
Modular Context-Free GrammarsShuly Wintner (shuly�
s.haifa.a
.il)Department of Computer S
ien
e, University of HaifaAbstra
t. Given two
ontext-free grammars (CFGs), G1 and G2, the languagegenerated by the union of the grammars is not the union of the languages generatedby ea
h grammar: L(G1[G2) 6= L(G1)[L(G2). In order to a

ount for modularity ofgrammars, another way of de�ning the meaning of grammars is needed. This paperadapts results from the semanti
s of logi
 programming languages to CFGs. Wedis
uss alternative approa
hes for de�ning the denotation of a grammar,
ulminatingin one whi
h we show to be both
ompositional and fully-abstra
t. We then show howgrammar modules
an be de�ned su
h that their semanti
s retains these desirableproperties. This gives a
lear, mathemati
ally sound way for
omposing parts ofgrammars.Keywords:
ontext-free grammars, modularity, programming language semanti
s1. Introdu
tionThe tasks of developing large s
ale grammars for natural languages be-
ome more and more
ompli
ated: it is not unusual for a single grammarto be developed by a team in
luding a number of linguists,
omputa-tional linguists and
omputer s
ientists. Computational grammars withbroad
overage are
omplex entities, sometimes made up by tens ofthousands of lines of
ode (Oepen et al., 2000; Wahlster, 1997). In su
ha setup, the problems that grammar engineers fa
e when they designa broad-
overage grammar for some natural language are very remi-nis
ent of the problems ta
kled by software engineering (Erba
h andUszkoreit, 1990). Considerable e�ort was invested in making parsersand other grammar manipulating systems more eÆ
ient (Wintner andFran
ez, 1999; Carpenter and Penn, 1999; Callmeier, 2000; Maloufet al., 2000; Sarkar et al., 2000). However, while software develop-ers
an bene�t from two de
ades of resear
h of software engineering,grammar engineering is in its infan
y. In most large-s
ale systems (e.g.,XTAG (The XTAG Resear
h Group, 1998), LKB (Copestake, 1999),ALE (Carpenter and Penn, 1999), et
.) the grammar
onsists of a single
on
eptual entity (even when it is distributed over more than one �le),and very few provisions for modular development of grammars exist.Our goal in this paper is to provide a good de�nition for modules in
ontext-free grammars (CFGs) and de�ne module
omposition in a waythat supports a transparent implementation. We fo
us on
ontext-freegrammars, probably the simplest linguisti
 formalism that was ever

 2001 Kluwer A
ademi
 Publishers. Printed in the Netherlands.
final.tex; 24/10/2001; 18:40; p.1

2 Shuly Wintnersuggested as appropriate for des
ribing the stru
ture of natural lan-guages. It is widely believed today that CFGs are not expressive enoughfor this task. Still, the present work
an serve as the departure point forexploration with more powerful formalisms, notably uni�
ation-basedgrammars. We believe that the results reported here
an be adequatelyextended to more expressive frameworks.1.1. MotivationThe motivation for modular grammar development systems is straight-forward. Constru
ting large-s
ale grammars be
omes mu
h simplerwhen the task
an be
leanly distributed among di�erent develop-ers, provided that well-de�ned interfa
es govern the intera
tion amongmodules. In an Internet era, modularity fa
ilitates the development ofseveral domain-spe
i�
 sub-grammars that
an reside on di�erent sitesand be integrated with server-side modules on demand.Ba
k in 1990, Erba
h and Uszkoreit (1990) observed thatThe development of large grammars is extremely slow. Existinglarge grammars have usually been developed by a single per-son... In
omputer programming, modularization has proved tobe a useful
on
ept for the distributed development of large pro-grams. [However, ℄ No methods exist for the modularization ofgrammars... A modularization
on
ept would not only further ef-�
ient development, it would also boost reusability and grammarevaluation.The needs for modularity are also a
knowledged by, e.g., Wosz
zynaet al. (1998), who note that \Many of the advantages of modularityand shared libraries equally apply to the design of a ... grammar fora large domain," and by Lehmann et al. (1995), noting that \gram-mars need to be modular, and we need a useful working de�nition ofmodularity". The exa
t form of modularity
an be debated: in a re
entwork, Copestake and Fli
kinger (2000)
laim that \Any grammar devel-opment environment should provide expli
it support for
ollaborativedevelopment", but state further:It is often suggested that the problem with grammar engineering isthat there is a la
k of modularity, but it is not
lear to us that thisis
orre
t.Later, they agree that \there are other notions of modularity", but
on
lude that \despite the many aids to grammar engineering that havebeen developed, we think that to some extent it just has to be a

eptedthat it really is inherently diÆ
ult." We hope to show here a �rst steptowards a systemati
 solution of an inherently diÆ
ult problem.
final.tex; 24/10/2001; 18:40; p.2

Modular Context-Free Grammars 31.2. Related workWhile the needs are
lear, solutions are few and far between; very fewattempts were made to address modularity dire
tly. In what follows wesurvey some of them.While not dire
tly useful for natural languages, attribute grammarsare a formalism that extends CFGs by augmenting non-terminal sym-bols with a
at form of feature stru
tures. Attribute grammars areused primarily for spe
ifying the syntax and semanti
s of programminglanguages; motivated by the need for more abstra
tion in the spe
i�
a-tion, Due
k and Corma
k (1990) des
ribe a me
hanism for generatingattribute grammars from rules whi
h are grouped together as modularattribute grammars. The formalism
an be viewed as a way to groupthe s
alar rules together; but it does not provide for intera
tions amongdi�erent rules, and it does not de�ne the notion of a grammar module.Kasper and Krieger (1996) des
ribe a te
hnique for dividing auni�
ation-based grammar into two
omponents, roughly along thesyntax/semanti
s axis. Their motivation is eÆ
ien
y: observing thatsyntax usually imposes more
onstraints on permissible stru
tures, andsemanti
s usually mostly adds stru
ture, they propose to parse withthe synta
ti

onstraints �rst, and apply the semanti
s later. However,this proposal requires that a single grammar be given, from whi
h thetwo
omponents
an be derived. Also, they observe that the interse
-tion of the languages generated by the two grammars does not yieldthe language of the original grammar. Another attempt to introdu
emodularity, as well as other grammar engineering te
hniques, to a gram-mati
al formalism, was done in the
ontext of ALEP (Theo�lidis et al.,1997; Bredenkamp et al., 1997). Here, too, the major
onsideration iseÆ
ien
y; there is no dis
ussion detailing how a grammar
an be devel-oped in modules, or how grammar fragments are integrated. Still in the
ontext of uni�
ation-based grammars, Lehmann et al. (1995) de�nemodules as sets of types in a system that is based on typed featurestru
tures. This proposal is not fully worked out, but we disagree withone of its major assumptions, namely that \in order to reuse a modulefrom a grammar, its dependen
ies to other modules must be redu
edto a minimum." On the
ontrary, we seek a de�nition for modules thatwill expli
ate the interfa
e among modules and their intera
tions. Ina di�erent work, Keselj (2001) builds on ideas introdu
ed by Wintner(1999
) to provide a de�nition of modular HPSG. The de�nition israther ad-ho
, and no evaluation of its suitability or usefulness is given.Zaja
 and Amtrup (2000) present an implementation of a pipeline-like
omposition operator that enables the grammar designer to breaka grammar into sub-grammars that are applied in a sequential manner
final.tex; 24/10/2001; 18:40; p.3

4 Shuly Wintnerat run-time. Su
h an organization is espe
ially useful for dividing thedevelopment pro
ess into stages that
orrespond to morphologi
al pro-
essing, syntax, semanti
s, and so on. The notion of
omposition hereis su
h that sub-grammar Gi+1 operates on the output of sub-grammarGi; su
h an organization might not be suitable for many grammardevelopment frameworks. A similar idea is proposed by Basili et al.(2000): it is an approa
h to parsing that divides the task into sub-tasks, whereby a module
omponent Pi takes an input senten
e at agiven state of analysis Si and augments this information in Si+1 usinga knowledge base Ki. Here, too, it is the pro
essing system, not thegrammar, whi
h is modularized in a pipeline fashion.A di�erent approa
h to designing modular grammars is employedby Wosz
zyna et al. (1998). Here, grammars en
ode semanti
 infor-mation rather than synta
ti
 stru
ture, and thus intera
tions amongdi�erent modules are kept to a minimum. The sub-domain grammarsdraw from a shared library of rules in order to maintain
onsisten
y inthe treatment of
ommon obje
ts su
h as dates or time expressions; butthe parser tags sub-trees a

ording to their sub-domain, whi
h impliesthat the intera
tion among modules is minimal.1.3. MethodologyWhat is missing from most of the works des
ribed above is a system-ati
 methodology for developing a
on
ept of modules. As Erba
h andUszkoreit (1990) point out,A prerequisite for a
hieving the reusability of grammati
al re-sour
es are mathemati
al
on
epts and a representation languagefor the abstra
t spe
i�
ation of grammati
al knowledge. An ab-stra
t de
larative spe
i�
ation language with a
lean semanti
s isneeded.In this work we de�ne su
h a semanti
s and use it to drive a \good"de�nition of modules in CFGs. To motivate our approa
h, we notethat a na��ve de�nition of modules would not do. Suppose one de�nesa module simply as a
ontext-free grammar, with a simple operationthat
omposes modules by unioning their
omponents (non-terminalsymbols, terminal symbols and rules). Sin
e rules of two di�erent mod-ules
an intera
t in the
omposed grammar, the language generatedby the
omposed grammar would not be the union of the languagesgenerated by the two modules. A (formal) solution would have beento rename the non-terminals apart, but this will eliminate any
han
eof intera
tion between the two modules, and simply serve to de�ne agrammar for unioning the respe
tive languages. What we seek here isa de�nition that will fa
ilitate su
h intera
tion.
final.tex; 24/10/2001; 18:40; p.4

Modular Context-Free Grammars 5It is
ustomary in
omputational linguisti
s to view grammars as
omputer programs and grammar formalisms as high-level, de
lara-tive programming languages (Pereira and Warren, 1983; Pereira andShieber, 1984; Shieber et al., 1995). Extending this view, it is possible toadapt theoreti
al results obtained in the area of programming languagesemanti
s to the investigation of grammar formalisms. Our departurepoint in this work is the belief that any advan
es in grammar engi-neering must be pre
eded by a more theoreti
al work,
on
entrating onthe semanti
s of grammars. This view re
e
ts the situation in logi
programming, where developments in alternative de�nitions for thesemanti
s of predi
ate logi
 led to implementations of various program
omposition operators (Bugliesi et al., 1994).Why is formal semanti
s important? To use the terminology ofDonahue (1976), \the primary goal of formal semanti
s is to pro-vide more e�e
tive
ommuni
ation between the language designer andthe various audien
es with an interest in the language." This kind of
ommuni
ation
an take di�erent forms (Ghezzi and Jazayeri, 1987,Chapter 9): �rst and foremost, grammar semanti
s provides a rigorousand unambiguous de�nition of the grammati
al formalism. It providesa basis for
omparing di�erent formalisms and within a given formal-ism,
omparing di�erent grammars. It is independent of a parti
ularimplementation, and thus
onstru
ts that are based on
lear semanti
sare potentially more likely to be reusable a
ross platforms. It formsthe basis for proving the
orre
tness of an implementation: it
an bemathemati
ally shown that a
ertain grammar implementation (su
has a parser) is faithful to its spe
i�
ation. And it forms the basis forgrammar
orre
tness proofs: with a well-de�ned semanti
s a gram-mar designer
an prove mathemati
ally that a
ertain grammar, ora grammar fragment, has a parti
ular e�e
t. As we shall see below,understanding the semanti
s of grammar formalisms better
an lead tonatural de�nitions for grammar
omposition operators: the semanti
s
an drive the de�nition of su
h operators. Another bene�t of resear
hon grammar semanti
s is that it
an be used to implement grammarmanipulation programs su
h as parsers or generators, in a similar wayto the use of programming language semanti
s for the
onstru
tion of
ompilers and interpreters.There are several ways to de�ne the semanti
s of a programminglanguage (or a grammar formalism). Informally, a semanti
s assigns ameaning, or a denotation, to every grammar. It also provides a wayto abstra
t away from the stru
ture of the grammar itself: it indu
esa natural equivalen
e relation on grammars, whereby two grammarsare equivalent if and only if they have the same denotations. As weare motivated by modularity
onsiderations, we seek a semanti
s that
final.tex; 24/10/2001; 18:40; p.5

6 Shuly Wintnerwill equate exa
tly these grammars whi
h \behave" the same in every
ontext. In other words, we sear
h for a de�nition that will guaranteethat two grammars are equivalent if and only if they
an be freelysubstituted for ea
h other, no matter what other grammars they are
omposed with.To formalize this notion we introdu
e two
on
epts, well estab-lished in the theory of programming language semanti
s (Tennet,1991, Chapter 1):
ompositionality (S
ott and Stra
hey, 1971) andfull-abstra
tion (Milner, 1975). Compositionality ensures that the de-notation of a grammar is expressed as a fun
tion of the denotationsof its
omponents. An important bene�t of
ompositionality is thatrepla
ing any
omponent of a grammar by a semanti
ally equivalent
omponent yields a grammar that is semanti
ally equivalent to theoriginal. Another bene�t is that it allows properties of grammars to beproven by indu
tion on the stru
ture of the
omposite grammar.Compositionality
an always be a
hieved in a trivial way by settingthe denotation of a grammar to be the grammar itself. However, su
h atrivial semanti
s makes too many distin
tions between grammars thatmight otherwise be
onsidered equivalent. A \good" semanti
s shouldmap grammars that are abstra
tly equivalent into the same equiva-len
e
lass; a semanti
s that makes unne
essary distin
tions is \too
on
rete". An ideal semanti
s is fully-abstra
t: it does not distinguishgrammar fragments semanti
ally unless there exist
ontexts for thesefragments that allow the di�eren
es to be observed.In se
tion 2 we survey two existing approa
hes, operational anddenotational, to the semanti
s of grammars. We show that they areequivalent and that both are not
ompositional. We experiment withalternative semanti
s in se
tions 3 and 4, eventually getting at one thatis both
ompositional and fully-abstra
t. We then dis
uss grammarmodularity in se
tion 5, de�ning grammar modules and showing thatthe
hosen semanti
s is indeed fully-abstra
t for modular CFGs as well.2. Semanti
s of CFGsWhen formal languages are
on
erned, one usually thinks of grammarsas formal entities whi
h denote languages. In other words, one usually
onsiders two grammars to be equivalent if (and only if) they generatethe same language. When grammars are used for natural languages,it is sometimes required that two equivalent grammars also assignisomorphi
 (or even identi
al) trees to the senten
es they generate.A general way to look at these possibilities is to view grammars assynta
ti
 notions whi
h denote some other entities. The denotation of
final.tex; 24/10/2001; 18:40; p.6

Modular Context-Free Grammars 7a grammar G
an be its language, L(G); or a set of pairs hw; �i su
hthat w 2 L(G) and � is some tree assigned to it by G. In other words, asemanti
s is a fun
tion that asso
iates some mathemati
al entity (su
has a set) with ea
h grammar. In this se
tion and the next two weexperiment with various de�nitions for the semanti
s of CFGs.Of
ourse, the
hoi
e of semanti
s
annot be arbitrary: one wouldlike a semanti
s to re
e
t in some way \what the grammar is doing".To formalize this intuitive notion we de�ne an observables fun
tion,asso
iating a set Ob(G) with ea
h grammar G. In the domain of pro-gramming languages, the observables fun
tion re
e
ts the input{outputrelation. The most natural observables for a grammar would be itslanguage, but an alternative
hoi
e would be to take all the derivablestrings, paired with the
ategory that derives them. This provides moredetailed information about the grammar, in
luding all the \phrases"it de�nes, paired with their respe
tive synta
ti

ategory. In this workwe take Ob(G) to be fhw;Ai j w 2 LA(G)g (w 2 LA(G) if w
an bederived from the
ategory A in G, see below), although all the resultsstill hold when Ob(G) is taken to be L(G). This notion of observableswill be re�ned in se
tion 4 to re
e
t the view of the lexi
on as input tothe grammar.To relate the semanti
s to the observables fun
tion, thereby
on-straining its arbitrariness, one usually requires that the semanti
s be
orre
t. A semanti
s is
orre
t if whenever two grammars have thesame denotation, they also have the same observables. Of
ourse, if onede�nes the denotation of a grammar to be its observables,
orre
tnessfollows trivially; but it is possible to de�ne a
orre
t semanti
s that isdi�erent from the observables fun
tion. We investigate su
h possibilitiesbelow.2.1. Basi
 definitionsGrammars are de�ned over a �xed, non-empty, �nite set Words ofwords. Meta-variables a and w range over Words and strings ofwords (elements of Words�), respe
tively. A
ontext-free grammaris a quadruple hV;�; P ;Asi, where V is a �nite set of non-terminalsymbols, or
ategories; � :Words! 2V is a total fun
tion, a lexi
on,asso
iating a �nite, possibly empty set of
ategories with ea
h word;P is a �nite set of produ
tion rules, ea
h an element of V � V �; andAs � V is a set of
ategories, the start symbols.1 Meta-variables A;S1 It is easy to see how this de�nition
orresponds to the standard one, where rules
an in
orporate terminals dire
tly and only one start symbol is present. We deviatefrom the standard de�nition to fa
ilitate the de�nition of modules. Note that thede�nition allows empty grammars (where V = P = Sa2Words�(a) = ;).
final.tex; 24/10/2001; 18:40; p.7

8 Shuly Wintnerrange over
ategories and �; �| over forms, (possibly empty) sequen
esthereof. A rule (A; (A1; : : : ; An)) is written A ! A1; : : : ; An, and A isits head. If n = 0 the rule is an �-rule (sometimes denoted simply A).IN denotes the set f0; 1; 2; : : :g. For two fun
tions f , g, over the same(set) domain and range, f + g is de�ned as �I:f(I)[g(I); f � g i� forall I, f(I) � g(I); and f Æ g denotes fun
tion
omposition.Figure 1 depi
ts an example grammar. V is the smallest set
ontaining all the
ategories that o

ur in P and �.As : fSgP : S ! NP VPVP ! VVP ! V NPNP ! D NNP ! PN
� : sleeps 7! fVgloves 7! fVgMary 7! fPNgJohn 7! fPNgthe 7! fDgman 7! fNgFigure 1. An example grammarA form � derives a form �0 in a grammar G = hV;�; P ;Asi (denoted�)G �0) i� � = �lA�r and �0 = �lA1 � � �An�r and A! A1 � � �An 2 P .The re
exive transitive
losure of `)G' is ` �)G'. The language of a
ategory A in grammar G, LA(G), is fa1 � � � an j A �)G A1; : : : ; An andfor every 1 � i � n, Ai 2 �(ai)g. The language of a grammar G, L(G),is SS2As LS(G).Fix a grammar G = hV;�; P ;Asi. Let Items be the set f[w; i; A; j℄ jw 2 Words�, A 2 V and i; j 2 INg. Let I = 2Items. Meta-variablesx; y range over items and I { over sets of items. When I is ordered byset in
lusion it forms a
omplete latti
e with set union as a least upperbound (lub) operation. A fun
tion T : I ! I is monotone if wheneverI1 � I2, also T (I1) � T (I2). It is
ontinuous if for every
hain I1 � I2 �� � �, T (Sj<! Ij) = Sj<! T (Ij). If a fun
tion T is monotone it has a least�xpoint (Tarski-Knaster theorem); if T is also
ontinuous, the �xpoint
an be obtained by iterative appli
ation of T to the empty set (Kleenetheorem): lfp(T) = T " !, where T " 0 = ; and T " n = T (T " (n� 1))when n is a su

essor ordinal and Sk<n(T " k) when n is a limit ordinal.2.2. Operational semanti
sAs Van Emden and Kowalski (1976) note, \to de�ne an operationalsemanti
s for a programming language is to de�ne an implementational

final.tex; 24/10/2001; 18:40; p.8

Modular Context-Free Grammars 9independent interpreter for it. For predi
ate logi
 the proof pro
edurebehaves as su
h an interpreter." Shieber et al. (1995) view parsing asa dedu
tive pro
ess that proves
laims about the grammati
al statusof strings from assumptions derived from the grammar. Following thisinsight, a dedu
tive system for parsing CFGs
an serve as a method forde�ning their operational semanti
s.DEFINITION 1. The dedu
tive parsing system asso
iated with agrammar G = hV;�; P ;Asi is de�ned over Items and is
hara
terizedby:Axioms: [�; i; A; i℄ if A is an �-rule in P ; [a; i; A; i + 1℄ if A 2 �(a)Goals: [w; 0; S; jwj℄ where S 2 AsInferen
e rules:[wi; i1; A1; j1℄; : : : ; [wk; ik; Ak; jk℄ if jl = il+1 for 1 � l < k andi = i1 and j = jk and[w1 � � �wk; i; A; j℄ A! A1; : : : ; Ak 2 PWhen an item [w; i; A; j℄
an be dedu
ed, applying k times the in-feren
e rules asso
iated with a grammar G, we write G`k[w; i; A; j℄(where k = 1 means using the axioms only for the dedu
tion). Whenthe number of inferen
e steps is irrelevant we omit it. The operationaldenotation of a grammar G, then, is [[G℄℄op = fx j G ` xg. It is easy toshow how the operational semanti
s
orresponds to the language of agrammar:THEOREM 1. w 2 LA(G) i� G ` [w; 0; A; jwj℄.2.3. Denotational semanti
sAs an alternative to the operational semanti
s des
ribed above, Pereiraand Shieber (1984) de�ne denotational semanti
s through a �xpointof a transformational operator asso
iated with grammars. Asso
iatewith a grammar G an operator TG that, analogously to the immediate
onsequen
e operator of logi
 programming,
an be thought of as a\parsing step" operator in the
ontext of CFGs.DEFINITION 2. Let TG : I ! I be a transformation on sets of items,where for every I � Items, [w; i; A; j℄ 2 TG(I) i� either� there exist y1; : : : ; yk 2 I su
h that yl = [wl; il; Al; jl℄ for 1 �l � k and il+1 = jl for 1 � l < k and i1 = i and jk = j andA! A1; : : : ; Ak 2 P and w = w1 � � �wk; or
final.tex; 24/10/2001; 18:40; p.9

10 Shuly Wintner� i = j and A is an �-rule in P and w = �; or� i+ 1 = j and jwj = 1 and A 2 �(w).For every grammar G, TG is monotone and
ontinuous, and hen
ethe least �xpoint of TG exists and lfp(TG) = TG " !. Following theparadigm of logi
 programming languages, de�ne a �xpoint semanti
sfor CFGs by taking the least �xpoint of the parsing step operator asthe denotation of a grammar.DEFINITION 3. The �xpoint denotation of a grammar G is[[G℄℄fp = lfp(TG).THEOREM 2. The operational and the denotational semanti
s
oin-
ide: x 2 lfp(TG) i� G ` x.Proof.� If G`nx then x 2 TG " n. By indu
tion on n: if n = 1 then x isan axiom and therefore either x = [a; i; A; i + 1℄ and A 2 �(a)or x = [�; i; A; i℄ and A is an �-rule. By the de�nition of TG,TG(;) = f[�; i; A; j℄ j A is an �-ruleg [f[w; i; A; i + 1℄ j jwj =1 and A 2 �(w)g, so x 2 TG " 1.Assume that the hypothesis holds for n � 1; assume thatG`n[w; i; A; j℄ for n > 1. Then the inferen
e rule must be applied atleast on
e, i.e., there exist items [w1; i1; A1; j1℄; : : :, [wk; ik; Ak; jk℄su
h that jl = il+1 for 1 � l < k and i = i1 and j = jk andA ! A1; : : : ; An 2 P . Furthermore, for every 1 � l � k, the item[wl; il; Al; jl℄
an be dedu
ed in n�1 steps: G`n�1[wl; il; Al; jl℄. Bythe indu
tion hypothesis, for every 1 � l � k, [wl; il; Al; jl℄ 2 TG "(n � 1). By the de�nition of TG, applying the �rst
lause of thede�nition, [w; i; A; j℄ 2 TG(TG " (n� 1)) = TG " n.� If x 2 TG " n then G`nw. By indu
tion on n: if n = 1, that is,[w; i; A; j℄ 2 TG " 1, then either i = j, w = � and A is an �-rulein G, or i + 1 = j and A 2 �(w). In the �rst
ase, G`1[w; i; A; j℄by the �rst axiom of the dedu
tive pro
edure; in the other
ase,G`1[w; i; A; j℄ by the se
ond axiom.Assume that the hypothesis holds for n� 1 and that [w; i; A; j℄ 2TG " n = TG(TG " (n � 1)). Then there exist items y1; : : : ; yk 2TG " (n�1) su
h that yl = [wl; il; Al; jl℄ for 1 � l � k and il+1 = jlfor 1 � l < k and i1 = 1 and jk = j and A! A1; : : : ; An 2 P andw = w1 � � �wk. By the indu
tion hypothesis, for every 1 � l � k,G`n�1[wl; il; Al; jl℄, and the inferen
e rule is appli
able, so by anadditional step of dedu
tion we obtain G`n[w; i; A; j℄.
final.tex; 24/10/2001; 18:40; p.10

Modular Context-Free Grammars 112.4. CompositionalityThe
hoi
e of semanti
s indu
es a natural equivalen
e relation on gram-mars: given a semanti
s `[[�℄℄', G1 � G2 i� [[G1℄℄ = [[G2℄℄. Re
all that asemanti
s is
orre
t if whenever G1 � G2, also Ob(G1) = Ob(G2). Theway we de�ned it, the operational semanti
s of a grammar, `[[�℄℄op', is
orre
t (by theorem 1). By theorem 2, this holds for the denotationalsemanti
s `[[�℄℄fp', too.But
orre
tness is only a suÆ
ient
ondition for a good semanti
s.We are
on
erned in this paper with the
omposition of grammar frag-ments, or modules, through some
omposition operator de�ned overCFGs. In order for a semanti
s to be useful in this
ontext, it mustalso be
ompositional. Intuitively, if a semanti
s is
ompositional, thenwhenever two grammars are equivalent they
an be inter
hanged in any
ontext without e�e
ting the observables. This property is importantfor a variety of reasons: for example, when
onstru
ting an optimizing
ompiler for grammars, one
an de�ne a denotation-preserving opti-mization and use the optimized
ode instead of the original one withoutobstru
ting the observed behavior of the grammar. This is only possiblewhen the semanti
s is known to be
ompositional.DEFINITION 4. Let `�' be a (
ommutative)
omposition operationon grammars. A (
orre
t) semanti
s `[[�℄℄' is
ompositional (Gaifmanand Shapiro, 1989) with respe
t to `�' if whenever [[G1℄℄ = [[G2℄℄ and[[G3℄℄ = [[G4℄℄, also [[G1 � G3℄℄ = [[G2 � G4℄℄. It is
ommuting (Brogiet al., 1992) with respe
t to `�' if there exists a
ombination operatoron denotations, `�', su
h that [[G1 �G2℄℄ = [[G1℄℄ � [[G2℄℄.While we are only interested in
ompositionality here,
ommutativityis a stronger notion: if a semanti
s is
ommuting with respe
t to someoperator then it is
ompositional (Wintner, 1999b). It will sometimesbe easier to prove
ommutativity rather than
ompositionality.We now de�ne a simple
omposition operator,
alled grammarunion, on CFGs. This is probably the most natural, even na��ve,
om-position operator: it simply unions the
omponents of two grammars.For real grammar development appli
ations, this operator might turnout to be insuÆ
ient, but it seems to be a ne
essary one. In the rest ofthis work, we limit the dis
ussion to this single grammar
ompositionoperator.DEFINITION 5. The union of two CFGs, G1 = hV1;�1; P 1; As1i andG2 = hV2;�2; P 2; As2i, denoted G1 ℄G2, is a new grammar G = hV1 [V2;�1 +�2; P1 [P2; As1 [As2i.
final.tex; 24/10/2001; 18:40; p.11

12 Shuly WintnerG1 : G2 : G1 ℄G2 :As : fSg fg fSgP : S ! NP VP S ! NP VPVP ! V VP ! VVP ! V NP VP ! V NPNP ! D N NP ! D NNP ! PN NP ! PN� : sleeps 7! fVg sleeps 7! fVgloves 7! fVg loves 7! fVgMary 7! fPNg Mary 7! fPNgJohn 7! fPNg John 7! fPNgthe 7! fDg the 7! fDgman 7! fNg man 7! fNgFigure 2. Grammar unionFigure 2 exempli�es grammar union. Observe that for every twogrammars G1 and G2, G1 ℄G2 = G2 ℄G1.THEOREM 3. `[[�℄℄op' is not
ompositional with respe
t to grammarunion.Proof. Consider again the grammars of �gure 2. Let G01 be the sameas G1, with the only di�eren
e being that P 01 = P 1 n fVP ! V NPg.Now [[G1℄℄op = [[G01℄℄op = f[loves; i; V; i+1℄gi�0[f[loves; i;VP; i+1℄gi�0[f[sleeps; i; V; i+1℄gi�0 [f[sleeps; i;VP; i+1℄gi�0. But when
omposedwith G2, both grammars yield di�erent denotations. Sin
e G01 la
ks therule VP ! V NP , no senten
es with transitive verbs are generated.For example, for x = [John loves Mary; 0; S; 3℄, x 2 [[G1 ℄ G2℄℄op butx 62 [[G01℄G2℄℄op. Thus, [[G1℄℄op = [[G01℄℄op but [[G1℄G2℄℄op 6= [[G01℄G2℄℄opand hen
e `[[�℄℄op' is not
ompositional.Observe that the rule VP ! V NP
ontributes nothing to the deno-tation of G1, thereby allowing [[G1℄℄op to be equal to [[G01℄℄op. However,when G1 is
omposed with G2, this rule
an be used in a derivation,yielding [[G1 ℄G2℄℄op 6= [[G01 ℄G2℄℄op. The denotational semanti
s `[[�℄℄fp'will not be any di�erent, of
ourse, but it provides a better startingpoint for experimenting with alternative de�nitions.
final.tex; 24/10/2001; 18:40; p.12

Modular Context-Free Grammars 133. A
ompositional semanti
sTo over
ome the problems delineated above, we follow Man
arella andPedres
hi (1988) in moving one step further,
onsidering the grammartransformation operator itself (rather than its �xpoint) as the denota-tion of a grammar. For the following dis
ussion, we �x the observablesfun
tion `Ob' and the grammar union operator `℄'.DEFINITION 6. The algebrai
 denotation of a grammar G is[[G℄℄al = TG. G1 �al G2 i� TG1 = TG2 .Not only is this semanti
s
ompositional, it is also
ommuting with re-spe
t to grammar union, when a
omposition operation on denotationsis de�ned as:TG1 � TG2 = TG1 + TG2 = �I:TG1(I) [TG2(I)THEOREM 4. The semanti
s `[[�℄℄al' is
ommuting with respe
t togrammar union and `�': for every two grammars G1, G2, [[G1℄℄al �[[G2℄℄al = [[G1 ℄G2℄℄al.Proof. We show that for every set of items I, TG1℄G2(I) = TG1(I)[TG2(I).� if x 2 TG1(I)[TG2(I) then either x 2 TG1(I) or x 2 TG2(I). Fromthe de�nition of grammar union, x 2 TG1℄G2(I) in any
ase.� if x 2 TG1℄G2(I) then x
an be added by either of the three
lausesin the de�nition of TG.� if x is added by the �rst
lause then there is a rule � 2 P 1[P 2that li
enses x. Then either � 2 P 1 or � 2 P 2, but in any
ase� would have li
ensed the same item, so either x 2 TG1(I) orx 2 TG2(I).� if x is added by the se
ond
lause then there is an �-rule inG1 ℄G2 due to whi
h x is added, and by the same rationaleeither x 2 TG1(I) or x 2 TG2(I).� if x is added by the third
lause then x = [w; i; A; i + 1℄ andjwj = 1 and A 2 (�1 + �2)(w). Then either A 2 �1(w) orA 2 �2(w), and therefore x 2 TG1(I) [TG2(I).Intuitively, sin
e TG
aptures only one step of the
omputation, it
annot
apture intera
tions among di�erent rules in the (unioned)grammar, and hen
e taking TG to be the denotation of G yields a
ompositional semanti
s.
final.tex; 24/10/2001; 18:40; p.13

14 Shuly WintnerThe TG operator re
e
ts the stru
ture of the grammar better thanits �xpoint. In other words, the equivalen
e relation indu
ed by TG is�ner than the relation indu
ed by lfp(TG). The question is, how �ne isthe `�al' relation? To make sure that a semanti
s is not too �ne, oneusually
he
ks the reverse dire
tion.DEFINITION 7. A semanti
s `[[�℄℄' is fully abstra
t i�[[G1℄℄ = [[G2℄℄ i� for all G, Ob(G1 ℄G) = Ob(G2 ℄G)Intuitively, if a semanti
s is
ompositional and fully-abstra
t, then twogrammars are equivalent i� they
an be inter
hanged in every
ontext.PROPOSITION 5. The algebrai
 semanti
s `[[�℄℄al' is not fully abstra
t.Proof. Let G1 be the grammar As1 = fSg;�1 = ;; P 1 =fS ! NP VP ; NP ! NPg and G2 be the grammar As2 = fSg;�2 =;; P 2 = fS ! NP VPg� G1 6�al G2: be
ause TG1(f[w; i;NP; j℄g) = f[w; i;NP; j℄g butTG2(f[w; i;NP; j℄g) = ;� for all G, Ob(G ℄G1) = Ob(G ℄G2). The only di�eren
e betweenG ℄ G1 and G ℄ G2 is the presen
e of the rule NP ! NP in theformer. This rule
an
ontribute nothing to a derivation, sin
e anyitem it li
enses must already be derivable. Therefore, any itemderivable with G ℄ G1 is also derivable with G ℄ G2 and hen
eOb(G ℄G1) = Ob(G ℄G2).A simple solution to the problem would have been to
onsider,instead of TG, the following operator as the denotation of G:[[G℄℄id = �I:TG(I) [IIn other words, the semanti
s is TG + Id, where Id is the identityoperator. Evidently, for G1 and G2 of the above proof, [[G1℄℄id = [[G2℄℄id,so they no longer
onstitute a
ounter example. Also, it is easy to seethat the proof of theorem 4 requires only a slight modi�
ation for it tohold in this
ase, so TG + Id is
ommuting (and hen
e
ompositional).Unfortunately, this does not solve the problem. Let G1 be thegrammarAs1 = ;;�1 = ;; P 1 = fA1 ! A2; A2 ! A3; A3 ! A1gand G2 be the grammarAs1 = ;;�1 = ;; P 2 = fA1 ! A3; A2 ! A1; A3 ! A2g
final.tex; 24/10/2001; 18:40; p.14

Modular Context-Free Grammars 15To see that [[G1℄℄id 6= [[G2℄℄id, observe that TG1(f[w; i; A1; j℄g) =f[w; i; A1; j℄; [w; i; A3 ; j℄g; however, TG2(f[w; i; A1 ; j℄g) =f[w; i; A1; j℄; [w; i; A2 ; j℄g. To see that Ob(G ℄ G1) = Ob(G ℄ G2)for every G, observe that every rule appli
ation in either G1 or G2
anbe modeled by two rule appli
ations in the other grammar, and hen
eevery
ategory derivable in G ℄ G1 is derivable in G ℄ G2 and vi
eversa. 4. A
ompositional and fully-abstra
t semanti
sThe
hoi
e of lfp(TG) as the denotation of a grammar is \too
rude"(it identi�es grammars that behave di�erently when
omposed withother grammars); TG+ Id is \too �ne" (it distinguishes between gram-mars that
an be inter
hanged in any
ontext); the \right" semanti
s,therefore, lies somewhere in between. Lassez and Maher (1984) suggestthe following semanti
s for logi
 programs: rather than
onsider theoperator asso
iated with the entire program, they only look at therules (ex
luding the fa
ts), and take the meaning of a program to bethe fun
tion that is obtained by in�nite appli
ations of the operatorasso
iated with the rules. We adapt below the results of Lassez andMaher (1984) and Maher (1988) to CFGs.The main idea is to view the grammar as two separate units: therules and the lexi
on. The rules en
ode the operation of the gram-mar, while the lexi
on (whi
h
onsists of the lexi
al entries and alsothe �-rules, viewed as lexi
al entries of the empty word) is input tothis operation. This separation is motivated by both linguisti
 and
omputational
onsiderations. Contemporary linguisti
 theories
learlydistinguish between the grammar and the lexi
on; and
omputationalimplementations su
h as parsers also tend to manipulate the lexi
on \ondemand": rather than
ompile the entire lexi
on, only the lexi
al entriesof words in a given input are
ompiled at run-time. In this se
tion weshow that viewing the lexi
on as input to the grammar supports a
ompositional and fully-abstra
t de�nition for grammar semanti
s.First, we asso
iate the following operator with a grammar:DEFINITION 8. Let RG : I ! I be a transformation on sets ofitems, where for every I � Items, [w; i; A; j℄ 2 RG(I) i� there existy1; : : : ; yk 2 I su
h that yl = [wl; il; Al; jl℄ for 1 � l � k and il+1 = jlfor 1 � l < k and i1 = i and jk = j and A ! A1; : : : ; Ak 2 P andw = w1 � � �wk.The fun
tional denotation of a grammar G is [[G℄℄fn = (RG +Id)! = �1n=0(RG + Id)n. Noti
e that this is a fun
tion (from sets tosets), not a set.
final.tex; 24/10/2001; 18:40; p.15

16 Shuly WintnerRG is de�ned similarly to TG (de�nition 2), ignoring the items added(by TG) due to �-rules and lexi
al items. LetIG = f[�; i; A; i℄ j A is an �-rule in Gg [f[a; i; A; i + 1℄ j A 2 �(a)gThen for every grammar G and every set of items I, TG(I) = RG(I) [IG. Furthermore, the fun
tional semanti
s is naturally related to the�xpoint semanti
s: when the former is applied to IG, it yields the latter.THEOREM 6. For every grammar G, (RG + Id)!(IG) = lfp(TG).Proof. We show that for every n, (TG + Id) " n = (�n�1k=0(RG +Id)k)(IG) by indu
tion on n.For n = 1, (TG + Id) " 1 = (TG + Id)((TG + Id) " 0) = (TG +Id)(;). Clearly, the only items added by TG are due to the se
ond andthird
lauses of de�nition 2, whi
h are exa
tly IG. Also, (�0k=0(RG +Id)k)(IG) = (RG + Id)0(IG) = IG.Assume that the proposition holds for n�1, that is, (TG+Id) " (n�1) =(�n�2k=0(RG + Id)k)(IG). Then(TG + Id) " n = (TG + Id)((TG + Id) " (n� 1))de�nition of "= (TG + Id)((�n�2k=0(RG + Id)k)(IG))by the indu
tion hypothesis= (RG + Id)((�n�2k=0(RG + Id)k)(IG)) [IGsin
e TG(I) = RG(I) [IG= (RG + Id)((�n�2k=0(RG + Id)k)(IG))= (�n�1k=0(RG + Id)k)(IG)Hen
e (RG + Id)!(IG) = (TG + Id) " ! = lfp(TG).Separating the lexi
on from the grammar requires that the de�ni-tion of observables be amended, to re
e
t the fa
t that the lexi
on isonly available at run-time. In other words, the observables of a givengrammar must be de�ned with respe
t to a given input. Thus, letOb(G; I) = fhw;Ai j [w; 0; A; jwj℄ 2 [[G℄℄fn(I)gA semanti
s is
orre
t i� G1 � G2 implies that for all I, Ob(G1; I) =Ob(G2; I). Clearly, for every given set of items I, if [[G1℄℄fn = [[G2℄℄fnthen [[G1℄℄fn(I) = [[G2℄℄fn(I), and hen
e `[[�℄℄fn' is
orre
t. When theinput is taken to be IG, the expe
ted observables are obtained:THEOREM 7. For every grammar G, hw;Ai 2 Ob(G; IG) i� w 2LA(G).
final.tex; 24/10/2001; 18:40; p.16

Modular Context-Free Grammars 17Proof. Let x = [w; 0; A; jwj℄. Then:hw;Ai 2 Ob(G; IG) i� x 2 [[G℄℄fn(IG) de�nition of Obi� x 2 lfp(TG) by theorem 6i� G ` x by theorem 2i� w 2 LA(G) by theorem 1To show that `[[�℄℄fn' is
ompositional we must de�ne an operatorfor
ombining denotations. Unfortunately, the simplest operator, `+',would not do. To see that,
onsider the following grammars:G1 : As1 = ;;�1 = ;; P 1 = fS ! VPgG2 : As2 = ;;�2 = ;; P 2 = fVP ! V gObserve that, for x = [w; i; V; j℄,[[G1℄℄fn(fxg) = fxg[[G2℄℄fn(fxg) = fx; [w; i; V P; j℄g[[G1 ℄G2℄℄fn(fxg) = fx; [w; i; V P; j℄; [w; i; S; j℄gThat is, ([[G1℄℄fn + [[G2℄℄fn)(fxg) = [[G1℄℄fn(fxg) [[[G2℄℄fn(fxg) 6= [[G1 ℄G2℄℄fn(fxg).However, de�ne [[G1℄℄fn�[[G2℄℄fn to be ([[G1℄℄fn+[[G2℄℄fn)!. Then `[[�℄℄fn'is
ommuting with respe
t to `�' and `℄'.LEMMA 8. For every two grammars G1; G2, ([[G1℄℄fn + [[G2℄℄fn) �([[G1℄℄fn Æ [[G2℄℄fn).Proof. Re
all that if f; g are two fun
tions over the same domainand range, f � g i� for all I, f(I) � g(I); and f Æ g denotes fun
tion
omposition. Clearly, for every grammar G and set I,(�) (RG + Id)!(I) � I sin
e (RG + Id)(I) � INow ([[G1℄℄fn Æ [[G2℄℄fn)(I) = [[G1℄℄fn([[G2℄℄fn(I)). [[G2℄℄fn(I) � I, hen
e[[G1℄℄fn([[G2℄℄fn(I)) � [[G2℄℄fn(I). From (*) and monotoni
ity, also[[G1℄℄fn([[G2℄℄fn(I)) � [[G1℄℄fn(I). Hen
e ([[G1℄℄fnÆ [[G2℄℄fn)(I) � ([[G1℄℄fn+[[G2℄℄fn)(I) and ([[G1℄℄fn + [[G2℄℄fn) � ([[G1℄℄fn Æ [[G2℄℄fn).LEMMA 9. For every grammar G, [[G℄℄fn is idempotent: [[G℄℄fn Æ[[G℄℄fn = [[G℄℄fn.Proof. (Lassez and Maher, 1984) For every I, ([[G℄℄fn Æ [[G℄℄fn)(I) =((RG+Id)!Æ(RG+Id)!)(I) = (RG+Id)!((RG+Id)!(I)) = �1i=0(RG+Id)i(�1j=0(RG + Id)j(I)) = �1i=0�1j=0(RG + Id)i+j(I) = �1m=0(RG +Id)m(I) = (RG + Id)!(I) = [[G℄℄fn.
final.tex; 24/10/2001; 18:40; p.17

18 Shuly WintnerTHEOREM 10. [[G1 ℄G2℄℄fn = [[G1℄℄fn � [[G2℄℄fn.Proof. (Lassez and Maher, 1984)[[G1 ℄G2℄℄fn = (RG1 + Id+RG2 + Id)!� ((RG1 + Id)! + (RG2 + Id)!)!sin
e RG + Id � (RG + Id)! for every G� ((RG1 + Id)! Æ (RG2 + Id)!)!by lemma 8� ((RG1℄G2 + Id)! Æ (RG1℄G2 + Id)!)!sin
e G1 ℄G2 � G1 and G1 ℄G2 � G2= ([[G1 ℄G2℄℄fn Æ [[G1 ℄G2℄℄fn)!de�nition of `[[�℄℄fn'= ([[G1 ℄G2℄℄fn)!by lemma 9= [[G1 ℄G2℄℄fnsin
e (f!)! = f!Thus all the inequations are equations, and in parti
ular [[G1℄G2℄℄fn =((RG1 + Id)! + (RG2 + Id)!)! = ([[G1℄℄!fn + [[G2℄℄!fn)! = ([[G1℄℄fn +[[G2℄℄fn)! = [[G1℄℄fn � [[G2℄℄fn.Sin
e `[[�℄℄fn' is
ommuting, it is also
ompositional. Furthermore,on
e the lexi
on (in
luding �-rules) is viewed as input to the grammar,the semanti
s is also fully-abstra
t:THEOREM 11. The semanti
s `[[�℄℄fn' is fully abstra
t: for every twogrammars G1 and G2, if for every grammar G and set of items I,Ob(G1 ℄G; I) = Ob(G2 ℄G; I), then G1 �fn G2.Proof. Assume towards a
ontradi
tion that [[G1℄℄fn 6= [[G2℄℄fn andstill for all I and all G, Ob(G1 ℄GI) = Ob(G2 ℄GI). Without loss ofgenerality, assume that for x = [w; i; A; j℄, there exists I su
h that x 2[[G1℄℄fn(I) but x 62 [[G2℄℄fn(I). Let G = hV [fAg;�; P ;Asi be a CFG,where V = fS;B1; B2g is a set of
ategories su
h that V \(V1[V2) = ;,�(a) = ; for every a, As = fSg and � = S ! B1 A B2 is the only rulein P . Let y = [w; 0; S; jwj℄, y1 = [�; 0; B1; i℄, y2 = [�; j; B2; jwj℄ andJ = I [fy1; y2g.hw;Si 2 Ob(G1 ℄G; J): be
ause �
an be applied to y1; x; y2, yieldingexa
tly y.hw;Si 62 Ob(G2 ℄G; J): be
ause the only o

urren
e of S is in �, theremust be an appli
ation of � in G2 ℄ G. For � to apply, x must bederivable in G2 ℄ G. Sin
e neither y1 nor y2
an
ontribute to su
h aderivation (sin
e B1 and B2 o

ur nowhere else in G2 ℄G), x must be
final.tex; 24/10/2001; 18:40; p.18

Modular Context-Free Grammars 19derivable in G2, in
ontradi
tion to the assumption.Hen
e Ob(G1 ℄ G; J) 6= Ob(G2 ℄ G; J), in
ontradi
tion to theassumption. Hen
e `[[�℄℄fn' is fully abstra
t.5. Grammar modulesIn the previous se
tion we de�ned a
ompositional and fully-abstra
tsemanti
s for
ontext-free grammars (with respe
t to the grammarunion operator). In order to get at the right semanti
s, we separated thegrammar to two
omponents { the rules and the lexi
on { and viewedthe rules as operating on the lexi
on, whi
h is viewed as input. We
annow extend this view, and allow the grammar to operate on inputs otherthan the lexi
on. In parti
ular, with the semanti
 de�nition
onstru
tedin the previous se
tion, we
an view a grammar as operating on a set ofitems generated by some other grammar: the denotation of a grammaris a fun
tion from sets of items to sets of items, and the input tosome grammar
an be any set, not just the one
onstru
ted for thelexi
on. This fa
ilitates a natural de�nition for the interfa
e betweentwo grammars whi
h we work out in this se
tion.Following Gaifman and Shapiro (1989), we de�ne two
hannelsfor intera
tion among modules: a set of import and a set of export
ategories.DEFINITION 9. A grammar module is a quadruple M =hG; Im;Ex; Inti, where G = hV;�; P ;Asi is a CFG and Im;Ex; Intpartition V into three disjoint
lasses. M1 = hG1; Im1; Ex1; Int1iand M2 = hG2; Im2; Ex2; Int2i are
omposable i� Ex1 \ Ex2 = ;and Int1 \ V2 = Int2 \ V1 = ;. In this
ase, their
omposition,denoted M1 d M2, is M = hG; Im;Ex; Inti, where G = G1 ℄ G2,Im = (Im1[Im2)n(Ex1[Ex2), Ex = Ex1[Ex2 and Int = Int1[Int2.Figure 3 exempli�es module
omposition.The denotation of a module is based on the denotation of itsgrammar, taking into a

ount its interfa
e:DEFINITION 10. The denotation of a grammar module M =hG; Im;Ex; Inti is [[M ℄℄m = h[[G℄℄fn; Im;ExiThe notion of observables is adapted to modules in the same vein: theobserved behavior of a module is the observed behavior of its grammar
omponent, �ltered su
h that only exported
ategories
an be observed.
final.tex; 24/10/2001; 18:40; p.19

20 Shuly WintnerM1 : M2 : M1 dM2 :As : fSg fg fSgP : S ! NP VP S ! NP VPVP ! V VP ! VVP ! V NP VP ! V NPNP ! D N NP ! D NNP ! PN NP ! PN� : sleeps 7! fVg sleeps 7! fVgloves 7! fVg loves 7! fVgMary 7! fPNg Mary 7! fPNgJohn 7! fPNg John 7! fPNgthe 7! fDg the 7! fDgman 7! fNg man 7! fNgEx : fSg fNPg fS, NPgIm : fNPg ; ;Int : fV, VPg fD, N, PNg fV, VP,D, N, PNgFigure 3. Module
ompositionDEFINITION 11. The observables of a module M = hG; Im;Ex; Intiare Ob(M; I) = fhw;Ai j [w; 0; A; jwj℄ 2 [[G℄℄fn(I) and A 2 ExgTrivially, the module semanti
s `[[�℄℄m' is
orre
t with respe
t tothe above de�nition. Finally, a
ombination operation on moduledenotations re
e
ts the interfa
e requirements:DEFINITION 12. If M1 = hG1; Im1; Ex1; Int1i and M2 =hG2; Im2; Ex2; Int2i are grammar modules, then[[M1℄℄m�[[M2℄℄m = h[[G1℄℄fn�[[G2℄℄fn; (Im1[Im2)n(Ex1[Ex2); Ex1[Ex2iSin
e module
omposition is de�ned in terms of grammar union,the module semanti
s we suggest is trivially
ompositional and fully-abstra
t:
final.tex; 24/10/2001; 18:40; p.20

Modular Context-Free Grammars 21THEOREM 12. If M1 = hG1; Im1; Ex1; Int1i and M2 =hG2; Im2; Ex2; Int2i are
omposable then [[M1 d M2℄℄m = [[M1℄℄m �[[M2℄℄m.Proof.[[M1 dM2℄℄m = h[[G1 ℄G2℄℄fn; (Im1 [Im2) n (Ex1 [Ex2); Ex1 [Ex2ide�nitions 9, 10= h[[G1℄℄fn � [[G2℄℄fn; (Im1 [Im2) n (Ex1 [Ex2); Ex1 [Ex2iby theorem 10= [[M1℄℄m � [[M2℄℄mby de�nition 12THEOREM 13. For every two modules M1 = hG1; Im1; Ex1; Int1i,M2 = hG2; Im2; Ex2; Int2i, if every module that is
omposable withM1 is also
omposable with M2, and for every su
h module M =hG; Im;Ex; Inti and set of items I, Ob(M dM1; I) = Ob(M dM2; I)then [[M1℄℄m = [[M2℄℄m.Proof. Sin
e every module that is
omposable with M1 is also
om-posable with M2, we have Ex1 = Ex2, Im1 = Im2 and V1 = V2. Theproof of theorem 11
an be extended to modules as follows: assumethat [[M1℄℄m 6= [[M2℄℄m but for every module M and set of items I,Ob(M dM1; I) = Ob(M dM2; I). Let G;x; y; y1; y2; I; J be as in theproof of theorem 11. Let M be the module hG; ;; fSg; fB1 ; B2gi. ThenOb(M1dM;J) 6= Ob(M2dM;J),
ontradi
ting the assumption. Hen
e`[[�℄℄m' is fully-abstra
t.Sin
e module
omposition is de�ned in terms of grammar union andset union, some desirable properties of this operation
an be easilyobserved (where `=' means that both sides are de�ned and equal, orboth are unde�ned):PROPOSITION 14. Module
omposition is
ommutative: M1 dM2 =M2 dM1.PROPOSITION 15. Module
omposition is asso
iative: (M1 dM2) dM3 =M1 d (M2 dM3).We
on
lude with a
omprehensive example of three
omposablemodules: M1, de�ning senten
es, M2, whi
h deals with noun phrases,and M3, whose purpose is to generate relative
lauses (�gure 4). A
loser look at the internal
ategories of ea
h module reveals the kind ofinformation en
apsulation that is obtained by this approa
h: for exam-ple, the
ategories D, N and PN are internal to the NP module (M2).They
annot be a

essed, or used, by any of the other two modules.
final.tex; 24/10/2001; 18:40; p.21

22 Shuly WintnerThis is as if the internal stru
ture of noun phrases is not available toother modules { althoughM1 does make use of the
ategory NP, whi
hit imports. The denotation of M1 is thus dependent on noun phrases,imported from M2. In the same way, M2 depends on RC, importedfrom M3, and M3 imports the
ategory S from M1.M1 : M2 : M3 :As : fSg ; ;P : S ! NP VP NP ! D N RC ! REL SVP ! V NP ! PNVP ! V NP NP ! D N RC� : sleeps 7! fVg John 7! fPNg that 7! fRELg� : loves 7! fVg Mary 7! fPNg who, � 7! fRELgthe 7! fDgman 7! fNgEx : fSg fNPg fRCgIm : fNPg fRCg fSgInt : fV, VPg fD, N, PNg fRELgFigure 4. Three grammar modulesObserve that M1 and M2 are
omposable, sin
e Ex1 \Ex2 = fSg\fNPg = ;, Int1 \ V2 = fV, VPg \ fNP, D, N, PN, RCg = ; andInt2 \ V1 = fD, N, PNg \ fS, V, VP, NPg = ;. Their
ompositionyields M1 dM2, depi
ted in �gure 5. This, in turn, is
omposable withM3; the result of this
omposition yields (M1 dM2) dM3 (�gure 5).Noti
e that the same result would have been obtained by
omputingM1 d (M2 dM3) (or, for that matter, (M1 dM3) dM2). Noti
e that(M1dM2)dM3 has an empty set of imported
ategories. It is therefore
omplete, and does not depend on any additional, external information.6. Con
lusionsThis paper de�nes modules in
ontext-free grammars in a way thatis
ompositional and fully-abstra
t (with respe
t to grammar union, anatural grammar
omposition operator). In
ontrast to the standardde�nitions for the semanti
s of CFGs, our de�nition is su
h that two
final.tex; 24/10/2001; 18:40; p.22

Modular Context-Free Grammars 23M1 dM2 : (M1 dM2) dM3 :As : fSg fSgP : S ! NP VP S ! NP VPVP ! V VP ! VVP ! V NP VP ! V NPNP ! D N NP ! D NNP ! PN NP ! PNNP ! D N RC NP ! D N RCRC ! REL S� : sleeps, loves 7! fVg sleeps, loves 7! fVgJohn, Mary 7! fPNg John, Mary 7! fPNgthe 7! fDg the 7! fDgman 7! fNg man 7! fNgthat, who, � 7! fRELgEx : fS, NPg fRC, NP, SgIm : fRCg fgInt : fV, VP, D, N, PNg fREL, V, VP, D, N, PNgFigure 5. Composed modulesmodules are semanti
ally equivalent if and only if they
an be inter-
hanged in every
ontext. This gives a
lear, mathemati
ally sound wayfor
omposing parts of grammars.CFGs are usually not
onsidered a suitable model for natural lan-guages; rather, most linguisti
 theories use more powerful formalismssu
h as (some variant of) uni�
ation grammars. We believe that theresults reported on in this paper
an be extended to the more expressivedomain. We have shown elsewhere (Wintner, 1999a) that a fun
tionalsemanti
s, similar to the one de�ned here, is
ompositional and fully-abstra
t for uni�
ation grammars, and we are
urrently developing amodel for modularity in this framework.A
knowledgementsThis resear
h was supported a post-do
toral fellowship from the Insti-tute for Resear
h in Cognitive S
ien
e, University of Pennsylvania, andby the Israel S
ien
e Foundation (grant number 136/01-1).
final.tex; 24/10/2001; 18:40; p.23

24 Shuly WintnerReferen
esBasili, R., M. T. Pazienza, and F. M. Zanzotto: 2000, `Customizable modular lexi-
alized parsing'. In: Pro
eedings of the sixth international workshop on parsingte
hnologies (IWPT 2000). Trento, Italy, pp. 41{52.Bredenkamp, A., T. De
ler
k, F. Fouvry, B. Musi
, and A. Theo�lidis: 1997, `Lin-guisti
 Engineering using ALEP'. In: Pro
eedings of RANLP'97. Tzigov Chark,Bulgaria.Brogi, A., E. Lamma, and P. Mello: 1992, `Compositional model-theoreti
 semanti
sfor logi
 programs'. New Generation Computing 11, 1{21.Bugliesi, M., E. Lamma, and P. Mello: 1994, `Modularity in Logi
 Programming'.Journal of Logi
 Programming 19,20, 443{502.Callmeier, U.: 2000, `PET { a platform for experimentation with eÆ
ient HPSGpro
essing te
hniques'. Natural Language Engineering 6(1), 99{107.Carpenter, B. and G. Penn: 1999, `ALE: The Attribute Logi
 Engine { User's Guide'.Te
hni
al report, Lu
ent Te
hnologies and Universit�at T�ubingen.Copestake, A.: 1999, `The (new) LKB System'. Te
hni
al report, StanfordUniversity.Copestake, A. and D. Fli
kinger: 2000, `An open-sour
e grammar development en-vironment and broad-
overage English grammar using HPSG'. In: Pro
eedingsof the Se
ond
onferen
e on Language Resour
es and Evaluation (LREC-2000).Athens, Gree
e.Donahue, J. E.: 1976, Complementary de�nitions of programming language seman-ti
s, Vol. 42 of Le
ture notes in
omputer s
ien
e. Berlin, Heidelberg and NewYork: Springer Verlag.Due
k, G. D. P. and G. V. Corma
k: 1990, `Modular attribute grammars'. TheComputer Journal 33(2), 164{172.Erba
h, G. and H. Uszkoreit: 1990, `Grammar Engineering: Problems andProspe
ts'. CLAUS report 1, University of the Saarland and German resear
h
enter for Arti�
ial Intelligen
e.Gaifman, H. and E. Shapiro: 1989, `Fully abstra
t
ompositional semanti
s forlogi
 programming'. In: 16th Annual ACM Symposium on Prin
iples of Logi
Programming. Austin, Texas, pp. 134{142.Ghezzi, C. and M. Jazayeri: 1987, Programming language
on
epts. New York: JohnWiley & Sons, se
ond edition.Kasper, W. and H.-U. Krieger: 1996, `Modularizing Codes
riptive Grammars forEÆ
ient Parsing'. In: Pro
eedings of the 16th Conferen
e on ComputationalLinguis ti
s. Kopenhagen, pp. 628{633. Also available as Verbmobil-Report 140.Keselj, V.: 2001, `Modular HPSG'. Te
hni
al Report CS-2001-05, Department ofComputer S
ien
e, University of Waterloo, Waterloo, Ontario, Canada.Lassez, J.-L. and M. J. Maher: 1984, `Closures and fairness in the semanti
s ofprogramming logi
'. Theoreti
al
omputer s
ien
e 29, 167{184.Lehmann, S., D. Estival, and M. van der Kraan: 1995, `A Modular Organization forTFS Grammar'. In: Integrative Ans�atze in der Computerlinguistik, DGfS/CL95.D�usseldorf, pp. 55{60.Maher, M. J.: 1988, `Equivalen
es of Logi
 Programs'. In: J. Minker (ed.): Founda-tions of Dedu
tive Databases and Logi
 Programming. Los Altos, CA: MorganKaufmann Publishers, Chapt. 16, pp. 627{658.Malouf, R., J. Carroll, and A. Copestake: 2000, `EÆ
ient feature stru
ture operationswithout
ompilation'. Natural Language Engineering 6(1), 29{46.
final.tex; 24/10/2001; 18:40; p.24

Modular Context-Free Grammars 25Man
arella, P. and D. Pedres
hi: 1988, `An algebra of logi
 programs'. In: R. A.Kowalski and K. A. Bowen (eds.): Logi
 Programming: Pro
eedings of the Fifthinternational
onferen
e and symposium. Cambridge, Mass., pp. 1006{1023, MITPress.Milner, R.: 1975, `Pro
esses: a mathemati
al model of
omputing agents'. In: H. E.Rose and J. C. Shepherdson (eds.): Logi
 Colloquium '73. Amsterdam, pp. 157{174, North-Holland.Oepen, S., D. Fli
kinger, H. Uszkoreit, and J.-I. Tsujii: 2000, `Introdu
tion to thisspe
ial issue'. Natural Language Engineering 6(1), 1{14.Pereira, F. C. N. and S. M. Shieber: 1984, `The semanti
s of grammar formalismsseen as
omputer languages'. In: Pro
eedings of the 10th international
onferen
eon
omputational linguisti
s and the 22nd annual meeting of the asso
iation for
omputational linguisti
s. Stanford, CA, pp. 123{129.Pereira, F. C. N. and D. H. D. Warren: 1983, `Parsing as Dedu
tion'. In: Pro
eedingsof the 21st Annual Meeting of the Asso
iation for Computational Linguisti
s. pp.137{144.Sarkar, A., F. Xia, and A. Joshi: 2000, `Some Experiments on Indi
ators of ParsingComplexity for Lexi
alized Grammars'. In: EÆ
ien
y in Large-S
ale ParsingSystems: Workshop held at COLING 2000. Luxembourg.S
ott, D. S. and C. Stra
hey: 1971, `Towards a mathemati
al semanti
s for
omputerlanguages'. In: J. Fox (ed.): Pro
eedings of the symposium on
omputers andautomata. New York, pp. 19{46, Polyte
hni
 Institute of Brooklyn Press.Shieber, S., Y. S
habes, and F. Pereira: 1995, `Prin
iples and Implementation ofDedu
tive Parsing'. Journal of Logi
 Programming 24(1-2), 3{36.Tennet, R. D.: 1991, Semanti
s of programming languages, Prenti
e Hall Interna-tional Series in Computer S
ien
e. Prenti
e Hall.The XTAG Resear
h Group: 1998, `A Lexi
alized Tree Adjoining Grammar for En-glish'. IRCS Report 98{18, Institue for Resear
h in Cognitive S
ien
e, Universityof Pennsylvania, 3401 Walnut St, Suite 400A, Philadelphia, PA 19104.Theo�lidis, A., P. S
hmidt, and T. De
ler
k: 1997, `Grammar Modularization forEÆ
ient Pro
essing: Language Engineering Devi
es and Their Instantiations'.In: Pro
eedings of the DGFS/CL. Heidelberg.Van Emden, M. H. and R. A. Kowalski: 1976, `The semanti
s of predi
ate logi
 asa programming language'. Journal of the Asso
iation for Computing Ma
hinery23(4), 733{742.Wahlster, W.: 1997, `VERBMOBIL: Erkennung, Analyse, Transfer, Generierungund Synthese von Spontanspra
he'. Verbmobil-Report 198 198, Deuts
hesFors
hungszentrum f�ur K�unstli
he Intelligenz, Saarbr�u
ken, Germany.Wintner, S.: 1999a, `Compositional Semanti
s for Linguisti
 Formalisms'. In:Pro
eedings of ACL'99, the 37th Annual Meeting of the Asso
iation for Com-putational Linguisti
s. pp. 96{103.Wintner, S.: 1999b, `Compositional Semanti
s for Uni�
ation-based Linguisti
 For-malisms'. IRCS Report 99-05, Institute for Resear
h in Cognitive S
ien
e,University of Pennsylvania, 3401 Walnut St., Suite 400A, Philadelphia, PA 19018.Wintner, S.: 1999
, `Modularized Context-Free Grammars'. In: MOL6 { SixthMeeting on Mathemati
s of Language. Orlando, Florida, pp. 61{72.Wintner, S. and N. Fran
ez: 1999, `EÆ
ient Implementation of Uni�
ation-BasedGrammars'. Journal of Language and Computation 1(1), 53{92.Wosz
zyna, M., M. Broadhead, D. Gates, M. Gavald�a, A. Lavie, L. Levin, and A.Waibel: 1998, `A modular approa
h to spoken language translation for largedomains'. In: Pro
eedings of AMTA-98.
final.tex; 24/10/2001; 18:40; p.25

26 Shuly WintnerZaja
, R. and J. W. Amtrup: 2000, `Modular Uni�
ation-Based Parsers'. In: Pro
eed-ings of the sixth international workshop on parsing te
hnologies (IWPT 2000).Trento, Italy, pp. 278{288.Address for O�prints: Department of Computer S
ien
e, University of Haifa, MountCarmel, 31905 Haifa, Israel

final.tex; 24/10/2001; 18:40; p.26

