L Pp, derivation tree for a string ofi symbols is bounded BR | x n.

Proof. Let G be anOLPp, grammar. By lemma 38, the maximum depth of a sub-derivatamidating
the same yield is bounded 32|, thus in every derivation tree after at m¢RY derivation steps, in which all
nodes dominate the same yield, there must be either a taingmade or an application of a rule expanding
the yield. Therefore, in order to generate a string @&ymbols, the depth of every derivation tree is at most
|R| x n. O

Corollary 40. The membership problem is decidable o Pp, grammars.

Proof. From lemma 39 and the bounding lemma. O
Theorem 41. It is decidable whether a grammar 3L Pp, .

Proof. Since the seU R(G) consists of unit rules only, the algorithm for decidi6. Pp, of section 6.2

can be also used for decidigL Pp, where each vertex in thé RG graph is aJ R(G) rule. O

6.4.2 Evaluation ofOLPp,

OLPp, is more liberal thai L Pp, ; since the set of unit rules is a subsetaR(G), any grammar satisfying
OLPp, would also satisfiyOLPp,. Unlike version 1, anyD L Ppyy grammarG is alsoOLPp,; assume
towards a contradiction tha¥ contains cyclicly unifiable sequences, thus the same rule beaapplied
more than once from two different nodes dominating the saield,yresulting in an infinitely ambiguous
context-free backbone (by lemma 2), a contradiction.

OLPp, is still not as liberal as the undecidable constraints, boan be tested efficiently. Figure 19
depicts the revised inter-relations hierarchy diagranhef@LP definitions includin@ L Pp, .

OLP for skeletalgrammars: OLP fogeneralunification grammars:

DB— FA HP

D AN

orrs OLPp, oLPo,

t ores OLPp,
OLPp, \
T / OLPp,

OLPpw OLPjo,

Figure 19: Revised hierarchy diagra®/[. Pp,

29

6.4.3 A decidable definition of OLP (version 3)

We extend the class 61 L Pp, grammars by allowind/ R(G) rules which may be applied at most a constant
number of times. The improved constraint is calied P;, wherel is an arbitrary number:

Definition 17. A sequence dff R(G) rules Ry, ..., Ry, is I-cyclicly-unifiable iff (Ry, ..., R;)' is cyclicly
unifiable.

Definition 18. A grammarG is O L Ppy; iff it contains no I-cyclicly-unifiable sequences.

The grammar of figure 14 is NG L Pp,, but itisOLPp 2, as its first rule may be applied repeatedly at
most twice. Therefore, the sequengg, p1) is not cyclicly unifiable.

Decidability of membership is guaranteed foi. Pp; grammars; since the grammar contains no I-
cyclicly-unifiable sequences, the depth of any sub-deéamatiominating the same vyield is bounded by
times the number of grammar rules (whéis a constant number). Therefore, the depth of every dasivat
tree whose yield is of length admitted by arO L Pp; grammarG is bounded byl x |R|) x n.

OLPpy, is decidable; the algorithm for decidif@L Pp, can be extended in order to deci@d.Pp «;,
the only difference being (beside usifigR(G) instead of the grammar’s unit rules) that on each cycle
is_cyclicly_unifiableis called with some cyclic rotation dfV, ..., V;)!. The functionis_cyclicly_unifiable
is unchanged.

7 Conclusions

In this paper (which is a revised, extended version of Jadgancez, and Wintner (2002)) we explore
several variants of the OLP constraint, analyze and contpara. We provide proofs of undecidability for
four variants. Our main contribution is the definition of asabOLP constraint whichs decidable. Our
constraint is applicable to both skeletal and general wtitio grammars. It is more liberal than the existing
decidable constraints and, unlike all definitions that g@ieable to general unification grammars, it can be
tested efficiently. Along with our constraint we also pravigh algorithm for deciding whether a grammar
satisfies it, as well as an evaluation of our constraint coetgwith the other OLP variants.

Acknowledgments

The work of Nissim Francez was patrtially funded by the vicesplent's fund for the promotion of re-
search at the Technion. The work of Shuly Wintner was supgdsy the Israeli Science Foundation (grant
no. 136/01).

References

Berwick, Robert C. 1987. Computational complexity, mathéoal linguistics, and linguistic theory. In
Alexis Manaster-Ramer, editavlathematics of Languagdohn Benjamins, Amsterdam/Philadelphia,
pages 1-17.

Carpenter, Bob. 1992The Logic of Typed Feature StructureéSambridge Tracts in Theoretical Computer
Science. Cambridge University Press.

30

Chomsky, Noam. 1975. Remarks on nominalization. In Donasifson and Gilbert H. Harman, editors,
The Logic of GrammarDickenson Publishing Co., Encino, California, pages 2&3-

Gazdar, Gerald and Geoffrey K. Pullum. 1985. Computatlgnalevant properties of natural languages
and their grammardNew Generation Computing:273—-306.

Gazdar, Gerald. E., Ewan Klein, Jeoffrey K. Pullum, and IRaivag. 1985.Generalized Phrase Structure
Grammar Harvard University Press, Cambridge, Mass.

Haas, Andrew. 1989. A parsing algorithm for unification gnaan. Computational Linguisticsl5(4):219—
232, December.

Hopcroft, John E. and Jeffrey D. Uliman. 197Mtroduction to automata theory, languages and compu-
tation. Addison-Wesley Series in Computer Science. Addison-gyeBlublishing Company, Reading,
Mass.

Jaeger, Efrat, Nissim Francez, and Shuly Wintner. 2002.r&ieeing parsing termination of unification
grammars. IrProceedgins of COLING’Q2ages 397-403, August.

Johnson, Mark. 1988Attribute-Value Logic and the Theory of Grammamlume 16 ofCSLI Lecture Notes
CSLI, Stanford, California.

Kaplan, Ronald and Joan Bresnan. 1982. Lexical functioreahgiar: A formal system for grammatical
representation. In J. Bresnan, edifbhhe Mental Representation of Grammatical Relatidvill Press,
Cambridge, Mass., pages 173-281.

Kuhn, Jonas. 1999. Towards a simple architecture for thetstre-function mapping. In Miriam Butt
and Tracy Holloway King, editorsThe Proceedings of the LFG '99 Conferen€&SLI Publications,
Stanford.

Pereira, Fernando C. N. and David H. D. Warren. 1983. Paesndeduction. IfProceedings of the 21st
Annual Meeting of the Association for Computational Lirsgies pages 137-144, June.

Shieber, Stuart M. 199Zonstraint-Based Grammar FormalismiglIT Press, Cambridge, Mass.

Torenvliet, Leen and Marten Trautwein. 1995. A note on thmlexity of restricted attribute-value gram-
mars. ILLC Research Report and Technical Notes Series @1298niversity of Amsterdam, Amster-
dam.

Wintner, Shuly and Nissim Francez. 1999. Off-line parsgbidnd the well-foundedness of subsumption.
Journal of Logic, Language and Informatio8(1):1-16, January.

31

