
Polynomially-parsable Unification Grammars

Hadas Peled

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE MASTER DEGREE

University of Haifa
Faculty of Social Sciences

Department of Computer Science

November, 2011

Polynomially-parsable Unification Grammars

By: Hadas Peled
Supervised By: Prof. Shuly Wintner

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE MASTER DEGREE

University of Haifa
Faculty of Social Sciences

Department of Computer Science

November, 2011

Approved by: Date:
(supervisor)

Approved by: Date:
(Chairman of M.Sc. Committee)

Acknowledgments
I would like to thank Prof. Shuly Wintner for his devoted guidance, and for sharing his wide knowl-

edge and enthusiasm for the world of Unification Grammars.

II

Contents

Abstract . V
List of Figures . VII

1 Introduction 1
1.1 Typed Unification Grammars . 1
1.2 Constrained Unification Grammars . 3
1.3 Range Concatenation Grammars . 4
1.4 Structure of the thesis . 12

2 Restricted Typed Unification Grammars 13
2.1 Representing Lists of Terminals with TFSs . 13
2.2 Restricted type signatures . 15
2.3 Restricted TFS . 17
2.4 Restricted lexicon . 17
2.5 Restricted rules . 18
2.6 Restricted Unification Grammars . 19
2.7 Examples of Restricted TUG . 19

3 Simulation of RTUG by RCG 25
3.1 Mapping of type signature to RCG clauses . 26
3.2 Mapping of UG rules to RCG clauses . 26
3.3 Mapping the lexicon to RCG clauses . 28
3.4 Examples . 30

4 Simulation of RCG by RTUG 33
4.1 Examples . 36

5 A sketch of the proof 49
5.1 Instantiated grammar . 49
5.2 Direction 1: LRCG ⊆ LRTUG . 50
5.3 Direction 2: LRTUG ⊆ LRCG . 51

6 Conclusions 55

Bibliography 57

A Representing bidirectional lists with TFSs 59
A.1 Restrictions over node TFSs and bi list TFSs . 60
A.2 Explicit bi lists . 62

III

A.3 Bi list operations . 64

B Proofs of the main results 69
B.1 Instantiated grammar . 69
B.2 Direction 1: LRCG ⊆ LRTUG . 73

B.2.1 L (G) ⊆ L (Gtug) . 73
B.2.2 L (Gtug) ⊆ L (G) . 82

B.3 Direction 2: LRTUG ⊆ LRCG . 84
B.3.1 Predicate subsumption . 85
B.3.2 L (G) ⊆ L (Grcg) . 86
B.3.3 L (Grcg) ⊆ L (G) . 92

IV

Polynomially-parsable Unification Grammars

Hadas Peled

Abstract
Unification grammars (UG) underlie several contemporary linguistic theories, including Lexical-

functional Grammar (LFG) and Head-driven Phrase-structure Grammar (HPSG). UG is an attractive

grammatical formalism, inter alia, because of its expressivity: it facilitates the expression of complex

linguistic structures and relations. Formally, UG is Turing-complete, generating the entire class of recur-

sively enumerable languages (Francez and Wintner, 2012, Chapter 6). This expressivity, however, comes

at a price: the universal recognition problem is undecidable for arbitrary unification grammars (Johnson,

1988).

Several constraints on UGs were suggested in order to reduce the expressiveness of the formalism and

thereby guarantee more efficient processing. A series of works (see Jaeger et al. (2005) and references

therein) define various off-line parsability constraints, which guarantee the decidability of the universal

recognition problem, but not its tractability. The recognition problem for off-line parsable grammars is

NP-hard (Barton et al., 1987). Other works define highly restricted versions of UG, such that efficiency

of parsing is ensured: Feinstein and Wintner (2008) define non-reentrant UGs, which generate exactly

the class of context-free languages; and one-reentrant UGs, which generate the class of tree-adjoining

languages (TALs). Keller and Weir (1995) define PLPATR, an extension of Linear Indexed Grammars

that manipulates feature structures rather than stacks, which has a polynomial-time parsing algorithm.

PLPATR languages are included in the set of languages generated by Linear Context-Free Rewriting

Systems. The expressivity and flexibility of these constrained formalisms, however, are severely limited,

and seriously handicap the grammar designer.

In this work we define a constrained version of UG that is equivalent to Range Concatenation Gram-

mar (RCG). RCG is a formalism that generates exactly the class of languages recognizable in deter-

ministic polynomial time (Boullier, 1998b); specifically, it strictly contains the class of TALs (Boullier,

1998a). Boullier (1999) shows that RCG can express natural language phenomena such as Chinese num-

bers and German word scrambling, that lie beyond the expressive power of TALs. RCG is closed under

union, concatenation, Kleene iteration, intersection and complementation (Boullier, 1998b). Since RCG

has a polynomial parsing algorithm (Boullier, 1998b; Kallmeyer et al., 2009), a restricted version of UG

that is equivalent to RCG (along with an efficient conversion procedure) guarantees the efficiency of

parsing.

The main contribution of this work is thus a constrained version of UG that is on one hand expressive

enough so as to allow the expression of complex linguistic structures in terms of typed feature structures

that linguists favor, and on the other hand guarantees efficient processing for all grammars that can be

expressed in the formalism.

V

VI

List of Figures

1.1 The clauses of GSCR . 11

2.1 An example TFS representing a bidirectional list of terminals 15

2.2 An RTUG, Gabc, generating the language anbncn . 20

2.3 A derivation tree for the string “aabbcc” . 21

2.4 An RTUG, Glongdist . 22

2.5 An RTUG, Glongdist (continued) . 23

2.6 A derivation tree of the string “Laban wondered whom Jacob loves” 24

4.1 The type signature of Gprime . 37

4.2 The root of the derivation tree . 39

4.3 Derivation subtree showing how the input word is collected 40

4.4 Subtree showing actual simulation of Gprime (part 1) 41

4.5 Subtree showing actual simulation of Gprime (part 2) 42

4.6 The type signature of GSCR . 43

4.7 The rules of GSCR (part 1) . 44

4.8 The rules of GSCR (part 2) . 45

4.9 Derivation tree of the string n2n3n1v1v2 (part 1) . 46

4.10 Derivation tree of the string n2n3n1v1v2 (part 2) . 47

4.11 Derivation tree of the string n2n3n1v1v2 (part 3) . 48

VII

Chapter 1

Introduction

Unification grammars (UG) underlie several contemporary linguistic theories, including Lexical-func-

tional Grammar (LFG) and Head-driven Phrase-structure Grammar (HPSG). UG is an attractive gram-

matical formalism because of its expressivity: it facilitates the expression of complex linguistic structures

and relations. Formally, UG is Turing-complete, generating the entire class of recursively enumerable

languages (Francez and Wintner, 2012, Chapter 6). This expressivity, however, comes at a price: the

universal recognition problem is undecidable for arbitrary unification grammars (Johnson, 1988).

In this work we define a constrained version of UG that guarantees efficient processing, while al-

lowing the expression of complex linguistic structures. We do so by showing that the constrained UG

is equivalent to Range Concatenation Grammar (RCG), a formalism that generates exactly the class of

languages recognizable in deterministic polynomial time (Boullier, 1998b).

In this introduction we set up notation for the two formalisms this work deals with, Typed Unification

Grammars (Section 1.1) and Range Concatenation Grammars (Section 1.3). In addition, in Section 1.2

we list other constraints on UG that were suggested in the past, in order to guarantee more efficient

processing, at a price of reduced expressiveness.

1.1 Typed Unification Grammars

We assume familiarity with typed unification grammars, as formulated, e.g., by Carpenter (1992). For a

partial function F , ‘F (x) ↓’ (and similarly, ‘F (x) ↑’) means that F is defined (undefined) for the value

x. The following definitions recapitulate basic notions.

Definition 1 (Type hierarchy). A partial order v over a finite, non-empty set TYPES of types is a type
hierarchy if it is bounded complete, i.e., if every up-bounded subset T of TYPES has a (unique) least

upper bound, tT . If t1 v t2 we say that t1 subsumes, or is more general than, t2; t2 is a subtype of

(more specific than) t1. We say that t1 is an immediate subtype of t2, denoted t2
◦
@ t1 if t2 v t1, t1 6= t2,

and for every t′ ∈ TYPES, if t′ v t1, then t′ v t2. If t is such that for no t′ 6= t, t v t′, then t is a

maximal type, or a species. Let uT be the greatest lower bound of the set T , if it exists. ⊥ = t∅ is the

most general type.

1

Definition 2 (Appropriateness). Given a set of types TYPES and a set of features FEATS, an appropri-
ateness specification is a partial function Approp : TYPES × FEATS → TYPES, such that:

• for every f ∈ FEATS, let Tf = {t ∈ TYPES | Approp(t, f) ↓}; then Tf 6= ∅ and Intro(f) =

uTf ∈ Tf .

• if Approp(t1, f) ↓ and t1 v t2 then Approp(t2, f) ↓ and Approp(t1, f) v Approp(t2, f).

A type t is featureless if for every f ∈ FEATS, Approp (t, f) ↑.

Definition 3 (Type signatures). A type signature is a quadruple 〈TYPES,v, FEATS, Approp〉, where

〈TYPES,v〉 is a type hierarchy and Approp : TYPES× FEATS → TYPES is an appropriateness specifi-

cation.

In this work we use the LKB notation for defining a type signature, where a subtype is listed below

its super type, with increasing indentation. The features and the appropriate types of each type are listed

in the same line as the type. For example, the following specification:

TYPES = {t1, t2, t3, t4}, FEATS = {f1, f2}
t1

t2 f1: t3 f2: t4
t3

t4

represents a typed signature where ⊥ v t1, t1 v t2, ⊥ v t3, t3 v t4, and Approp(t2, f1) =

t3, Approp(t2, f2) = t4.

Definition 4 (Typed feature graphs). A typed feature graph 〈Q, q̄, δ, θ〉 is a directed, connected, labeled

graph consisting of a finite, nonempty set of nodes Q, a root q̄ ∈ Q, a partial function δ : Q× FEATS →
Q specifying the arcs such that every node q ∈ Q is accessible from q̄ and a total function θ : Q →
TYPES marking the nodes with types.

Let δ̂ be the reflexive-transitive closure of δ. In the sequel we abuse notation and refer to δ̂ as δ. Let

PATHS = FEATS∗.

Definition 5 (Paths). The paths of a feature graph A are Π (A) = {π ∈ PATHS | δA (q̄A, π) ↓}.

Definition 6 (Path value). for a feature graph A = 〈QA, q̄A, δA, θA〉 and a path π ∈ Π (A) the value
valA (π) of π in A is a feature graph B = 〈QB, q̄B, δB, θB〉, over the same signature as A, where:

• q̄B = δA (q̄A, π)

• QB = {q′ ∈ QA | for some π′, δA (q̄B, π
′) = q′} (QB is the set of nodes reachable from q̄B)

• for every feature f and for every q′ ∈ QB , δB (q′, f) = δA (q′, f) (δB is the restriction of δA to

QB)

2

• for every q′ ∈ QB , θB (q′) = θA (q′) (θB is the restriction of θA to QB)

Definition 7 (Reentrancy). Let A = 〈Q, q̄, δ, θ〉 be a feature graph. Two paths π1, π2 ∈ Π (A) are

reentrant in A, iff δ (q̄, π1) = δ (q̄, π2) implaying val (π1) = val (π2).

Definition 8 (Subsumption). Let A1 = 〈Q1, q̄1, δ1, θ1〉 and A2 = 〈Q2, q̄2, δ2, θ2〉 be two typed feature

graphs over the same signature. A1 subsumes A2 (denoted by A1 v A2) iff there exists a total function

h : Q1 → Q2, called a subsumption morphism, such that h(q̄1) = q̄2; for every q ∈ Q1 and for every f

such that δ1(q, f) ↓, h(δ1(q, f)) = δ2(h(q), f); and for every q ∈ Q1, θ1(q) v θ2(h(q)).

A typed feature structure (TFS) is an equivalence class of isomorphic feature graphs (ignoring

the identities of the nodes). A multi-rooted structure (MRS) is a sequence of TFSs, with possible

reentrancies (shared nodes) across the members of the sequence. Following the linguistic convention,

we depict TFSs and MRSs as attribute-value matrices (AVMs) in the sequel. Example 6 (page 14) depicts

a TFS represented as an AVM.

Definition 9 (Maximally specific TFS). A TFS F1 is maximally specific if no TFS F2 exists such that

F1 v F2.

Definition 10 (Rules). A rule is an MRS of n > 0 TFSs, with a distinguished first element. The first

elemnt is its head and the rest of the elements are the rule’s body. We adopt a convention of depicting

rules with an arrow (→) separating the head from the body.

Since a rule is simply an MRS, there can be reentrancies among its elements: both between the head

and (some element of) the body and among elements in its body.

Definition 11 (Typed unification grammar). A typed unification grammar over a finite set WORDS of

words and a type signature 〈TYPES,v, FEATS, Approp〉 is a tuple G = 〈R, As,L〉, where R is a finite

set of rules, each of which is an MRS, As is the start symbol (a TFS), and L is the lexicon which

associates with each word w ∈ WORDS a set of TFSs L(w).

The language generated by a UG is defined in terms of a derivation relation over MRSs. See

Carpenter (1992); Francez and Wintner (2012) for the details. Figure 2.2 (page 20) depicts a unification

grammar and specifies the language it generates.

1.2 Constrained Unification Grammars

UG, as defined above, is Turing-equivalent (Francez and Wintner, 2012, Chapter 6). In other words, it

generates the entire class of recursively enumerable languages. Consequently, the universal recognition

problem for UG is undecidable (Johnson, 1988). Several constraints on UGs were suggested in order to

reduce the expressiveness of the formalism and thereby guarantee more efficient processing.

Off-line parsability (OLP) constraints These constraints guarantee that the recognition problem for

grammars that obey them is decidable (Jaeger et al., 2005). The idea behind all the OLP definitions

3

is to rule out grammars which license trees in which an unbounded amount of material is generated

without expanding the frontier word. This can happen due to two kinds of rules: ε-rules (whose

bodies are empty) and unit rules (whose bodies consist of a single element). However, even for

unification grammars with no such rules the recognition problem is NP-hard (Barton et al., 1987).

Other works define highly restricted versions of UG, which guarantee th efficiency of parsing:

Non-reentrant unification grammars A unification grammar is non-reentrant if it includes no reen-

trancies. Non-reentrant unification grammars generate exactly the class of context free grammars

(Feinstein and Wintner, 2008).

One-reentrant unification grammars A unification grammar is one-reentrant if every rule includes at

most one reentrancy, between the head of the rule and some element of the body. One-reentrant

unification grammars generate exactly the class of Tree-Adjoining languages (Feinstein and Wint-

ner, 2008).

Partially Linear PATR (PLPATR) A unification grammar is PLPATR if it obeys the following con-

straints:

• the start symbol contains no reentrancies;

• every rule includes at most one reentrancy, between the head of the rule and some element of

the body;

• reentrancies are allowed between elements in the rule’s body, as long as they are not also in

the rule’s head.

PLPATR is more powerful then Tree-Adjoining grammar (TAG) since it can generate the k-copy

language for any fixed k:
{
wk | w ∈ L

}
for any k ≥ 1 and context-free language L. PLPATR

languages are included in the set of languages generated by Linear Context-Free Rewriting System

(LCFRS) (Keller and Weir, 1995).

These versions ensure efficiency, by limiting the expressivity and flexibility of the formalism, thereby

handicapping the grammar designer. Our goal in this work is to define a constrained version of UG

that on one hand is expressive enough so as to allow the expression of complex linguistic structures,

and on the other hand guarantees efficient (polynomial time) processing. This is achieved by mapping

constrained UGs to RCGs, a formalism that guarantees polynomial-time processing (in the size of the

input string), but is maximally expressive. (Note that recognition time with RCGs can still be exponential

in the size of the grammar; we are only concerned with complexity as a function of the length of the input

string below.)

1.3 Range Concatenation Grammars

Range Concatenation Grammars (RCG) is a syntactic formalism that was introduced by Boullier (1998b).

The basis of RCG is the notion of ranges, pairs of integers which denote occurrences of substrings in

4

a source text. RCG generates exactly the class of languages recognizable in polynomial time (Boullier,

1998b), and it is closed under union, concatenation, Kleene iteration, intersection and complementation

(Boullier, 1998b).

Boullier (2000) introduces both Positive and Negative RCG, where the formalism is the union of the

two. Since the negative variant has no additional generative power over the positive one, however, we

only use Positive RCG, referring to it as RCG, for simplicity. The following definitions are taken from

Boullier (2000).

Definition 12 (Range Concatenation Grammar (RCG)). A range concatenation grammar (RCG) G =

〈N,T, V, P, S〉 is a 5-tuple, where:

• N is a finite set of nonterminal symbols (also called predicate names); each non-terminalA ∈ N
is associated with an arity, ar (A).

• T is a finite set of terminal symbols,

• V is a finite set of variable symbols, such that T ∩ V = ∅.

• S ∈ N is the start predicate, or the axiom; ar (S) = 1.

• P is a finite set of clauses of the form

ψ0 → ψ1...ψj ...ψm

where m ≥ 0 and each ψi, 0 ≤ i ≤ m, is a predicate of the form

A(α1, ..., αi, ..., αar(A)).

where A ∈ N , and each αi ∈ {T ∪ V }∗ , 1 ≤ i ≤ ar (A), is an argument.

Example 1. Following is an RCG grammar G. While we only define the notion presently, the language

of this grammar is {anbncn}. G = 〈N,T, V, P, S〉 where N = {S,A}, T = {a, b, c}, V = {X,Y, Z},
S is the start symbol, ar (S) = 1, ar (A) = 3, and P is given by:

(1) S(XY Z)→ A(X,Y, Z)

(2) A(aX, bY, cZ)→ A(X,Y, Z)

(3) A(ε, ε, ε)→ ε

The language defined by an RCG is based on the notion of range.

Definition 13 (Range). For a given input string w = a1 . . . an, a range is a pair (i, j) , 0 < i < j ≤ n,

of integers, which denotes the occurrence of some substring ai+1 . . . , aj in w. The number i is its lower
bound, j is its upper bound and j − i is its length. If i = j, the range is empty. For w ∈ T ∗ such that

|w| = n, its set of ranges is Rw = {ρ | ρ = (i, j), 0 ≤ i ≤ j ≤ n}. Rkw is the set of vectors of ranges in
Rw with k elements: Rkw = {〈ρ1, . . . ρh〉 | ρi ∈ Rw, 0 ≤ i ≤ k}.

5

Let w = a1 . . . an be an input string. Let w1 = a1 . . . ai, w2 = ai+1 . . . aj and w3 = aj+1 . . . an

be three substrings of w. w1 is denoted by w〈0..i〉, w2 is denoted by w〈i..j〉 and w3 is denoted by w〈j..n〉.

Therefore, w〈j..j〉 = ε, w〈j−1..j〉 = aj and w〈0..n〉 = w. If ~ρ = ρ1, . . . , ρi, . . . , ρp is a vector of ranges,

by definition w~ρ denotes the tuple of strings wρ1 , . . . , wρi , . . . , wρp .

Definition 14 (Concatenation of ranges). Range concatenation is defined byw〈i1..j1〉·w〈i2..j2〉 = w〈i1..j2〉

if and only if j1 = i2.

In any RCG, terminals, variables and arguments in a clause are bound to ranges by a substitution

mechanism. For the follows discussion, fix an RCG G = 〈N,T, V, P, S〉

Definition 15 (Instantiation). A pair (X, ρ), denoted by X/ρ, where X ∈ V and ρ is a range, is called

a variable binding. ρ is the range instantiation of X and wρ is its string instantiation. A set σ =

{X1/ρ1, ..., Xp/ρp} of variable bindings is a variable substitution if and only ifXi/ρi 6= Xj/ρj implies

Xi 6= Xj . A pair (a, ρ) is a terminal binding, denoted by a/ρ if and only if ρ = 〈j − 1..j〉 and a = aj .

Example 2. A(w〈g..h〉, w〈i..j〉, w〈k..l〉) → B(w〈g+1..h〉, w〈i+1..j−1〉, w〈k..l−1〉) is an instantiation of the

clause A(aX, bY c, Zd) → B(X,Y, Z) if the input word w = a1...an is such that ag+1 = a, ai+1 =

b, aj = c and al = d. In this case, the variables X,Y and Z are bound to w〈g+l..h〉, w〈i+1..j−1〉 and

w〈k..l−1〉, respectively.

For brevity, in the following discussion we often use the term instantiation to indicate string in-
stantiation, rather then range instantiation. In any case, every variable substitution (by range or by

substring) is subject to the constraints of Definition 15 above.

Definition 16 (Argument instantiation). Let p = ψ0 → ψ1 . . . ψm,m ≥ 0 be a clause in P . Let

α ∈ {T ∪ V }∗ be an argument of some predicaate ψi, 0 ≤ i ≤ m. Given a string w, and a substring of

w, wρ, wρ is an instantiation of α if and only if:

• α = wρ = ε, hence ρ = 〈i, i〉, or,

• α = X ∈ V , or,

• α = wρ = a ∈ T , hence a/ρ is a terminal binding, or,

• α = β · γ, such that β, γ ∈ {T ∪ V }∗, and ρ = µ · σ, such that wµ is an instantiation of β, and

wσ is an instantiation of γ.

We now define the sets of instantiated predicates and instantiated clauses for a given RCG G, and

a given word w. The set of instantiated clauses is the set of all the clauses that can be generated by

instantiating the clauses in P by substrings of w.

Definition 17 (The set of instantiated predicates). For an RCGG = (N,T, V, P, S) and a string w ∈ T ∗

we define the set of instantiated predicates as

IPG,w = {A (~ρ) | A ∈ N, ~ρ ∈ Rhw, h = ar (A)}.

6

Definition 18 (The set of instantiated clauses). For an RCG G = (N,T, V, P, S) and a string w ∈ T ∗,
p′ = A0

(
~β0

)
→ A1

(
~β1

)
. . . Am

(
~βm

)
is an instantiated clause of G if and only if:

• For every i, 0 ≤ i ≤ m, Ai
(
~βi

)
∈ IPG,w, and,

• there is a clause p = A0 (~α0)→ A1 (~α1) . . . Am (~αm) ∈ P , such that:

– for every i, 0 ≤ i ≤ m, ~βi is the set of instantiated arguments of ~αi, and,

– if {X1, . . . , Xl} is the set of variables in p, and {ρ1, . . . , ρl} is the variable binding of

{X1, . . . , Xl} in p′, then {X1/ρ1, . . . , Xl/ρl} is a variable substitution.

The set of instantiated clauses of G and w is denoted ICG,w .

As is customary in rewriting systems, we now define the language of an RCG grammar by first

defining an immediate derivation relation, and then taking the set of strings derived by its reflexive-

transitive closure as the language. However, RCG differs from standard rewriting systems by the fact

that derivations begin with the full input words and end with the empty word ε.

Definition 19 (Derivation relation). For an RCG G = (N,T, V, P, S) and a string w ∈ T ∗, a derivation
relation, denoted by⇒G,w, is defined on strings of instantiated predicates. If Γ1 and Γ2 are strings of

instantiated predicates in (IPG,w)∗:

Γ1A0 (~ρ0) Γ2 ⇒G,w Γ1A1 (~ρ1) . . . Am (~ρm) Γ2 ∈ ICG,w

if and only if

A0 (~ρ0)→ A1 (~ρ1) . . . Am (~ρm) ∈ ICG,w.

The reflexive-transitive closure of⇒G,w is denoted by ∗⇒G,w.

Definition 20 (The language of an RCG). The language of an RCG G = (N,T, V, P, S) is the set

L(G) =
{
w | S(w)

∗⇒G,w ε
}

An input string w = a1...an is a sentence if and only if the empty string (of instantiated predicates) can

be derived from S(w〈0..n〉), the instantiation of the start predicate on w.

More generally, the string language of a nonterminal A is defined as

L(A) =
⋃
w∈T ∗

L(A,w)

where

L(A,w) =
{
w~ρ | ~ρ ∈ Rhw, h = ar (A) , A (~ρ)

+⇒G,w ε
}

Observe that L (G) = L (S), as expected.

7

Example 3. The following grammar defines the language {www | w ∈ {a, b}∗}:

(1) S(XY Z)→ A(X,Y, Z)

(2) A(aX, aY, aZ)→ A(X,Y, Z)

(3) A(bX, bY, bZ)→ A(X,Y, Z)

(4) A(ε, ε, ε)→ ε

Below we demonstrate that the input string w = ababab is a sentence:

S(ababab)⇒G,w A(ab, ab, ab)

using clause (1) and variable substitution {X/ab, Y/ab, Z/ab}

A(ab, ab, ab)⇒G,w A(b, b, b)

using clause (2) and variable substitution {X/b, Y/b, Z/b}

A(b, b, b)⇒G,w A(ε, ε, ε)

using clause (3) and variable substitution {X/〈2..2〉, Y/〈4..4〉, Z/〈6..6〉}

A(ε, ε, ε)⇒G,w ε

using clause (4)

Definition 21 (RCLs). IfG is an RCG, then L (G) is a range concatenation language (RCL). Let LRCG
be the class of RCLs.

We demonstrate the formalism by presenting two RCG grammars: The grammar Gprime whose

language is aprime = {ap | p is a prime}; and a grammar, GSCR, accounting for the phenomenon of

word scrambling which occurs in several natural languages such as German.

Example 4 (Gprime). The idea behind the grammar is as follows: Given a string an, if n = 2 or n = 3,

accept. Otherwise, try to divide n by any number in the range between 2 and (n− 1) /2. If n is not

divisible by any of these numbers, accept.

Division of n by k is done by RCG, using strings, as follows:

1. Let x = ak

2. Let y = an

3. Repeat while x and y are not empty:

(a) Remove one a from x

(b) Remove one a from y

4. If x is empty and y is not:

8

(a) x = ak

(b) Go to line 3

5. If y is empty and x is not, x is not a factor of y. Stop.

6. If both x and y are empty, x is a factor of y. Stop.

The clauses of Gprime are:

1. S (aa)→ ε accept aa

2. S (aaa)→ ε accept aaa

3. S (XaY)→ A (X,XaY,X,XaY) eq (X,Y) given an, try to divide n by k = (n− 1) /2

4. A (aX, aY, Z,W)→ A (X,Y, Z,W) start the loop in the algorithm above, line 3

5. A (ε, Y, Z,W)→ A (Z, Y, Z,W) X is empty, restart the loop, line 4

6. A (X, ε, aZ,W)→ A (Z,W,Z,W) Y is empty, X is not,

NonEmpty (X)MinLen2 (Z) k is greater than 2, try k = k − 1

7. A (X, ε, Z,W)→ NonEmpty (X)Len2 (Z) Y is empty, X is not, k = 2, n is a prime.

8. eq (aX, aY)→ eq (X,Y)

9. eq (ε, ε)→ ε

10. NonEmpty (aX)→ ε

11. Len2 (aa)→ ε

12. MinLen2 (aX)→ NonEmpty (X)

To demonstrate the operation of the grammar, we describe below a derivation of the string aaaaa

9

with Gprime

(clause3) S (aaaaa) → A (aa, aaaaa, aa, aaaaa) eq (aa, aa)

(clause8) eq (aa, aa) → eq (a, a)

(clause8) eq (a, a) → eq (ε, ε)

(clause8) eq (ε, ε) → ε

(clause4) A (aa, aaaaa, aa, aaaaa) → A (a, aaaa, aa, aaaaa)

(clause4) A (a, aaaa, aa, aaaaa) → A (ε, aaa, aa, aaaaa)

(clause5) A (ε, aaa, aa, aaaaa) → A (aa, aaa, aa, aaaaa)

(clause4) A (aa, aaa, aa, aaaaa) → A (a, aa, aa, aaaaa)

(clause4) A (a, aa, aa, aaaaa) → A (ε, a, aa, aaaaa)

(clause5) A (ε, a, aa, aaaaa) → A (aa, a, aa, aaaaa)

(clause4) A (aa, a, aa, aaaaa) → A (a, ε, aa, aaaaa)

(clause7) A (a, ε, aa, aaaaa) → NonEmpty (a)Len2 (aa)

(clause10) NonEmpty (a) → ε

(clause11) Len2 (aa) → ε

Example 5 (Word scrambling). Scrambling is a word-order phenomenon which occurs in several lan-

guages such as German, Japanese and Hindi, and is known to be beyond the formal power of TAGs

(Becker et al., 1991). Scrambling can be seen as a leftward movement of verb arguments (nominal, prepo-

sitional or clausal), and can be abstracted by the formal language SCR = {π (n1, . . . , np) v1, . . . , vq},
such that π is a permutation, n1, . . . , np are terminals of the set of nounsN , and v1, . . . , vq are terminals

of the set of verbs V . In addition, there is a mapping function h : N → V , such that, for every 1 ≤ i ≤ q,

there is a j, 1 ≤ j ≤ p, such that, h (nj) = vi, which indicates that the noun nj is an argument of the

verb vi. Several nominal arguments can be attached to a single verb (hence, p ≥ q). The grammar below

is a simplified version of the scrambling RCG that is presented in Boullier (1999)1.

GSCR includes the terminals T = {n1, . . . , nl, v1, . . . , vm}, and the following non-terminals:

• N defines the set of nouns,

• V defines the set of verbs,

• h defines the mapping between N and V ,

• N+V+ separates the input string into two parts: a prefix of nouns and a suffix of verbs,

• Ns verifies that every noun n in the nouns part has a corresponding verb v in the verbs part, such

that h (n) = v,

• N inV+ verifies that a single noun n has a corresponding verb v in the verbs part, such that

h (n) = v,

1The original grammar is a negative RCG that also checks the uniqueness of the nouns and verbs in the sentence.

10

• Vs verifies that every verb v in the verbs part has a corresponding noun n in the verbs part, such

that h (n) = v,

• VinN+ verifies that a single verb v has a corresponding noun n in the nouns part, such that

h (n) = v,

The clauses of GSCR are listed in Figure 1.1.

(1) S (W) → N+V+ (W,W)
(2) N+V+ (W,TY) → N (T)N+V+ (W,Y)
(3) N+V+ (XTY, TY) → V (T)Ns (X,TY)Vs (X,TY)

(4) Ns (TX, Y) → N inV+ (T, Y)Ns (X,Y)
(5) Ns (ε, Y) → ε
(6) N inV+ (T, T ′Y) → h (T, T ′)
(7) N inV+ (T, T ′Y) → N inV+ (T, Y)

(8) Vs (X,TY) → VinN+ (T,X)Vs (X,Y)
(9) Vs (X, ε) → ε
(10) VinN+ (T, T ′Y) → h (T ′, T)
(11) VinN+ (T, T ′Y) → VinN+ (T, Y)

(12) N (n1) → ε
. . .
N (nl) → ε

(13) V (v1) → ε
. . .
V (vm) → ε

(14) h (n1, v1) → ε
. . .
h (nl, vm) → ε

Figure 1.1: The clauses of GSCR

To demonstrate the operation of the grammar, let the set of nouns be N = 〈n1, n2, n3〉, the set of

verbs be V = 〈v1, v2〉, and the mapping between N and V be:

(h1) h (n1, v1) → ε

(h2) h (n2, v1) → ε

(h3) h (n3, v2) → ε

We describe below a derivation of the string n2n3n1v1v2 with GSCR. First, seprate the string to two

11

substrings, one of nouns and one of verbs:

(clause1) S (n2n3n1v1v2) → N+V+ (n2n3n1v1v2, n2n3n1v1v2)

(clause2) N+V+ (n2n3n1v1v2, n2n3n1v1v2) → N (n2)N+V+ (n2n3n1v1v2, n3n1v1v2)

(clause2) N+V+ (n2n3n1v1v2, n3n1v1v2) → N (n3)N+V+ (n2n3n1v1v2, n1v1v2)

(clause2) N+V+ (n2n3n1v1v2, n1v1v2) → N (n1)N+V+ (n2n3n1v1v2, v1v2)

(clause3) N+V+ (n2n3n1v1v2, v1v2) → V (v1)Ns (n2n3n1, v1v2)Vs (n2n3n1, v1v2)

Now, check that every noun n, has a verb v, such that h (n, v):

(clause4) Ns (n2n3n1, v1v2) → N inV+ (n2, v1v2)Ns (n3n1, v1v2)

(clause6) N inV+ (n2, v1v2) → h (n2, v1)

(h2) h (n2, v1) → ε

(clause4) Ns (n3n1, v1v2) → N inV+ (n3, v1v2)Ns (n1, v1v2)

(clause7) N inV+ (n3, v1v2) → N inV+ (n3, v2)

(clause6) N inV+ (n3, v2) → h (n3, v2)

(h3) h (n3, v2) → ε

(clause4) Ns (n1, v1v2) → N inV+ (n1, v1v2)Ns (ε, v1v2)

(clause6) N inV+ (n1, v2v2) → h (n1, v1)

(h1) h (n1, v1) → ε

(clause5) Ns (ε, v1v2) → ε

Finally, check that every verb v, has a noun n, such that h (n, v):

(clause8) Vs (n2n3n1, v1v2) → VinN+ (v1, n2n3n1)Vs (n3n1, v2)

(clause10) VinN+ (v1, n2n3n1) → h (n2, v1)

(h2) h (n2, v1) → ε

(clause8) Vs (n2n3n1, v2) → VinN+ (v2, n2n3n1)Vs (n3n1, ε)

(clause11) VinN+ (v2, n2n3n1) → VinN+ (v2, n3n1)

(clause10) VinN+ (v2, n3n1) → h (n3, v2)

(h3) h (n3, v2) → ε

(clause9) Vs (n2n3n1, ε) → ε

1.4 Structure of the thesis

In Chapter 2 we define a restricted version of UG, such that constrained grammars can be simulated by

an equivalent RCG. This mapping is given in Chapter 3; in Chapter 4 we show a reverse mapping of

an arbitrary RCG to an equivalent restricted UG, thereby establishing the equivalence between the two

classes of languages generated by the two formalisms. Chapter 5 presents a sketch of a proof of the

correctness of the two mappings. We conclude with suggestions for future research.

12

Chapter 2

Restricted Typed Unification Grammars

We are looking for a restricted version of TUG that would facilitate conversion of restricted grammars

to RCG. RCG clauses consist of predicates whose arguments are parts of the input string, and nothing

more. An RCG derivation starts with the input word, and in each derivation step, substrings of the

strings associated with the mother of the clause are passed to the daughters, until reaching, in the end of

the derivation, the empty word.

Our motivation in the design of the restricted TUG is to have the unification rules simulate RCG,

where feature values simulate RCG arguments. We thus define restrictions over unification grammars,

such that feature values can only contain representations of parts of the input string, and nothing more.

In addition, we want UG derivations to simulate RCG derivations, such that in every UG rule, the feature

values of the daughters can only contain parts of the feature values of the mother.

2.1 Representing Lists of Terminals with TFSs

RCG arguments are strings of terminals and variables, where in each derivation step, these strings can

be split or concatenated. In order to manipulate strings and substrings thereof with UG, we define an in-

frastructure for handling bi-directional lists of terminal symbols with TFSs. While the formal definitions

are suppressed for brevity (see Appendix A), we list below some of the main concepts we need, in an

informal way. First, we manipulate lists of terminal symbols. Each such list consists of nodes. A bi list

node is a TFS with three features:

• CURR which includes the actual value of the node of type terminal;

• PREV which points to the previous node in the list;

• NEXT which points to the next node in the list.

Then, the list itself is represented as a TFS with two features:

• HEAD which points to the first node of the list;

• TAIL which points to the last node of the list.

13

For every type t ∈ TYPES we define the following bi list infrastructure types:

• node, the super-type of bi list nodes,

• null, such that node
◦
@ null, the type of empty nodes.

• ne node, such that node
◦
@ ne node, the type of non-empty nodes.

• bi list, the super-type of bi lists,

• elist, such that bi list
◦
@ elist, the type of empty bi lists.

• ne bi list, such that bi list
◦
@ ne bi list, the type of non-empty bi lists.

Definition 22 (bi list signature). Let

bi list TYPES =
{

terminal, node, null, ne node, bi list, elist, ne bi list
}

bi list FEATS = {CURR, PREV, NEXT, HEAD, TAIL}

bi list signature = 〈bi list TYPES, bi list FEATS,v〉 is defined as follows:

terminal

node

null

ne node CURR: terminal PREV: node NEXT: node

bi list

elist

ne bi list HEAD: node TAIL: node

Example 6 (bi list). As an example of a TFS representing a bidirectional list of terminals, consider A

(Figure 2.1). The terminals are a and b (in other words, terminal v a and terminal v b). A represents

the list 〈a, b, b〉. Note that:

• the length of A is 3;

• the 1-node of A is 1 , the 2-node is 2 and the 3-node is 3 ;

A TFS A =
[
bi list

]
(that is, neither an elist nor a ne bi list), is called an implicit bi list.

We use the notation of 〈a1, . . . , am〉 for a bi list TFS whose length is m, where for every i, 1 ≤ i ≤
m, ai is a TFS of type terminal, the CURR value of the i-th node of the bi list TFS. For example, the list

notation of the bi list of Example 6 is 〈a, b, b〉.
Let A1 and A2 be two bi lists. The concatenation operation of A1 and A2, denoted by A1 · A2,

produces a new bi list which contains the nodes of A1, concatenated with the nodes of A2.

14

A =

ne bi list

HEAD : 1

ne node

CURR : a

PREV : null

NEXT : 2

ne node

CURR : b

PREV : 1

NEXT : 3

ne node

CURR : b

PREV : 2

NEXT : null

TAIL : 3

Figure 2.1: An example TFS representing a bidirectional list of terminals

Example 7. (bi list concatenation) Let terminal, a, b be three types in TYPES, such that terminal v a,

and terminal v b. Let A1 = 〈a, a, a〉 and A2 = 〈b, a〉 be two bi list TFSs of type terminal. Then

A1 ·A2 = 〈a, a, a, b, b〉.

Let A be a bi list. The sublists of A are all the bi lists whose nodes are ordered subsets of the nodes

of A.

Example 8. (sublists) Let A = 〈a, a, b〉. Then its sublists are: elist, 〈a〉, 〈b〉, 〈a, a〉, 〈a, b〉 and 〈a, a, b〉.

2.2 Restricted type signatures

We begin by defining restrictions over the type signature. We constrain the set TYPES to consist of the

following types only:

• all the types in bi list TYPES, as defined in Definition 22.

• A type for every word α ∈ WORDS, such that L (α) 6= ∅.

• A type main which will be used as the super-type of every TFS ocurring at the top level of any

grammar rule.

• Subtypes of main. Such types can include only features of type bi list. These types are called

main types.

• Any main type must include one feature of type bi list which is used to encode a substring of the

input word. This feature is called the input feature.

15

• A main type start which is the type of the start FS As. Since in RCG the start predicate always

has one argument only, containing the input word, the type start only has one feature, the input

feature.

In addition, we require that for every two main types t and t′, such that t v t′, t′ have no additional

features over the ones it inherits from t. The motivation for this restriction is explained in Section 31.

Definition 23 (Restricted signature). A type signature 〈TYPES, FEATS,v〉 is restricted if TYPES includes

exactly the following types:

• all the types in bi list TYPES, as defined in Definition 22.

• A type terminal such that ⊥
◦
@ terminal and terminal is featureless.

• Every word α ∈ WORDS is also a type in TYPES, such that terminal
◦
@ α, and α is featureless. α

is an explicit type of terminal

• A type main, such that ⊥
◦
@ main and main is featureless.

• A type start such that:

– main v start and

– Approp (start, INPUTstart) = bi list, and

– Approp (start, f) ↑ for every f 6= INPUTstart.

• Any type t, such that:

– main v t;

– if main
◦
@ t:

∗ Approp (t, INPUTt) = bi list;

∗ for every F 6= INPUTt, if Approp (t, F) ↓, then Approp (t, F) = bi list.

– if t’
◦
@ t and t’ 6= main, {F | Approp (t, F) ↓} = {F | Approp (t’, F) ↓}

• No other types are allowed in TYPES.

Example 9. (Restricted typed signature). Let

TYPES =

{
main, cat, start, np, v,

terminal, lamb,Rachel, Jacob, . . .

}⋃
bi list TYPES

FEATS = {INPUTcat, INPUTv, SUBCAT}
⋃
bi list FEATS

Then the following typed signature is restricted:

16

main

cat INPUTcat: bi list

start

np

v

v np

v np s

terminal

lamb

Rachel

Jacob

...

assuming it also includes bi list signature as defined in Definition 22.

2.3 Restricted TFS

For the following discussion, fix a restricted type signature 〈TYPES,v, FEATS, Approp〉.

Definition 24 (main TFS). A TFS A of type t is a main TFS if main v t.

Definition 25 (Restricted TFS). A main TFS A is restricted if all its feature values are of type bi list.

Example 10 (Restricted TFS). Given the following signature fragment:

main

counter INPUTcounter: bi list COUNT: bi list

terminal

a

b

The following TFS is restricted:
counter

INPUTcounter : 〈a, b, a〉

COUNT : 〈a, a, a〉

2.4 Restricted lexicon

Definition 26 (Restricted lexicon). A lexicon L is restricted if for every α ∈ WORDS, for every A ∈
L (α), A is a restricted TFS, whose input feature contains exactly α.

17

Example 11. (Restricted L (b)).

b→

bt

INPUTbt : 〈b〉

COUNT : 〈a〉

Example 12. (Restricted L (tell)).

tell→

v np s

INPUTv : 〈tell〉

2.5 Restricted rules

In this section we define restrictions over the rules of a restricted TUG. For every rule in R we require

that both the mother and the daughters be restricted TFS. In addition, we add restrictions over the feature

values of these TFS:

• First, we require that the value of the input feature of the mother be the concatenation of the

input feature values of the daughters, in the order they occur in the rule. The motivation for this

constraint is the nature of derivation in RCG: the string associated with the mother of an RCG

clause is also obtained by concatenating the strings associated with the daughters. Our input

features simulate such strings, hence the constraint.

• In addition, we require that every feature value of the daughters contain nothing but a sublist of

some feature value of the mother.

Definition 27 (Restricted rule). A set of unification rules R is restricted if for every r ∈ R, r is of the

form:

t0

INPUTt0 : A1 · . . . ·Ak

F01 : B1

...

F0n : Bn0

→

t1

INPUTt1 : A1

F11 : C1
1

...

F1n : C1
n1

. . .

tk

INPUTtk : Ak

Fk1 : Cik1

...

Fkn : Cknk

such that:

• Each TFS in r is restricted.

• The value of the feature INPUTt0 of the mother is the concatenation of the values of the INPUTti

features, for every i, 1 ≤ i ≤ k.

• For every i, 1 ≤ i ≤ k, for every j, 1 ≤ j ≤ ni, Cij is either:

– a sublist of Bl for some 1 ≤ l ≤ n;

18

– a sublist of A1 · . . . ·Ak.

Example 13. In the following restricted rule, the feature values of the mother are obtained by concate-

nating the feature values of the daughters:
bt

INPUTbt : b · 1

COUNT : a · 2

→

bt

INPUTbt : 〈b〉

COUNT : 〈a〉

bt

INPUTbt : 1 bi list

COUNT : 2 bi list

2.6 Restricted Unification Grammars

Definition 28 (Restricted typed UG). A typed unification grammarG = 〈R, As,L〉 over a type signature

〈TYPES,v, FEATS, Approp〉 is restricted typed UG (RTUG) if:

• The type signature 〈TYPES,v, FEATS, Approp〉 is restricted (Definition 23).

• The set of rulesR is restricted (Definition 27).

• The start symbol As is a restricted TFS of type start.

• L is restricted (Definition 26).

Definition 29 (RTULs). IfG is an RTUG, thenL (G) is a restricted typed unification language (RTUL).
Let LRTUG be the class of RTULs.

2.7 Examples of Restricted TUG

We demonstrate here two RTUG grammars, one for a formal language and one for a small fragment

of a natural language. The grammar anbncn] generates a formal language that is trans-context-free;

Glongdist is a grammar of basic sentence structure in several natural languages, demonstrating a naı̈ve

account of verb sub-categorization and long distance dependency phenomena.

Example 14. (anbncn) Figure 2.2 depicts an RTUG, Gabc, generating the language anbncn. The gram-

mar is inspired by the (untyped) unification grammar Gabc, presented in Francez and Wintner (2012,

chapter 6). It has three simple main types: at, bt and ct, derived from the supertype counter. Each of

them counts the length of a string of a, b and c symbols, respectively. Counting is done in unary base, by

the feature COUNT, where a string of length n is derived by a bi list of n a-s. We use a for counting and

not t, as in the example of Francez and Wintner (2012), because the value of COUNT must be a sublist

of the input word. The start rule has three daughters, for counting the a-s, b-s and c-s. Note that the

value of COUNT of each of the daughters must be reentrant with the value of the input feature of the first

daughter. In other words, the number of b-s and c-s must be equal to the number of a-s in the input word.

Figure 2.3 demonstrates a derivation tree for the string “aabbcc” with this grammar.

19

Signature Like any restricted signature, it includes the bi list signature, as defined in Definition 22,
and in addition:
main

simple
counter INPUTcount:bi list COUNT:bi list

at
bt
ct

start INPUTstart:bi list

terminal
a
b
c

Lexicon

a→

at

INPUTcount : 〈a〉

COUNT : 〈a〉

 , b→

bt

INPUTcount : 〈b〉

COUNT : 〈a〉

 , c→

ct

INPUTcount : 〈c〉

COUNT : 〈a〉

Rules [

start

INPUTstart : 1 · 2 · 3

]
→

at

INPUTcount : 1 bi list

COUNT : 1

bt

INPUTcount : 2 bi list

COUNT : 1

ct

INPUTcount : 3 bi list

COUNT : 1

at

INPUTcount : a · 1

COUNT : a · 2

 →

at

INPUTcount : 〈a〉

COUNT : 〈a〉

at

INPUTcount : 1 bi list

COUNT : 2 bi list

bt

INPUTcount : b · 1

COUNT : a · 2

 →

bt

INPUTcount : 〈b〉

COUNT : 〈a〉

bt

INPUTcount : 1 bi list

COUNT : 2 bi list

ct

INPUTcount : c · 1

COUNT : a · 2

 →

ct

INPUTcount : 〈c〉

COUNT : 〈a〉

ct

INPUTcount : 1 bi list

COUNT : 2 bi list

Figure 2.2: An RTUG, Gabc, generating the language anbncn

Example 15 (Long distance dependencies). Figures 2.4, 2.5 depict an RTUG, Glongdist. The grammar

is inspired by the (untyped) unification grammar G3, presented in Francez and Wintner (2012, chap-

ter 5), with additional rules presented in Francez and Wintner (2012, section 5.6). Glongdist reflects

basic sentence structure in a natural language such as English, and demonstrates an account of verb

sub-categorization and long distance dependency phenomena, producing sentences like “Jacob loved

Rachel” and “Laban wondered whom Jacob loved”. It has the following main types:

20

[
start

INPUTs : 〈a, a, b, b, c, c〉

]

at

INPUTc : 〈a, a〉

COUNT : 〈a, a〉

at

INPUTc : 〈a〉

COUNT : 〈a〉

a

at

INPUTc : 〈a〉

COUNT : 〈a〉

a

bt

INPUTc : 〈b, b〉

COUNT : 〈a, a〉

bt

INPUTc : 〈b〉

COUNT : 〈a〉

b

bt

INPUTc : 〈b〉

COUNT : 〈a〉

b

ct

INPUTc : 〈c, c〉

COUNT : 〈a, a〉

ct

INPUTc : 〈c〉

COUNT : 〈a〉

c

ct

INPUTc : 〈c〉

COUNT : 〈a〉

c

Figure 2.3: A derivation tree for the string “aabbcc”

• start,

• np for noun phrases,

• vp for verb phrases,

• v for verbs with no subcategorized complement,

• v subcat is a super type for verbs with subcategorized complement,

• v np for verbs subcategorizing for a noun phrase complement, such as “loved”,

• v s for verbs subcategorizing for a sentence complement, such as “wondered”,

• npq for interrogative noun phrases, such as “whom”,

• sq for sentences that start with an interrogative noun phrase, realizing a transposed constituent,

for example “whom Jacob loved.”

• vpslash for verb phrases in which a subcategorized complement is missing. vpslash has an addi-

tional feature, SLASH, for the missing phrase.

• sslash for sentences consisting of a noun phrase, followed by a slashed verb phrase. sslash also

has a SLASH feature for the missing element.

Figure 2.6 demonstrates a derivation tree of the string “Laban wondered whom Jacob loves” with this

grammar.

21

Signature main
start INPUTstart : bi list
v INPUTv : bi list
v subcat INPUTvs : bi list

v np
v s

np INPUTnp : bi list
npq INPUTnpq : bi list
sq INPUTsq : bi list
s slash INPUTs slash : bi list SLASHs : bi list
vp INPUTvp : bi list
vp slash INPUTvp slash : bi list SLASHvp : bi list

terminal
Jacob
Rachel
Laban
whom
loves
wondered
...

Lexicon

loves →

[
v np

INPUTv : 〈loves〉

]
, wondered →

[
v sq

INPUTv : 〈wondered〉

]

Jacob →

[
np

INPUTnp : 〈Jacob〉

]
, Rachel →

[
np

INPUTnp : 〈Rachel〉

]

Laban →

[
np

INPUTnp : 〈Laban〉

]
, whom →

[
npq

INPUTnpq : 〈whom〉

]

Figure 2.4: An RTUG, Glongdist

22

Rules

start rule :

(1)

[
start

INPUTstart : 1 · 2

]
→

[
np

INPUTnp : 1 bi list

][
vp

INPUTvp : 2 bi list

]

queue rule :

(2)

[
sq

INPUTsq : 1 · 2

]
→

[
npq

INPUTnp : 1 bi list

]
s slash

INPUTs slash : 2 bi list

SLASHs : 1

slash rules :

(3)

s slash

INPUTs slash : 1 · 2

SLASHs : 3

→
[

np

INPUTnp : 1 bi list

]
vp slash

INPUTvp slash : 2 bi list

SLASHvp : 3

(4)

vp slash

INPUTvp slash : 1 bi list

SLASHvp : 2

→
[

v np

INPUTvs : 1 bi list

]

(5)

vp slash

INPUTvp slash : 1 · 2

SLASHvp : 3

→
[

v s

INPUTvs : 1 bi list

]
s slash

INPUTs slash : 2 bi list

SLASHs : 3 bi list

(6)

s slash

INPUTs slash : 1

SLASHs : 2

→
[

vp

INPUTvp : 1

]

vp rules :

(7)

[
vp

INPUTvp : 1

]
→

[
v

INPUTv : 1 bi list

]

(8)

[
vp

INPUTvp : 1 · 2

]
→

[
v s

INPUTvs : 1 bi list

][
start

INPUTstart : 2 bi list

]

(9)

[
vp

INPUTvp : 1 · 2

]
→

[
v s

INPUTvs : 1 bi list

][
sq

INPUTsq : 2 bi list

]

(10)

[
vp

INPUTvp : 1 · 2

]
→

[
v np

INPUTvs : 1 bi list

][
np

INPUTnp : 2 bi list

]

Figure 2.5: An RTUG, Glongdist (continued)

23

[
start

INPUTs : 〈Laban,wondered, whom, Jacob, loves〉

]

[
np

INPUTnp : 〈Laban〉

]

Laban

[
vp

INPUTnp : 〈wondered, whom, Jacob, loves〉

]

[
vp

INPUTnp : 〈wondered〉

]

wondered

[
sq

INPUTsq : 〈whom, Jacob, loves〉

]

[
npq

INPUTnp : 〈whom〉

]

whom

s slash

INPUTsl : 〈Jacob, loves〉

SLASH : 〈whom〉

[
np

INPUTnp : 〈Jacob〉

]

Jacob

vp slash

INPUTvpl : 〈loves〉

SLASH : 〈whom〉

[
v np

INPUTvs : 〈loves〉

]

loves

Figure 2.6: A derivation tree of the string “Laban wondered whom Jacob loves”

24

Chapter 3

Simulation of RTUG by RCG

Let Gug = 〈R, As,L〉 be an RTUG over a restricted type signature 〈TYPES,v, FEATS, Approp〉. In this

section we show how to construct an RCG Grcg = (N,T, V, P, S) such that L (Gug) = L (Grcg).We

show how to simulate each rule r ∈ R by an equivalent clause p ∈ P , where each main TFS is mapped to

a predicate, whose name is the type of the TFS, and where the feature values are mapped to the predicate

arguments. In addition, in order to simulate unification between TFSs, P also includes a set of unification

clauses for every two types in TYPES that have a common upper bound. Also, for every rule r ∈ R,

if the type t of the mother TFS is not maximal, then for every type s that is subsumed by t, there is an

additional clause in P , where the name of the predicate in the head is s.

Definition 30 (RCG mapping of RTUG). Fix an RTUG Gug = 〈R, As,L〉 over a restricted type sig-

nature 〈TYPES,v, FEATS, Approp〉. The RCG mapping of Gtug, denoted by TUG2RCG (Gtug), is an

RCG Grcg = 〈N,T, V, S〉, such that:

• T = {t | terminal @ t}.

• N = {Nt | main @ t}. For each Nt ∈ N , ar (Nt) = |{f | Approp (t, f) ↓}|.

• Let k be the maximal arity of any non-terminalNt ∈ N ; Let d be the maximal number of daughters

in any rule r ∈ R. Then V = {X1, . . . , Xk×d}.

• for every p ∈ P , p is either:

– a unification clause, as defined in Definition 31 below, or

– there is a rule r ∈ R, such that p is part of rule2clause (r), as defined in Definition 32 below,

or

– there is a lexical entry l ∈ L, such that p is part of rule2clause (l), as defined in Definition 33

below.

25

3.1 Mapping of type signature to RCG clauses

The type hierarchy of the signature is mapped to unification clauses in P that simulate the unification

between every two types in TYPES that have a common upper-bound.

Definition 31 (Simulation of the type signature). Let tmax ∈ TYPES be the subtype of main with the

maximal number of appropriate features. Let f be the number of features appropriate for tmax. Let

V ′ = {X1, . . . , Xf} ⊆ V be a set of variables. Then, for every t1, t2 ∈ TYPES such that:

• t1 @ t2

• main @ t1

• t1 and t2 have k ≤ f features

the following clause is included in P :

t1 (X1, . . . , Xk)→ t2 (X1, . . . , Xk)

Example 16. The following type hierarchy:

main

counter INPUTcounter: bi list COUNT: bi list

at

bt

ct

is simulated by the following unification clauses in Grcg:

counter (X1, X2) → at (X1, X2)

counter (X1, X2) → bt (X1, X2)

counter (X1, X2) → ct (X1, X2)

3.2 Mapping of UG rules to RCG clauses

We now show how UG rules are mapped to an RCG clause p, where:

• The mother of the rule is mapped to a predicate in the head of the clause.

• Every daughter of the rule is mapped to a predicate in the body of the clause.

The predicate mapping of a main TFS is as follows:

• The name of the predicate is the type of the TFS.

26

• The arity of the predicate is the number of features of the TFS.

• Each feature value of the TFS is mapped to an argument of the predicate.

In addition, if the type t of the mother of the rule is not maximal, then for every type s that is subsumed

by t, there is an additional clause q, such that:

• The mother of the rule is mapped to a predicate in the head of q, whose name is s instead of t, and

whose arguments are the same as the arguments of the predicate in the head of p.

• The body of the clause is the same as q.

Definition 32 (RCG clause mapping of a rule). Let r ∈ R be a unification rule of the form:

A0 → A1 . . . An

where for every i, 0 ≤ i ≤ n, Ai is a main TFS of type ti, that has ki features. Let TAGS (r) be the

ordered set of tags in r, and let d = |TAGS (r)|. Then p ∈ P is the RCG clause mapping of r, denoted

by rule2clause (r), and is defined as follows:

• A0 is mapped to a predicate ψ0 in the head of p.

• For every i, 1 ≤ i ≤ n, Ai is mapped to a predicate ψi in the body of p.

Assume, without lost of generality, that TAGS (r) =
{

1 , . . . , d
}

. Let Vp = {X1, . . . , Xd} be an

ordered set of RCG variables.

Let A be a main TFS in r of the form:

A =

t

F1 : B1

...

Fk : Bk

such that for every i, 1 ≤ i ≤ k, Bi is a bi list TFS. The predicate mapping of A, denoted by

tfs2pred (A), is:

tfs2pred (A) = Nt (α1, . . . , αk) ,

where for every i, 1 ≤ i ≤ k, αi = feat2arg (Bi) is an argument mapping of Bi, defined as follows:

• If Bi = elist, then feat2arg (Bi) = ε.

• If Bi = 〈a〉, such that a is a terminal, then feat2arg (Bi) = a.

• If Bi =
[
bi list

]
, and Bi is marked with a tag l , then feat2arg (Bi) = Xl.

27

• If Bi = 〈a〉 · C, such that a is a terminal and C is a bi list, then feat2arg (Bi) = a · δ, such that

δ = feat2arg (C).

• IfBi = C ′·C, such thatC ′ =
[
bi list

]
, marked with a tag l andC is a bi list, then feat2arg (Bi) =

Xl · δ, such that δ = feat2arg (C).

Let t be the type of A0. If t is not maximal, then for every type s, such that t @ s, r is mapped to an

additional clause q ∈ P , such that:

• The head of the clause is a predicate of the form Ns (α1, . . . , αk), where for every i, 1 ≤ i ≤ k,

αi = feat2arg (Bi), and

• The body of the clause is the same as in rule2clause (r).

Example 17. The following UG rule
bt

INPUTbt : b · 1 bi list

COUNT : 2 bi list · 3 bi list

→

bt

INPUTbt : 〈b〉

COUNT : 2

bt

INPUTbt : 1

COUNT : 3

is simulated by the following RCG clause:

bt (bX1, X2X3)→ bt (b,X2) bt (X1, X3)

Observe that:

• The INPUTbt feature value of the mother is a concatenation of a terminal and some implicit bi list,

so it is mapped to a concatenation of a terminal and a variable (bX1).

• The COUNT feature value of the mother is a concatenation of two implicit bi list, so it is mapped

to a concatenation of two variables (X2X3).

• The INPUTbt feature value of the first daughter contains only one terminal, so it is mapped to an

argument that also contains the same terminal.

• The COUNT feature value of the first daughter is a sublist of the COUNT feature value of the mother,

so it is mapped to an argument that reuses the same variable as the mother’s.

• The feature values of the second daughter are both sublists of the feature values of the mother, so

they are mapped to arguments that reuse the same variables as the mother’s.

3.3 Mapping the lexicon to RCG clauses

Each lexical entry is mapped to a clause in P , where the head of the clause is the predicate mapping

of the pre-terminal, and the body of the clause is ε. In addition, if the type t of the pre-terminal is not

28

maximal, then for every type s that is subsumed by t, there is an additional clause in P , where the head

of the clause is the predicate mapping of the pre-terminal, but its name is s instead of t.

Definition 33 (mapping of RTUG lexicon to RCG clauses). Let a be a word in WORDS, and A ∈ L (a),

such that A is a main TFS of the form:

A =

t

INPUTt : 〈a〉

F1 : B1

...

Fk : Bk

and for every i, 1 ≤ i ≤ k, Bi is a bi list.

Then A is mapped to a clause p as follows:

p = Nt (a, α1, . . . , αk)→ ε,

where for every i, 1 ≤ i ≤ k, αi = feat2arg (Bi).

Let t @ s. A is also mapped to a clause q as follows:

p = Ns (a, α1, . . . , αk)→ ε,

where for every i, 1 ≤ i ≤ k, αi = feat2arg (Bi).

Example 18. The following lexical entry

b→

bt

INPUTbt : 〈b〉

COUNT : 〈a〉

is mapped to the following RCG clause:

bt (b, a)→ ε

Example 19. Let l be following lexical entry

l = sheep→

np

INPUTnp : 〈sheep〉

 ,
such that np

◦
@ np sg and np

◦
@ np pl. l is mapped to the following RCG clauses:

np (sheep,X1)→ ε

29

np sg (sheep,X1)→ ε

np pl (sheep,X1)→ ε

3.4 Examples

We demonstrate the mapping of RTUG to equivalent RCGs on the two grammars presented in Sec-

tion 2.7.

Example 20. (anbncn) Here is the RCG mapping of Gabc that was presented in Example 14. anbncn

language is very natural for RCG, and a direct implementation of an RCG grammar for it, which requires

only 3 clauses, was demonstrated in Example 1. The RCG that is produced by our mapping is slightly

more complicated. It has four non-terminals: start, which is the mapping of the type start, and at, bt

and ct, which are the mappings of the types at, bt and ct, where the first argument is the mapping of the

input feature and the second argument is the mapping of COUNT feature. We do not need a non-terminal

mapping of the supertype counter, since there is no TFSs of this type in the grammar rules. For the same

reason, there is no need in unification clauses. The clauses obtained from the rules are:

(clause1) start (XY Z) → at (X,X) bt (Y,X) ct (Z,X)

(clause2) at (aX, aY) → at (a, a) at (X,Y)

(clause3) bt (bX, aY) → bt (b, a) bt (X,Y)

(clause4) ct (cX, aY) → ct (c, a) ct (X,Y)

The clauses obtained from the lexicon are:

(clause5) at (a, a) → ε

(clause6) bt (b, a) → ε

(clause7) ct (c, a) → ε

Compare the grammar above with the grammar of Example 1, which generates the same language.

To demonstrate the operation of the grammar, we describe below a derivation of the string aabbcc

with this grammar:

(clause1) start (aabbcc) → at (aa, aa) bt (bb, aa) ct (cc, aa)

(clause2) at (aa, aa) → at (a, a) at (a, a)

(clause5) at (a, a) → ε

(clause3) bt (bb, ab) → bt (b, a) bt (b, a)

(clause6) bt (b, a) → ε

(clause4) ct (cc, aa) → ct (c, a) ct (c, a)

(clause7) ct (c, a) → ε

Example 21 (Long distance dependencies). Here is the RCG mapping of TUG2RCG (Glongdist), pre-

sented in Example 15:

30

Unification clauses
v subcat (X) → v s (X)

v subcat (X) → v np (X)

Lexicon clauses
v np (loves) → ε

v s (wondered) → ε

np (Jacob) → ε

np (Rachel) → ε

np (Laban) → ε

npq (whom) → ε

Rule clauses

start rule : (1) start (XY) → np (X) vp (Y)

queue rules : (2) sq (XY) → npq (X) s slash (Y,X)

slash rules : (3) s slash (XY,Z) → np (X) vp slash (Y,Z)

(4) vp slash (X,Y) → v np (X)

(5) vp slash (XY,Z) → v s (X) s slash (Y,Z)

(6) s slash (X,Y) → vp (X)

vp rules : (7) vp (X) → v (X)

(8) vp (XY) → v s (X) start (Y)

(9) vp (XY) → v s (X) sq (Y)

(10) vp (XY) → v np (X) np (Y)

To demonstrate the operation of the grammar, we describe below a derivation of the string “Laban

wondered whom Jacob loves” with this grammar:

(1) start (Laban wondered whom Jacob loves) → np (Laban) vp (wondered whom Jacob loves)

np (Laban) → ε

(9) vp (wondered whom Jacob loves) → v s (wondered) sq (whom Jacob loves)

v s (wondered) → ε

(2) sq (whom Jacob loves) → npq (whom) s slash (Jacob loves, whom)

npq (whom) → ε

(3) s slash (Jacob loves, whom) → np (Jacob) vp slash (loves, whom)

np (Jacob)) → ε

(4) vp slash (loves, whom) → v np (loves)

v np (loves) → ε

31

32

Chapter 4

Simulation of RCG by RTUG

In this section we define a reverse mapping that, given any RCG, yields a restricted UG whose language

is identical. Since RCG derivations start with the whole input word, and terminate with empty clauses

(ε rules), the UG simulation has 2 phases: in the first phase the UG derivation scans the input word and

stores it in a TFS of type bi list; the second phase starts with the bi list that contains the whole input

word, and simulates the RCG derivation, step by step, where in each step, like in the RCG, the bi list is

split to sub-lists or trimmed, until ε is obtained in all of the branches of the derivation tree. Crucially, the

UG simulating an arbitrary RCG is restricted.

Definition 34 (TUG mapping of RCG). Let Grcg = (N,T, V, P, S) be an RCG. The RTUG mapping
of Grcg, denoted by RCG2TUG (Grcg), is Gtug = 〈R, As,L〉, defined over a restricted type signature

〈TYPES,v, FEATS, Approp〉, such that:

Type signature In addition to the types that are defined for every RTUG in Definition 23, the signature

of Gug includes the following types:

• A type S’ such that:

– main
◦
@ S’ and

– Approp (S’, INPUTS′) = bi list.

S’ is used for phase 1 of the derivation to collect the input word.

• A type S” such that:

– main
◦
@ S” and

– Approp (S”, INPUTS′′) = bi list, and

– Approp (S”, ARGS′′) = bi list.

S” roots the second phase of the derivation, simulating the derivation steps ofGrcg. The input

feature is added only to adhere to the restrictions of restricted type signatures, as defined in

Definition 23. During the entire derivation phase, the input feature of the TFSs is always

empty (elist).

33

• For every RCG non-terminal A ∈ N where ar (A) = k, there is a type A ∈ TYPES, such

that:

– main
◦
@ A and

– Approp (A, INPUTA) = bi list, and

– Approp (A, ARGA) = bi list, and

– for every i, 1 ≤ i ≤ k, Approp
(
A, ARGiA

)
= bi list.

• For every RCG terminal α ∈ T there is a type α ∈ TYPES such that terminal
◦
@ α, and α is

featureless.

Lexicon L (α) = {A} if an only if α ∈ T , and A is of the form:

A =

S’

INPUTS′ : 〈α〉

Start symbol

As =

start

INPUTstart : 1 bi list

rules R includes the following rules:

• The start rule is of the form:

start

INPUTstart : 1 bi list

→
S’

INPUTS′ : 1

S”

INPUTS′′ : elist

ARGS′′ : 1

• To collect the input word in the first phase of the derivation,R always includes the following

rules: S’

INPUTS′ : 1 · 2

 →

S’

INPUTS′ : 1 〈terminal〉

S’

INPUTS′ : 2 bi list

S’

INPUTS′ : elist

 → ε

• The second phase of the derivation is the actual simulation of Grcg derivation steps. For

this phase, for every clause p ∈ P there is a rule r ∈ R, such that r = clause2rule (p), as

defined in Definition 35 below.

34

Definition 35 (Rules simulating of RCG clauses). Let p be a clause in P ,

p = ϕ0 → ϕ1 . . . ϕn

such that for every i, 0 ≤ i ≤ n, ϕi is a predicate with non-terminal Ni and arity ki of the form

Ni

(
αi1 . . . α

i
ki

)
, and for every j, 1 ≤ j ≤ ki, αij ∈ T

⋃
V ∗. Then r ∈ R is the rule mapping of p,

denoted by r = clause2rule (p), where

r = A0 → A1 . . . An

such that, for every i, 0 ≤ i ≤ n, Ai is the TFS mapping of predicate ϕi, denoted pred2tfs (ϕi), and is

defined as follows: Ai is a TFS of type Ni with ki + 1 features of type bi list:

Ai =

Ni

INPUTNi : elist

ARG1Ni
: Bi

1

...

ARGkiNi
: Bi

ki

where for every j, 1 ≤ j ≤ ki, Bi

j is a TFS of type bi list that is the mapping of the argument αij as

described in Definition 36 below. If ϕi is the start symbol S (α), then the type of Ai is S′′.

If p is an ε clause of the form p = N0 (α1, . . . , αk)→ ε, then clause2rule (p) is the following rule:

N0

INPUTN0 : elist

ARG1N0
: B1

...

ARGkN0
: Bk

→ ε

where for every i, 1 ≤ i ≤ k, Bi is a TFS of type bi list that is the mapping of the argument αi as

described in Definition 36.

Definition 36 (bi list mapping of RCG arguments). Let α ∈ T
⋃
V ∗. Its bi list mapping, denoted

arg2feat (α), is a TFS of type bi list defined as follows:

• if α = ε, then arg2feat (α) = elist

• if α = a, a ∈ T , then arg2feat (α) = 〈a〉

• if α = Xl, Xl ∈ V , then arg2feat (α) = l bi list

35

• if α = a · δ, where a ∈ T and δ ∈ T
⋃
V ∗, then arg2feat (α) = 〈a〉 ·B, where B = arg2feat (δ).

• if α = Xl · δ, where Xl ∈ V and δ ∈ T
⋃
V ∗, then arg2feat (α) = l bi list · B, where B =

arg2feat (δ).

Example 22. (bi list Mapping of RCG arguments) Let α = aX1X2, such that a ∈ T and X1, X2 ∈ V ,

then

arg2feat (α) = 〈a〉 · 1 bi list · 2 bi list

where terminal
◦
@ a.

4.1 Examples

We demonstrate now an RTUG mapping of the two RCG grammars that were presented in Section 1.3

Example 23 (Gprime). Here we demostrate how to map Gprime grammar from Example 4 to an RTUG:

The types in TYPES are obtained from Gprime predicates, where:

• The types start, S’, S”, terminal, node and bi list are fixed types, generated for every RTUG;

• The types A, eq, NonEmpty, Len2 and MinLen2 are mappings of Gprime non-terminals;

• The type a is a mapping of the only Gprime terminal, a.

The complete type signature is depicted in Figure 4.1.

Since there is only one terminal in T , the lexicon has only one entry:

a→

S’

INPUTS′ : 〈a〉

R includes the start rule and phase 1 rules, as defined in Definition 34. In addition, R includes the rule

mappings of Gprime clauses, as follows:

1. S (aa)→ ε
S”

INPUTS′′ : elist

ARGS′′ : 〈a, a〉

→ ε

2. S (aaa)→ ε
S”

INPUTS′′ : elist

ARGS′′ : 〈a, a, a〉

→ ε

36

main
start INPUTstart: bi list
S’ INPUTS′ : bi list
S” INPUTS′′ : bi list ARGS′′ : bi list
A INPUTA: bi list ARG1A : bi list

ARG2A : bi list ARG3A : bi list
ARG4A : bi list

eq INPUTeq: bi list ARG1eq : bi list ARG2eq : bi list
NonEmpty INPUTNonEmpty: bi list ARG1NonEmpty : bi list
Len2 INPUTLen2: bi list ARG1Len2 : bi list
MinLen2 INPUTMinLen2: bi list ARG1MinLen2 : bi list

terminal
a

node
null
ne node CURR:terminal PREV:node NEXT:node

bi list
elist
ne bi list HEAD:ne node TAIL:ne node

Figure 4.1: The type signature of Gprime

3. S (XaY)→ A (X,XaY,X,XaY) eq (X,Y)

S”

INPUTS′′ : elist

ARGS′′ : 1 bi list · 〈a〉 · 2 bi list

→

A

INPUTA : elist

ARG1A : 1

ARG2A : 1 · 〈a〉 · 2

ARG3A : 1

ARG3A : 1 · 〈a〉 · 2

eq

INPUTeq : elist

ARG1eq : 1

ARG2eq : 2

4. A (aX, aY, Z,W)→ A (X,Y, Z,W)

A

INPUTA : elist

ARG1A : 〈a〉 · 1 bi list

ARG2A : 〈a〉 · 2 bi list

ARG3A : 3 bi list

ARG4A : 4 bi list

→

A

INPUTA : elist

ARG1A : 1

ARG2A : 2

ARG3A : 3

ARG4A : 4

37

5. A (ε, Y, Z,W)→ A (Z, Y, Z,W)

A

INPUTA : elist

ARG1A : elist

ARG2A : 2 bi list

ARG3A : 3 bi list

ARG4A : 4 bi list

→

A

INPUTA : elist

ARG1A : 3

ARG2A : 2

ARG3A : 3

ARG4A : 4

6. A (X, ε, aZ,W)→ A (Z,W,Z,W)NonEmpty (X)MinLen2 (Z)

A

INPUTA : elist

ARG1A : 1 bi list

ARG2A : elist

ARG3A : 〈a〉 · 3 bi list

ARG4A : 4 bi list

→

A

INPUTA : elist

ARG1A : 3

ARG2A : 4

ARG3A : 3

ARG4A : 4

NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 1

MinLen2

INPUTMinLen2 : elist

ARG1MinLen2 : 3

7. A (X, ε, Z,W)→ NonEmpty (X)Len2 (Z)

A

INPUTA : elist

ARG1A : 1 bi list

ARG2A : elist

ARG3A : 3 bi list

ARG4A : 4 bi list

→

NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 1

Len2

INPUTLen2 : elist

ARG1Len2 : 3

8. eq (aX, aY)→ eq (X,Y)

eq

INPUTeq : elist

ARG1eq : 〈a〉 · 1 bi list

ARG2eq : 〈a〉 · 2 bi list

→

eq

INPUTeq : elist

ARG1eq : 1

ARG2eq : 2

38

9. eq (ε, ε)→ ε

eq

INPUTeq : elist

ARG1eq : elist

ARG2eq : elist

→ ε

10. NonEmpty (aX)→ ε
NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 〈a〉 · 1 bi list

→ ε

11. Len2 (aa)→ ε
Len2

INPUTLen2 : elist

ARG1Len2 : 〈a, a〉

→ ε

12. MinLen2 (aX)→ NonEmpty (X)
MinLen2

INPUTMinLen2 : elist

ARG1MinLen2 : 〈a〉 · 1 bi list

→

NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 1

We demonstrate the operation of the grammar by showing the derivation of the string “aaaaa”.

Figure 4.2 shows the root of the derivation tree; Figure 4.3 depicts the tree fragment that is responsible

to collecting the input word; and Figures 4.4, 4.5 show the subtree of the second phase, the actual

simulation of Gprime.

[
start

INPUTs : 〈a, a, a, a, a〉

]

1

[
S′

INPUTS′ : 〈a, a, a, a, a〉

]
2

S′′

INPUTS′′ : elist

ARGS′′ : 〈a, a, a, a, a〉

Figure 4.2: The root of the derivation tree

39

1

[
S′

INPUTS′ : 〈a, a, a, a, a〉

]

[
S′

INPUTS′ : 〈a〉

]

a

[
S′

INPUTS′ : 〈a, a, a, a〉

]

[
S′

INPUTS′ : 〈a〉

]

a

[
S′

INPUTS′ : 〈a, a, a〉

]

[
S′

INPUTS′ : 〈a〉

]

a

[
S′

INPUTS′ : 〈a, a〉

]

[
S′

INPUTS′ : 〈a〉

]

a

[
S′

INPUTS′ : 〈a〉

]

a

Figure 4.3: Derivation subtree showing how the input word is collected

Example 24 (Word scrambling). We demonstrate how the grammar GSCR of Example 5 is mapped to

an RTUG. The types in TYPES are obtained from GSCR predicates, where:

• The types start, S’, S”, terminal, node and bi list are fixed types, generated for every RTUG;

• The types {N ,V, h,N+V+,Ns,Vs,N inV+,VinN+} are mappings of GSCR non-terminals;

• The types n1, . . . , nl, v1, . . . , vm are mappings of GSCR terminals.

The complete type signature is depicted in Figure 4.6.

The lexicon is:

n1 →

S’

INPUTS′ : 〈n1〉

 . . . nl →

S’

INPUTS′ : 〈nl〉

v1 →

S’

INPUTS′ : 〈v1〉

 . . . vm →

S’

INPUTS′ : 〈vm〉

R includes the start rule and phase 1 rules, as defined in Definition 34. In addition, R includes the rule

mappings of GSCR clauses, depicted in Figures 4.7, 4.8.

40

2

S′′

INPUTS′′ : elist

ARGS′′ : 〈a, a〉 · 〈a〉 · 〈a, a〉

A

INPUTA : elist

ARG1A : 〈a, a〉

ARG2A : 〈a, a〉 · 〈a〉 · 〈a, a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

A

INPUTA : elist

ARG1A : 〈a〉

ARG2A : 〈a〉 · 〈a〉 · 〈a, a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

3

A

INPUTA : elist

ARG1A : elist

ARG2A : 〈a〉 · 〈a, a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

eq

INPUTeq : elist

ARG1eq : 〈a, a〉

ARG2eq : 〈a, a〉

eq

INPUTeq : elist

ARG1eq : 〈a〉

ARG2eq : 〈a〉

ε

Figure 4.4: Subtree showing actual simulation of Gprime (part 1)

41

3

A

INPUTA : elist

ARG1A : elist

ARG2A : 〈a〉 · 〈a, a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

A

INPUTA : elist

ARG1A : 〈a, a〉

ARG2A : 〈a〉 · 〈a, a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

A

INPUTA : elist

ARG1A : 〈a〉

ARG2A : 〈a, a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

4

A

INPUTA : elist

ARG1A : elist

ARG2A : 〈a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

4

A

INPUTA : elist

ARG1A : elist

ARG2A : 〈a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

A

INPUTA : elist

ARG1A : 〈a, a〉

ARG2A : 〈a〉

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

A

INPUTA : elist

ARG1A : 〈a〉

ARG2A : elist

ARG3A : 〈a, a〉

ARG4A : 〈a, a〉 · 〈a〉 · 〈a, a〉

NonEmpty

INPUTNonEmpty : elist

ARG1NonEmpty : 〈a〉

ε

Len2

INPUTLen2 : elist

ARG1Len2 : 〈a, a〉

ε

Figure 4.5: Subtree showing actual simulation of Gprime (part 2)

42

main
start INPUTstart: bi list
S’ INPUTS′ : bi list
S” INPUTS′′ : bi list ARGS′′ : bi list
N+V+ INPUTN+V+ : bi list ARG1N+V+

: bi list ARG2N+V+
: bi list

N INPUTN : bi list ARG1N : bi list
V INPUTV : bi list ARG1V : bi list
h INPUTh: bi list ARG1h : bi list ARG2h : bi list
Ns INPUTNs : bi list ARG1Ns

: bi list ARG2Vs : bi list
Vs INPUTVs : bi list ARG1Vs : bi list ARG2Vs : bi list
N inV+ INPUTN inV+ : bi list ARG1N inV+

: bi list ARG2N inV+
: bi list

VinN+ INPUTVinN+ : bi list ARG1VinN+ : bi list ARG2VinN+ : bi list
terminal

n1
...
nl
v1
...
vm

node
null
ne node CURR:terminal PREV:node NEXT:node

bi list
elist
ne bi list HEAD:ne node TAIL:ne node

Figure 4.6: The type signature of GSCR

To demonstrate the operation of the grammar, similary to Example 5, let the set of nouns be N =

〈n1, n2, n3〉, the set of verbs be V = 〈v1, v2〉, and the mapping between N and V be:

h

INPUTh : elist

ARG1h : 〈n1〉

ARG2h : 〈v1〉

→ ε,

h

INPUTh : elist

ARG1h : 〈n2〉

ARG2h : 〈v1〉

→ ε,

h

INPUTh : elist

ARG1h : 〈n3〉

ARG2h : 〈v2〉

→ ε

The derivation tree of the string n2n3n1v1v2 is listed in Figures 4.9—4.11. We only demonstrate the

second phase of the derivation, since the first phase (collecting the input string) is just the same as

showed in Example 23 above.

43

(1)

S′′

INPUTS′′ : elist

ARGS′′ : 1 bi list

 →

N+V+

INPUTN+V+ : elist

ARG1N+V+ : 1

ARG2N+V+ : 1

(2)

N+V+

INPUTN+V+ : elist

ARG1N+V+ : 1

ARG2N+V+ : 2 · 3

 →

N

INPUTN : elist

ARG1N : 2

N+V+

INPUTN+V+ : elist

ARG1N+V+ : 1

ARG2N+V+ : 3

(3)

N+V+

INPUTN+V+ : elist

ARG1N+V+ : 1 · 2 · 3

ARG2N+V+ : 2 · 3

 →

V

INPUTV : elist

ARG1V : 2

Ns

INPUTNs
: elist

ARG1Ns
: 1

ARG2Ns
: 2 · 3

Vs
INPUTVs

: elist

ARG1Vs
: 1

ARG2Vs
: 2 · 3

(4)

Ns

INPUTNs
: elist

ARG1Ns
: 1 · 2

ARG2Ns
: 3

 →

N inV+

INPUTN inV+ : elist

ARG1NinV+ : 1

ARG2NinV+ : 3

Ns

INPUTNs
: elist

ARG1Ns
: 2

ARG2Ns
: 3

(5)

Ns

INPUTNs : elist

ARG1Ns
: elist

ARG2Ns
: 3

 → ε

(6)

N inV+

INPUTN inV+ : elist

ARG1NinV+ : 1

ARG2NinV+ : 2 · 3

 →

h

INPUTh : elist

ARG1h : 1

ARG2h : 2

(7)

N inV+

INPUTN inV+ : elist

ARG1NinV+ : 1

ARG2NinV+ : 2 · 3

 →

N inV+

INPUTN inV+ : elist

ARG1NinV+ : 1

ARG2NinV+ : 3

Figure 4.7: The rules of GSCR (part 1)

44

(8)

Vs
INPUTVs : elist

ARG1Vs : 1

ARG2Vs : 2 · 3

 →

VinN+

INPUTVinN+ : elist

ARG1VinN+ : 2

ARG2VinN+ : 1

Vs
INPUTVs : elist

ARG1Vs : 1

ARG2Vs : 3

(9)

Vs
INPUTVs : elist

ARG1Vs : 1

ARG2Vs : elist

 → ε

(10)

VinN+

INPUTVinN+ : elist

ARG1VinN+ : 1

ARG2VinN+ : 2 · 3

 →

h

INPUTh : elist

ARG1h : 2

ARG2h : 1

(11)

VinN+

INPUTVinN+ : elist

ARG1VinN+ : 1

ARG2VinN+ : 2 · 3

 →

VinN+

INPUTVinN+ : elist

ARG1VinN+ : 1

ARG2VinN+ : 3

(12)

N

INPUTN : elist

ARG1N : 〈n1〉

 → ε . . .

N

INPUTN : elist

ARG1N : 〈nl〉

 → ε

(13)

V

INPUTV : elist

ARG1V : 〈v1〉

 → ε . . .

V

INPUTV : elist

ARG1V : 〈vm〉

 → ε

(14)

h

INPUTh : elist

ARG1h : 〈n1〉

ARG2h : 〈v1〉

 → ε . . .

h

INPUTh : elist

ARG1h : 〈nl〉

ARG2h : 〈vm〉

 → ε

Figure 4.8: The rules of GSCR (part 2)

45

S”

INPUTS′′ : elist

ARGS′′ : 〈n2, n3, n1, v1, v2〉

N+V+

INPUTN+V+ : elist

ARG1N+V+ : 〈n2, n3, n1, v1, v2〉

ARG2N+V+ : 〈n2, n3, n1, v1, v2〉

N

INPUTN : elist

ARG1N : 〈n2〉

ε

N+V+

INPUTN+V+ : elist

ARG1N+V+ : 〈n2, n3, n1, v1, v2〉

ARG2N+V+ : 〈n3, n1, v1, v2〉

N

INPUTN : elist

ARG1N : 〈n3〉

ε

N+V+

INPUTN+V+ : elist

ARG1N+V+ : 〈n2, n3, n1, v1, v2〉

ARG2N+V+ : 〈n1, v1, v2〉

N

INPUTN : elist

ARG1N : 〈n1〉

ε

N+V+

INPUTN+V+ : elist

ARG1N+V+ : 〈n2, n3, n1, v1, v2〉

ARG2N+V+ : 〈v1, v2〉

V

INPUTV : elist

ARG1V : 〈v1〉

ε

1

Ns

INPUTNs
: elist

ARG1Ns
: 〈n2, n3, n1〉

ARG2Ns
: 〈v1, v2〉

2

Vs
INPUTVs

: elist

ARG1Vs
: 〈n2, n3, n1〉

ARG2Vs
: 〈v1, v2〉

Figure 4.9: Derivation tree of the string n2n3n1v1v2 (part 1)

46

1

Ns
INPUTNs : elist

ARG1Ns
: 〈n2, n3, n1〉

ARG2Ns
: 〈v1, v2〉

N inV+

INPUTN inV+ : elist

ARG1N inV+
: 〈n2〉

ARG2N inV+
: 〈v1, v2〉

h

INPUTh : elist

ARG1h : 〈n2〉

ARG2h : 〈v1〉

ε

Ns
INPUTNs : elist

ARG1Ns
: 〈n3, n1〉

ARG2Ns
: 〈v1, v2〉

N inV+

INPUTN inV+ : elist

ARG1N inV+
: 〈n3〉

ARG2N inV+
: 〈v1, v2〉

N inV+

INPUTN inV+ : elist

ARG1N inV+
: 〈n3〉

ARG2N inV+
: 〈v2〉

h

INPUTh : elist

ARG1h : 〈n3〉

ARG2h : 〈v2〉

ε

Ns
INPUTNs : elist

ARG1Ns
: 〈n1〉

ARG2Ns
: 〈v1, v2〉

N inV+

INPUTN inV+ : elist

ARG1N inV+
: 〈n1〉

ARG2N inV+
: 〈v1, v2〉

h

INPUTh : elist

ARG1h : 〈n1〉

ARG2h : 〈v1〉

ε

Ns
INPUTNs : elist

ARG1Ns
: elist

ARG2Ns
: 〈v1, v2〉

ε

Figure 4.10: Derivation tree of the string n2n3n1v1v2 (part 2)

47

2

Vs
INPUTNs : elist

ARG1Ns
: 〈n2, n3, n1〉

ARG2Ns
: 〈v1, v2〉

VinN+

INPUTVinN+ : elist

ARG1VinN+ : 〈v1〉

ARG2VinN+ : 〈n2, n3, n1〉

h

INPUTh : elist

ARG1h : 〈n2〉

ARG2h : 〈v1〉

ε

Vs
INPUTVs : elist

ARG1Vs : 〈n2, n3, n1〉

ARG2Vs : 〈v2〉

VinN+

INPUTVinN+ : elist

ARG1VinN+ : 〈v2〉

ARG2VinN+ : 〈n2, n3, n1〉

VinN+

INPUTVinN+ : elist

ARG1VinN+ : 〈v2〉

ARG2VinN+ : 〈n3, n1〉

h

INPUTh : elist

ARG1h : 〈n3〉

ARG2h : 〈v2〉

ε

Vs
INPUTVs : elist

ARG1Vs : 〈n2, n3, n1〉

ARG2Vs : elist

ε

Figure 4.11: Derivation tree of the string n2n3n1v1v2 (part 3)

48

Chapter 5

A sketch of the proof

In this section we show a sketch of the proof of the main result of this work, namely that LRTUG =

LRCG. The full proof is deferred to Appendix B.

In order to prove that LRTUG = LRCG, we first prove that LRCG ⊆ LRTUG, by proving the

correctness of RCG2TUG mapping (Definition 34), and then that LRTUG ⊆ LRCG, by proving the

correctness of TUG2RCG mapping (Definition 30). To do so, we first define an intermediate grammar,

called the instantiated grammar.

5.1 Instantiated grammar

As a technical aid, we first define, for a constrained unification grammar G, a set of instantiated gram-

mars. Each grammar in this set is designed to generate at most one word. More precisely, the instanti-

ated grammar G|w is obtained from G by restricting it to a specific word w, such that L(G|w) = {w} if

w ∈ L(G), and is empty otherwise. Crucially, while G|w is a unification grammar, it is formally equiva-

lent to a context-free grammar. We provide the informal description below, while the formal definitions

are deferred to section B.1.

We start by defining instantiated bi lists, TFSs and rules, in a similar way to instantiated predicates

and clauses (Definition 15). Given a word w ∈ WORDS∗, a list instantiation of w is a TFS of type

bi list whose content is a substring of w (see Definition 56).

Example 25 (list instantiation). Let w = abbb and B = 〈a〉 · 1 bi list. IB = 〈a, b, b〉 is a list instantia-

tion of B and w.

Given a word w ∈ WORDS∗, and a main TFS A, the instantiated TFS of A and w is a maximally

specific main TFS IA, such that A v IA, and where the contents of the feature values are substrings of

w (see Definition 57).

Example 26 (Instantiated TFS). Let A be a TFS over the signature presented in Example 14, and w =

49

aabb. Let

A =

counter

INPUT : 1 bi list

COUNTER : 〈a〉 · 1

The following TFS, IA, is an instantiated TFS of A and w:

IA =

at

INPUT : 〈a〉

COUNTER : 〈a, a〉

Given a word w ∈ WORDS∗, an RTUG G over S, and a rule r ∈ R, r′ is an instantiated rule of r

and w, if r subsumes r′, and every TFS of r′ is an instantiated TFS of w (see Definition 58).

Example 27. (Rule instantiation) Let

r =

at

INPUTcounter : 1 · 2

COUNT : 〈a〉 · 3

→

at

INPUTcounter : 1 bi list

COUNT : 〈a〉

bt

INPUTcounter : 2 bi list

COUNT : 3 bi list

 ,
and w = aabb. The following is an instantiated rule of r and w:

r′ =

at

INPUTcounter : 〈a, b, b〉

COUNT : 〈a, b, b〉

→

at

INPUTcounter : 〈a〉

COUNT : 〈a〉

bt

INPUTcounter : 〈b, b〉

COUNT : 〈b, b〉

 ,

where 〈a〉 is the list instantiation of 1 , and 〈b, b〉 is the list instantiation of 2 and 3 (see the definition

of list instantiation above).

The set of all instantiated rules of G and w is the instantiated grammar of G and w, denoted by

G|w (see Definition 57). For every RTUG G and w ∈ WORDS∗, w ∈ L (G) if and only if w ∈ L
(
G|w

)
(Lemmas 1 and 2, Appendix B.1).

5.2 Direction 1: LRCG ⊆ LRTUG

For every RCG G, there exists an RTUG Gtug, such that L (G) = L (Gtug). Obviously, we choose

Gtug = RCG2TUG (G), and show first that L (G) ⊆ L (Gtug), and then that L (Gtug) ⊆ L (G). The

formal proof is detailed in Appendix B.2.

First we show (Lemmas 3 and 4) the commutativity of string instantiation and bi list instantiation

50

(Definition 56) with arg2feat (Definition 35). See the commutative diagram below:

α
arg2feat−→ A = arg2feat (α)

string inst. ↓ ↓ list inst.

u
arg2feat−→ B = arg2feat (u)

Then we show (Lemmas 5 and 7) the commutativity of instantiation (of predicates, Definition 15, and of

TFSs, Definition 57) with pred2tfs (Definition 35). See the commutative diagram below:

ϕ
pred2tfs−→ A = pred2tfs (ϕ)

pred. inst. ↓ ↓ TFS inst.

ψ
pred2tfs−→ IA = pred2tfs (ψ)

Theorem 9 proves that L (G) ⊆ L (Gtug) by sowing that if w ∈ L (G), then w ∈ L
(
Gtug |w

)
, im-

plies that w ∈ L (Gtug). Theorem 11 proves that L (Gtug) ⊆ L (G) by sowing that if w ∈ L
(
Gtug |w

)
,

then w ∈ L (G). Recall that w ∈ L
(
Gtug |w

)
if and only if w ∈ L (Gtug).

5.3 Direction 2: LRTUG ⊆ LRCG

Conversely, for every RTUG G, there exists an RCG Grcg, such that L (G) = L (Grcg). In a similar

way to Direction 1 of the proof, we will choose Grcg = TUG2RCG (G), as defined in Definition 30,

and show first that L (G) ⊆ L (Grcg), and then that L (Grcg) ⊆ L (G). The formal proof is detailed in

Appendix B.3.

First, we define a hierarchy over non-terminals and predicates of RCG that is equivalent to the

hierarchy over types and TFSs of RTUG: In general, given an RTUG G over a signature S, and an RCG

Grcg = TUG2RCG (G), we say that the non-terminal Nt ∈ N subsumes the non-terminal Ns ∈ N ,

if the type t subsumes the type s in S (see Definition 60). We say that a predicate ϕ subsumes the

predicate ψ, if the non-terminal of ϕ subsumes the non-terminal of ψ, and every argument of ϕ is a

string instantiation of the corresponding argument of ϕ (see Definition 61). A predicate that is subsumed

by no other predicate is called a maximum predicate.

Example 28. Consider Glongdist and TUG2RCG (Glongdist) of Example 15:

• v subcat (X) subsumes v np (loves), because v subcat v v np;

• v np is a maximum type and v np (loves) is a maximum predicate.

Lemmas 14 and 15 show that string instantiation and bi list instantiation (Definition 56) commute

51

with feat2arg (Definition 32). See the commutative diagram below:

B
feat2arg−→ α = feat2arg (B)

list inst. ↓ ↓ string inst.

C
feat2arg−→ ρ = feat2arg (C)

Lemma 16 deals with the commutativity of instantiation and the mapping between TFSs and predicates.

Unlike the previous direction, in a general RTUG a TFSA and its instantiated TFS IA can be of different

types. In this case, we cannot claim that tfs2pred (IA) is an instantiated predicate of tfs2pred (A), since

they may have different non-terminals. What we can claim, however, is that tfs2pred (A) subsumes
tfs2pred (IA), as defined in Definition 61. See the commutative diagram below:

A
tfs2pred−→ ϕ = tfs2pred (A)

TFS inst. ↓ ↓ subsumes

IA
tfs2pred−→ ψ = tfs2pred (IA)

Example 29. Consider the following fragment of the signature of Glongdist, repeated from Example 15:

Signature

main

v subcat INPUTvs:bi list

v np

v s

...

Consider further the TFS

A =

v subcat

INPUTvs : 1 bi list

Let w = loves, so the instantiated TFS of A and w is:

IA =

v np

INPUTvs : 〈loves〉

tfs2pred (A) = ϕ = v subcat (X) , X ∈ V
tfs2pred (IA) = ψ = v np (loves)

Clearly, ψ is not an instantiated predicate of ϕ. However, given the unification clauses of the grammar

52

TUG2RCG (Glongdist):
v subcat (X) → v np (X)

v subcat (X) → v s (X)

we can see that v subcat subsumes v np and ϕ subsumes ψ.

Lemma 19 proves that if tfs2pred (A) subsumes tfs2pred (B), then A v B. See the commutative

diagram below:
A

tfs2pred−→ ϕ = tfs2pred (A)

v ↓ ↓ subsumes

B
tfs2pred−→ ψ = tfs2pred (B)

In Theorem 18 we prove that L (G) ⊆ L (Grcg) by showing that if w ∈ L
(
G|w

)
, then w ∈ L (Grcg).

Recall that w ∈ L
(
G|w

)
if and only if w ∈ L (G). In Theorem 21 we prove that L (Grcg) ⊆ L (G) by

showing that if w ∈ L
(
Grcg |w

)
, then w ∈ L (G).

53

54

Chapter 6

Conclusions

The main contribution of this work is the definition of a restricted version of typed unification grammars,

RTUG, which is polynomially-parsable. Furthermore, RTUG generates exactly the class of languages

recognizable in deterministic polynomial time. We prove this result by showing a conversion algorithm

between RTUG and Range Concatenation Grammar (RCG), a grammatical formalism that generates

exactly the class of polynomially recognizable languages. In this work we also demonstrate RTUGs that

generate formal languages, anbncn and aprime, and RTUGs that describe natural languages phenomena,

long distance dependencies and word scrambling.

But still, RTUG is a highly restricted UG, allowing features of a single type only, bi-directional lists

of terminals. This fact makes the development of grammars in this formalism rather difficult. Comparing

RTUG to other highly restricted versions of UG, One-reentrant unification grammars and PLPATR
(see details in Section 1.2), RTUG rules and feature structures are very limited in the type of values

their features are allowed to take. At the same time, RTUG imposes no constraints on grammar rule

reentrancies. One-reentrant UG and PLPATR, on the other hand, do not limit the values of the features,

while reentrancy is extremely limited. Both formalisms generate classes of languages that are strictly

included in the class of polynomially recognizable languages (TAL and LCFRS). A possible extension

of this work would therefore be a new formalism combining the benefits of RTUG and one-reentrant UG

or PLPATR. In this combined formalism feature structures will allow features of type bi-directional lists

of terminal, in which reentrancy is not limited, along with other features, with unlimited values, where

reentrancy is limited, according to the constraints of one-reentrant UG or PLPATR. Such a combined

formalism will facilitate the design of natural grammars, allowing simple implementation of linguistic

phenomena like agreement, while at the same time, will add nothing to the expressivity of RTUG, thereby

generating exactly the class of polynomially recognizable languages.

55

56

Bibliography

G. Edward Barton, Robert C. Berwick, and Eric S. Ristad. Computational Complexity and Natural
Language. MIT Press, Cambridge, MA, USA, 1987. ISBN 0262022664.

Tilman Becker, Aravind K. Joshi, and Owen Rambow. Long-distance scrambling and tree ad-
joining grammars. In Proceedings of the fifth conference on European chapter of the As-
sociation for Computational Linguistics, pages 21–26, Stroudsburg, PA, USA, 1991. Asso-
ciation for Computational Linguistics. doi: http://dx.doi.org/10.3115/977180.977185. URL
http://dx.doi.org/10.3115/977180.977185.

Pierre Boullier. A generalization of mildly context-sensitive formalisms. In Proceedings of the Fourth In-
ternational Workshop on Tree Adjoining Grammars and Related Frameworks, pages 17–20, Philadel-
phia, 1998a. University of Pennsylvania.

Pierre Boullier. Proposal for a natural language processing syntactic backbones. Research Report 3342,
INRIA-Rocquencourt, France, 1998b.

Pierre Boullier. Chinese numbers, MIX, scrambling, and range concatenation grammars. In Proceed-
ings of the ninth conference on European chapter of the Association for Computational Linguis-
tics, pages 53–60, Morristown, NJ, USA, 1999. Association for Computational Linguistics. doi:
http://dx.doi.org/10.3115/977035.977044.

Pierre Boullier. Range concatenation grammars. In John Carroll Harry Bunt and Giorgio Satta, editors,
New Developments in Parsing Technology, pages 269–289. Springer, Netherlands, 2000.

Bob Carpenter. The Logic of Typed Feature Structures. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1992.

Daniel Feinstein and Shuly Wintner. Highly constrained unification grammars.
Journal of Logic, Language and Information, 17(3):345–381, 2008. URL
http://dx.doi.org/10.1007/s10849-008-9062-9.

Nissim Francez and Shuly Wintner. Unification Grammars. Cambridge University Press, Cambridge,
2012.

Efrat Jaeger, Nissim Francez, and Shuly Wintner. Unification grammars and off-line parsability. J. of
Logic, Lang. and Inf., 14(2):199–234, 2005. ISSN 0925-8531. doi: http://dx.doi.org/10.1007/s10849-
005-4511-1.

Mark Johnson. Attribute-Value Logic and the Theory of Grammar. CSLI lecture notes ; 16. Center for
the Study of Language and Information, Stanford University, Stanford, CA, 1988.

57

Laura Kallmeyer, Wolfgang Maier, and Yannick Parmentier. An Earley parsing algorithm for range
concatenation grammars. In Joint conference of the 47th Annual Meeting of the Association for Com-
putational Linguistics and the 4th International Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing (ACL-IJCNLP 2009), Suntec Singapore, 2009.
URL http://hal.inria.fr/inria-00393980/en/.

Bill Keller and David Weir. A tractable extension of linear indexed grammars. In Proceed-
ings of the seventh conference on European chapter of the Association for Computational Lin-
guistics, pages 75–82, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. doi:
http://dx.doi.org/10.3115/976973.976985.

58

Appendix A

Representing bidirectional lists with TFSs

RCG arguments are strings of terminals and variables, where in each derivation step, these strings are

being split or concatenated. In order to manipulate strings and substrings thereof with UG, we define an

infrastructure for handling bi-directional lists with TFSs. This infrastructure includes:

• bi list nodes which are TFSs with three features:

– CURR which includes the actual value of the node;

– PREV which points to the previous node in the list;

– NEXT which points to the next node in the list.

• bi list TFSs that represent bi-directional lists and have two features:

– HEAD which points to the first node of the list;

– TAIL which points to the last node of the list.

Definition 37 (Bi list type). The type node is defined as follows:

• ⊥
◦
@ node, and node is featureless;

• node
◦
@ null, and null is featureless;

• node
◦
@ ne node, and:

– Approp (ne node, CURR) = terminal;

– Approp (ne node, PREV) = node;

– Approp (ne node, NEXT) = node;

– Approp (ne node, f) ↑, for every f /∈ {CURR, PREV, NEXT}

The type bi list is defined as follows:

• ⊥
◦
@ bi list, and bi list is featureless;

59

• bi list
◦
@ elist, and elist is featureless;

• bi list
◦
@ ne bi list, and:

– Approp (ne bi list, HEAD) = ne node;

– Approp (ne bi list, TAIL) = ne node;

– Approp (ne bi list, f) ↑, for every f /∈ {HEAD, TAIL}

A.1 Restrictions over node TFSs and bi list TFSs

In the following, we define restriction over node TFSs and bi list TFSs, such that list operations like

concatenation and sublist can be defined.

Definition 38 (Node TFS). A node TFS is a TFS whose type subsumes node. A TFS of type node is

called an implicit node, and a TFS of type null or ne node is called a non-implicit node.

Definition 39 (Bi list TFS). A bi list TFS is a TFS whose type subsumes bi list.

In a non-implicit node, the value of the feature PREV must point to the previous node in the list, and

the value of the feature NEXT must point to the next node in the list.

Definition 40 (Valid prev-node). Let A be a non-implicit node TFS. The TFS B is a valid prev-node of

A if either:

• B is an implicit node, or

• B = null, or

• B is a non-implicit node, in which:

– the value of NEXT is A, and

– the value of PREV is a valid prev-node of B.

Definition 41 (Valid next-node). Let A be a non-implicit node TFS. The TFS B is a valid next-node of

A if either:

• B is an implicit node, or

• B = null, or

• B is a non-implicit node, in which:

– the value of PREV is A, and,

– the value of NEXT is a valid next-node of B.

Definition 42 (Valid node). a node TFS A is a valid node if either:

60

• A is an implicit node, or

• A = null, or

• A is a non-implicit node, in which:

– the value of the feature PREV is a valid prev-node of A, and,

– the value of the feature NEXT is a valid next-node of A

Example 30. (valid nodes) Let terminal v a and terminal v b. The following TFS is a valid node:

1

ne node

CURR : a

PREV : node

NEXT :

ne node

CURR : b

PREV : 1

NEXT : null

Observe that:

• The PREV value of 1 has an implicit node,

• The NEXT value of 1 has a non-implicit node whose PREV value points back to 1 .

The following TFS is not a valid node:

1

ne node

CURR : a

PREV : node

NEXT :

ne node

CURR : b

PREV : 2 node

NEXT : null

Observe that the NEXT value of 1 has a non-implicit node whose PREV value points to a node other

than 1 .

Definition 43 (Valid bi list TFS). A TFS A is a valid bi list TFS if either:

• A = elist, or

61

• A is of type ne bi list where:

– the value of HEADis a valid node whose PREV value is null.

– the value of TAIL is a valid node whose NEXT value is null.

Example 31. (Valid bi list TFS) Let t1, t2 be types in TYPES, such that terminal v t1 and terminal v t2.

The following TFS is a valid bi list TFS:

ne bi list

HEAD : 1

ne node

CURR : t1

PREV : null

NEXT : 2

ne node

CURR : t2

PREV : 1

NEXT : null

TAIL : 2

A.2 Explicit bi lists

In the following we define k-head-explicit (k-tail-explicit) bi list, which is a bi list whose first (last) k

members are explicitly defined. This is useful for defining several operations on bi lists.

Definition 44 (k-head-explicit node). k-head-explicit node is defined recursively as follows:

• A valid non-implicit node A is a 1-head-explicit node if its NEXT value is an implicit node.

• A valid non-implicit node A is a k-head-explicit node if its NEXT value is a (k-1)-head-explicit

node.

Definition 45 (k-tail-explicit node). k-tail-explicit node is defined recursively as follows:

• A valid non-implicit node A is a 1-tail-explicit node if its PREV value is an implicit node.

• A valid non-implicit node A is a k-tail-explicit node if its PREV value is a (k-1)-tail-explicit node.

Definition 46 (k-head-explicit bi list). A bi list TFSA is a k-head-explicit bi list ifA is of type ne bi list,

and its HEAD value is a k-head-explicit node.

Definition 47 (k-tail-explicit bi list). A bi list TFS A is a k-tail-explicit bi list if A is of type ne bi list,

and its TAIL value is a k-tail-explicit node.

62

Definition 48 (The i-node). Let A be a k-head-explicit bi list, such that k ≥ 1.

• the 1-node of A is the value of HEAD feature of A.

• for every i, 2 ≤ i ≤ k, the i-node of A is the value of the NEXT feature of the (i− 1)-node of A.

Explicit bi list is a bi list which all of its members are explicit nodes.

Definition 49 (Explicit bi list). A bi list TFS A is an explicit bi list if:

• A = elist, or,

• A is a k-head-explicit bi list for some k ≤ 1, such that the feature value of TAIL is the k-node of

A. We say that k is the length of A.

Definition 50 (The i-element). Let A be a k-head-explicit bi list. For every i, 1 ≤ i ≤ k, the i-element
of A is the value of the CURR feature of the i-node of A (which is a terminal).

In the following, we sometimes use list notation (〈. . .〉) to describe TFSs of type bi list.

Definition 51 (list notation). Let A be an explicit bi list TFS, with length k ≥ 1. Then A can be denoted

as follows:

A = 〈C1, . . . , Ck〉

where, for every i, 1 ≤ i ≤ k, Ci is the i-element of A.

Example 32 (list notation of a bi list). Let A be a bi list TFS, such that terminal v a, and terminal v b:

A =

ne bi list

HEAD : 1

ne node

CURR : a

PREV : null

NEXT : 2

ne node

CURR : b

PREV : 1

NEXT : 3

ne node

CURR : b

PREV : 2

NEXT : null

TAIL : 3

then:

63

• the length of A is 3;

• the 1-node of A is 1 , the 2-node is 2 and the 3-node is 3 ;

• the 1-element of A is a, the 2-element is b and the 3-element is b;

• the list notation of A is 〈a, b, b〉;

A.3 Bi list operations

In the following we define several operations on bi list TFSs.

Definition 52 (pop head). Let A and B be two bi list TFSs, such that the length of A is k ≥ 1. B =

pop head (A) if:

• if k = 1:

A =

ne bi list

HEAD : 1 node

TAIL : 1

then

B = elist

• if k ≥ 2

A =

ne bi list

HEAD : 1

ne node

CURR : t1

PREV : null

NEXT :

ne node

CURR : t2

PREV : 1

NEXT : 2 node

TAIL : 3 node

64

where terminal v t1 and terminal v t2, then

B =

ne bi list

HEAD :

ne node

CURR : t2

PREV : null

NEXT : 2 node

TAIL : 3 node

Definition 53 (concatenation of bi lists). Let A1 and A2 be two bi list TFSs, with length k1 and k2,

respectively. A TFS bi list A is a concatenation of A1 and A2, denoted by A = A1 ·A2, if:

• if A2 = elist, then A = A1;

• if A1 = elist, then A = A2;

• if A1 6= elist and A2 6= elist, we assume, without loss of generality, that the reentrancy tags of A1

and A2 are disjoint. Then A is a bi list of t of length k = k1 + k2 such that:

– for every i, 1 ≤ i ≤ k1 − 1, the i-node of A is the i-node of A1.

– the k1-node of A is the k1-node of A1, whose NEXT feature points to the 1-node of A2.

– the k1 + 1-node of A is the 1-node of A2, whose PREV feature points to the k1-node of A1.

– for every j, 2 ≤ j ≤ k2, the k1 + j-node of A is the j-node of A2.

Example 33. (concatenation of bi list TFSs). Let terminal, a, b ∈ TYPES, such that terminal v a and

terminal v b. Let A1 and A2 be two TFSs of type ne bi list as follows:

A1 =

ne bi list

HEAD : 1

ne node

CURR : a

PREV : null

NEXT : 2

ne node

CURR : b

PREV : 1

NEXT : null

TAIL : 2

A2 =

ne bi list

HEAD : 3

ne node

CURR : a

PREV : null

NEXT : null

TAIL : 3

65

Then A = A1 ·A2 is:

A =

ne bi list

HEAD : 1

ne node

CURR : a

PREV : null

NEXT : 2

ne node

CURR : b

PREV : 1

NEXT : 3

ne node

CURR : a

PREV : null

NEXT : null

TAIL : 3

Definition 54 (sublist). Let A and B be two bi list TFSs. B is a sublist of A, if there exist two bi list

TFSs, C and D, such that A = C ·B ·D.

Example 34. (list notation and sublists of a bi list) Let A be a TFS of type bi list:

A =

bi list

HEAD : 1

ne node

CURR : a

PREV : null

NEXT : 2

ne node

CURR : b

PREV : 1

NEXT : 3

TAIL : 3

ne node

CURR : b

PREV : 2

NEXT : null

66

then the list notation of A is A = 〈a, b, b〉 and the sublists of A (in list notation) are:

〈a, b, b〉 , 〈a, b〉 , 〈b, b〉 , 〈a〉 , 〈b〉 , elist.

67

68

Appendix B

Proofs of the main results

This section proves that the class of RTULs , LRTUG, is equivalent to the class RCLs, LRCG. First we

prove that LRCG ⊆ LRTUG (Section B.2), and then that LRTUG ⊆ LRCG (Section B.3). To do so,

we first define an instantiated grammar, G|w , over an RTUG G and a word w, such that w ∈ L
(
G|w

)
if and only if w ∈ L (G). We use instantiated grammars as intermediate grammars, to show that for a

given RTUG G and a given word w , there is an RCG GRCG, such that w ∈ L (GRCG) if and only if

w ∈ L
(
G|w

)
, hence, w ∈ L (G), and vice versa.

B.1 Instantiated grammar

We start by defining instantiated TFSs and rules, in a similar way to instantiated predicates and clauses

(Definition 15). Given a restricted signature S and a string w ∈ WORDS∗, an instantiated TFS of w is a

maximally specific TFS over S, such that the content of every feature value of type bi list is a substring

of w (see the definition of bi list content below). Given a word w ∈ WORDS, an RTUG G over S, and a

rule r ∈ R, r′ is an instantiated rule of r and w, if r subsumes r′, and every TFS of r′ is an instantiated

TFS of w. The set of all instantiated rules ofG and w is the instantiated grammar ofG and w, denoted

by G|w .

Definition 55 (bi list content). Let B be an explicit bi list of length k (see Definition 49 in Appendix A).

The content of B is w = a1 . . . ak, and B is the list representation of w, if for every i, 1 ≤ i ≤ k, the

i-element of B is ai. If the content of B is w, we write B = [w].

Example 35. (The content of bi list) The content of 〈a, a, b, b〉 is aabb, and is written [aabb].

Definition 56 (list instantiation). Let B be a TFS of type bi list and w ∈ WORDS∗. IB is a list instanti-
ation of B and w if:

• IB is an explicit bi list of type bi list,

• B v IB,

• the content of IB is a substring of w.

69

Example 36 (list instantiation). Let w = abbb and B = 〈a〉 · 1 bi list. IB = 〈a, b, b〉 is a list instantia-

tion of B and w.

Given a word w ∈ WORDS∗, and a main TFS A, the instantiated TFS of A and w is a maximally

specific main TFS IA, such that A v IA, and where the contents of the feature values are substrings of

w.

Definition 57 (Instantiated TFS). Let A be a main TFS over a restricted signature S and w ∈ WORDS∗.

A main TFS IA is an instantiated TFS of A and w if:

• A v IA

• IA is maximally specific.

• For every feature f of A, the value of the feature f of IA is a list instantiation of B and w.

Example 37 (Instantiated TFS). Let A be a TFS over the signature presented in Example 14, and w =

aabb.

A =

counter

INPUT : 1 bi list

COUNTER : 〈a〉 · 1

The following TFS IA is an instantiated TFS of A and w:

A =

at

INPUT : 〈a〉

COUNTER : 〈a, a〉

Definition 58 (Instantiated rule). Let G be an RTUG over a restricted signature S, w ∈ WORDS∗, and

r ∈ R, r = A0 → A1 . . . Am. The rule r′ = IA0 → IA1 . . . IAm is an instantiated rule of r and w if:

• r′ is a restricted rule, as defined in Definition 27,

• for every i, 0 ≤ i ≤ m, IAi is an instantiated TFS of Ai and w,

• If two bi lists of r, B1 and B2 are marked with the same tag l , then the corresponding list

instantiation of B1 and B2 in r′, IB1 and IB2 respectively, have the same content.

• r′ has no reentrancy tags.

Instantiated rules include only instantiated TFSs. Instantiated TFS are maximally specific (they sub-

sume no TFS but themselves). This renders unification with such TFSs no more than identity check.

Since unification is trivial, there is no distinction between type and token identity; in other words, reen-

trancies can be ignored.

70

Example 38. (Rule instantiation) Let

r =

at

INPUTcounter : 1 · 2

COUNT : 〈a〉 · 3

→

at

INPUTcounter : 1 bi list

COUNT : 〈a〉

bt

INPUTcounter : 2 bi list

COUNT : 3 bi list

 ,
and w = aabb. The following is an instantiated rule of r and w:

r′ =

at

INPUTcounter : 〈a, b, b〉

COUNT : 〈a, b, b〉

→

at

INPUTcounter : 〈a〉

COUNT : 〈a〉

bt

INPUTcounter : 〈b, b〉

COUNT : 〈b, b〉

 ,

where 〈a〉 is the list instantiation of 1 , and 〈b, b〉 is the list instantiation of 2 and 3 (see the definition

of list instantiation above).

Definition 59 (Instantiated grammar). Let G = 〈R, As,L〉 be an RTUG and w ∈ WORDS∗. G|w =〈
R|w , As|w ,L|w

〉
is The instantiated grammar of G and w if:

• r′ ∈ R|w if and only if r′ is an instantiated rule of some rule r ∈ R and w;

• As|w =

S
INPUTS : [w]

 ;

• IA ∈ L|w (u) if and only if u ∈ WORDS is a substring of w, and IA is an instantiated TFS of A

and w, for some A ∈ L (u).

Observe that for a given word w ∈ WORDS∗ and a given rule r ∈ R, there can be many instantiated

rules of r and w. All of them are inR|w .

By definition of instantiated rules (Definition 58), they have no reentrancies, hence G|w has no reen-

trancies. Feinstein and Wintner (2008) show that UG without reentrancies is equivalent to a context-free

grammar. Therefore, G|w is a context-free grammar (CFG).

Note that the fact that G|w is a CFG does not suggest that G itself is also a CFG. G|w is created by

instantiation of G to exactly one word, w. As we show in Lemma 2, the language of G|w includes only

w, if w is included in L (G), and is empty otherwise.

Lemma 1. Let G be an RTUG, w ∈ WORDS∗ and A a main TFS. Let u be a substring of w and k ≥ 0.

A
k⇒G u if and only if there is an instantiated TFS of A and w, IA, such that IA ∗⇒G|w

u, and the value

of the input feature of IA is a list representation of u.

Proof. Direction 1: By induction on the length of the derivation path k:

Base: If k = 1, A 1⇒G u, then u ∈ WORDS and A ∈ L (u). By the definition of restricted

lexicons, the value of the input feature of A is u, hence the value of the input feature of every

instantiated TFS of A is u.

71

Step: Assume that the lemma holds for every d ≤ k. We now prove the lemma for k + 1: If

A
k+1⇒ G u, then by definition of TUG derivation, there is a rule r ∈ R:

A→ A1 . . . Am,m ≥ 1,

such that

A1 . . . Am
k⇒G u.

By definition of TUG derivation, for every i, 1 ≤ i ≤ m, there exist ui and di, such that:

Ai
di⇒G ui,

where di ≤ k and u = u1 · . . . · um. By the induction hypothesis, for every i, 1 ≤ i ≤ m,

there is an instantiated TFS of Ai and w, IAi, such that IAi
∗⇒G|w

ui, and the value of the

input feature of IAi is a list representation of ui. Then, by definition of rule instantiation,

there is an instantiated rule of r and w:

IA→ IA1 . . . IAm,

such that IA is an instantiated TFS of A and w. Hence, by the definition of TUG derivation,

IA
∗⇒G|w

u1 · . . . · um = u. By definition of restricted rules, the value of the input feature

of the mother is a concatenation of the input feature of the daughters, hence the value of the

input feature of IA is the list representation of u1 · . . . · um = u.

Direction 2: By induction on the length of the derivation path k:

Base: If k = 1, IA 1⇒G|w
u, then u ∈ WORDS and IA ∈ LG|w (u). By the definition of LG|w ,

IA ∈ L|w (u) if there is a main TFS A, such that, IA is an instantiated TFS of A and w, and

A ∈ L (u). Hence, A ∗⇒G u.

Step: Assume that the lemma holds for every d ≤ k. We now prove the lemma for k + 1: If

IA
k+1⇒ G|w

u, then by definition of TUG derivation, there is a rule r′ ∈ R:

IA→ IA1 . . . IAm,m ≥ 1,

such that

IA1 . . . IAm
k⇒G u.

By definition of TUG derivation, for every i, 1 ≤ i ≤ m, there exist ui and di, such that:

IAi
di⇒G|w

ui,

where di ≤ k, and u = u1 · . . . · um. By the induction hypothesis, for every i, 1 ≤ i ≤ m,

there is a main TFS of Ai, such that IAi is an instantiated TFS of Ai and w, and Ai
∗⇒G ui.

72

By definition of rule instantiation, there is a rule r and w:

A→ A′1 . . . A
′
m,

such that IA is an instantiated TFS of A and w, and for every i, 1 ≤ i ≤ m, IAi is

an instantiated TFS of A′i and w. Note that for every i, 1 ≤ i ≤ m, Ai and A′i can be

different TFSs, but they both subsume IAi, hence, they are unifiable. By definition of TUG

derivation, if Ai
∗⇒G ui, then A′i

∗⇒G ui. Hence, by the definition of TUG derivation,

A
∗⇒G u1 · . . . · um = u.

Lemma 2. Let G be an RTUG and w ∈ WORDS∗. w ∈ L (G) if and only if w ∈ L
(
G|w

)
Proof. Direction 1: Assume w ∈ L (G), henceAs

∗⇒G w. From Lemma 1, there is an instantiated TFS

of As and w, IAs, such that IAs
∗⇒G|w

w, and the content of the input feature of IAs is w. By

definition of instantiated grammars (Definition 59), the start symbol of G|w is an instantiated TFS

of As whose input feature content is w. Hence, IAs is the start symbol of G|w , and by definition

of context-free language, if IAs
∗⇒G|w

w, w ∈ L
(
G|w

)
.

Direction 2: Assume w ∈ L
(
G|w

)
, hence there is a derivation path from the start symbol of G|w , IAs

to w. By definition of instantiated grammars IAs is an instantiated TFS of As and w. From

Lemma 1, IAs
∗⇒G|w

w only if there is a TFS A, such that IAs is an instantiated TFS of A and

w, and A ∗⇒G w. By definition of TUG derivation, since A and As have a common upper bound

IAs, As
∗⇒G w. Hence, by definition of the language of TUG, w ∈ L (G).

B.2 Direction 1: LRCG ⊆ LRTUG

This section proves that for every RCGGrcg, there exists an RTUGGtug, such that L (Grcg) = L (Gtug).

Obviously, we choose Gtug = RCG2TUG (Grcg), and show that their languages coincide. For the

following discussion fix an RCG G = 〈N,T, V, P, S〉 , and let RCG2TUG (G) = Gtug = 〈R, As,L〉,
defined over the signature 〈TYPES,v, FEATS, Approp,WORDS〉.

B.2.1 L (G) ⊆ L (Gtug)

We prove that L (G) ⊆ L (G)tug by showing that if w ∈ L (G), then w ∈ L
(
Gtug |w

)
. We already

proved in Lemma 2 that w ∈ L
(
Gtug |w

)
implies w ∈ L (Gtug).

The following two lemmas claim that string instantiation and bi list instantiation (Definition 56))

73

commute with arg2feat (Definition 35). See the commutative diagram below:

α
arg2feat−→ A = arg2feat (α)

string inst. ↓ ↓ list inst.

u
arg2feat−→ B = arg2feat (u)

Example 39. Let w = abcd, α = aXc,X ∈ V and u = abc. Observe that u is a string instantiation of

α, where the terminal b is assigned to the variable X .

A = arg2feat (α) =

ne bi list

HEAD :

ne node

CURR : a

PREV : elist

NEXT : 1 bi list

TAIL :

ne node

CURR : c

PREV : 1

NEXT : elist

B = arg2feat (u) =

ne bi list

HEAD : 2

ne node

CURR : a

PREV : elist

NEXT : 3

ne node

CURR : b

PREV : 2

NEXT : 4

TAIL : 4

ne node

CURR : c

PREV : 3

NEXT : elist

74

Observe that B is a list instantiation of A and w, since we can write A = 〈a〉 ·D · 〈c〉, D is a bi list TFS,

and B = 〈a〉 · 〈b〉 · 〈c〉.

Lemma 3. Let w ∈ T ∗, u be a substring of w, and α ∈ {T ∪ V }∗. Let A = arg2feat (α), and

B = arg2feat (u). If u is a string instantiation of α, then B is a list instantiation of A and w.

Proof. By induction on the length of α:

Base: • If α = ε, then, by definition of string instantiation, u = ε. By definition of arg2feat ,

A = elist, and also B = elist. Hence, B is a list instantiation of A and w.

• If α = a ∈ T , then, by definition of string instantiation, u = a. By definition of arg2feat,

A = 〈a〉 = B. Hence, B is a list instantiation of A and w.

• If α = X ∈ V then, by definition of string instantiation, any substring of w is a string

instantiation of w, and in particular u. By definition of arg2feat, A = bi list, and B = [u].

By definition of list instantiation, any explicit bi list whose content is a substring of w is a

list instantiation of A, in particular B.

Step: Assume that the lemma holds for every α whose length ≤ k. We now prove it for α of length

k + 1:

• If α = a·β, such that a ∈ T and β ∈ {T ∪ V }∗ is of length k, then, by definition of arg2feat,

A = 〈a〉 ·D, such that D = arg2feat (β). By definition of predicate instantiation, u = a · δ,

such that δ is a string instantiation of β. By definition of arg2feat,B = 〈a〉 ·E, such thatE is

an explicit bi list whose content is δ. From the induction hypothesis, E is a list instantiation

of D, and so B is a list instantiation of A and w.

• If α = X · β, such that X ∈ V and β ∈ {T ∪ V }∗ is oflength k, then, by definition of

arg2feat, A = H ·D, such that H is an implicit bi list and D = arg2feat (β). By definition

of string instantiation, u = a · δ, such that a ∈ T and δ is a string instantiation of β. By

definition of arg2feat, B = 〈a〉 ·E, such that E is an explicit bi list whose content is δ. From

the induction hypothesis, E is a list instantiation of D. By definition of list instantiation, 〈a〉
is a list instantiation of E, and so, B is a list instantiation of A and w.

Lemma 4. Let w ∈ T ∗, u be a substring of w, and α ∈ {T ∪ V }∗. Let A = arg2feat (α), and

B = arg2feat (u). If B is a list instantiation of A and w, then u is a string instantiation of α.

Proof. By induction on the length of α:

Base: • If α = ε, then, by definition of arg2feat, A = elist. By definition of list instantiation,

B = A = elist. By definition of arg2feat, u = ε. Hence, u is a string instantiation of α.

• If α = a ∈ T , then, by definition of arg2feat, A = 〈a〉. By definition of list instantiation,

B = A = 〈a〉. By definition of arg2feat, u = a. Hence, u is a string instantiation of α.

75

• If α = X ∈ V then, then, by definition of arg2feat, A = bi list. By definition of list

instantiation, B can be any explicit bi list whose content is a substring of w. By definition

of arg2feat, u is the content of B, hence u is a substring of w, and by definition of string

instantiation, any substring of w, and in particular u, is a string instantiation of α.

Step: Assume that the lemma holds for every α whose length ≤ k. We now prove it for α of length

k + 1:

• If α = a·β, such that a ∈ T and β ∈ {T ∪ V }∗ is of length k, then, by definition of arg2feat,

A = 〈a〉 · D, such that D = arg2feat (β). By definition of list instantiation, B = 〈a〉 · E,

such that E is a list instantiation of D. By definition of arg2feat, u = a · δ, such that δ is the

content of E, and a substring of w. From the induction hypothesis, δ is a string instantiation

of β, and so u is a string instantiation of α.

• If α = X · β, such that X ∈ V and β ∈ {T ∪ V }∗ is of length k, then, by definition of

arg2feat, A = H ·D, such that H is an implicit bi list and D = arg2feat (β). By definition

of list instantiation, B = 〈a〉 · E, such that E is a list instantiation of D. By definition of

arg2feat, u = a · δ, such that a ∈ T and δ is the content of E, and a substring of w. From the

induction hypothesis, δ is a string instantiation of β. By definition of string instantiation, any

substring of w, and in particular a, is a string instantiation of X and w. Hence u is a string

instantiation of α.

The following two lemmas claim that instantiation (of predicates, Definition 15, and of TFSs, Defi-

nition 57) commutes with pred2tfs (Definition 35).See the commutative diagram below:

ϕ
pred2tfs−→ A = pred2tfs (ϕ)

pred. inst. ↓ ↓ TFS inst.

ψ
pred2tfs−→ IA = pred2tfs (ψ)

The following lemma claims that given w ∈ T ∗ and a predicate ϕ, if ψ is a predicate instantiation of ϕ

and w, then pred2tfs (ψ) is a TFS instantiation of pred2tfs (ϕ) and w.

Example 40. Let w = abac, and ϕ = N (XY, aZ) be a predicate such that X,Y, Z ∈ V . An instanti-

ated predicate of ϕ and w is ψ = N (ab, ac). The TFS A is pred2tfs (ϕ):

A =

N

INPUTN : elist

ARG1 : 1 bi list · 2 bi list

ARG2 : 〈a〉 · 3 bi list

.

76

The TFS IA is pred2tfs (ψ):

IA =

N

INPUTN : elist

ARG1 : 〈a, b〉

ARG2 : 〈a, c〉

.

Clearly, IA is an instantiated TFS of A and w.

Lemma 5. Let w ∈ T ∗. For every predicate ϕ = N (α1, . . . , αh), such that for every i, 1 ≤ i ≤ h,

αi ∈ {T ∪ V }∗, and for every instantiated predicate ψ = N (ρ1, . . . , ρh) ∈ IPG,w, IA = pred2tfs (ψ)

is an instantiated TFS of A = pred2tfs (ϕ) and w.

Proof. By Definition 35, pred2tfs (ϕ) is of the form:

A =

N

INPUTN : elist

ARG1 : B1

...

ARGh : Bh

where for every i, 1 ≤ i ≤ h, Bi = arg2feat (αi). pred2tfs (ψ) is of the form:

IA =

N

INPUTN : elist

ARG1 : C1

...

ARGh : Ch

where for every i, 1 ≤ i ≤ h, Ci = arg2feat (ρi). By Definition 36, each Ci is an explicit bi list whose

content is ρi. By definition of string instantiation (Definition 15) ρi is a substring of w. From Lemma 3

for every i, 1 ≤ i ≤ h, Ci is a list instantiation of Bi. Hence, IA is an instantiated TFS of A and w.

In a similar way to Lemma 5, The following lemma claims that instantiation and of TFSs commutes

with pred2tfs, but in the other direction: Given w ∈ T ∗ and a main TFS A, if ϕ is a predicate such

that A = pred2tfs (ϕ), and IA is a TFS instantiation of A and w, and if ψ is a predicate such that

IA = pred2tfs (ψ), then ψ is a predicate instantiation of ϕ and w.

77

Example 41. Let w = abac, and A be a main TFS:

A =

t

INPUTt : elist

ARG1 : 1 bi list · 2 bi list

ARG2 : 〈a〉 · 3 bi list

.

IA is an instantiated TFS of A and w:

IA =

t

INPUTt : elist

ARG1 : 〈a, b〉

ARG2 : 〈a, c〉

.

ϕ = t (XY, aZ) is a predicate such that A = pred2tfs (ϕ). ψ = t (ab, ac) is a predicate such that

IA = pred2tfs (ψ). Clearly ψ is an instantiated predicate of ϕ and w.

Lemma 6. Let w ∈ T ∗. For every main TFS A, and for every instantiated TFS of A and w, IA, if ϕ is a

predicate such thatA = pred2tfs (ϕ), and ψ is a predicate such that IA = pred2tfs (ψ), then ψ ∈ IPG,w
is an instantiated predicate of ϕ.

Proof. If A is of the form:

A =

t

INPUTt : elist

ARG1 : B1

...

ARGh : Bh

,

then, from Definition 57, IA is of the form:

IA =

t

INPUTt : elist

ARG1 : IB1

...

ARGh : IBh

,

where for every i, 1 ≤ i ≤ h, IBi is a list instantiation of Bi and its content is ui, a substring of w. By

the definition of pred2tfs, Definition 35:

ϕ = t (α1, . . . αh) ,

78

where for every i, 1 ≤ i ≤ h, Bi = arg2feat (αi), and

ψ = t (ρ1, . . . ρh) ,

where for every i, 1 ≤ i ≤ h, ρi is the content of IBi and, by definition of list instantiation, it is a

substring of w. From Lemma 4, for every i, 1 ≤ i ≤ h, ρi is a string instantiation of αi. Hence, ψ is an

instantiated predicate of ϕ.

Lemma 7. Let w ∈ T ∗. For every instantiated predicate ψ ∈ IPG,w, if ψ k⇒G,w ε (see k-derivation,

Definition 19), then pred2tfs (ψ)
∗⇒Gtug |w

ε.

Proof. By induction on the length of the derivation path:

Base: If k = 1, then ψ 1⇒G,w ε. By the definition of RCG derivation, there is an instantiated clause in

ICG,w;

ψ → ε.

By Definition 18, there is a non-instantiated clause in P :

ϕ→ ε,

where ψ is an instantiated predicate of ϕ. By Definition 35 , there is a rule inR:

pred2tfs (ϕ)→ ε.

From Lemma 5, pred2tfs (ψ) is an instantiated TFS of pred2tfs (ϕ) and w. By definition of rule

instantiation, there is an instantiated rule in Gtug |w of the form:

pred2tfs (ψ)→ ε.

Hence,

pred2tfs (ψ)
1⇒Gtug |w

ε.

Step: Assume that Lemma 7 holds for every d ≤ k. We now prove the lemma for k + 1. Assume that

ψ
k+1⇒ G,w ε,

By Definition 19, there is an instantiated clause in ICG,w:

ψ → ψ1 . . . ψm,

where for every i, 1 ≤ i ≤ m, ψi ∈ IPG,w, and there is a di ≤ k, such that,

ψi
di⇒G,w ε.

79

From Lemma 5, there is an instantiated rule in Gtug |w :

(∗) pred2tfs (ψ)→ pred2tfs (ψ1) . . . pred2tfs (ψm) .

From the induction hypothesis, for every i, 1 ≤ i ≤ m,

pred2tfs (ψi)
∗⇒Gtug |w

ε.

Hence, we can derive ε from every daughter of (∗), and obtain

pred2tfs (ψ)
∗⇒Gtug |w

ε.

Lemma 8. For every w ∈ T ∗, there is a derivation path in Gtug |w :

S′
INPUTS′ : [w]

 ∗⇒ w.

Proof. By induction on the length of w:

Base: • If w = ε, by Definition 34, there is a rule inR:S′
INPUTS′ : elist

→ ε

Hence, S′
INPUTS′ : elist

 ∗⇒ ε

• If w = a ∈ T , by Definition 34, there is an entry in L:

a→

S′
INPUTS′ : 〈a〉

Hence, S′

INPUTS′ : 〈a〉

 1⇒ a

Step: Assume that Lemma 8 holds for every w, such that |w| ≤ k. We now prove the lemma for

w′ = a · w, such that a ∈ T and |w| ≤ k:

80

• From the induction hypothesis:

(1)

S′
INPUTS′ : [w]

 ∗⇒ w,

(2)

S′
INPUTS′ : 〈a〉

 ∗⇒ a.

• By Definition 34,R always includes the following rule:S’

INPUTS′ : 1 · 2

→
S’

INPUTS′ : 1 〈terminal〉

S’

INPUTS′ : 2 bi list

Hence, there is an instantiated rule in Gtug |w′ :S’

INPUTS′ : 1 · 2

→
S’

INPUTS′ : 1 〈a〉

S’

INPUTS′ : 2 [w]

 .
Applying this instantiated rule to (1) and (2), we obtain:S’

INPUTS′ : 1 · 2

⇒
S’

INPUTS′ : 1 〈a〉

S’

INPUTS′ : 2 [w]

 ∗⇒ a · w.

Theorem 9. For every RCG G, if Gtug = RCG2TUG (G), then L (G) ⊆ L (Gtug)

Proof. Let w ∈ L (G). Hence, by Definition 20, there is a k ≥ 1, such that:

S (w)
k⇒G,w ε

• By Definition 35,

pred2tfs (S (w)) =

S′′

INPUTS′′ : elist

ARGS′′ : [w]

 .
From Lemma 7, there is a derivation path:

(1)

S′′

INPUTS′′ : elist

ARGS′′ : [w]

 ∗⇒ ε

81

• From Lemma 8:

(2)

S′
INPUTS′ : [w]

 ∗⇒ w.

• By Definition 34, the start rule of Gtug is

S
INPUTS : 1 bi list

→
S′

INPUTS′′ : 1

S′′

INPUTS′′ : elist

ARGS′′ : 1

Then, for every w ∈ L (G), there is an instantiated rule in Gtug |w :

2

S
INPUTS : 1 [w]

→
S′

INPUTS′′ : 1

S′′

INPUTS′′ : elist

ARGS′′ : 1

 .
By applying this rule to (1) and (2), we obtain the following derivation sequence:

2

S
INPUTS : 1 [w]

⇒
S′

INPUTS′′ : 1

S′′

INPUTS′′ : elist

ARGS′′ : 1

 ∗⇒ w

S′′

INPUTS′′ : elist

ARGS′′ : 1

 ∗⇒ w.

Since 2 is an instantiated TFS of the start symbol As and w, As
∗⇒ w, and so w ∈ L (Gtug).

B.2.2 L (Gtug) ⊆ L (G)

We prove that L (Gtug) ⊆ L (G) by showing that if w ∈ L (Gtug), then w ∈ L
(
Gtug |w

)
. By Lemma 2,

this implies w ∈ L (G). Recall that for every w ∈ WORDS∗, Gtug |w is context-free.

Lemma 10. For every w ∈ T ∗ and for every k ≥ 1, if there is a derivation path in Gtug |w :

A0
k⇒Gtug |w

A1 . . . Am,

then there is a derivation path in G:

ϕ0
∗⇒G,w ϕ1 . . . ϕm,

such that for every i, 0 ≤ i ≤ m, ϕi ∈ IPG,w, and Ai = pred2tfs (ϕi).

Proof. We prove the lemma by induction on the length of derivation path:

82

Base: If k = 1, A0
1⇒ A1 . . . Am, then there is a rule r ∈ Gtug |w of the form:

r = A0 → A1 . . . Am

By Definition 57, there is a rule r′ ∈ Gtug of the form:

r′ = B0 → B1 . . . Bm

where for every i, 0 ≤ i ≤ m, Ai is an instantiated TFS of Bi and w.

By Definition 35, there is a clause p ∈ P , such that r′ = clause2rule (p), of the form:

p = ψ0 → ψ1 . . . ψm,

such that for for every i, 0 ≤ i ≤ m, Bi = pred2tfs (ψi).

From Lemma 6, there is an instantiated clause of p andw, q ∈ ICG,w, such that r = clause2rule (q),

of the form:

q = ϕ0 → ϕ1 . . . ϕm,

such that for for every i, 0 ≤ i ≤ m, Ai = pred2tfs (ϕi). Hence,

ϕ0
∗⇒G,w ϕ1 . . . ϕm.

Strep: Assume that Lemma 10 holds for every d ≤ k. Now we prove the lemma for k+ 1. Assume that

there is a derivation path in Gtug |w :

A0
k+1⇒ Gtug |w

A1 . . . Am.

By definition of derivation in CFG, there is a rule in Gtug |w :

A0 → B1 . . . Bl,

such that for every i, 1 ≤ i ≤ l, Bi is an instantiated TFS, and

Bi
di⇒Gtug |w

Γi,

where di ≤ k and Γi is a string of instantiated TFS, such that
⋃

1≤i≤l Γi = A1 . . . Am.

Then there is an instantiated clause in ICG,w:

ϕ0 → ψ1 . . . ψl,

such that A0 = pred2tfs (ϕ0), and for every i, 0 ≤ i ≤ l, Bi = pred2tfs (ψi). From the induction

83

hypothesis, for every i, 0 ≤ i ≤ l, there is a derivation path in G:

ψi
∗⇒G,w Φi,

where Φi is a string of predicates, such that
⋃

1≤i≤l Φi = ϕ1 . . . ϕm, where for every j, 1 ≤ j ≤ m,

Aj = pred2tfs (ϕj). Hence,

ϕ0 → ψ1 . . . ψl
∗⇒G,w ϕ1 . . . ϕl,

and by definition of RCG derivation (Definition 19),

ϕ0
∗⇒G,w ϕ1 . . . ϕl

Theorem 11. For every RCG G, if Gtug = RCG2TUG (G), then L (Gtug) ⊆ L (G).

Proof. By Lemma 2, ifw ∈ L (Gtug), thenw ∈ Gtug |w . By the definition of derivation and the definition

of Gtug |w , there is a derivation path in Gtug |w :

S′′

INPUTS′′ : elist

ARGS′′ : [w]

 ∗⇒Gtug |w
ε.

Then, from Lemma 10, there is also a derivation path in G:

S (w)
∗⇒G,w ε.

By Definition 20, w ∈ L (G).

B.3 Direction 2: LRTUG ⊆ LRCG

This section proves that for every RTUG Gtug, there exists an RCG Grcg, such that L (Grtug) =

L (Grcg).

Unlike the previous section, in a general RTUG signature, subsumption may hold between main

types. Hence if A is a main TFS and IA is an instantiated TFS of A and some w ∈ WORDS∗, then the

type of IA may be different from the type of A (recall that by definition of an instantiated TFS, it must

be maximally specific). For this case we define below a hierarchy over non-terminals and predicates of

RCG that is equivalent to the hierarchy over types and TFSs of RTUG.

In a similar way to Direction 1 of the proof (Section B.2), we will chooseGrcg = TUG2RCG (Gtug),

as defined in Definition 30, and show that their languages coincide. For the following discussion

84

fix an RTUG G = 〈R, As,L〉, defined over the typed signature 〈TYPES,v, FEATS, Approp〉, and let

TUG2RCG (G) = Grcg = 〈N,T, V, P, S〉.

B.3.1 Predicate subsumption

We define a hierarchy over non-terminals and predicates of RCG, in a similar way to the type hierarchy

and TFS subsumption of TUG.1 In general, given an RTUG G over a signature S, and an RCG Grcg =

TUG2RCG (G), we say that the non-terminal Nt ∈ N subsumes the non-terminal Ns ∈ N , if the type t

subsumes the type s in S. We say that a predicate ϕ subsumes the predicate ψ, if the non-terminal of ϕ

subsumes the non-terminal of ψ, and every argument of ϕ is a string instantiation of the corresponding

argument of ϕ. Note that the definition of predicate subsumption is much tighter then the definition of

TFS subsumption.

For the following discussion, fix an RTUGG over a restricted typed signature S = 〈TYPES, FEATS,v
, Approp〉, and an RCG Grcg = 〈N,T, V, P, S〉 = TUG2RCG (G), such that Grcg = TUG2RCG (G).

Definition 60 (Non-terminal hierarchy). Let Nt and Ns be two non-terminals in N , such that ar (Nt) =

ar (Ns). Nt subsumes Ns if and only if the type t ∈ TYPES subsumes the type s ∈ TYPES. If the

non-terminal Ns subsumes no other non-terminal, we say that Ns is a maximum non-terminal.

Definition 61 (Predicate subsumption). Let ϕ = t (α1, . . . , αh) and ψ = s (ρ1, . . . , ρh) be two predi-

cates. ϕ subsumes ψ if and only if:

• t subsumes s, and

• for every i, 1 ≤ i ≤ h, ρi is a string instantiation of αi.

ψ is a maximum predicate if it subsumes no other predicate but itself.

Definition 62 (Non-terminal subsumption). Let ϕ be a predicate of type t, such that t subsumes s. The

non-terminal subsumption of ϕ and s is the predicate γ whose non-terminal is s, and whose arguments

are the same as ϕ’s.

Lemma 12. Let

ϕ = t (α1, . . . , αh) .

Let

ψ = s (ρ1, . . . , ρh) .

Let γ be the non-terminal subsumption of ϕ and s:

γ = s (α1, . . . , αh) .

If ϕ subsumes ψ, then ψ is an instantiated predicate of γ.

1Recall that each non-terminal Nt in TUG2RCG (G) corresponds to a type t in G.

85

Proof. By definition of predicate subsumption, for every i, 1 ≤ i ≤ h, ρi is a string instantiation of αi.

Hence, by definition of predicate instantiation, ψ is a predicate instantiation of γ.

Example 42. Consider Glongdist and TUG2RCG (Glongdist) of Example 15:

• v subcat (X) subsumes v np (loves), because v subcat v v np;

• v np is a maximum type and v np (loves) is a maximum predicate.

Lemma 13. Let

ϕ = t (α1, . . . , αh) ,

let

γ = t (ρ1, . . . , ρh) ,

be an instantiated predicate of ϕ, and let

ψ = s (ρ1, . . . , ρh) .

If ϕ subsumes ψ, then γ ∗⇒Grcg ,w ψ.

Proof. By definition of predicate subsumption, t subsumes s. By definition of (the unification clauses

of) TUG2RCG:

t (X1, . . . , Xh)
∗⇒ s (X1, . . . , Xh) , X1, . . . , Xh ∈ V

Hence, γ ∗⇒Grcg ,w ψ.

B.3.2 L (G) ⊆ L (Grcg)

Like the previous section, we prove that L (G) ⊆ L (Grcg) by showing that if w ∈ L (G), then w ∈ G|w ,

and then w ∈ L (Grcg).

The following lemmas claim that string instantiation and bi list instantiation (Definition 56) commute

with feat2arg (Definition 32). See the commutative diagram below:

B
feat2arg−→ α = feat2arg (B)

list inst. ↓ ↓ string inst.

C
feat2arg−→ ρ = feat2arg (C)

If B is a TFS of type bi list, its length is:.

• 0 if B = elist,

• 1 if B is an implicit bi list, or if B is an explicit bi list with only one element, and

• k, k ≥ 1, if B is a concatenation of k bi list of length 1 (see the definition of concatenation of

bidirectional lists, Definition 53).

86

Lemma 14. Let w ∈ WORDS∗, B be a TFS of type bi list and C be an explicit bi list whose content is

u, a substring of w. Let α = feat2arg (B) and ρ = feat2arg (C). If ρ is a string instantiation of α, then

C is a list instantiation of B and w.

Proof. We prove the lemma by induction on the length of B.

Base: • If B = elist, then by the definition of feat2arg, α = ε. By definition of string instantiation

ρ = ε, and by definition of feat2arg, C = elist. Hence C is a list instantiation of B and w.

• If B = 〈a〉, a ∈ WORDS, then by the definition of feat2arg, α = a. By the definition of

string instantiation, ρ = a, and by the definition of feat2arg, C = 〈a〉. Hence C is a list

instantiation of B and w.

• If B is an implicit bi list, then by the definition of feat2arg, α = X , for some X ∈ V . By

definition of string instantiation ρ = u, such that u is any substring of w. By the defini-

tion of feat2arg, C is an explicit bi list whose content u. By definition of list instantiation,

any explicit bi list whose content is a substring of w is a string instantiation of B and w.

Specifically, C is such.

Step: Assume that the lemma holds for every B of length ≤ k. We now prove it for B of length k + 1:

• If B = 〈a〉 · D, a ∈ T and D is a bi list of length ≤ k, then by the definition of feat2arg,

α = a · β, such that β = feat2arg (D). By definition of string instantiation, ρ = a · µ,

where µ is a string instantiation of β, and a · µ is a substring of w. By definition of feat2arg,

C = 〈a〉 ·H , such that H = [µ]. From the induction hypothesis, H is a list instantiation of

D and w, hence, C is a list instantiation of B and w.

• If B = D · E, such that D is an implicit bi list and E is a bi list of length ≤ k, then, by the

definition of feat2arg, α = X · β, where X ∈ V and β = feat2arg (E). By definition of

string instantiation, ρ = u · µ, where µ is a string instantiation of β, and u · µ is a substring

of w. By feat2arg definition, C = Q · H , such that Q = [u], and H = [µ]. From the

induction hypothesis, H is a list instantiation of E and w. By definition of list instantiation,

any explicit bi list (in particular, Q) whose content is a substring of w is a list instantiation

of D. Hence, C is a list instantiation of B and w.

Lemma 15. Let w ∈ WORDS∗, B be a TFS of type bi list and C be an explicit bi list whose content is

u, a substring of w. Let α = feat2arg (B) and ρ = feat2arg (C). If C is a list instantiation of B and w,

then ρ is a string instantiation of α.

Proof. We prove the lemma by induction on the length of B.

Base: • If B = elist, then by the definition of feat2arg, α = ε. By definition of list instantiation,

C = elist, and by the definition of feat2arg, ρ = ε = α, hence ρ is a string instantiation of

α.

87

• If B = 〈a〉, a ∈ WORDS, then by the definition of feat2arg, α = a. By definition of list

instantiation, C = 〈a〉, and by the definition of feat2arg, ρ = a = α, hence ρ is a string

instantiation of α.

• If B is an implicit bi list, then by the definition of feat2arg, α = X , for some X ∈ V . By

definition of list instantiation, C is an explicit bi list whose content ρ, is a substring of w. By

definition of string instantiation, any substring of w is a string instantiation of X , hence ρ is

a string instantiation of α.

Step: Assume that the lemma holds for every B of length ≤ k. We now prove it for B of length k + 1:

• If B = 〈a〉 · D, a ∈ T and D is a bi list of length ≤ k, then by the definition of feat2arg,

α = a · β, such that β = feat2arg (D). By definition of list instantiation, C = 〈a〉 · E, such

that E is a list instantiation of D and w, and by the definition of feat2arg, ρ = a · δ, such that

δ is the content of E. From the induction hypothesis, δ is a string instantiation of β, hence ρ

is a string instantiation of α.

• If B = D · E, such that D is an implicit bi list and E is a bi list of length ≤ k, then, by the

definition of feat2arg, α = X · β, where X ∈ V and β = feat2arg (E). By definition of list

instantiation, C = F ·H , where H is a list instantiation of E and F is some explicit bi list.

By the definition of feat2arg, ρ = δ · λ, where δ is the content of F . From the induction

hypothesis, λ is a string instantiation of β. By definition of string instantiation, any substring

of w is a string instantiation of X , and in particular δ. Hence ρ is a string instantiation of α.

The following lemma deals with the commutativity of instantiation and the mapping between TFSs

and predicates. Unlike the previous section, in a general RTUG a TFS A and its instantiated TFS IA

can be of different types. In this case, we cannot claim that tfs2pred (IA) is an instantiated predicate

of tfs2pred (A), since they may have different non-terminals. What we can claim, however, is that

tfs2pred (A) subsumes tfs2pred (IA), as defined in Definition 61. See the commutative diagram below:

A
tfs2pred−→ ϕ = tfs2pred (A)

TFS inst. ↓ ↓ subsumes

IA
tfs2pred−→ ψ = tfs2pred (IA)

Example 43. Consider the following fragment of the signature of Glongdist, repeated from Example 15:

Signature

main

v subcat INPUTvs:bi list

v np

88

v s

...

Consider further the TFS

A =

v subcat

INPUTvs : 1 bi list

Let w = loves, so the instantiated TFS of A and w is:

IA =

v np

INPUTvs : 〈loves〉

tfs2pred (A) = ϕ = v subcat (X) , X ∈ V
tfs2pred (IA) = ψ = v np (loves)

Clearly, ψ is not an instantiated predicate of ϕ. However, given the unification clauses of the grammar

TUG2RCG (Glongdist):
v subcat (X) → v np (X)

v subcat (X) → v s (X)

we can see that v subcat subsumes v np and ϕ subsumes ψ.

Lemma 16. Let w ∈ WORDS∗. Let A be a main TFS A, and IA be an instantiated TFS of A and w. If

ϕ = tfs2pred (A), and ψ = tfs2pred (IA), then ϕ subsumes ψ.

Proof. If:

A =

t

ARG1 : B1

...

ARGh : Bh

 ,

then by definition of instantiated TFS (Definition 57):

IA =

s

ARG1 : IB1

...

ARGh : IBh

 ,

where t v s, and for every i, 1 ≤ i ≤ h, IBi is a list instantiation of Bi whose content is ρi, a substring

of w. By the definition of tfs2pred (Definition 32):

ϕ = Nt (α1, . . . αh) ,

89

where for every i, 1 ≤ i ≤ h, αi = feat2arg (Bi), and

ψ = Ns (ρ1, . . . ρh) .

By definition of non-terminal subsumption (Definition 60), Nt subsumes Ns. From Lemma 15, for

every i, 1 ≤ i ≤ h, ρi is a string instantiation of αi. Hence, by definition of predicate subsumption

(Definition 61), ϕ subsumes ψ.

The last step of this direction is to prove that if w ∈ L
(
G|w

)
, then w ∈ L (Grcg), or in other

words, that As|w
∗⇒G|w

w implies S (w)
∗⇒Grcg ,w ε. To prove it we need one more lemma that

claims that if IA k⇒ G|wu, where IA is any instantiated TFS and u is any substring of w, then

tfs2pred (AI)
∗⇒Grcg ,w ε. Recall from Lemma 1 that u is the content of the input feature of IA. Hence,

by the definition of tfs2pred, u is the first argument of tfs2pred (IA).

Lemma 17. Let w ∈ L (G), IA be an instantiated TFS, u be a substring of w, and ϕ = tfs2pred (IA).

Let k ≥ 1. If IA k⇒G|w
u, then ϕ ∗⇒Grcg ,w ε.

Proof. Let t be the type of IA. By definition of instantiated TFS, t is maximal (it subsumes no other

type). By definition of tfs2pred, the non-terminal of ϕ is Nt.

By induction on the length of the derivation path k:

Base: If k = 1, then u ∈ WORDS, and by definition of derivation,

IA→ u ∈ G|w .

Hence, IA ∈ L|w (u). By definition of L|w , There is a TFS A, such that IA is an instantiated

TFS of A and w, and A ∈ L (u). Let s be the type of A, and ψ = tfs2pred (A). By definition of

tfs2pred, the non-terminal of ϕ isNs, andNs subsumesNt. Let γ be the non-terminal subsumption

of ψ andNt, hence the non-terminal of γ isNt and its arguments are the same as ψ’s. By definition

of TUG2RCG, there is a clause in P

ψ → ε,

If Ns is maximal, then Ns = Nt, hence γ = ψ. Otherwise, since Ns v Nt, by definition of

TUG2RCG, there is a clause in P :

γ → ε.

From Lemma 16, ψ subsumes ϕ. From Lemma 12, ϕ is a predicate instantiation of γ. Hence, by

definition of ICGrcg ,w, there is an instantiated clause:

ϕ→ ε.

hence, by definition of derivation, ϕ ∗⇒Grcg ,w ε.

90

Step: Assume that Lemma 17 holds for every d ≤ k. We now prove the lemma for k+ 1: If IA k+1⇒ G|w

u, then by definition of derivation, there is a rule in G|w of the form:

IA→ IA1 . . . IAm,

where for every i, 1 ≤ i ≤ m, IAi is an instantiated TFS, such that

IAi
di⇒G|w

ui, di ≤ k

and u = u1 . . . um. By the induction hypothesis, for every i, 1 ≤ i ≤ m, if ϕi = tfs2pred (IAi),

then there is a derivation path

ϕi
∗⇒Grcg ,w ε.

By definition of instantiated grammar, there is a rule inR:

A→ A1 . . . Am,

where IA is an instantiated TFS of A and w, and for every i, 1 ≤ i ≤ m, IAi is an instantiated

TFS of Ai and w. Let s be the type of A, and ψ = tfs2pred (A). By definition of tfs2pred, the

non-terminal of ϕ is Ns, and Ns subsumes Nt. Let γ be the non-terminal subsumption of ψ and

Nt. By definition of TUG2RCG, there is a clause in P

ψ → ψ1 . . . ψm,

such that for every i, 1 ≤ i ≤ m, ψi = tfs2pred (Ai). If Ns is maximal, then Ns = Nt, hence

γ = ψ. Otherwise, since Ns v Nt, by definition of TUG2RCG, there is a clause in P :

γ → ψ1 . . . ψm.

From Lemma 12, ϕ is an instantiated TFS of γ, hence, by definition of ICGrcg ,w, there is an

instantiated clause:

ϕ→ λ1 . . . λm,

such that for every i, 1 ≤ i ≤ m, let λi is a predicate instantiation of ψi. From Lemma 16, for

every i, 1 ≤ i ≤ m, ψi subsumes ϕi, hence, from Lemma 13, λi
∗⇒Grcg ,w ϕi. Hence,

ϕ
∗⇒Grcg ,w ϕ1 . . . ϕm

∗⇒Grcg ,w ε.

Theorem 18. For every RTUG G, if Grcg = TUG2RCG (G), then L (G) ⊆ L (Grcg).

Proof. If w ∈ L (G), then from Lemma 2, w ∈ L
(
G|w

)
. Hence, there is a derivation path in G|w from

91

the start symbol to w: start

INPUTstart : [w]

 ∗⇒G|w
w,

From Lemma 17, there is a derivation path in Grcg:

S (w)
∗⇒Grcg ,w ε.

By definition of the language of Grcg, Definition 20, w ∈ L (Grcg).

B.3.3 L (Grcg) ⊆ L (G)

In this section we prove that L (Grcg) ⊆ L (G). Hence, if w ∈ L (Grcg), then w ∈ L (G).

In this section we prove it directly onG, without usingG|w , because here we deal with commutativity

of subsumption of TFSs and predicates, rather then instantiation as in the previous sections. What

we claim in Lemma 19 below is that if tfs2pred (A) subsumes tfs2pred (B), then A v B. See the

commutative diagram below:
A

tfs2pred−→ ϕ = tfs2pred (A)

v ↓ ↓ subsumes

B
tfs2pred−→ ψ = tfs2pred (B)

Lemma 19. Let w ∈ T ∗, A and B be main TFSs, ϕ = tfs2pred (A), and ψ = tfs2pred (B). If ϕ

subsumes ψ, then A v B.

Proof. Let:

A =

t

ARG1 : C1

...

ARGh : Ch

 ,

where for every i, 1 ≤ i ≤ h, Ci is a TFS of bi list type. By definition of tfs2pred:

ϕ = Nt (α1, . . . , αh) ,

where for every i, 1 ≤ i ≤ h, αi = feat2arg (Ci). By definition of predicate subsumption,

ψ = Ns (ρ1, . . . , ρh) ,

where Nt subsumes Ns, and for every i, 1 ≤ i ≤ h, ρi is a string instantiation of αi and a substring of

92

w. By definition of tfs2pred,

B =

s

ARG1 : D1

...

ARGh : Dh

 ,

where for every i, 1 ≤ i ≤ h, ρi = arg2feat (Di). By definition of non-terminal subsumption, t v s.

From Lemma 14, for every i, 1 ≤ i ≤ h, if ρi is a string instantiation of αi, then Di is a list instantiation

of Ci. Hence, by definition of TFS subsumption, A v B.

The following lemma claims that if there is a main TFS A, such that tfs2pred (A) is an instantiated

predicate whose first argument is u and there is a derivation path in Grcg from tfs2pred (A) to ε, then

there is a derivation path inG fromA to u. This lemma is one step before showing that given a main TFS

A, such that As v A, and the value of the input feature of A is w, if there is a derivation path in Grcg
from tfs2pred (A) to ε (hence w ∈ L (Grcg)), there is a derivation path in G from A to w (and hence

w ∈ L (G)).

Lemma 20. Let w ∈ T ∗ and u be a substring of w. Let ϕ be an instantiated predicate in IPGrcg ,w, such

that the first argument of ϕ is u. Let A be a main TFS, such that ϕ = tfs2pred (A), and let k ≥ 1. If

ϕ
k⇒Grcg ,w ε, then A ∗⇒G u.

Proof. By definition of feat2arg, if the first argument of ϕ is u, then the value of the input feature of A

is an explicit bi list whose content is u. We prove the lemma by induction on the length of the derivation

path, k:

Base: If k = 1, ϕ 1⇒Grcg ,w ε. By definition of RCG derivation, there is an instantiated clause in

ICGrcg ,w:

ϕ→ ε.

By definition of instantiated clauses, there is a clause in P :

γ → ε,

such that ϕ is an instantiated predicate of γ. Let Nt be the non-terminal of ϕ and γ. Hence, by

definition of TUG2RCG, there is a clause p ∈ P :

ψ → ε,

where the non-terminal of ψ is Ns, and γ is the non-terminal subsumption of ψ and Nt (in the

trivial case, Ns = Nt, and ψ = γ). Let B be a TFS such that ψ = tfs2pred (B). Clearly, ψ

subsumes ϕ, hence, from Lemma 19, B v A. By definition of instantiated TFS, the value of the

input feature of A is a list instantiation of the value of the input feature of B. By definition of

TUG2RCG, p can be in P in the following cases:

93

1. there is a rule inR of the form:

B → ε,

or,

2. there is a word u′ ∈ WORDS, such that B ∈ L (u′).

1. If there is a rule inR:

B → ε,

by definition of UG derivation, if B v A, then A ∗⇒G ε. By definition of restricted rules, the

value of the input feature of both A and B is elist, hence u = ε, and A ∗⇒G u.

2. If there is a word u′ ∈ WORDS, such that B ∈ L (u′), then by definition of restricted

lexicon, the content of the input feature of B is u′. Hence, by definition of list instantiation,

the content of the input feature of A is u = u′. By definition of UG derivation, if B v A,

then A ∗⇒G u.

Step: Assume that the lemma holds for every d ≤ k. We now prove it for k + 1: If ϕ k+1⇒ Grcg ,w ε, then

by definition of RCG derivation, there is an instantiated clause in ICGrcg ,w:

ϕ→ ϕ1 . . . ϕm,

where for every i, 1 ≤ i ≤ m, ϕi
di⇒Grcg ,w ε, di ≤ k. From the induction hypothesis, if ϕi =

tfs2pred (Ai), then there is a substring of w, ui, such that Ai
∗⇒G ui. By definition of instantiated

clauses, there is a clause in P :

γ → γ1 . . . γm,

such that ϕ is an instantiated predicate of γ, and for every i, 1 ≤ i ≤ m, ϕi is an instantiated

predicate of γi. Let t be the non-terminal of γ and ϕ. Hence, by definition of TUG2RCG, there is

a clause p ∈ P :

ψ → γ1 . . . γm,

where the non-terminal of ψ is s, and γ is the non-terminal subsumption of ψ and t (in the trivial

case, s = t, and ψ = γ). Let B be a TFS such that ψ = tfs2pred (B). By definition of RCG2TUG,

there is a rule inR:

B → C1 . . . Cm,

where for every i, 1 ≤ i ≤ m, γi = tfs2pred (Ci). From Lemma 19, for every i, 1 ≤ i ≤ m, if γi
subsumes ϕi, then Ci v Ai. By definition of UG derivation, if Ai

∗⇒G ui, then Ci
∗⇒G ui. Hence,

B
∗⇒G u1 . . . um = u′

. From Lemma 19, B v A, hence,

A
∗⇒G u

′.

94

From Lemma 1, u′ is the content of the input feature of A, hence, by definition of feat2arg, the

first argument of ϕ is u′ = u.

Theorem 21. For every RTUG G, if Grcg = TUG2RCG (G), then L (Grcg) ⊆ L (G).

Proof. If w ∈ L (Grcg), then by definition of L (Grcg), there is a derivation path:

S (w)
∗⇒Grcg ,w ε.

From Lemma 20, there is a derivation path in G:start
INPUTstart : [w]

 ∗⇒G w.

Clearly,

As =

start
INPUTstart : 1 bi list

 v
start

INPUTstart : [w]

Hence, As

∗⇒G w, and w ∈ L (G).

95

