
Natural Language Engineering 14 (4): 457–469. c© 2007 Cambridge University Press

doi:10.1017/S1351324907004676 Printed in the United Kingdom
457

Strengths and weaknesses of finite-state

technology: a case study in morphological

grammar development

S H U L Y W I N T N E R
Department of Computer Science, University of Haifa, 31905 Haifa, Israel

e-mail: shuly@cs.haifa.ac.il

(Received 12 January 2007; revised 31 May 2007; accepted 9 October 2007; first published

online 6 December 2007)

Abstract

Finite-state technology is considered the preferred model for representing the phonology and

morphology of natural languages. The attractiveness of this technology for natural language

processing stems from four sources: modularity of the design, due to the closure properties

of regular languages and relations; the compact representation that is achieved through

minimization; efficiency, which is a result of linear recognition time with finite-state devices;

and reversibility, resulting from the declarative nature of such devices. However, when wide-

coverage morphological grammars are considered, finite-state technology does not scale up

well, and the benefits of this technology can be overshadowed by the limitations it imposes

as a programming environment for language processing. This paper investigates the strengths

and weaknesses of existing technology, focusing on various aspects of large-scale grammar

development. Using a real-world case study, we compare a finite-state implementation with

an equivalent Java program with respect to ease of development, modularity, maintainability

of the code, and space and time efficiency. We identify two main problems, abstraction and

incremental development, which are currently not addressed sufficiently well by finite-state

technology, and which we believe should be the focus of future research and development.

1 Introduction

Finite-state technology (FST) denotes the use of finite-state devices, including auto-

mata and transducers, in natural language processing (NLP). Since the early works

that demonstrated the applicability of this technology to linguistic representation

(Johnson 1972; Koskenniemi 1983; Kaplan and Kay 1994), FST is considered

adequate for describing the phonological and morphological processes of the

world’s languages (Roche and Schabes 1997; Beesley and Karttunen 2003). Even

nonconcatenative processes such as circumfixation, root-and-pattern morphology, or

reduplication, were shown to be in principle implementable in FST (Beesley 1998;

Cohen-Sygal and Wintner 2006).

The utility of FST for NLP was emphasized by the implementation of several

toolboxes that provide extended regular expression languages and compilers that

convert expressions to finite-state automata and transducers. These include INTEX

458 S. Wintner

(Silberztein 1993); FSM (Mohri, Pereira, and Riley 2000), which is a unix-based

set of programs for manipulating automata and transducers; FSA Utilities (van

Noord and Gerdemann 2001), which is a freely available, Prolog-implemented

system; XFST (Beesley and Karttunen 2003), which is a commercial package

assumed to be the most suitable for linguistic applications by providing the

most expressive language; RWTH FSA (Kanthak and Ney 2004) and Carmel

(http://www.isi.edu/licensed-sw/carmel/), which support both weighted and

unweighted automata; and SFST (Schmid 2005), which is still work in progress.

Several properties of finite-state devices contribute to their utility for NLP

applications:

True representation: Following the pioneering work of Johnson (1972), it is

now clear that the kind of phonological and morphological rules that are

common in linguistic theories can be directly implemented as finite-state

relations. The implementation of linguistically motivated rules in FST is

therefore straightforward and direct (Karttunen 1995).

Modularity: The closure properties of regular languages and relations provide

various means for combining regular expressions, supporting a variety of

operations these expressions denote on the languages. For example, closure

under union facilitates a separate development of two grammar fragments

which can then be directly combined in a single operation. The most useful

operations under which transductions are closed is probably composition, which

is the central vehicle for implementing replace rules (Kaplan and Kay 1994;

Karttunen 1995).

Compactness: Finite-state automata can be minimized, guaranteeing that for

a given language, an automaton with a minimal number of states can always

be generated. Toolboxes can apply minimization either explicitly or implicitly

to improve storage requirements.

Efficiency: When an automaton is deterministic, recognition is optimally

efficient (linear in the length of the string to be recognized). Automata can

always be determinized, and toolboxes can take advantage of this to improve

time efficiency.

Reversibility: Finite-state automata and transducers are inherently declarative:

it is the application program that implements either recognition or generation.

In particular, transducers can be used to map strings from the upper language

to the lower language or vice versa with no changes in the underlying finite-

state device.

These benefits encouraged the development of several large-scale morphological

grammars for a variety of languages, including some with complex morphology

such as Finnish (Koskenniemi 1983), German (Görz and Paulus 1988; Trost 1990),

French (Silberztein 1993; Chanod and Tapanainen 1996), Turkish (Oflazer 1994),

Arabic (Beesley 1996; Beesley 1998), and Hebrew (Yona and Wintner to appear).

While FST is instrumental in modeling the morphological, phonological, and

orthographic phenomena of natural languages, as well as for rapid prototyping

of implementations of these phenomena, the main claim of this paper is that

Strengths and weaknesses of finite-state technology 459

when the development of large-scale grammars is concerned, FST does not scale

up well. This claim is supported by a realistic case study defining a sophisticated

morphological task (Section 2), both using FST (Section 2.1) and with an alternative

implementation in Java of the same grammar (Section 2.2). The two approaches

are compared in Section 3 along several axes, focusing on engineering aspects of

the grammar development process. The conclusion (Section 4) is the identification

of two main Achilles’ heels in contemporary technology: the lack of abstraction

mechanisms and the computational burden of incremental changes. We believe that

these two issues should be the focus of future research in FST.

2 A case study

To evaluate the scalability of FST we consider, as a benchmark, a large-scale

task accounting for the morphological and orthographic phenomena of Hebrew,

a natural language with nontrivial morphology. Clearly, languages with simple

morphology (e.g., English) do not benefit from FST approaches, simply because it is

so inexpensive to generate and store all the inflected forms. It is only when relatively

complicated morphological processes are involved that the benefits of FST become

apparent, and Hebrew is chosen here only as a particular example; the observations

reported in Section 3 are valid in general for all similar tasks.

Hebrew, like other Semitic languages, has a rich and complex morphology. The

major word formation machinery is root-and-pattern morphology, where roots are

sequences of three (typically) or more consonants and patterns are sequences of

vowels and, sometimes, also consonants, with ‘slots’ into which the root’s consonants

are inserted. After the root combines with the pattern, some morpho-phonological

alterations take place, which may be nontrivial. The combination of a root with a

pattern produces a lexeme, which can then be inflected in various forms. Inflectional

morphology is highly productive and consists mostly of suffixes, but sometimes

of prefixes or circumfixes. The morphological problems are amplified by issues of

orthography. The standard Hebrew script leaves most of the vowels unspecified.

Furthermore, many particles, including prepositions, conjunctions, and the definite

article, attach to the words that immediately follow them. As a result, surface forms

are highly ambiguous.

The finite-state grammar that we used as a benchmark here is HAMSAH (Yona

and Wintner to appear), an XFST implementation of Hebrew morphology. XFST

was chosen for this task because it is the most developed FST toolbox: it provides the

largest set of operators developed specifically for linguistic applications, especially

morphology and phonology; it represents years of development in optimizing the

underlying representation and the finite-state algorithms that operate on them;

and it is the best documented FST software package. Other implementations are

limited in expressivity, too low level, or poorly scalable. While we compare a specific

XFST grammar with a specific Java program, our observations are more general,

and refer to the differences between finite-state grammars and alternative, direct

implementations in a general-purpose programming language.

460 S. Wintner

Fig. 1. The XFST lexical representation of the noun xlwn ‘window’.

2.1 An FST implementation

The XFST grammar is obtained by composing a large-scale lexicon of Hebrew

(>20,000 entries) with a large set of rules, implementing mostly morphological and

orthographic processes in the language. As the lexicon is developed independently

(Itai, Wintner, and Yona 2006), and is represented in SQL and XML, it must be

converted to XFST before it can be incorporated in the grammar. This is done

by a set of Perl scripts that had to be specifically written for this purpose. In

other words, the system itself is not purely finite state, and we maintain that few

large-scale systems for morphological analysis can be purely finite state, as such

systems must interact with independently developed components such as lexicons,

annotation tools, user interfaces, etc.

Since the lexicon was developed independently, the grammar had to be adapted

to the format of the lexicon. In particular, the citation form of lexical items is

the traditional one (e.g., singular masculine for nouns and adjectives and third

person singular masculine past tense for verbs). Consequently, the XFST lexicon

is based on such citation forms. For example, the XFST variable noun denotes

the set of all lexical items whose part of speech is noun; by default, these nouns

are singular masculine, and this is indicated by adding number singular to the

lexical specification (some nouns are inherently plural, e.g., mim ‘water’, and they

are specified as number plural in the lexicon). Hebrew has two plural suffixes,

im and wt, and by default masculine nouns take the former and feminine nouns

the latter. However, there are many exceptions to this rule, and hence idiosyncratic

nouns are lexically specified as to which suffix they take. In the XFST version of the

lexicon, this is indicated by concatenating plural im or plural wt to the lexical

representation of (irregular) nouns. Figure 1 depicts the lexical representation of the

noun xlwn ‘window’.

A specialized set of rules implements the morphological processes that apply to

each major part of speech. For example, Figure 2 depicts a somewhat simplified

version of the rule that accounts for the wt suffix of Hebrew nouns. This rule makes

extensive use of composition (denoted by ‘.o.’) and replace rules (‘->’ and ‘<-’).

The effect of this rule is dual: on the surface level, it accounts for alterations in the

concatenation of the suffix with the stem (e.g., iih becomes ih, wt changes to wi, and

a final h or t are elided); on the lexical level, it changes the specification of number

from the default singular to plural.

The rule should be read from the center outwards. The variable noun denotes the

set of all lexical items whose part of speech is noun. In XFST, a set of words is

identified with the identity transduction that relates each word in the set with itself.

The first composition on top of the noun transduction selects only those nouns

whose plural attribute is lexically specified as wt. Of those, only the ones whose

number attribute is singular are selected. Then, the value singular in the lexical

Strengths and weaknesses of finite-state technology 461

Fig. 2. XFST account of plural nouns.

(upper) string is replaced by plural in the context of immediately following the

attribute number. In the surface (lower) language, meanwhile, a set of composition

operators takes care of the necessary orthographic changes, and finally, the plural

suffix wt is concatenated to the end of the surface string.

The organization of the rule as a sequence of compositions may be misleading at

first blush; in actuality, the rule does not specify a sequence of replacements. Rather,

this rule compiles into a single finite-state transducer that encodes all the possible

relation pairs licensed by the rule. Specifically, this transducer will license pairs such

as xlwn–xlwnwt (the default case); tlwnh–tlwnwt (final h elided); clxt–clxwt and

mpit–mpiwt (final t elided); kmwt–kmwiwt (wt changes to wi); and qniih–qniwt (iih

changes to ih).

This rule is a good example of how a single phenomenon is factored out and

accounted for independently of other phenomena: the rule refers to lexical inform-

ation, such as ‘number’ or ‘plural’, but completely ignores irrelevant information

such as, say, gender. However, it also hints at how information is manipulated by

regular expressions. Since finite-state networks have no memory, save for the state,

all information is encoded by strings that are manipulated by the rules. Thus, a

simple operation such as changing the value of the number feature from singular

to plural must be carried out by the same type of replace rules that account for

the changes to the surface form. There is no way to structure such information

or encapsulate it, as is common in programming languages; specifically, there is

no obvious way to group together features that form a natural bundle, such as

agreement features.

2.2 A direct implementation

The alternative to FST is a direct implementation of a morphological analyzer

in some general purpose, high-level programming language. Recent proposals in

this spirit include the Zen toolkit for morphological and phonological processing

of natural languages (Huet 2005), which inspired the better known paradigm of

Functional Morphology (Forsberg and Ranta 2004). In both paradigms, rules are

462 S. Wintner

Fig. 3. Direct account of plural nouns.

expressed in a functional programming languages (Objective Caml and Haskell,

respectively), and their compilation yields a decorated trie that can be efficiently

traversed at run-time, resulting in highly efficient lookup.

We directly reimplemented the HAMSAH grammar as a Java program; this

is conceptually a variant of the functional morphology paradigm. We used the

more common object-oriented programming paradigm, rather than the functional

one. The method we used was analysis by generation: we first generate all the

inflected forms induced by the lexicon and store them in a database; then, analysis

is simply a database lookup. It is common to think that for languages with rich

morphology such a method is impractical. While this may have been the case in the

past, contemporary computers can efficiently store and retrieve millions of inflected

forms. Of course, this method would break in the face of an infinite lexicon (which

can easily be represented with FST), but for most practical purposes, it is safe to

assume that natural language lexicons are finite. We note in passing that the same

approach was used for the first morphological analyzer of Hebrew (Shapira and

Choueka 1964), and a similar idea (precompilation of all possible prefixes, stems,

and suffixes, reducing analysis to a little more than lookup) is used in the current

state-of-the-art analyzer of Arabic (Buckwalter 2004).

To separate linguistic knowledge from processing code as much as possible, our

Java implementation uses a database of rules, which are simple string transductions

intended to account for simple (mostly morpheme boundary) morphological and

orthographic alterations. When generating inflected forms, the program identifies

certain conditions (e.g., a plural suffix wt is to be attached to a noun). It then

looks up this condition in the rule database and retrieves the action to apply,

depending on the suffix of the input string. An example of the rule database, with

alterations pertaining to the suffix wt (cf. Figure 2), is depicted in Figure 3. For many

morphological processes, solutions such as this can accurately stand for linguistic

rules of the form depicted in Figure 2.

Note that rules such as the one depicted in Figure 3 are generation rules, and

must not be confused with the kind of ad hoc rules used at run-time, for example,

stemming. They fully reflect the linguistic knowledge encoded in finite-state replace

rules. Granted, the example rule is simplistic, and more complex phenomena require

more complicated representations. For example, Hebrew inflectional morphology

involves morpho-phonological alternations mostly along morpheme boundaries. In

other languages, phenomena of vowel harmony that can spread across several

morphemes may require more sophisticated solutions.

In addition, we preferred to formulate the grammar rules such that phonological

(and orthographic) changes go hand in hand with morphological changes. It would

have been possible to separate strictly phonological processes from affixation

Strengths and weaknesses of finite-state technology 463

processes, and such an approach might have yielded a more compact grammar;

in our approach, different affixation processes that trigger the same phonological

or orthographic process have to duplicate the stipulation of the phonological

change. The main reason for this is that this was how the finite-state grammar was

designed, and the direct implementation attempted to be as faithful as possible to the

original grammar. For our purposes, then, the rule database solution is a reasonable

representation. Grammars for other languages may resort to a more sophisticated

representation of the rules, either along the lines of functional morphology or as

(simple) regular expressions.

The morphological analyzer was obtained by directly implementing the rules and

applying them to the lexicon. The number of inflected forms (before attaching

prefixes) is 473,880 (>300,000 of those are inflected nouns and close to 150,000 are

inflected verb forms). In addition to inflected forms, the analyzer also allows as many

as 174 different sequences of prefix particles to be attached to words; separation

of prefixes from inflected forms is done at analysis time, since such combinations

do not involve any morpho-phonological alternations. In principle, we could have

generated all the possible surface forms (including prefixes) off-line, in which case

analysis would strictly amount to lookup. The number of forms would then have

been approximately 50 million (not all the prefixes combine with all word categories).

While this would still be easily manageable with contemporary memory sizes, we

acknowledge that for some languages, especially agglutinative ones, such a solution

may not be adequate at present, although it may become feasible in the near future

with the rapid decrease in the cost of memory.

The direct implementation is equivalent to the finite-state grammar: this was

verified by exhaustively generating all the inflected forms with each of the systems

and analyzing them with the other system.

3 Comparison and evaluation

Having described the XFST benchmark grammar and its direct Java implementation,

we now compare the two approaches along several axes. It is important to emphasize

that we do not wish to compare the two systems, but rather the methodology, given

that our motivation is to identify the strengths and weaknesses of the technology.

In particular, we chose XFST, as it is one of the most efficient and certainly the

most expressive FST toolbox available. A recent comparison of XFST with the

FSA Utilities package (Cohen-Sygal and Wintner 2005) shows that the latter simply

cannot handle grammars of the scale of HAMSAH. All experiments were done on

a dual 2-GHz processor Linux machine with 2.5 Gb of memory.

3.1 Faithfulness

One of the assets of FST is that it allows for a very accurate implementation

of linguistic rules. However, a good organization of the software can provide a

clear separation between linguistic knowledge and processing in any programming

environment, so that linguistic rules can be expressed concisely and declaratively,

464 S. Wintner

as exemplified in Figure 3. Our conclusion is that while for a linguistically ac-

curate modeling of natural language phenomena, FST remains superior, from an

engineering point of view, the two approaches are comparable.

3.2 Reversibility

A clear advantage of FST is that grammars are fully reversible. However, with the

analysis by generation paradigm the same holds also for a direct implementation:

the generator is directly implemented, and the analyzer is implemented as search in

the database of generated forms.

3.3 Expressivity

Here, the disadvantages of FST as a programming environment are clear. Program-

ming with FST is very different from programming in ordinary languages, mainly

due to the highly constrained expressive power of regular relations (programmers

sometimes feel that they are working with their hands tied behind their backs).

Sometimes the expression of morphological phenomena requires more than regular

power (as in the case of reduplication); more frequently, regular relations suffice,

but grammar designers trained as programmers wish they had access to operators

that are not regular. A typical example is the rule that doubles the final consonant

of English verbs before some suffixes: one would want to express such a rule as

‘change a consonant C to CC when it is in the context of following a consonant

and a vowel and preceding a vowel’. With regular expressions, this can only be done

by stipulating all the consonants C and their doubled form.

3.4 Portability

XFST is a proprietary package with three versions available for three common

operating systems. Other finite-state toolboxes are freer; FSA is open source, but

as we noted earlier, it simply cannot cope with grammars the size of HAMSAH.

FSM is available for a variety of Unix operating systems, as a binary only, whereas

INTEX is distributed as a Windows executable. In contrast, a Java implementation

can be delivered to users with all kinds of (contemporary) operating systems and

hardware, and is optimally portable. The practical portability limitations directly

hamper the utilization of FST in practical, commercial systems: this has been an

issue both with the Hebrew HAMSAH and with a morphological grammar for

Turkish (K. Oflazer, personal communication 2007)

3.5 Abstraction

Large-scale morphological grammars tend to be extremely non-modular. Each

surface string is associated, during its processing, with a lexical counterpart that

describes its structure. The lexical string is constantly rewritten by the rules, as in

Figure 2. There are very limited facilities for grouping together related features,

abstracting away from the actual representation, modularizing the grammar, etc.

Strengths and weaknesses of finite-state technology 465

Since information cannot be encapsulated and the language provides no abstrac-

tion mechanisms, collaborative development of finite-state grammars is difficult.

All grammar developers must be aware of how information is represented at

all times. Furthermore, since the only data type is strings, debugging becomes

problematic: very few errors can be detected at compile time. In contrast, a

direct implementation benefits from all the advantages of developing in a high-

level programming environment.

An additional limitation of XFST is that it only provides two levels of rep-

resentation, surface and lexical. Consequently, information pertaining to various

strata of linguistic representation are coerced into two levels, and cleanup rules

must be used as part of the grammar to eliminate intermediate layers that are

less important for the final analysis. Consider Figures 1 and 2, which depict

orthographic information (xlwn), morpho-syntactic features (number singular),

exception features (plural wt), and full semantic glosses, all represented in two

levels of strings.

3.6 Maintenance

A byproduct of the nonmodularity of FST grammars is that maintaining them is

difficult and expensive. It is hard to find a single person who is knowledgeable

in all aspects of the design, and any change in the grammar is painful. A direct

implementation in a high-level language provides access to sophisticated debugging

mechanisms that are missing altogether from FST frameworks, including XFST.

This must be added to the poor compile-time performance (see below), which again

hampers maintainability.

3.7 Compile-time efficiency

A major obstacle in the development of XFST grammars is the speed of compilation.

Let us first recall a few theoretical (worst case) results. As is well known, many of the

finite-state operators result in huge networks: theoretically, composition of networks

of m and n states yields a network with O(m × n) states, and replace rules are

implemented using composition. While automata can always be minimized, this is

not the case for transducers (Mohri 2000). Theoretically, it is very easy to come

up with very small regular expressions whose compilation is intractable. For any

integer n > 2, there exists an n-state automaton A, such that any automaton that

accepts the complement of L(A) needs at least 2n−2 states (Holzer and Kutrib 2002).

An example of an XFST expression whose compilation time is exponential in n is:

~[[a|b]* a [a|b]^n b [a|b]*].

Of course, this worst case behavior is not worse than that of a direct imple-

mentation in an arbitrary programming language, where programmers are free

to write arbitrary code. A more meaningful comparison must be in terms of

actual performance. As it turns out, large-scale grammars such as HAMSAH yield

temporary networks that are sometimes larger than the available memory, requiring

disk access and thereby slowing compilation down dramatically. The complete

Hebrew grammar is represented, in XFST, by a network of approximately 2 million

466 S. Wintner

Table 1. Compilation/generation times (in minutes) when some lexical items change

#items

360 (adverbs) 1,648 (adjectives) 21,400 (all)

FST 13:47 13:55 48:12

Java 0:14 3:59 30:34

states and 2.2 million transitions. Compiling the entire network takes more than

48 minutes and requires 3 Gb of memory. To verify that this was not an issue of

limited machine memory, we repeated the experiment on a similar machine with

16 Gb of memory (compared with the 2.5 Gb used for all the experiments). This

reduced compilation time to 25 minutes.

Compilation time is usually considered a negligible criterion for evaluating system

performance. However, when developing a large-scale system, the ability to make

minor changes and quickly remake the system is crucial. With XFST, modification

of even a single lexical entry requires at least an intersection of (the XFST

representation of) this entry with the network representing the rules that apply

to it. As a concrete example, adding a single two-character proper name (which

does not inflect) to the lexicon increased the size of the network by nine states and

ten arcs, but took almost 3 minutes to compile. Adding a two-character adjective

resulted in the addition of 27 states and 30 arcs, and took about the same time. A

major contribution to this poor performance may be the fact that the features and

glosses used for the analyses were all multi-character symbols, which increase the

memory requirements of the compiled network.

In the direct implementation, modification of a single lexical entry requires

generation of all inflected forms of this entry, which takes a fraction of a second;

the time it takes to generate k lexical entries is proportional to k and is independent

of the size of the remainder of the system. The analysis program is not altered.

To summarize the differences, Table 1 shows the time it takes to compile a

network when k lexical entries are modified, for three values of k, corresponding to

the number of adjectives, adverbs, and the size of the entire lexicon. This time is

compared with the time it takes to generate all inflected forms of these sublexicons

in the analysis by generation paradigm.1

3.8 Run-time efficiency

While finite-state automata guarantee linear recognition time, this is not the case

with transducers, which cannot always be determinized (Mohri 1997). Even when a

device can be determinized, the determinization algorithm is inefficient (theoretically,

the size of the deterministic automaton can be exponential in the size of its

nondeterministic counterpart).

1 This comparison is slightly biased, since the direct implementation does not produce
inflected forms with prefixes, which are produced by XFST.

Strengths and weaknesses of finite-state technology 467

Table 2. Time performance of both analyzers (in seconds)

#Tokens

10 100 1,000 10,000

FST 1.25 2.40 12.97 118.71

Java +MySQL 1.24 3.04 8.84 44.94

Java +Hash 5.00 5.15 5.59 7.64

As it turns out, storing a database of half a million inflected forms (along with their

analyses) is inexpensive, and retrieving items from the database can be done very

efficiently. We experimented with two versions: one uses MySQL as the database

and the other loads the inflected forms into a hash table. In this latter version, most

of the time is spent on loading the database, and retrieval time is negligible.

We compared the performance of the two systems on four tasks, analyzing text

files of 10, 100, 1,000, and 10,000 tokens. The results are summarized in Table 2,

and clearly demonstrate the superiority of the direct implementation. In terms of

memory requirements, XFST requires approximately 57 Mb of memory, whereas the

Java implementation uses no more than 10 Mb. This is not a significant issue with

contemporary hardware.

4 Discussion

We compared the process of developing a large-scale morphological grammar for

Hebrew with FST with a direct implementation of the morphological rules in Java.

Our conclusion is that FST remains superior to its alternatives with respect to

the true representation of linguistic knowledge, and is therefore more adequate

for smaller scale grammars, especially those whose goal is to demonstrate specific

linguistic phenomena rather than form the basis of large practical systems. However,

viewed as a programming environment, FST suffers from severe limitations, the most

significant of which are lack of abstraction and difficulties in incremental processing.

Abstraction is the essence of computer science and the key to software develop-

ment. Working with regular expressions and developing rules that use strings as the

only data structure does not leave much space for sophisticated abstraction. Several

works attempt to remedy this problem. XFST itself provides a limited solution

in the form of flag diacritics (Beesley and Karttunen 2003). These are feature-

value pairs that can be added to the underlying machines in order to add limited

memory to networks; a similar solution, which is fully worked out mathematically, is

provided by finite-state registered automata (Cohen-Sygal and Wintner 2006). These

approaches are too low level to provide the kind of abstraction that programmers

have become used to. A step in the right direction is the incorporation of feature

structures and unification into finite-state transducers (Zajac 1998), and in particular

the recent proposal to use typed feature structures as the entities on which such

transducers operate (Amtrup 2003). More research is needed in order to fully

468 S. Wintner

develop this direction and incorporate its consequences into a finite-state-based

grammar development framework.

The problem of incremental grammar development, exemplified in Table 1, can

also be remedied by incorporating some recent theoretical results, in particular in

incremental construction of lexicons (Daciuk et al. 2000; Carrasco and Forcada

2002), into an existing framework. Ordinary programming languages benefit from

decades of research and innovation in compilation theory and optimization. In

order for FST to become a viable programming environment for natural language

morphology applications, more research is needed along the lines suggested here.

Acknowledgments

This paper extends and revises an earlier version (Wintner 2007). This research

was supported by The Israel Science Foundation (grant No. 137/06), the Israel

Internet Association, the Knowledge Center for Processing Hebrew, and the Caesarea

Rothschild Institute for Interdisciplinary Application of Computer Science at the

University of Haifa. I am very grateful to Shlomo Yona for implementing the XFST

grammar and to Dalia Bojan for implementing the Java system. I also thank Galia

Givaty, Alon Itai, Nurit Melnik, Kemal Oflazer, Yael Sygal, and four anonymous

reviewers for useful and constructive comments. The views expressed in this paper

as well as all remaining errors are, of course, my own.

References

Amtrup, J. W. (2003) Morphology in machine translation systems: efficient integration of finite

state transducers and feature structure descriptions. Machine Translation 18(3): 217–238.

Beesley, K. R. (1996) Arabic finite-state morphological analysis and generation. In

Proceedings of COLING-96, the 16th International Conference on Computational Linguistics,

Copenhagen.

Beesley, K. R. (1998) Arabic morphology using only finite-state operations. In M. Rosner

(eds.), Proceedings of the Workshop on Computational Approaches to Semitic languages,

pp. 50–57, Montreal, Quebec. COLING-ACL’98.

Beesley, K. R. and Karttunen, L. (2003) Finite-State Morphology: Xerox Tools and Techniques.

Stanford: CSLI.

Buckwalter, T. (2004) Buckwalter Arabic Morphological Analyzer Version 2.0. Philadelphia:

Linguistic Data Consortium.

Carrasco, R. C. and Forcada, M. L. (2002) Incremental construction and maintenance of

minimal finite-state automata. Computational Linguistics 28(2): 207–216.

Chanod, J.-P. and Tapanainen, P. (1996). A robust finite-state grammar for French. In

ESSLLI’96 Workshop on Robust Parsing, pp. 16–25, Prague.

Cohen-Sygal, Y. and Wintner, S. (2005) XFST2FSA: comparing two finite-state toolboxes.

In Proceedings of the ACL-2005 Workshop on Software, Ann Arbor, MI.

Cohen-Sygal, Y. and Wintner, S. (2006) Finite-state registered automata for non-concatenative

morphology. Computational Linguistics 32(1): 49–82.

Daciuk, J., Mihov, S., Watson, B. W. and Watson, R. E. (2000) Incremental construction of

minimal acyclic finite-state automata. Computational Linguistics 26(1): 3–16.

Forsberg, M. and Ranta, A. (2004) Functional morphology. In Proceedings of the Ninth ACM

SIGPLAN International Conference on Functional Programming (ICFP’04), pp. 213–223,

New York: AACM Press.

Strengths and weaknesses of finite-state technology 469

Görz, G. and Paulus, D. (1988) A finite state approach to German verb morphology. In

Proceedings of the 12th Conference on Computational Linguistics (COLING-88), pp. 212–

215, Budapest.

Holzer, M. and Kutrib, M. (2002) State complexity of basic operations on nondeterministic

finite automata. In Implementation and Application of Automata (CIAA ’02), pp. 151–160.

Huet, G. (2005). A functional toolkit for morphological and phonological processing,

application to a Sanskrit tagger. Journal of Functional Programming 15(4): 573–614.

Itai, A., Wintner, S. and Yona, S. (2006) A computational lexicon of contemporary Hebrew.

In Proceedings of The Fifth International Conference on Language Resources and Evaluation

(LREC-2006), Genoa, Italy.

Johnson, C. D. (1972) Formal Aspects of Phonological Description. Mouton, The Hague.

Kanthak, S. and Ney, H. (2004) FSA: an efficient and flexible C++ toolkit for finite state

automata using on-demand computation. In Proceedings of the 42nd Annual Meeting of the

Association for Computational Linguistics (ACL 2004), pp. 510–517.

Kaplan, R. M. and Kay, M. (1994) Regular models of phonological rule systems.

Computational Linguistics 20(3): 331–378.

Karttunen, L. (1995). The replace operator. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics, pp. 16–23.

Koskenniemi, K. (1983). Two-Level Morphology: A General Computational Model for Word-

Form Recognition and Production. The Department of General Linguistics, University of

Helsinki.

Mohri, M. (1997) Finite-state transducers in language and speech processing. Computational

Linguistics 23(2): 269–312.

Mohri, M. (2000) Minimization algorithms for sequential transducers. Theoretical Computer

Science 234: 177–201.

Mohri, M., Pereira, F., and Riley, M. (2000) The design principles of a weighted finite-state

transducer library. Theoretical Computer Science 231(1): 17–32.

Oflazer, K. (1994) Two-level description of Turkish morphology. Literary and Linguistic

Computing 9(2): 137–48.

Roche, E. and Schabes, Y. (eds.) (1997) Finite-State Language Processing. Language, Speech

and Communication. Cambridge, MA: MIT Press.

Schmid, H. (2005) A programming language for finite state transducers. In Proceedings of the

5th Workshop on Finite State Methods in Natural Language Processing, Helsinki, Finland.

University of Helsinki.

Shapira, M. and Choueka, Y. (1964) Mechanographic analysis of Hebrew morphology:

possibilities and achievements. Leshonenu 28(4): 354–372. In Hebrew.

Silberztein, M. (1993) Dictionnaires électroniques et analyse automatique de textes : le système

INTEX Paris: Masson.

Trost, H. (1990) The application of two-level morphology to non-concatenative German

morphology. In COLING-90, pp. 371–376.

van Noord, G. and Gerdemann, D. (2001) An extendible regular expression compiler for

finite-state approaches in natural language processing. In O. Boldt and H. Jürgensen (eds.),

Automata Implementation, number 2214. Lecture Notes in Computer Science. Springer.

Wintner, S. (2007) Finite-state technology as a programming environment. In A. Gelbukh

(eds.), Proceedings of the Conference on Computational Linguistics and Intelligent Text

Processing (CICLing-2007), vol. 4394. Lecture Notes in Computer Science, pp. 97–106.

Berlin and Heidelberg: Springer.

Yona, S. and Wintner, S. (2008). A finite-state morphological grammar of Hebrew. Natural

Language Engineering.

Zajac, R. (1998) Feature structures, unification and finite-state transducers. In FSMNLP’98:

The International Workshop on Finite-state Methods in Natural Language Processing,

Ankara, Turkey.

