Modular Context-Free Grammars

Shuly Wintner (shuly@cs.haifa.ac.il)

Department of Computer Science, University of Haifa

Abstract. Given two context-free grammars (CFGs), Gi1 and G», the language
generated by the union of the grammars is not the union of the languages generated
by each grammar: L(G1UG») # L(G1)UL(G2). In order to account for modularity of
grammars, another way of defining the meaning of grammars is needed. This paper
adapts results from the semantics of logic programming languages to CFGs. We
discuss alternative approaches for defining the denotation of a grammar, culminating
in one which we show to be both compositional and fully-abstract. We then show how
grammar modules can be defined such that their semantics retains these desirable
properties. This gives a clear, mathematically sound way for composing parts of
grammars.

Keywords: context-free grammars, modularity, programming language semantics

1. Introduction

The tasks of developing large scale grammars for natural languages be-
come more and more complicated: it is not unusual for a single grammar
to be developed by a team including a number of linguists, computa-
tional linguists and computer scientists. Computational grammars with
broad coverage are complex entities, sometimes made up by tens of
thousands of lines of code (Oepen et al., 2000; Wahlster, 1997). In such
a setup, the problems that grammar engineers face when they design
a broad-coverage grammar for some natural language are very remi-
niscent of the problems tackled by software engineering (Erbach and
Uszkoreit, 1990). Considerable effort was invested in making parsers
and other grammar manipulating systems more efficient (Wintner and
Francez, 1999; Carpenter and Penn, 1999; Callmeier, 2000; Malouf
et al., 2000; Sarkar et al., 2000). However, while software develop-
ers can benefit from two decades of research of software engineering,
grammar engineering is in its infancy. In most large-scale systems (e.g.,
XTAG (The XTAG Research Group, 1998), LKB (Copestake, 1999),
ALE (Carpenter and Penn, 1999), etc.) the grammar consists of a single
conceptual entity (even when it is distributed over more than one file),
and very few provisions for modular development of grammars exist.
Our goal in this paper is to provide a good definition for modules in
context-free grammars (CFGs) and define module composition in a way
that supports a transparent implementation. We focus on context-free
grammars, probably the simplest linguistic formalism that was ever

';:‘ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

final.tex; 24/10/2001; 18:40; p.1

2 Shuly Wintner

suggested as appropriate for describing the structure of natural lan-
guages. It is widely believed today that CFGs are not expressive enough
for this task. Still, the present work can serve as the departure point for
exploration with more powerful formalisms, notably unification-based
grammars. We believe that the results reported here can be adequately
extended to more expressive frameworks.

1.1. MOTIVATION

The motivation for modular grammar development systems is straight-
forward. Constructing large-scale grammars becomes much simpler
when the task can be cleanly distributed among different develop-
ers, provided that well-defined interfaces govern the interaction among
modules. In an Internet era, modularity facilitates the development of
several domain-specific sub-grammars that can reside on different sites
and be integrated with server-side modules on demand.
Back in 1990, Erbach and Uszkoreit (1990) observed that

The development of large grammars is extremely slow. Existing
large grammars have usually been developed by a single per-
son... In computer programming, modularization has proved to
be a useful concept for the distributed development of large pro-
grams. [However, | No methods exist for the modularization of
grammars... A modularization concept would not only further ef-
ficient development, it would also boost reusability and grammar
evaluation.

The needs for modularity are also acknowledged by, e.g., Woszczyna
et al. (1998), who note that “Many of the advantages of modularity
and shared libraries equally apply to the design of a ... grammar for
a large domain,” and by Lehmann et al. (1995), noting that “gram-
mars need to be modular, and we need a useful working definition of
modularity”. The exact form of modularity can be debated: in a recent
work, Copestake and Flickinger (2000) claim that “Any grammar devel-
opment environment should provide explicit support for collaborative
development”, but state further:

It is often suggested that the problem with grammar engineering is
that there is a lack of modularity, but it is not clear to us that this
is correct.

Later, they agree that “there are other notions of modularity”, but
conclude that “despite the many aids to grammar engineering that have
been developed, we think that to some extent it just has to be accepted
that it really is inherently difficult.” We hope to show here a first step
towards a systematic solution of an inherently difficult problem.

final.tex; 24/10/2001; 18:40; p.2

Modular Context-Free Grammars 3

1.2. RELATED WORK

While the needs are clear, solutions are few and far between; very few
attempts were made to address modularity directly. In what follows we
survey some of them.

While not directly useful for natural languages, attribute grammars
are a formalism that extends CFGs by augmenting non-terminal sym-
bols with a flat form of feature structures. Attribute grammars are
used primarily for specifying the syntax and semantics of programming
languages; motivated by the need for more abstraction in the specifica-
tion, Dueck and Cormack (1990) describe a mechanism for generating
attribute grammars from rules which are grouped together as modular
attribute grammars. The formalism can be viewed as a way to group
the scalar rules together; but it does not provide for interactions among
different rules, and it does not define the notion of a grammar module.

Kasper and Krieger (1996) describe a technique for dividing a
unification-based grammar into two components, roughly along the
syntax/semantics axis. Their motivation is efficiency: observing that
syntax usually imposes more constraints on permissible structures, and
semantics usually mostly adds structure, they propose to parse with
the syntactic constraints first, and apply the semantics later. However,
this proposal requires that a single grammar be given, from which the
two components can be derived. Also, they observe that the intersec-
tion of the languages generated by the two grammars does not yield
the language of the original grammar. Another attempt to introduce
modularity, as well as other grammar engineering techniques, to a gram-
matical formalism, was done in the context of ALEP (Theofilidis et al.,
1997; Bredenkamp et al., 1997). Here, too, the major consideration is
efficiency; there is no discussion detailing how a grammar can be devel-
oped in modules, or how grammar fragments are integrated. Still in the
context of unification-based grammars, Lehmann et al. (1995) define
modules as sets of types in a system that is based on typed feature
structures. This proposal is not fully worked out, but we disagree with
one of its major assumptions, namely that “in order to reuse a module
from a grammar, its dependencies to other modules must be reduced
to a minimum.” On the contrary, we seek a definition for modules that
will explicate the interface among modules and their interactions. In
a different work, Keselj (2001) builds on ideas introduced by Wintner
(1999c) to provide a definition of modular HPSG. The definition is
rather ad-hoc, and no evaluation of its suitability or usefulness is given.

Zajac and Amtrup (2000) present an implementation of a pipeline-
like composition operator that enables the grammar designer to break
a grammar into sub-grammars that are applied in a sequential manner

final.tex; 24/10/2001; 18:40; p.3

4 Shuly Wintner

at run-time. Such an organization is especially useful for dividing the
development process into stages that correspond to morphological pro-
cessing, syntax, semantics, and so on. The notion of composition here
is such that sub-grammar G;; operates on the output of sub-grammar
G;; such an organization might not be suitable for many grammar
development frameworks. A similar idea is proposed by Basili et al.
(2000): it is an approach to parsing that divides the task into sub-
tasks, whereby a module component P; takes an input sentence at a
given state of analysis S; and augments this information in S;;; using
a knowledge base K. Here, too, it is the processing system, not the
grammar, which is modularized in a pipeline fashion.

A different approach to designing modular grammars is employed
by Woszczyna et al. (1998). Here, grammars encode semantic infor-
mation rather than syntactic structure, and thus interactions among
different modules are kept to a minimum. The sub-domain grammars
draw from a shared library of rules in order to maintain consistency in
the treatment of common objects such as dates or time expressions; but
the parser tags sub-trees according to their sub-domain, which implies
that the interaction among modules is minimal.

1.3. METHODOLOGY

What is missing from most of the works described above is a system-
atic methodology for developing a concept of modules. As Erbach and
Uszkoreit (1990) point out,

A prerequisite for achieving the reusability of grammatical re-
sources are mathematical concepts and a representation language
for the abstract specification of grammatical knowledge. An ab-
stract declarative specification language with a clean semantics is
needed.

In this work we define such a semantics and use it to drive a “good”
definition of modules in CFGs. To motivate our approach, we note
that a naive definition of modules would not do. Suppose one defines
a module simply as a context-free grammar, with a simple operation
that composes modules by unioning their components (non-terminal
symbols, terminal symbols and rules). Since rules of two different mod-
ules can interact in the composed grammar, the language generated
by the composed grammar would not be the union of the languages
generated by the two modules. A (formal) solution would have been
to rename the non-terminals apart, but this will eliminate any chance
of interaction between the two modules, and simply serve to define a
grammar for unioning the respective languages. What we seek here is
a definition that will facilitate such interaction.

final.tex; 24/10/2001; 18:40; p.4

Modular Context-Free Grammars 5

It is customary in computational linguistics to view grammars as
computer programs and grammar formalisms as high-level, declara-
tive programming languages (Pereira and Warren, 1983; Pereira and
Shieber, 1984; Shieber et al., 1995). Extending this view, it is possible to
adapt theoretical results obtained in the area of programming language
semantics to the investigation of grammar formalisms. Our departure
point in this work is the belief that any advances in grammar engi-
neering must be preceded by a more theoretical work, concentrating on
the semantics of grammars. This view reflects the situation in logic
programming, where developments in alternative definitions for the
semantics of predicate logic led to implementations of various program
composition operators (Bugliesi et al., 1994).

Why is formal semantics important? To use the terminology of
Donahue (1976), “the primary goal of formal semantics is to pro-
vide more effective communication between the language designer and
the various audiences with an interest in the language.” This kind of
communication can take different forms (Ghezzi and Jazayeri, 1987,
Chapter 9): first and foremost, grammar semantics provides a rigorous
and unambiguous definition of the grammatical formalism. It provides
a basis for comparing different formalisms and within a given formal-
ism, comparing different grammars. It is independent of a particular
implementation, and thus constructs that are based on clear semantics
are potentially more likely to be reusable across platforms. It forms
the basis for proving the correctness of an implementation: it can be
mathematically shown that a certain grammar implementation (such
as a parser) is faithful to its specification. And it forms the basis for
grammar correctness proofs: with a well-defined semantics a gram-
mar designer can prove mathematically that a certain grammar, or
a grammar fragment, has a particular effect. As we shall see below,
understanding the semantics of grammar formalisms better can lead to
natural definitions for grammar composition operators: the semantics
can drive the definition of such operators. Another benefit of research
on grammar semantics is that it can be used to implement grammar
manipulation programs such as parsers or generators, in a similar way
to the use of programming language semantics for the construction of
compilers and interpreters.

There are several ways to define the semantics of a programming
language (or a grammar formalism). Informally, a semantics assigns a
meaning, or a denotation, to every grammar. It also provides a way
to abstract away from the structure of the grammar itself: it induces
a natural equivalence relation on grammars, whereby two grammars
are equivalent if and only if they have the same denotations. As we
are motivated by modularity considerations, we seek a semantics that

final.tex; 24/10/2001; 18:40; p.5

6 Shuly Wintner

will equate exactly these grammars which “behave” the same in every
context. In other words, we search for a definition that will guarantee
that two grammars are equivalent if and only if they can be freely
substituted for each other, no matter what other grammars they are
composed with.

To formalize this notion we introduce two concepts, well estab-
lished in the theory of programming language semantics (Tennet,
1991, Chapter 1): compositionality (Scott and Strachey, 1971) and
full-abstraction (Milner, 1975). Compositionality ensures that the de-
notation of a grammar is expressed as a function of the denotations
of its components. An important benefit of compositionality is that
replacing any component of a grammar by a semantically equivalent
component yields a grammar that is semantically equivalent to the
original. Another benefit is that it allows properties of grammars to be
proven by induction on the structure of the composite grammar.

Compositionality can always be achieved in a trivial way by setting
the denotation of a grammar to be the grammar itself. However, such a
trivial semantics makes too many distinctions between grammars that
might otherwise be considered equivalent. A “good” semantics should
map grammars that are abstractly equivalent into the same equiva-
lence class; a semantics that makes unnecessary distinctions is “too
concrete”. An ideal semantics is fully-abstract: it does not distinguish
grammar fragments semantically unless there exist contexts for these
fragments that allow the differences to be observed.

In section 2 we survey two existing approaches, operational and
denotational, to the semantics of grammars. We show that they are
equivalent and that both are not compositional. We experiment with
alternative semantics in sections 3 and 4, eventually getting at one that
is both compositional and fully-abstract. We then discuss grammar
modularity in section 5, defining grammar modules and showing that
the chosen semantics is indeed fully-abstract for modular CFGs as well.

2. Semantics of CFGs

When formal languages are concerned, one usually thinks of grammars
as formal entities which denote languages. In other words, one usually
considers two grammars to be equivalent if (and only if) they generate
the same language. When grammars are used for natural languages,
it is sometimes required that two equivalent grammars also assign
isomorphic (or even identical) trees to the sentences they generate.
A general way to look at these possibilities is to view grammars as
syntactic notions which denote some other entities. The denotation of

final.tex; 24/10/2001; 18:40; p.6

Modular Context-Free Grammars 7

a grammar (G can be its language, L(G); or a set of pairs (w,7) such
that w € L(G) and 7 is some tree assigned to it by G. In other words, a
semantics is a function that associates some mathematical entity (such
as a set) with each grammar. In this section and the next two we
experiment with various definitions for the semantics of CFGs.

Of course, the choice of semantics cannot be arbitrary: one would
like a semantics to reflect in some way “what the grammar is doing”.
To formalize this intuitive notion we define an observables function,
associating a set Ob(G) with each grammar G. In the domain of pro-
gramming languages, the observables function reflects the input output
relation. The most natural observables for a grammar would be its
language, but an alternative choice would be to take all the derivable
strings, paired with the category that derives them. This provides more
detailed information about the grammar, including all the “phrases”
it defines, paired with their respective syntactic category. In this work
we take Ob(G) to be {(w,A) | w € La(G)} (w € La(G) if w can be
derived from the category A in GG, see below), although all the results
still hold when Ob(G) is taken to be L(G). This notion of observables
will be refined in section 4 to reflect the view of the lexicon as input to
the grammar.

To relate the semantics to the observables function, thereby con-
straining its arbitrariness, one usually requires that the semantics be
correct. A semantics is correct if whenever two grammars have the
same denotation, they also have the same observables. Of course, if one
defines the denotation of a grammar to be its observables, correctness
follows trivially; but it is possible to define a correct semantics that is
different from the observables function. We investigate such possibilities
below.

2.1. BASIC DEFINITIONS

Grammars are defined over a fixed, non-empty, finite set WORDS of
words. Meta-variables a and w range over WORDS and strings of
words (elements of WORDS"), respectively. A context-free grammar
is a quadruple (V,X%, P, A®), where V is a finite set of non-terminal
symbols, or categories; 3 : WORDS — 2V is a total function, a lezicon,
associating a finite, possibly empty set of categories with each word;
P is a finite set of production rules, each an element of V' x V*; and
A% C V is a set of categories, the start symbols.! Meta-variables A, S

! It is easy to see how this definition corresponds to the standard one, where rules
can incorporate terminals directly and only one start symbol is present. We deviate
from the standard definition to facilitate the definition of modules. Note that the
definition allows empty grammars (where V = P = |J, .\worps 2(a) = 0).

final.tex; 24/10/2001; 18:40; p.7

8 Shuly Wintner

range over categories and o, p — over forms, (possibly empty) sequences
thereof. A rule (A, (Ay,...,A,)) is written A — Ay,..., A,, and A is
its head. If n = 0 the rule is an e-rule (sometimes denoted simply A).
IN denotes the set {0,1,2,...}. For two functions f, g, over the same
(set) domain and range, f + g is defined as AI.f(I)Ug(I); f < g iff for
all I, f(I) C g(I); and f o g denotes function composition.

Figure 1 depicts an example grammar. V is the smallest set
containing all the categories that occur in P and X.

A {S} Y : sleeps — {V}
loves — {V}
P: §S— NPVP MaryH{PN}
P =V John > { PN}
VP —- V NP thPl—){D}
NP — DN man — {N}
NP — PN

Figure 1. An example grammar

A form o derives a form ¢’ in a grammar G = (V, 3, P, A®) (denoted
o=qgo)iffo =0/Ao, ando’ =0/A;--- Apo,and A — Ay --- A, € P.
The reflexive transitive closure of ‘=¢’ is ‘=¢’. The language of a
category A in grammar G, LA(G),is {a1---a, | A =g Ay,..., A, and
for every 1 < i < n, A; € ¥(a;)}. The language of a grammar G, L(G),
iS USGAS LS(G)

Fix a grammar G = (V, X, P, A®). Let ITEMS be the set {[w, 1, A, j] |
w € WORDS*, A€V andi,j € IN}. Let T = 9lTEMS \feta-variables
x,y range over items and I — over sets of items. When 7 is ordered by
set inclusion it forms a complete lattice with set union as a least upper
bound (lub) operation. A function 7' : Z — Z is monotone if whenever
I, C Iy, also T(I) C T'(I3). It is continuous if for every chain I} C I, C
v, T(Ujew Ij) = Ujey T(I). If a function T' is monotone it has a least
fixpoint (Tarski-Knaster theorem); if 7" is also continuous, the fixpoint
can be obtained by iterative application of T' to the empty set (Kleene
theorem): Ifp(T) =T T w, where Tt 0 =0 and Tt n=T(T 1 (n—1))
when 7 is a successor ordinal and (J,,,(T' 1 k) when n is a limit ordinal.

2.2. OPERATIONAL SEMANTICS

As Van Emden and Kowalski (1976) note, “to define an operational
semantics for a programming language is to define an implementational

final.tex; 24/10/2001; 18:40; p.8

Modular Context-Free Grammars 9

independent interpreter for it. For predicate logic the proof procedure
behaves as such an interpreter.” Shieber et al. (1995) view parsing as
a deductive process that proves claims about the grammatical status
of strings from assumptions derived from the grammar. Following this
insight, a deductive system for parsing CFGs can serve as a method for
defining their operational semantics.

DEFINITION 1. The deductive parsing system associated with a
grammar G = (V, %, P, A®) is defined over ITEMS and is characterized

by:
Axioms: [e,i, A,i] if A is an e-rule in P; a,i, A,i + 1] if A € ¥(a)
Goals: [w,0,S,|w|] where S € A®

Inference rules:

[wiy i1, Av, gl [wky ik, Ak, Jk] if 1 = 4141 for 1 <1<k and
1 =11 and j = jp and
[w1---wk,i,A,j] A— Ay,..., AL €P

When an item [w,i, A, j] can be deduced, applying & times the in-
ference rules associated with a grammar G, we write Gl—k[w,i,A,j]
(where k = 1 means using the axioms only for the deduction). When
the number of inference steps is irrelevant we omit it. The operational
denotation of a grammar G, then, is [G]op = {z | G F z}. It is easy to
show how the operational semantics corresponds to the language of a
grammar:

THEOREM 1. w € La(G) iff G F [w,0, A, |w]].

2.3. DENOTATIONAL SEMANTICS

As an alternative to the operational semantics described above, Pereira
and Shieber (1984) define denotational semantics through a fixpoint
of a transformational operator associated with grammars. Associate
with a grammar GG an operator T that, analogously to the immediate
consequence operator of logic programming, can be thought of as a
“parsing step” operator in the context of CFGs.

DEFINITION 2. LetTq : Z — T be a transformation on sets of items,
where for every I C ITEMS, [w,i, A, j| € Te(I) iff either

— there exist y1,...,yr € I such that y; = [wy,i;, Ay, 751] for 1 <
Il <kandiy =g for 1 <l < kand iy =1 and jp = 7 and
A— Ay,...,A; € P and w=wy---wg; or

final.tex; 24/10/2001; 18:40; p.9

10 Shuly Wintner
—1=7 and A is an e-rule in P and w = €; or

—i+1=jand |w| =1 and A € X(w).

For every grammar G, T is monotone and continuous, and hence
the least fixpoint of T exists and Ifp(Tg) = T T w. Following the
paradigm of logic programming languages, define a fixpoint semantics
for CFGs by taking the least fixpoint of the parsing step operator as
the denotation of a grammar.

DEFINITION 3. The fixpoint denotation of a grammar G is
Gl = Up(Te)-

THEOREM 2. The operational and the denotational semantics coin-
cide: z € lfp(Tq) iff G F =.
Proof.

— If GF"x then 2 € Tg 1T n. By induction on n: if n = 1 then z is

an axiom and therefore either z = [a,i, A,i + 1] and A € X(a)
or © = [ei,A,i and A is an erule. By the definition of Tg,
Ta(0) = {[e,i,A,7] | Aisanerule} U {[w,i,Ai + 1] | |w| =
land A € ¥(w)}, soz € T 1 1.
Assume that the hypothesis holds for n — 1; assume that
GF"[w, i, A, j] for n > 1. Then the inference rule must be applied at
least once, i.e., there exist items [wi,i1, A1, j1], ..., [wk, ik, Ak, Ik
such that 5; = 441 for 1 <! < k and 1 = 4; and 5 = j; and
A — Ay,...,A, € P. Furthermore, for every 1 <[< k, the item
[wy, 47, A7, 71] can be deduced in n — 1 steps: Gl—"‘*l[wl, i1, Ay, Ji]- By
the induction hypothesis, for every 1 <1 <k, [wy, i, 41,751 € T T
(n — 1). By the definition of T, applying the first clause of the
definition, [w,i, A, j] € Ta(Te 1 (n — 1)) =Tg 1T n.

— Ifz € Tg 1 n then GF"w. By induction on n: if n = 1, that is,

[w,i,A,j] € Teg 1 1, then either i = j, w = € and A is an e-rule
inG,ori+1=jand A€ X(w). In the first case, GF'[w, 1, A, j]
by the first axiom of the deductive procedure; in the other case,
GH[w,i, A, j] by the second axiom.
Assume that the hypothesis holds for n — 1 and that [w,i, A, j] €
T T n=Tg(Tg T (n — 1)). Then there exist items yp,...,yx €
Te 1 (n—l) such that y; = [w;,i;,Al,j;] for1 <l <kandii =7
forl1<l<kandi;=1and jy =jand A = Ay,..., A, € P and
w = w1 -- - wg. By the induction hypothesis, for every 1 <[< k,
GF""wy,i;, A, 5;], and the inference rule is applicable, so by an
additional step of deduction we obtain G+"[w, i, A, j].

final.tex; 24/10/2001; 18:40; p.10

Modular Context-Free Grammars 11

2.4. COMPOSITIONALITY

The choice of semantics induces a natural equivalence relation on gram-
mars: given a semantics ‘[-]’, G1 = G iff [G1] = [G2]. Recall that a
semantics is correct if whenever G; = Go, also Ob(G1) = Ob(G3). The
way we defined it, the operational semantics of a grammar, ‘[-]o,’, is
correct (by theorem 1). By theorem 2, this holds for the denotational
semantics ‘[[-]]fp’, too.

But correctness is only a sufficient condition for a good semantics.
We are concerned in this paper with the composition of grammar frag-
ments, or modules, through some composition operator defined over
CFGs. In order for a semantics to be useful in this context, it must
also be compositional. Intuitively, if a semantics is compositional, then
whenever two grammars are equivalent they can be interchanged in any
context without effecting the observables. This property is important
for a variety of reasons: for example, when constructing an optimizing
compiler for grammars, one can define a denotation-preserving opti-
mization and use the optimized code instead of the original one without
obstructing the observed behavior of the grammar. This is only possible
when the semantics is known to be compositional.

DEFINITION 4. Let ‘@’ be a (commutative) composition operation
on grammars. A (correct) semantics -]’ is compositional (Gaifman
and Shapiro, 1989) with respect to ‘@’ if whenever [G1] = [G2] and
[G3] = [G4], also [G1 @& G3] = [G2 @ G4]. It is commuting (Brogi
et al., 1992) with respect to ‘@’ if there exists a combination operator
on denotations, ‘e’, such that [G1 ® Ga] = [G1] ¢ [G2].

While we are only interested in compositionality here, commutativity
is a stronger notion: if a semantics is commuting with respect to some
operator then it is compositional (Wintner, 1999b). Tt will sometimes
be easier to prove commutativity rather than compositionality.

We now define a simple composition operator, called grammar
union, on CFGs. This is probably the most natural, even naive, com-
position operator: it simply unions the components of two grammars.
For real grammar development applications, this operator might turn
out to be insufficient, but it seems to be a necessary one. In the rest of
this work, we limit the discussion to this single grammar composition
operator.

DEFINITION 5. The union of two CFGs, G = (V1, %4, P1, A}) and
Go = (Va, X9, Py, A3), denoted G1 W Gy, is a new grammar G = (V; U
Vo, Y1 + 39, P U Py, Ai U A;)

final.tex; 24/10/2001; 18:40; p.11

12

Shuly Wintner

Gy : Gy Gy Gy
A% {5} { {s}
P: S — NP VP S — NP VP
VP - V VP - V
VP — V NP VP — V NP
NP - DN NP - DN
NP — PN NP — PN
X sleeps — { V} sleeps — { V}
loves — {V} loves — {V}
Mary — {PN} Mary — {PN}
John — {PN} John — {PN}
the — {D} the — {D}
man — {N} man — {N}

Figure 2. Grammar union

Figure 2 exemplifies grammar union. Observe that for every two
grammars G and Gy, G1 ¥ Gy = Gy W G.

THEOREM 3.
union.

Proof. Consider again the grammars of figure 2. Let G| be the same
as Gy, with the only difference being that P} = Py \ {VP — V NP}.
Now [G1llop = [G']op = {[loves, i, V,i+1]}i>oU{[loves, i, VP, i+1]};>oU
{[sleeps, i, V,i 4+ 1]};>0 U {[sleeps, i, VP, i + 1]};>0. But when composed
with G, both grammars yield different denotations. Since G| lacks the
rule VP — V NP, no sentences with transitive verbs are generated.
For example, for z = [John loves Mary, 0, S,3], z € [G1 ¥ G2]op but
z ¢ [G19G3]op. Thus, [G1]op = [G']op but [G1WG2]0p # [G1EG2]0p

and hence ‘[-]o,’ is not compositional.

T-lop’ is not compositional with respect to grammar

Observe that the rule VP — V NP contributes nothing to the deno-
tation of Gy, thereby allowing [G1], to be equal to [G]op. However,
when G is composed with Go, this rule can be used in a derivation,
yielding [G1 W Ga]op # [G) W G2]op- The denotational semantics ‘[[-]]fp’
will not be any different, of course, but it provides a better starting
point for experimenting with alternative definitions.

final.tex; 24/10/2001; 18:40; p.12

Modular Context-Free Grammars 13

3. A compositional semantics

To overcome the problems delineated above, we follow Mancarella and
Pedreschi (1988) in moving one step further, considering the grammar
transformation operator itself (rather than its fixpoint) as the denota-
tion of a grammar. For the following discussion, we fix the observables
function ‘Ob’ and the grammar union operator ‘&’

DEFINITION 6. The algebraic denotation of a grammar G is
[Gla =T Gi =a G2 iff Ta, = Tg, -

Not only is this semantics compositional, it is also commuting with re-
spect to grammar union, when a composition operation on denotations
is defined as:

Tg, o T, =Tg, +Tg, = M .Tg, (I) UTa, (I)

THEOREM 4. The semantics ‘[Ja’ is commuting with respect to
grammar union and ‘®’: for every two grammars Gi, Ga, [Gi]q ®
[Go]ar = [G1 W Go] -

Proof. We show that for every set of items I, T, wa, () = T, (1) U
T, (I).

— ifx €T (I) UTq,(I) then either z € T, (I) or x € T, (I). From
the definition of grammar union, z € TG, waq,(I) in any case.

— ifz € T, we, (I) then z can be added by either of the three clauses
in the definition of T¢.

e if z is added by the first clause then there is a rule p € P1UP,
that licenses . Then either p € P or p € P9, but in any case
p would have licensed the same item, so either z € T, (I) or
T € TG2 (I)

e if x is added by the second clause then there is an e-rule in
G1 W Gy due to which z is added, and by the same rationale
either x € T, (I) or z € T, (I).

e if z is added by the third clause then x = [w,i, A, + 1] and
w| =1 and A € (21 + X9)(w). Then either A € ¥;(w) or
A € ¥y(w), and therefore x € Tq, (I) UTq, ().

Intuitively, since T captures only one step of the computation, it
cannot capture interactions among different rules in the (unioned)
grammar, and hence taking T to be the denotation of G yields a
compositional semantics.

final.tex; 24/10/2001; 18:40; p.13

14 Shuly Wintner

The T operator reflects the structure of the grammar better than
its fixpoint. In other words, the equivalence relation induced by T¢ is
finer than the relation induced by Ifp(T). The question is, how fine is
the ‘=g’ relation? To make sure that a semantics is not too fine, one
usually checks the reverse direction.

DEFINITION 7. A semantics [-]” is fully abstract iff
[G1] = [G2] iff for all G, Ob(G1 W G) = Ob(G2 W Q)

Intuitively, if a semantics is compositional and fully-abstract, then two
grammars are equivalent iff they can be interchanged in every context.

PROPOSITION 5. The algebraic semantics -] q is not fully abstract.

Proof. Let Gy be the grammar A5 = {S}h%; = 0,P; =
{§ — NP VP, NP — NP} and Gj be the grammar A5 = {S},¥s =
0,P, = {§ — NP VP)}

— Gh1 #q Go: because Tg,({[w,i, NP, j]}) = {|w,i, NP,j|} but
TGZ({[wviaNPaj]}) =0

— for all G, Ob(G W G1) = Ob(G W Gy). The only difference between
G W G and G W G4 is the presence of the rule NP — NP in the
former. This rule can contribute nothing to a derivation, since any
item it licenses must already be derivable. Therefore, any item
derivable with G W (G; is also derivable with G W G5 and hence
Ob(G W G1) = Ob(G W Gy).

A simple solution to the problem would have been to consider,
instead of T, the following operator as the denotation of G:

[Gl;y = M. Ta(I) UT

In other words, the semantics is T + Id, where Id is the identity
operator. Evidently, for G; and G of the above proof, [G1];, = [G2];,,
so they no longer constitute a counter example. Also, it is easy to see
that the proof of theorem 4 requires only a slight modification for it to
hold in this case, so T + Id is commuting (and hence compositional).

Unfortunately, this does not solve the problem. Let G; be the
grammar

Ai :Q),El :Q),Pl :{Al —)AQ, A2 —)Ag, A‘; —)Al}
and G2 be the grammar

A? :@,21:@,P2:{A1 — Az, Ay — Ay, A3_)A2}

final.tex; 24/10/2001; 18:40; p.14

Modular Context-Free Grammars 15

To see that [G1];; # [G2l;; observe that Tg, ({{w,i, Ay, j]}) =
{[w, i, A1, j], [w, i, A3, §]}; however, Te, {[w, i, A1, 7]}) =
{[w, i, A1, j], [w,i, Ag, j]}. To see that Ob(G W Gi) = Ob(G W G9)
for every GG, observe that every rule application in either G1 or G5 can
be modeled by two rule applications in the other grammar, and hence
every category derivable in G W (1 is derivable in G W G5 and vice
versa.

4. A compositional and fully-abstract semantics

The choice of Ifp(T) as the denotation of a grammar is “too crude”
(it identifies grammars that behave differently when composed with
other grammars); Ti; + Id is “too fine” (it distinguishes between gram-
mars that can be interchanged in any context); the “right” semantics,
therefore, lies somewhere in between. Lassez and Maher (1984) suggest
the following semantics for logic programs: rather than consider the
operator associated with the entire program, they only look at the
rules (excluding the facts), and take the meaning of a program to be
the function that is obtained by infinite applications of the operator
associated with the rules. We adapt below the results of Lassez and
Maher (1984) and Maher (1988) to CFGs.

The main idea is to view the grammar as two separate units: the
rules and the lexicon. The rules encode the operation of the gram-
mar, while the lexicon (which consists of the lexical entries and also
the e-rules, viewed as lexical entries of the empty word) is input to
this operation. This separation is motivated by both linguistic and
computational considerations. Contemporary linguistic theories clearly
distinguish between the grammar and the lexicon; and computational
implementations such as parsers also tend to manipulate the lexicon “on
demand”: rather than compile the entire lexicon, only the lexical entries
of words in a given input are compiled at run-time. In this section we
show that viewing the lexicon as input to the grammar supports a
compositional and fully-abstract definition for grammar semantics.

First, we associate the following operator with a grammar:

DEFINITION 8. Let Rg : T — I be a transformation on sets of
items, where for every I C ITEMS, [w,i, A, j] € Rg(I) iff there exist
Y1, Yk € I such that y = [wy, i, Ay, ji] for 1 <1 <k and ij31 = j
for1 <l < kandiy =i and jp =7 and A = Aq,...,Ax € P and
w=wp - - Wk-

The functional denotation of a grammar G is [[G]]fn = (Rg +
Id)Y = %2 (Rg + Id)™. Notice that this is a function (from sets to
sets), not a set.

final.tex; 24/10/2001; 18:40; p.15

16 Shuly Wintner

R¢ is defined similarly to T (definition 2), ignoring the items added
(by T¢;) due to e-rules and lexical items. Let

Io ={[e,i,A,i] | Ais an erule in G} U {[a,i, A,i +1] | A € ¥(a)}

Then for every grammar G and every set of items I, T(I) = Ra(I) U
I¢. Furthermore, the functional semantics is naturally related to the
fixpoint semantics: when the former is applied to I, it yields the latter.

THEOREM 6. For every grammar G, (Rg + 1d)*(Ig) = Ifp(Tq).
Proof. We show that for every n, (Tg + Id) t n = (S}_)(R¢ +

Id)*)(Ig) by induction on n.

Forn = 1, (Tg + Id) 1 1 = (T + Id)(Tg + Id) 1 0) = (Tg +

Id)((). Clearly, the only items added by T are due to the second and

third clauses of definition 2, which are exactly Ig. Also, (X9_,(Ra +

1d)*)(Ig) = (Ra + 1d)" (1) = Ia-

Assume that the proposition holds for n—1, that is, (Tg+1d) T (n—1) =

(S7-2(Rg + Id)*)(Ig). Then

(Te +Id) tn = (T + 1d)((Tg + Id) 1 (n — 1))

definition of 1

= (Ta + Id)((Z;_5 (Ra + Id)*)(1e))
by the induction hypothesis

= (R + 1d)((Z}=5(Re + 1d)*) (1)) U Iq
since T(;() Rg()UIG

= (Rg + 1d)((Z3=5(Ra + Id)%) (1))

= (995y(Ra + 1d)*)(I¢)

Hence (Rg + Id)“ (1) = (T + Id) T w = Ifp(T¢).

Separating the lexicon from the grammar requires that the defini-
tion of observables be amended, to reflect the fact that the lexicon is
only available at run-time. In other words, the observables of a given
grammar must be defined with respect to a given input. Thus, let

Ob(G,I) = {{w, A) | [w,0, A, |wl|] € [[G]]fn(f)}

A semantics is correct iff G; = G5 implies that for all I, Ob(Gl, I =
Ob(Go, I). Clearly, for every given set of items I, if [[Gl]] = [[GQ]]fn

then [[Gl]]fn() = [[GQ]]}(‘T'(), and hence [[]] is (’orre(‘t ‘When the
input is taken to be I, the expected observables are obtained:

THEOREM 7. For every grammar G, (w,A) € Ob(G,Ig) iff w €
LA(G).

final.tex; 24/10/2001; 18:40; p.16

Modular Context-Free Grammars 17

Proof. Let z = [w,0, A, |w|]. Then:

(w,A) € Ob(G, 1) iff =€ [[G]]fn(fp) definition of Ob

ifft z € lfp(Tg) by theorem 6
iff GFzx by theorem 2
ifft we La(G) by theorem 1

To show that ‘[[-]]fn’ is compositional we must define an operator
for combining denotations. Unfortunately, the simplest operator, ‘+’,
would not do. To see that, consider the following grammars:

G]. A1—021—0P1—{5—> VP}
GQ AQ—QZQ—@PQ—{VP—)V}

Observe that, for x = [w, 1, V, j],

[G1]f, ({2}) = {=}
[[GQ]] - ({2}) = {=, [w,i, VP, j]}
[G1 U GQ]]fn({T}) ={z,[w,i,VP,j],[w,i,S,7]}

That is, ([G1]y, + [Gal) ({2}) = [G1l, () U[Gal s, ({2}) # [Gr &
Gl ({2},
However, define [[G]]]fn.[[GQ]]fn to be ([[G1]]fn+[[G2]]fn)“’. Then ‘[[-]]fn’

is commuting with respect to ‘e’ and ‘W’.

LEMMA 8. For every two grammars Gi,Ga, ([[G1]]fn + [[GQ]]fn) <
(IG11y, = [Ga,):

Proof. Recall that if f,g are two functions over the same domain
and range, f < g iff for all I, f(I) C g(I); and f o g denotes function
composition. Clearly, for every grammar G and set I,

(x) (Rg+Id)¥(I) 21 since (Rg+Id)(I) D1

Now ([G1]f, o [Galg,)(I) = [Gil,([G2] 4, (1) [Galg,(I) 2 1, hence
[[Gl]] ([[GQ]] (1)) 3 [[GQ]] (). From (*) and monotonicity, also
[[Gl]] ([[G2]] (1) 2 [G1]y, () Hence ([G1] g, o [G2] £,) (1) 2 (IG1]f, +
[[02]],”7,)() and (1G], + [[GQ]]fn) ([[Gl]]fn ° [[G2]]fn)

LEMMA 9. For every grammar G, [[G]]fn is idempotent: [[G]]fn o
&1, =[G,

Proof. (Lassez and Maher, 1984) For every I, ([[G]]fn o [[G]]fn)(l) =
(Ro-+ 1) o (Re+ 1)) (1) = (R + Td)* (R -+ 1) (1)) = »q(Re +
1d)' (352 (Ra + Td)' (1)) = B2,%520(Ra + Td)™(I) = X3_(Ra +
107D = (R + 14)°(1) = [Gly..

final.tex; 24/10/2001; 18:40; p.17

18 Shuly Wintner

THEOREM 10. [G1 @ Gs]y, = [Gh]y, » [Gol,-
Proof. (Lassez and Mabher, 1984) ' '

[Gi ¥ Galy, = (Ra, +1d+ Ra, + Id)”
((RGI + Id)w + (RG2 + Id)w)w
since Rg + Id < (Rg + Id)¥ for every G
(Rey + 1d)° o (R, + 1d)*)*
by lemma 8
< ((RGlthGz + Id)w ° (RGlt'JGz + Id)w)w
since G]] GQ 2 G] and G]] GQ 2 GQ
== ([[G]] GQ]]fn o [[G] & Ggﬂfn)w
definition of ‘[[-]]fn’
by lemma 9

= [[Gl H GQ]]fn

since (f¥)¥ = f¢
Thus all the inequations are equations, and in particular [G & Gg]]fn =
(Bey + 1d)” + (B, + 1)) = ([Gi]g, + [G2]})” = (IGh]f, +
[Galf,)” = [G1ly, [Galg,-

IN

IN

" is commuting, it is also compositional. Furthermore,

Since ‘[[]]fn

once the lexicon (including e-rules) is viewed as input to the grammar,
the semantics is also fully-abstract:

THEOREM 11. The semantics ‘[[]]fn 7 as fully abstract: for every two
grammars Gy and Go, if for every grammar G and set of items I,
Ob(Gh1 WG, I) =0b(Gy WG, I), then Gy =f Go.

Proof. Assume towards a contradiction that [[G1]]fn # [[Gg]]fn and
still for all I and all G, Ob(Gy1 W G1) = Ob(G4 W Gr). Without loss of
generality, assume that for z = [w, i, A, j], there exists I such that z €
[[G1]]fn(l) but z & [[Gg]]fn(l). Let G = (VU {A}, %, P, A%) be a CFG,
where V' = {S, By, By} is a set of categories such that VN (V;UV;) = 0,
Y(a) = 0 for every a, A* = {S} and p=S — By A By is the only rule
in P. Let y = [w,0,S,|w|]], y1 = [6,0,B1,i], y2 = [, 7, B, |w|] and
J=1U {y],yg}.

(w,S) € Ob(Gy WG, J): because p can be applied to yi, x, ys, yielding
exactly y.

(w,S) & Ob(G2 WG, J): because the only occurrence of S is in p, there
must be an application of p in G W G. For p to apply, £ must be
derivable in G W G. Since neither y; nor yo can contribute to such a
derivation (since By and By occur nowhere else in Go W G), = must be

final.tex; 24/10/2001; 18:40; p.18

Modular Context-Free Grammars 19

derivable in (G5, in contradiction to the assumption.
Hence Ob(Gh W G,J) # Ob(Gy W G,J), in contradiction to the
assumption. Hence ‘[[-]]fn’ is fully abstract.

5. Grammar modules

In the previous section we defined a compositional and fully-abstract
semantics for context-free grammars (with respect to the grammar
union operator). In order to get at the right semantics, we separated the
grammar to two components the rules and the lexicon and viewed
the rules as operating on the lexicon, which is viewed as input. We can
now extend this view, and allow the grammar to operate on inputs other
than the lexicon. In particular, with the semantic definition constructed
in the previous section, we can view a grammar as operating on a set of
items generated by some other grammar: the denotation of a grammar
is a function from sets of items to sets of items, and the input to
some grammar can be any set, not just the one constructed for the
lexicon. This facilitates a natural definition for the interface between
two grammars which we work out in this section.

Following Gaifman and Shapiro (1989), we define two channels
for interaction among modules: a set of import and a set of export
categories.

DEFINITION 9. A grammar module is a quadruple M =
(G, Im, Ex,Int), where G = (V,%, P, A%) is a CFG and Im, Ex, Int
partition V' into three disjoint classes. My = (Gy,Imq, Exq, Inty)
and My = (G, Imsy, Exo, Ints) are composable iff Exy N Ezy = ()
and Inti N Vo = Into N V7 = 0. In this case, their composition,
denoted My W My, is M = (G,Im,Ex,Int), where G = G W Gg,
Im = (ImUImy)\(Ex1UETy), Ex = Ex1UEx9 and Int = Int UInt,.

Figure 3 exemplifies module composition.
The denotation of a module is based on the denotation of its
grammar, taking into account its interface:

DEFINITION 10. The denotation of a grammar module M =
(G, Im, Ex,Int) is

[M]m = ([[G]]fn, Im, Ex)

The notion of observables is adapted to modules in the same vein: the
observed behavior of a module is the observed behavior of its grammar
component, filtered such that only exported categories can be observed.

final.tex; 24/10/2001; 18:40; p.19

20

Shuly Wintner

My M - My U M, :
A {8y b (5)
P: S — NP VP S — NP VP
VP - V VP - V
VP — V NP VP — V NP
NP - DN NP - DN
NP — PN NP — PN
X sleeps — { V} sleeps — {V}
loves — {V} loves — {V}
Mary — {PN} Mary — {PN}
John — {PN} John — {PN}
the — {D} the — {D}
man — {N} man — {N}
Ez: {S} {NP} {S, NP}
Im: {NP} 0 0
Int: {V, VP} (D, N, PN} (v, vp,
D, N, PN}

Figure 3. Module composition

DEFINITION 11. The observables of a module M = (G, Im, Ex, Int)

are

Ob(M,I) = {(w,A) | [w,0,4,|w|] € [[G]]fn(f) and A € Ex}

Trivially, the module semantics ‘[-];’ is correct with respect to
the above definition. Finally, a combination operation on module
denotations reflects the interface requirements:

DEFINITION 12. [f M1 == (Gl,Iml,E.’I,’l,Inh) and MQ =
(Ga, Img, Exo, Inty) are grammar modules, then

[[M]]]m.[[MQ]]m = ([[G]]]fn.[[GQ]]fn’ (Im1 Ulmg)\(E'x] UEJ?Q), E.’E] UELEQ)

Since module composition is defined in terms of grammar union,
the module semantics we suggest is trivially compositional and fully-
abstract:

final.tex; 24/10/2001; 18:40; p.20

Modular Context-Free Grammars 21

THEOREM 12. If My = (Gy,Imy,Exy,Inty) and My =
(Ga, I'mg, Exo, Inty) are composable then [My U My]m = [Mi]m e
[Ms3]m.

Proof.

[[Ml Y] MQ]]m = ([[Gl] GQ]]fn’ (I'm1 U I’I’I?Q) \ (E’I‘1 U E.’I,'Q),E.’L'l U E’I’Q)
definitions 9, 10
== ([[G]]]fn L] [[GQ]]fn’ (Im1 U Img) \ (E.’I)] U E.TQ),ELE] U E:Eg)

by theorem 10

[Mi]m e [M2]m
by definition 12

THEOREM 13. For every two modules My = (Gy,Imq, Fxy,Inty),
My = (Go, Img, Exs, Ints), if every module that is composable with
My is also composable with My, and for every such module M =
(G, Im, Ex,Int) and set of items I, Ob(M W My,I) = Ob(M U My, I)
then [Mi]m = [Ma]m.

Proof. Since every module that is composable with M is also com-
posable with Ms, we have Ex; = FExo, Imi = I'mo and V| = V5. The
proof of theorem 11 can be extended to modules as follows: assume
that [Mi]m # [Ms]m but for every module M and set of items I,
Ob(M U My, I) = Ob(M U My, I). Let G,x,y,y1,y2,I,J be as in the
proof of theorem 11. Let M be the module (G, 0,{S}, {B1, B2}). Then
Ob(My UM, J) # Ob(MyW M, J), contradicting the assumption. Hence
‘[-Tm’ is fully-abstract.

Since module composition is defined in terms of grammar union and
set union, some desirable properties of this operation can be easily
observed (where ‘=" means that both sides are defined and equal, or
both are undefined):

PROPOSITION 14. Module composition is commutative: My U My =
My U M.

PROPOSITION 15. Module composition is associative: (My U My) U
My = My U (My U My).

We conclude with a comprehensive example of three composable
modules: M, defining sentences, My, which deals with noun phrases,
and M3, whose purpose is to generate relative clauses (figure 4). A
closer look at the internal categories of each module reveals the kind of
information encapsulation that is obtained by this approach: for exam-
ple, the categories D, N and PN are internal to the NP module (M).
They cannot be accessed, or used, by any of the other two modules.

final.tex; 24/10/2001; 18:40; p.21

22 Shuly Wintner

This is as if the internal structure of noun phrases is not available to
other modules — although M; does make use of the category NP, which
it imports. The denotation of M7 is thus dependent on noun phrases,
imported from Mj. In the same way, My depends on RC, imported
from Mj5, and M3 imports the category S from Mj.

M] : M2 : M3 :
AS {S} 0 0
P: S — NP VP NP - DN RC — REL S
VP =V NP — PN
VP — V NP NP — D N RC
P sleeps — { V} John — { PN} that — {REL}
P loves — { V} Mary — {PN} who, € — {REL}
the — {D}
man — {N}
Ez: {S} {NP} {RC}
Im : {NP} {RC} {S}
Int: (v, VP} (D, N, PN} {REL}

Figure 4. Three grammar modules

Observe that M; and M, are composable, since Exq N Exy = {S} N
(NP} = 0, Int; N Vs = {V, VP} N {NP, D, N, PN, RC} = 0 and
Ints N Vi = {D, N, PN} n{S, V, VP, NP} = (. Their composition
yields My U My, depicted in figure 5. This, in turn, is composable with
M3; the result of this composition yields (M; W My) U M3 (figure 5).
Notice that the same result would have been obtained by computing
M, U (My U M3) (or, for that matter, (M; U M3) U M,). Notice that
(M, W Ms)U M3 has an empty set of imported categories. It is therefore
complete, and does not depend on any additional, external information.

6. Conclusions

This paper defines modules in context-free grammars in a way that
is compositional and fully-abstract (with respect to grammar union, a
natural grammar composition operator). In contrast to the standard
definitions for the semantics of CFGs, our definition is such that two

final.tex; 24/10/2001; 18:40; p.22

Modular Context-Free Grammars 23

My u M, : (Ml@MQ)@Mj;:
AS {S} {S}
P: S — NP VP S — NP VP
VP —» V VP -V
VP — V NP VP — V NP
NP —- DN NP - DN
NP — PN NP — PN
NP —- D N RC NP — D N RC
RC — REL §
X sleeps, loves — { V} sleeps, loves — { V}
John, Mary — {PN} John, Mary — { PN}
the — {D} the — {D}
man — {N} man — {N}
that, who, e = {REL}
Ezx: {S, NP} {RC, NP, S}
Im : {RC} {}
Int : {V, VP, D, N, PN} (REL, V, VP, D, N, PN}

Figure 5. Composed modules

modules are semantically equivalent if and only if they can be inter-
changed in every context. This gives a clear, mathematically sound way
for composing parts of grammars.

CFGs are usually not considered a suitable model for natural lan-
guages; rather, most linguistic theories use more powerful formalisms
such as (some variant of) unification grammars. We believe that the
results reported on in this paper can be extended to the more expressive
domain. We have shown elsewhere (Wintner, 1999a) that a functional
semantics, similar to the one defined here, is compositional and fully-
abstract for unification grammars, and we are currently developing a
model for modularity in this framework.

Acknowledgements
This research was supported a post-doctoral fellowship from the Insti-

tute for Research in Cognitive Science, University of Pennsylvania, and
by the Israel Science Foundation (grant number 136/01-1).

final.tex; 24/10/2001; 18:40; p.23

24 Shuly Wintner

References

Basili, R., M. T. Pazienza, and F. M. Zanzotto: 2000, ‘Customizable modular lexi-
calized parsing’. In: Proceedings of the sizth international workshop on parsing
technologies (IWPT 2000). Trento, Italy, pp. 41 52.

Bredenkamp, A., T. Declerck, F. Fouvry, B. Music, and A. Theofilidis: 1997, ‘Lin-
guistic Engineering using ALEP’. In: Proceedings of RANLP’97. Tzigov Chark,
Bulgaria.

Brogi, A., E. Lamma, and P. Mello: 1992, ‘Compositional model-theoretic semantics
for logic programs’. New Generation Computing 11, 1 21.

Bugliesi, M., E. Lamma, and P. Mello: 1994, ‘Modularity in Logic Programming’.
Journal of Logic Programming 19,20, 443 502.

Callmeier, U.: 2000, ‘PET — a platform for experimentation with efficient HPSG
processing techniques’. Natural Language Engineering 6(1), 99 107.

Carpenter, B. and G. Penn: 1999, ‘ALE: The Attribute Logic Engine — User’s Guide’.
Technical report, Lucent Technologies and Universitat Tiibingen.

Copestake, A.: 1999, ‘The (new) LKB System’. Technical report, Stanford
University.

Copestake, A. and D. Flickinger: 2000, ‘An open-source grammar development en-
vironment and broad-coverage English grammar using HPSG’. In: Proceedings
of the Second conference on Language Resources and Evaluation (LREC-2000).
Athens, Greece.

Donahue, J. E.: 1976, Complementary definitions of programming language seman-
tics, Vol. 42 of Lecture notes in computer science. Berlin, Heidelberg and New
York: Springer Verlag.

Dueck, G. D. P. and G. V. Cormack: 1990, ‘Modular attribute grammars’. The
Computer Journal 33(2), 164 172.

Erbach, G. and H. Uszkoreit: 1990, ‘Grammar Engineering: Problems and
Prospects’. CLAUS report 1, University of the Saarland and German research
center for Artificial Intelligence.

Gaifman, H. and E. Shapiro: 1989, ‘Fully abstract compositional semantics for
logic programming’. In: 16th Annual ACM Symposium on Principles of Logic
Programming. Austin, Texas, pp. 134-142.

Ghezzi, C. and M. Jazayeri: 1987, Programming language concepts. New York: John
Wiley & Sons, second edition.

Kasper, W. and H.-U. Krieger: 1996, ‘Modularizing Codescriptive Grammars for
Efficient Parsing’. In: Proceedings of the 16th Conference on Computational
Linguis tics. Kopenhagen, pp. 628 633. Also available as Verbmobil-Report 140.

Keselj, V.: 2001, ‘Modular HPSG’. Technical Report CS-2001-05, Department of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada.

Lassez, J.-L. and M. J. Maher: 1984, ‘Closures and fairness in the semantics of
programming logic’. Theoretical computer science 29, 167-184.

Lehmann, S., D. Estival, and M. van der Kraan: 1995, ‘A Modular Organization for
TFS Grammar’. In: Integrative Ansdtze in der Computerlinguistik, DGfS/CL95.
Diisseldorf, pp. 55 60.

Maher, M. J.: 1988, ‘Equivalences of Logic Programs’. In: J. Minker (ed.): Founda-
tions of Deductive Databases and Logic Programming. Los Altos, CA: Morgan
Kaufmann Publishers, Chapt. 16, pp. 627-658.

Malouf, R., J. Carroll, and A. Copestake: 2000, ‘Efficient feature structure operations
without compilation’. Natural Language Engineering 6(1), 29 46.

final.tex; 24/10/2001; 18:40; p.24

Modular Context-Free Grammars 25

Mancarella, P. and D. Pedreschi: 1988, ‘An algebra of logic programs’. In: R. A.
Kowalski and K. A. Bowen (eds.): Logic Programming: Proceedings of the Fifth
international conference and symposium. Cambridge, Mass., pp. 1006 1023, MIT
Press.

Milner, R.: 1975, ‘Processes: a mathematical model of computing agents’. In: H. E.
Rose and J. C. Shepherdson (eds.): Logic Colloquium ’73. Amsterdam, pp. 157—
174, North-Holland.

Oepen, S.; D. Flickinger, H. Uszkoreit, and J.-I. Tsujii: 2000, ‘Introduction to this
special issue’. Natural Language Engineering 6(1), 1 14.

Pereira, F. C. N. and S. M. Shieber: 1984, ‘The semantics of grammar formalisms
seen as computer languages’. In: Proceedings of the 10th international conference
on computational linguistics and the 22nd annual meeting of the association for
computational linguistics. Stanford, CA, pp. 123-129.

Pereira, F. C. N. and D. H. D. Warren: 1983, ‘Parsing as Deduction’. In: Proceedings
of the 21st Annual Meeting of the Association for Computational Linguistics. pp.
137 144.

Sarkar, A., F. Xia, and A. Joshi: 2000, ‘Some Experiments on Indicators of Parsing
Complexity for Lexicalized Grammars’. In: Efficiency in Large-Scale Parsing
Systems: Workshop held at COLING 2000. Luxembourg.

Scott, D. S. and C. Strachey: 1971, ‘Towards a mathematical semantics for computer
languages’. In: J. Fox (ed.): Proceedings of the symposium on computers and
automata. New York, pp. 19 46, Polytechnic Institute of Brooklyn Press.

Shieber, S., Y. Schabes, and F. Pereira: 1995, ‘Principles and Implementation of
Deductive Parsing’. Journal of Logic Programming 24(1-2), 3-36.

Tennet, R. D.: 1991, Semantics of programming languages, Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall.

The XTAG Research Group: 1998, ‘A Lexicalized Tree Adjoining Grammar for En-
glish’. IRCS Report 98-18, Institue for Research in Cognitive Science, University
of Pennsylvania, 3401 Walnut St, Suite 400A, Philadelphia, PA 19104.

Theofilidis, A., P. Schmidt, and T. Declerck: 1997, ‘Grammar Modularization for
Efficient Processing: Language Engineering Devices and Their Instantiations’.
In: Proceedings of the DGFS/CL. Heidelberg.

Van Emden, M. H. and R. A. Kowalski: 1976, ‘The semantics of predicate logic as
a programming language’. Journal of the Association for Computing Machinery
23(4), 733-742.

Wahlster, W.: 1997, ‘VERBMOBIL: Erkennung, Analyse, Transfer, Generierung
und Synthese von Spontansprache’. Verbmobil-Report 198 198, Deutsches
Forschungszentrum fiir Kunstliche Intelligenz, Saarbriicken, Germany.

Wintner, S.: 1999a, ‘Compositional Semantics for Linguistic Formalisms’. In:
Proceedings of ACL’99, the 37th Annual Meeting of the Association for Com-
putational Linguistics. pp. 96-103.

Wintner, S.: 1999b, ‘Compositional Semantics for Unification-based Linguistic For-
malisms’. IRCS Report 99-05, Institute for Research in Cognitive Science,
University of Pennsylvania, 3401 Walnut St., Suite 400A, Philadelphia, PA 19018.

Wintner, S.: 1999¢, ‘Modularized Context-Free Grammars’. In: MOL6 - Sizth
Meeting on Mathematics of Language. Orlando, Florida, pp. 61-72.

Wintner, S. and N. Francez: 1999, ‘Efficient Implementation of Unification-Based
Grammars’. Journal of Language and Computation 1(1), 53-92.

Woszczyna, M., M. Broadhead, D. Gates, M. Gavalda, A. Lavie, L. Levin, and A.
Waibel: 1998, ‘A modular approach to spoken language translation for large
domains’. In: Proceedings of AMTA-98.

final.tex; 24/10/2001; 18:40; p.25

26 Shuly Wintner
Zajac, R. and J. W. Amtrup: 2000, ‘Modular Unification-Based Parsers’. In: Proceed-

ings of the sizth international workshop on parsing technologies (IWPT 2000).
Trento, Italy, pp. 278 288.

Address for Offprints: Department of Computer Science, University of Haifa, Mount
Carmel, 31905 Haifa, Israel

final.tex; 24/10/2001; 18:40; p.26

