
Finite State Registered Automata and their uses in
Natural languages

Yael Cohen-Sygal Shuly Wintner

Department of Computer Science
University of Haifa

yaelc@cs.haifa.ac.il shuly@cs.haifa.ac.il

Abstract. We extend finite state registered automata (FSRA) to account for
medium-distance dependencies in natural languages. We provide an extended
regular expression language whose expressions denote arbitrary FSRAs and use
it to describe some morphological and phonological phenomena. We also define
several dedicated operators which support an easy and efficient implementation
of some non-trivial morphological phenomena. In addition, we extend FSRA to
finite-state registered transducers and demonstrate their space efficiency.

1 Introduction

Finite-state (FS) technology is considered adequate for describing the morpho-
logical processes of natural languages since the pioneering works of [1] and [2].
Several toolboxes provide extended regular expression description languages
and compilers of the expressions to finite state automata (FSAs) and transduc-
ers (FSTs) [3–5]. While FS approaches for natural languages processing have
generally been very successful, it is widely recognized that they are less suitable
for non-concatenative phenomena. In particular, FS techniques are assumed not
to be able to efficiently account for medium-distance dependencies, whereby
some elements that are related to each other in some deep-level representation
are separated on the surface. These phenomena do not lie outside the descriptive
power of FS systems, but their implementation can result in huge networks that
are inefficient to process.

To constrain dependencies between separated morphemes in words, [6] pro-
pose flag diacritics, which add features to symbols in regular expressions to
enforce dependencies between separated parts of a string. The dependencies are
forced by different kinds of unification actions. In this way, a small amount of
finite memory is added, keeping the total size of the network relatively small.
The main disadvantage of this method is that it is not formally defined, and its
mathematical and computational properties are not proved. Furthermore, flag
diacritics are manipulated at the level of the extended regular expressions, al-
though it is clear that they are compiled into additional memory and operators

in the networks themselves. The presentation of [6] and [7] does not explicate
the implementation of such operators and does not provide an analysis of their
complexity. Moreover, they do not present any dedicated regular expression op-
erations for non-concatenative processes.

A related formalism is vectorized finite state automata (VFSA) [8], where
both the states and the transitions are represented by vectors of elements of a
partially ordered set. Two kinds of operations over vectors are defined: unifica-
tion and overwriting. The vectors need not be fully determined, as some of the
elements can be unknown (free). In this way information can be moved through
the transitions by the overwriting operation and traversing these transitions can
be sanctioned through the unification operation. The free symbols are also the
source of the efficiency of this model, where a vector with k free symbols ac-
tually represents tk vectors, t being the number of different values that can be
stored in the free places. As one of the examples of the advantages of the model,
[8] shows that it can efficiently solve the problem of 32-bit binary incrementor.
The goal of this example is to construct a transducer over Σ = {0, 1} whose
input is a number in 32 bit binary representation and whose output is the result
of adding 1 to the input. The naı̈ve solution is a transducer with only 5 states and
12 arcs, but this transducer is neither sequential nor sequentiable. A sequential
transducer for an n-bit binary incrementor would require 2n states and a similar
number of transitions. Using vectorized finite state automata, a 32-bit incre-
mentor is constructed where first, using overwriting, the input is scanned and
stored by the vectors, and then, using unification, the result is calculated where
the carry can be computed from right to left. This allows a significant reduc-
tion in the network size. The main disadvantage of VFSA lies in the fact that it
significantly deviates from the standard methodology of developing finite-state
devices, and integration of vectorized automata with standard ones remains a
challenge. Moreover, it is unclear how, for a given problem, the corresponding
network should be constructed: programming with vectorized automata seems
to be unnatural, and no regular expression language is provided for them.

Finite state registered automata (FSRA) ([9]) augment finite state automata
with finite memory (registers) in a restricted way that saves space but does not
add expressivity. The number of registers is finite, usually small, and eliminates
the need to duplicate paths as it enables the automaton to ‘remember’ a finite
number of symbols. Each FSRA defines an alphabet, Γ , whose members can be
stored in registers. In this model, each arc is associated not only with an alpha-
bet symbol, but also with a series of actions on the registers. There are two kinds
of possible actions, read and write. The read action, denoted R, allows travers-
ing an arc only if a designated register contains a specific symbol. The write
action, denoted W, allows traversing an arc while writing a specific symbol into

a designated register. Then, the FSRA model is extended to allow up to k reg-
ister operations on each transition, where k is determined for each automaton
separately. The register operations are defined as a sequence (rather than a set),
in order to allow more than one operation on the same register over one transi-
tion. [9] prove that FSRAs are equivalent to FSAs, and use them to efficiently
describe some non-concatenative phenomena of natural languages, including
interdigitation (root-and-pattern morphology) and limited reduplication.

In this work we extend the model of FSRA to account for medium-distance
dependencies in natural languages. We provide an extended regular expression
language whose expressions denote FSRAs in section 2. Section 3 defines sev-
eral dedicated operators which support an easy and efficient implementation of
some non-trivial morphological phenomena. We then extend FSRA to finite-
state registered transducers in section 4 . Furthermore, the model is evaluated
through an actual implementation in section 5. We conclude with a comparison
with similar approaches and suggestions for future research.

2 A regular expression language for FSRAs

The first limitation of [9] is that no regular expression language is provided for
constructing FSRAs. We begin by proposing such a language, the denotations
of whose expressions are FSRAs. In the following discussion we assume the
regular expression syntax of XFST ([7]) for basic expressions1 .

Definition 1. Let ActionsΓ
n = {R,W}×{0, 1, 2, . . . , n−1}×Γ , where n is the

number of registers and Γ is the register alphabet. If R is a regular expression
and ~a ∈

(

ActionsΓ
n

)+ is a series of register operations, then the following are
also regular expressions: ~a . R, ~a . .R, ~a / R and ~a / /R.

We now define the denotation of each of the above expressions. Let R be a
regular expression whose denotation is the FSRA A, and let ~a ∈

(

ActionsΓ
n

)+.
The denotation of ~a / R is an FSRA A′ obtained from A by adding a new node,
q, which becomes the initial node of A′, and an arc from q to the initial node
of A; this arc is labeled by ε and associated with ~a. Notice that in the regular
expression ~a / R, R and ~a can contain operations on joint registers. In some
cases, one would like to distinguish between the registers used in ~a and in R.
Usually, it is up to the user to correctly manipulate the usage of registers, but
in some cases automatic distinction seems desirable. For example, if R includes
a circumfix operator (see below), its corresponding FSRA will contain register
operations created automatically by the operator. Instead of remembering that
circumfixation always uses register 1, one can simply distinguish between the

1 In particular, concatenation is denoted by space and ε is denoted by 0.

registers of ~a and R via the ~a / /R operator. This operator has the same general
effect as the previous one, but the transition relation in its FSRA uses fresh
registers which are added to the machine.

In a similar way, the operators ~a.R and ~a..R are translated into networks.
The difference between these operators and the previous ones is that here, the
register operations in ~a are executed after traversing all the arcs in the FSRA
denoted by R. It is easy to show that every FSRA has a corresponding regular
expression denoting it.

Example 1 Consider the case of vowel harmony in Warlpiri [10], where the
vowel of suffixes agrees in certain aspects with the vowel of the stem to which it
is attached. A simplified account of the phenomenon is that suffixes come in two
varieties, one with ‘i’ vowels and one with ‘u’ vowels. Stems whose last vowel
is ‘i’ take suffixes of the first variety, whereas stems whose last vowel is ‘u’ or
‘a’ take the other variety. The following examples are from [10] (citing [11]):

1. maliki+kil.i+l.i+lki+ji+li
(dog+PROP+ERG+then+me+they)

2. kud. u+kul.u+l.u+lku+ju+lu
(child+PROP+ERG+then+me+they)

3. minija+kul.u+l.u+lku+ju+lu
(cat+PROP+ERG+then+me+they)

An FSRA that accepts the above three words is denoted by the following com-
plex regular expression:
define LexI [m a l i k i]; % words ending in ‘i’
define LexU [k u d u]; % words ending in ‘u’
define LexA [m i n i j a]; % words ending in ‘a’
! Join all the lexicons and write to register 1
! ‘u’ or ’i’ according to the stem‘s last vowel.
define Stem [LexI / <(W,1,i)>] |

[[LexU | LexA] / <(W,1,u)>];
! Traverse the arc only if the scanned symbol is
! the content of register 1.
define V [<(R,1,i)> . i] | [<(R,1,u)> . u];
define PROP [+ k V l V]; % PROP suffix
define ERG [+ l V]; % ERG suffix
define Then [+ l k V]; % suffix indicating ‘then’
define Me [+ j V]; % suffix indicating ‘me’
define They [+ l V]; % suffix indicating ‘they’
! define the whole network
define WarlpiriExample Stem PROP ERG Then Me They;

Register 1 stores the last vowel of the stem, eliminating the need to duplicate
paths for each of the different cases. The lexicon is divided into three separate
lexicons (LexI, LexU, LexA), one for each word ending (‘i’, ‘u’ or ‘a’ respec-
tively). The separate lexicons are joined into one (the variable Stem) and when
reading the last letter of the base word, its type is written into register 1. Then,
when suffixing the lexicon base words, the variable V uses the the content of reg-
ister 1 to determine which of the symbols ‘i’, ‘u’ should be scanned and allows
traversing the arc only if the correct symbol is scanned. Note that this solution is
applicable independently of the size of the lexicon, and can handle other suffixes
in the same way.

Example 2 Consider the following Arabic nouns: qamar (moon), kitaab (book),
$ams (sun) and daftar (notebook). The definite article in Arabic is the prefix ‘’al’,
which is realized as ‘’al’ when preceding most consonants; however, the ‘l’ of
the prefix assimilates to the first consonant of the noun when the latter is ‘d’,
‘$’, etc. Furthermore, Arabic distinguishes between definite and indefinite case
markers. For example, nominative case is realized as the suffix ‘u’ on definite
nouns, ‘un’ on indefinite nouns. Examples of the different forms of Arabic nouns
are:

word nominative definite nominative indefinite
qamar ’alqamaru qamarun
kitaab ’alkitaabu kitaabun
$ams ’a$$amsu $amsun
daftar ’addaftaru daftarun

The FSRA of Figure 1 accepts all the nominative definite and indefinite
forms of these nouns. In order to account for the assimilation, register 2 stores
information about the actual form of the definite article. Furthermore, to ensure
that definite nouns occur with the correct case ending, register 1 stores infor-
mation of whether or not a definite article was seen. This FSRA can be denoted
by the following regular expression:

! Read the definite article (if present).
! Store in register 1 whether the noun is definite
! or indefinite.
! Store in register 2 the actual form of the
! definite article.
define Prefix [0 / <(W,1,indef)>] |

[’al / <(W,1,def),(W,2,l)>] |
[’a$ / <(W,1,def),(W,2,$)>] |

[’ad/ <(W,1,def),(W,2,d)>];
! Normal base - definite and indefinite
define Base [[0 / <(R,2,l)>]|[0 / <(R,1,indef)>]]

[[k i t a a b]|[q a m a r]];
! Bases beginning with $ - definite and indefinite
define $Base [[0 / <(R,2,$)>]|[0 / <(R,1,indef)>]]

[$ a m s];
! Bases beginning with d - definite and indefinite
define dBase [[0 / <(R,2,d)>]|[0 / <(R,1,indef)>]]

[d a f t a r];
! Read definite and indefinite suffixes.
define Suffix [<(R,1,def)> . u]|[<(R,1,indef)> . un];
! The complete network.
define ArabicExample Prefix [Base | $Base | dBase]

Suffix;

The variable Prefix denotes the arcs connecting the first two states of the FSRA,
in which the definite article (if present) is scanned and information indicating
whether the word is definite or not is saved into register 1. In addition, if the
word is definite then register 2 stores the actual form of the definite article.
The lexicon is divided into several parts: the Base variable denotes nouns that
do not trigger assimilation. Other variables ($Base, dBase) denote nouns that
trigger assimilation, where for each assimilitaion case, a different lexicon is
constructed. Each part of the lexicon deals with both its definite and indefinite
nouns by allowing traversing the arcs only if the register content is appropriate.
The variable Suffix denotes the correct suffix, depending on whether the noun is
definite or indefinite. This is possible using the information that was stored in
register 1 by the variable Prefix.

3 Dedicated regular expressions for linguistic applications

3.1 Circumfixes
The usefulness of FSRAs for non-concatenative morphology is demonstrated
by [9], who show a specific FSRA accounting for circumfixation in Hebrew. We
introduce a dedicated regular expression operator for circumfixation and show
how expressions using this operator are compiled into the appropriate FSRA.
The operator accepts a regular expression, denoting a set of bases, and a set
of circumfixes, each of which containing a prefix and a suffix regular expres-
sions. It yields as a result an FSRA obtained by prefixing and suffixing the base
with each of the circumfixes. The main purpose of this operator is to deal with

′al, 〈(W, 1, def), (W, 2, l)〉
q,〈(R,2,l)〉

q,〈(R,1,indef)〉 a mr a

u, 〈(R, 1, def)〉

i t a a

a m s

a f t a

k,〈(R,2,l)〉
k,〈(R,1,indef)〉

$,〈(R,2,$)〉
$,〈(R,1,indef)〉

d,〈(R,2,d)〉
d,〈(R,1,indef)〉

un, 〈(R, 1, indef)〉

ε, 〈(W, 1, indef)〉

′a$, 〈(W, 1, def), (W, 2, $)〉

′ad, 〈(W, 1, def), (W, 2, d)〉

b

r

r

Fig. 1. FSRA-2 for Arabic nominative definite and indefinite nouns

cases in which the circumfixes are pairs of strings, but it is defined such that the
circumfixes can be arbitrary regular expressions.

Definition 2. Let Σ be a finite set such that �, {, }, 〈, 〉,⊗ /∈ Σ. We define the
⊗ operation to be of the form

R ⊗ {〈β1�γ1〉〈β2�γ2〉 . . . 〈βm�γm〉}

where: m ∈ N is the number of circumfixes; R is a regular expression over Σ
denoting the set of bases and βi, γi for 1 ≤ i ≤ m are regular expressions over
Σ denoting the prefix and suffix of the i-th circumfix, respectively.

Notice that R, βi, γi may denote infinite sets. To define the denotation of this
operator, let βi, γi be regular expressions denoting the FSRAs Aβ

i , Aγ
i , respec-

tively. The operator yields an FSRA constructed by concatenating three FSRAs.
The first is the FSRA constructed from the union of the FSRAs A′β

1
, . . . , A′β

m,
where each A′β

i is an FSRA obtained from Aβ
i by adding a new node, q, which

becomes the initial node of A′β
i , and an arc from q to the initial node of Aβ

i ; this
arc is labeled by ε and associated with 〈(W, 1, βi�γi)〉. In addition, the regis-
ter operations of the FSRA Aβ

i are shifted by one register in order not to cause
undesired effects by the use of register 1. The second FSRA is the FSRA de-
noted by the regular expression R (again, with one register shift) and the third
is constructed in the same way as the first one, with the difference that the FS-
RAs are those denoted by γ1, . . . , γm and the associated register operation is
〈(R, 1, βi�γi)〉. Notice that the concatenation operation, defined by [9], adjusts

the register operations in the FSRAs to be concatenated, to avoid undesired ef-
fects caused by using joint registers. We use this operation to concatenate the
three FSRAs, leaving register 1 unaffected (to handle the circumfix).

Example 3 Consider the participle-forming combinations in German, e.g., the
circumfix ge-t. A simplified account of the phenomenon is that German verbs in
their present form take an ‘n’ suffix but in participle form they take the circumfix
ge-t. The following examples are from [10]:

säuseln ‘rustle’ gesäuselt ‘rustled’
brüsten ‘brag’ gebrüstet ‘bragged’

The FSRA of Figure2, which accepts the four forms, is yielded by the regular
expression

[s ä u s e l | b r ü s t e] ⊗ {〈ε�n〉〈g e�t〉}

This regular expression can be easily extended to accept more German verbs
in other forms. More circumfixation phenomena in other languages such as In-
donesian, Arabic etc. can be modeled in the same way using this operator.

g〈(W, 1, ge�t)〉

ε〈(W, 1, []�n)〉

e s

b

ä u s e

r ü s t

l

e

t〈(R, 1, ge�t)〉

n〈(R, 1, []�n)〉

Fig. 2. Participle-forming combinations in German

3.2 Interdigitation

For interdigitation, [9] introduce a dedicated regular expression operator, splice,
which accepts a set of strings of length n over Σ∗, representing a set of roots,
and a list of patterns, each containing exactly n ‘slots’, and yields a set con-
taining all the strings created by splicing the roots into the slots in the patterns.
Formally, if Σ is such that �, {, }, 〈, 〉,⊕ /∈ Σ, then the splice operation is of
the form

{〈α1 1, α1 2, ..., α1 n〉, ..., 〈αm 1, αm 2, ..., αm n〉}

⊕

{〈β1 1�β1 2�...β1 n�β1 n+1〉, ..., 〈βk 1�βk 2�...βk n�βk n+1〉}

where n ∈ N is the number of slots (represented by ‘�’); m ∈ N is the num-
ber of roots; k ∈ N is the number of patterns and αij, βij ∈ Σ∗. This operator
suffers from lack of generality as the set of roots and patterns must be strings;
we generalize the operator in a way that supports any regular expression denot-
ing a language for both the roots and the patterns. This extension is done by
simply allowing αij , βij to be arbitrary regular expressions (including regular
expressions denoting FSRAs). The construction of the FSRA denoted by this
generalized operation is done in the same way as in the case of circumfixes with
two main adjustments. The first is that in this case the final FSRA is constructed
by concatenating 2n + 1 intermediate FSRAs (n FSRAs for the n parts of the
roots and n + 1 FSRAs for the n + 1 parts of the patterns). The second is that
here, 2 registers are used to remember both the root and the pattern. We sup-
press the detailed description of the construction. The circumfixation operator
may seem redundant, being a special case of interdigitation. However, it results
in a more compact network without any unnecessary register operations.

4 Finite state registered transducers

We extend the FSRA model to finite-state registered transducers (FSRT), denot-
ing relations over two finite alphabets. The extension is done by adding to each
transition an output symbol. This facilitates an elegant solution to the problem
of binary incrementors which was introduced in section 1.

Example 4 Consider again the 32-bit incrementor example mentioned in sec-
tion 1. Recall that a sequential transducer for an n-bit binary incrementor would
require 2n states and a similar number of transitions. Using the FSRT model,
a more efficient n-bit transducer can be constructed. A 4-bit FSRT incrementor
is shown in Figure 3. The first four transitions copy the input string into the
registers, then the input is scanned (using the registers) from right to left (as
the carry moves), calculating the result, and the last four transitions output the
result (in case the input is 1n, an extra 1 is added in the beginning). Notice that
this transducer guarantees linear recognition time, since from each state only
one arc can be traversed in each step, even when there are ε-arcs. In the same
way, an n-bit transducer can be constructed for all n ∈ N. Such a transducer
will have n registers, 3n + 1 states and 6n arcs. The FSRT model solves the
incrementor problem in much the same way it is solved by vectorized finite state
automata, but the FSRT solution is more intuitive and is based on existing finite
state techniques.

It is easy to show that FSRTs, just like FSRAs, are equivalent to their non-
registered counterparts. It immediately implies that FSRTs maintain the closure

0 : ε, (〈W, 1, 0〉)

1 : ε, (〈W, 1, 1〉)

0 : ε, (〈W, 2, 0〉)

1 : ε, (〈W, 2, 1〉)

0 : ε, (〈W, 3, 0〉)

1 : ε, (〈W, 3, 1〉)

0 : ε, (〈W, 4, 0〉)

1 : ε, (〈W, 4, 1〉)

ε : 1, (〈R, 1, 1〉)

ε : 0, (〈R, 1, 0〉)

ε : 1, (〈R, 2, 1〉)

ε : 0, (〈R, 2, 0〉)

ε : 1, (〈R, 3, 1〉)

ε : 0, (〈R, 3, 0〉)

ε : 1, (〈R, 4, 1〉)

ε : 0, (〈R, 4, 0〉)

ε : ε, (〈R, 4, 1〉, 〈W, 4, 0〉)

ε : ε, (〈R, 4, 0〉, 〈W, 4, 1〉)

ε : ε, (〈R, 3, 1〉, 〈W, 3, 0〉)

ε : ε, (〈R, 3, 0〉, 〈W, 3, 1〉)

ε : ε, (〈R, 2, 1〉, 〈W, 2, 0〉)

ε : ε, (〈R, 2, 0〉, 〈W, 2, 1〉)

ε : 1, (〈R, 1, 1〉, 〈W, 1, 0〉)

ε : ε, (〈R, 1, 0〉, 〈W, 1, 1〉)

Fig. 3. 4-bit incrementor using FSRT

properties of regular relations. Thus, performing the regular operations on FS-
RTs can be easily done by converting them first into finite state transducers.
However, such a conversion may result in an exponential increase in the size
of the network, invalidating the advantages of FSRTs. Therefore, as in FSRAs,
implementing the closure properties directly on FSRTs is essential for benefit-
ing from their space efficiency. Implementing the common operators such as
union, concatenation etc. is done in the same ways as in FSRAs ([9]). Direct
implementation on FSRTs of composition is a naı̈ve extension of ordinary trans-
ducers composition, based on the intersection construction of FSRAs ([9]). We
explicitly define these operations in [12].

5 Implementation and evaluation

In order to practically compare the space and time performance of FSRAs and
FSAs, we have implemented the special operators introduced in section sec:
regular expression for nl for circumfixation and interdigitation, as well as di-
rect construction of FSRAs. We have compared FSRAs with ordinary FSAs by

building corresponding networks for circumfixation, interdigitation and n-bit in-
crementation. For circumfixation, we constructed networks for the circumfixa-
tion of 1043 Hebrew roots and 4 circumfixes. For interdigitation we constructed
a network accepting the splicing of 1043 roots into 20 patterns. For n-bit incre-
mentation we constructed networks for 10-bit, 50-bit and 100-bit incrementors.
Figure 4 displays the size of each of the networks in terms of states, arcs and
actual file size.

Clearly, FSRAs provide a significant reduction in the network size. In par-
ticular, we could not construct an n-bit incrementor FSA for any n greater than
100 as a result of memory problems, whereas using FSRAs we had no problem
constructing networks even for n = 50, 000.

In addition, we compared the recognition times of the two models. For that
purpose, we used the circumfixation, interdigitation, 10-bit incrementation and
50-bit incrementation networks to analyze 200, 1000 and 5,000 words. As can
be seen in Figure 5, time performance is comparable for the two models, except
for interdigitation, where FSAs outperform FSRAs by a constant factor. The rea-
son is that in this network the usage of registers is massive and thereby, there is
a higher cost to the reduction of the network size, in terms of analysis time. This
is an instance of the common tradeoff of time versus space: FSRAs improve the
network size at the cost of slower analysis time in some cases. When using fi-
nite state devices for natural language processing, often the generated networks
become too large to be practical. In such cases, using FSRAs can make net-
work size manageable. Using the closure constructions one can build desired
networks of reasonable size, and at the end decide whether to convert them to
ordinary FSAs, if time performance is an issue.

Operation Network type States Arcs Registers File size
Circumfixation FSA 811 3824 – 47kb
(4 circumfixes, 1043 roots) FSRA 356 360 1 16kb
Interdigitation FSA 12,527 31,077 – 451kb
(20 patterns, 1043 roots) FSRA 58 3259 2 67kb
10-bit incrementor Sequential FST 268 322 – 7kb

FSRT 31 60 10 2kb
50-bit incrementor Sequential FST 23,328 24,602 – 600kb

FSRT 151 300 50 8kb
100-bit incrementor Sequential FST 176,653 181,702 – 4.73Mb

FSRT 301 600 100 17kb

Fig. 4. Space comparison between FSAs and FSRAs

200 words 1000 words 5000 words
Circumfixation FSA 0.01s 0.02s 0.08s
(4 circumfixes, 1043 roots) FSRA 0.01s 0.02s 0.09s
Interdigitation FSA 0.01s 0.02s 1s
(20 patterns, 1043 roots) FSRA 0.35s 1.42s 10.11s
10-bit incrementor Sequential FST 0.01s 0.05s 0.17s

FSRT 0.01s 0.06s 0.23s
50-bit incrementor Sequential FST 0.13s 0.2s 0.59s

FSRT 0.08s 0.4s 1.6s

Fig. 5. Time comparison between FSAs and FSRAs

6 Conclusions

We have shown how FSRAs can be used to model non-trivial morphological
processes in natural languages, including vowel-harmony, circumfixation and
interdigitation. We also provided a regular expression language to denote arbi-
trary FSRAs. In addition, we extended FSRAs to transducers and demonstrated
their efficiency. Moreover, we evaluated FSRAs through an actual implementa-
tion.

While our approach is similar in spirit to Flag Diacritics ([6]), we provide a
complete and accurate description of the FSRAs constructed from our extended
regular expressions. The transparency of the construction details allows further
insight into the computational efficiency of the model and provides an evidence
to its regularity. Moreover, the presentation of dedicated regular expression op-
erations for non-concatenative processes allows easier construction of complex
registered networks, especially for more complicated processes such as inter-
digitation and circumfixes.

In section 5 we discuss an implementation of FSRAs. Although we have
used this system to construct networks for several phenomena, we are interested
in constructing a network for describing the complete morphology of a natural
language containing many non-concatenative phenomena, e.g., Hebrew. A mor-
phological analyzer for Hebrew, based on finite state calculi, already exists [13],
but is very space-inefficient and, therefore, hard to maintain. It would be ben-
eficial to compact such a network using FSRTs, and to inspect the time versus
space tradeoff on such a comprehensive network.

Acknowledgments

This research was supported by The Israel Science Foundation (grant num-
ber 136/01). We are grateful to Dale Gerdemann for his help.

References

1. Koskenniemi, K.: Two-Level Morphology: a General Computational Model for Word-Form
Recognition and Production. The Department of General Linguistics, University of Helsinki
(1983)

2. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computational Lin-
guistics 20 (1994) 331–378

3. Karttunen, L., Chanod, J.P., Grefenstette, G., Schiller, A.: Regular expressions for language
engineering. Natural Language Engineering 2 (1996) 305–328

4. Mohri, M.: On some applications of finite-state automata theory to natural language process-
ing. Natural Language Engineering 2 (1996) 61–80

5. van Noord, G., Gerdemann, D.: An extendible regular expression compiler for finite-state
approaches in natural language processing. In Boldt, O., Jürgensen, H., eds.: Automata
Implementation. Number 2214 in Lecture Notes in Computer Science. Springer (2001)

6. Beesley, K.R.: Constraining separated morphotactic dependencies in finite-state grammars.
In: FSMNLP-98., Bilkent, Turkey (1998) 118–127

7. Beesley, K.R., Karttunen, L.: Finite-State Morphology: Xerox Tools and Techniques. Cam-
bridge University Press (Forthcoming)

8. Kornai, A.: Vectorized finite state automata. In: Proceedings of the workshop on extended
finite state models of languages in the 12th European Conference on Artificial Intelligence,
Budapest (1996) 36–41

9. Cohen-Sygal, Y., Gerdemann, D., Wintner, S.: Computational implementation of non-
concatenative morphology. In: Proceedings of the Workshop on Finite-State Methods in
Natural Language Processing, an EACL’03 Workshop. (2003) 59–66

10. Sproat, R.W.: Morphology and Computation. MIT Press, Cambridge, MA (1992)
11. Nash, D.: Topics in Warlpiri Grammar. PhD thesis, Massachusetts Institue of Technlogy

(1980)
12. Cohen-Sygal, Y.: Computational implementation of non-concatenative morphology. Mas-

ter’s thesis, University of Haifa (2004)
13. Yona, S., Wintner, S.: A finite-state morphological grammar of hebrew. In: Proceedings of

the ACL-2005 Workshop on Computational Approaches to Semitic Languages. (2005)

