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Preface

This is the reader for the course Formal Language Theory for Natural Language Processing, taught as part
of ESSLLI 2001, the 13th Summer School in Logic, Language and Information. This course is a mild
introduction to formal language theory for students with little or no background in formal systems. The
motivation is natural language processing, and the presentation is geared towards NLP applications, with
extensive linguistically motivated examples. Still, mathematical rigor is not compromised, and students are
expected to have a formal grasp of the material by the end of the course.

The topics to be covered include: set theory; regular languages and regular expressions; languages
vs. computational machinery; finite state automata; finite state transducers; context free grammars and
languages; the Chomsky hierarchy; weak and strong generative capacity; and grammar equivalence.

As this is a new manuscript, I would appreciate feedback about its suitability, clarity, correctness and
usefulness, as well as any errors or typos.

Shuly Wintner
Haifa, October 2001
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Chapter 1

Set theory

1.1 Sets

A set is an abstract, unordered collection of distinct objects, called members or elements of the set. When
some element x is a member of a set A, we write x € A.

Example 1.1 Sets

The set of vowels of the English alphabet is {q, ¢, i, 0, u}. Its members are a, e, i, 0 and u.
The set of articles in German is {ein, eine, einer, einem, einen, eines, der, die, das, dem, den, des} .

Sets can consist of elements that share no other property than being members of the same set: for
example, the set containing the letter “a” and the number 17 is a perfectly valid set.

Sets can be either finite or infinite: the set of letters in the English alphabet is finite. The set of sentences
in the English language is infinite, as is the set of odd natural numbers. When a set has exactly one element
it is called a singleton. When a set has no members it is called an empty set. This is a very special set: there
is exactly one, unique empty set, and while it might seem weird, it is a very useful notion. For example, it
is a good representation for the set of colorless green objects.

There are two main ways to specify sets: by listing all their members or by specifying a property
that all their members have (a third way, specifying a set of rules which generate all the elements of a
set, will be presented later on in this text). Listing all its elements is the obvious way to specify a set:
{a, e, i,0,u}. Note the use of curly brackets ‘{ }’ around the elements. Since sets are unordered, the
order of elements in some specification of a set is irrelevant, and hence the following sets are identical:
{a,e,i,0,u} = {u,i, e, 0,a}. Since sets are collections of distinct elements, repetition of an element does
not change the set (as one is only interested in whether an element is a member of a set, and multiple
occurrences do not change this status): {a, ¢, i, 0, u} = {a, a, e, i, 0, 0, 0, u}. The concept of identity here
is that two sets are equal if and only if they have exactly the same members. This also explains why there is
aunique empty set: its identity is fully determined by the absence of its members. We use a special symbol,
‘)” to denote the empty set.

Listing all the elements of some set is a useful way to specify the set, but only when the set is finite.
For infinite sets, some other method of specification is required. The predicate notation for specifying sets
consists in specifying a predicate that must hold for all and only the members of the set. The notation uses
curly brackets, some variable (say, ‘x”) followed by a vertical bar (which should be read as “such that) and
then the predicate.
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Example 1.2 Predicate notation for specifying sets

The set of vowels of the English alphabet can be specified as {z | z is a vowel of the English alphabet}
(read: “the set of all x’s such that x is a vowel of the English alphabet”). Other sets specified similarly are:

{y | y is a book on syntax}

{z | z is a book on syntax and Chomsky wrote z}
{z | x is a word in English and the number of letters in x is 1}

The above examples all specify finite sets. The following are infinite:
{z | z is an even number}

{y | y is a grammatical English sentence}

When a set A is finite, the number of its members is called its cardinality and is denoted |A|. The
cardinality of a finite set is a natural number. Infinite sets also have cardinalities, but they are not the
number of their elements and are not given by natural numbers.

We have already seen one relation on sets, namely equality. Other relations are useful; in particular, we
say that a set A is a subset of a set B if and only if every element of A is also an element of B (which might
optionally contain additional elements). We denote such a relation by A C B. We say that A is contained
in B, or that B contains A.

Example 1.3 Set inclusion

0 - {a, e, 0}
{a, e, 0} C {z | z is a vowel of the English alphabet}
{a,e,i,o,u} C {z | x is a vowel of the English alphabet}
{z | z is a vowel of the English alphabet} C {x | x is a letter of the English alphabet}

Note that by definition, the empty set ‘(J° is a subset of every set. Note also that every set is a subset
of itself. When we want to exclude this possibility, we must have a different relation: a set A is a proper
subset of a set B if A is a subset of B and, additionally, A does not equal B. We denote this relation by
ACB.

The union of two sets A and B is the set whose members are members of A or of B (or of both).
Formally, the union of A and B is denoted A U B and is defined as {z | z € A or z € B}. Of course, if
some element is a member of both A and B it is a member of the union.

Example 1.4 Set union

0 u {a, e, 0} = {a, e, 0}
{a, e, o} U {i,e, u} = {a,e,i,0,u}
{z | = is an English vowel} U {a,e,i,0,u} = {z | z is an English vowel}
{z | z is an Englishvowel} U {x | x is an English consonant} = {x | x is an English letter}

Note that for every set A, AU = Aand AU A = A. Also,if A C Bthen AUB = B.

(© 2001 by Shuly Wintner
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The intersection of two sets A and B is the set whose members are members of both A and B. Formally,
the intersection of A and B is denoted A N B and is defined as {z | « € A and & € B}.

Example 1.5 Set intersection

0 N {a, e, 0} = 0
{a, e, 0} N {i, e, u} = {e}
{z |  is an English vowel} N {a, e, i,o0,u} = {a,e,i,0,u}
{z | z is an Englishvowel} N {z | x is an English consonant} = 0
{x | x is an English letter} N {x |z is an Englishvowel} ~ = {z | x is an English vowel}

Here, notice that the intersection of any set with the empty set yields the empty set, and the intersection
of any set A with itself yields A. If A C Bthen AN B = A.

Another useful operation on sets is set difference: the difference between A and B, denoted A \ B, is
defined as {z | z € A and z ¢ B}, where x ¢ B means z is not a member of B.

Example 1.6 Set difference

{a, e, 0} \ ] = {a, e, 0}

{a, ¢, 0} \ {i, e, u} = {a, 0}
{z | x is an English vowel} \ {a, e, i,o0,u} = 0
{z |  is an English letter} \ {z | x is an Englishvowel} = {x |z is an English consonant}

Finally, we define the complement of a set A, denoted A, as all those elements not in A. In order
to define this notion formally, we must set some universe of objects that might be referred to: it isn’t
very useful to assume the universe of “everything”. For example, when reasoning about languages, the
universe might be taken to be all possible utterances in some language. Then, if the set A is defined as
{x | x is an utterance of 12 words or less}, the complement of A is A = {y | y is an utterance longer than
12 words}.

1.2 Relations

Sets are unordered collections of elements. Sometimes, however, it is useful to have ordered collections
of elements. We use angular brackets ‘{ )’ to denote ordered sequences. For example, the sequence of
characters in the English alphabet is

(a,b,c,d,e.f, g hi,jkl,mnop,qrstuv,wxyz)

The length of a sequence is the number of its elements; multiple occurrences of the same element are
counted more than once. Since sequences are ordered, alternating the order of their elements changes
the sequence. For example, (a, ¢, i,0,u) # (u, i, e, 0,a). Also, repetition of an element changes the
sequence: {a, e, i,0,u) # {a,a,e,i,0,0,0,u). Unlike sets, the concept of identity for sequences requires
both identity of elements and identity of their position in the sequence. This implies that two sequences can
only be equal if they are of the same length.

A special case of a sequence is an ordered pair: a sequence of length 2. If A and B are sets, consider
the set obtained by collecting all the pairs in which the first element is a member of A and the second —

(© 2001 by Shuly Wintner



4 CHAPTER 1. SET THEORY

a member of B. Formally, such a set is defined as {(z,y) | z € Aandy € B}. This set is called the
Cartesian product of A and B and is denoted A x B.

Example 1.7 Cartesian product

Let A be the set of all the vowels in some language and B the set of all consonants. For the sake of
simplicity, take A to be {a, ¢, i, 0, u} and B tobe {b,d, f, k, I, m, n, p, s, t}. The Cartesian product B x A
is the set of all possible consonant—vowel pairs: {(b, a), (d, a), {d, 1), {k, o), (p, 0), (t,€), {t,u),...}, etc.
Notice that the Cartesian product A x B is different: it is the set of all vowel-consonant pairs, which is a
completely different entity (albeit with the same number of elements). The Cartesian product B x B is the
set of all possible consonant—consonant pairs, whereas A x A is the set of all possible diphthongs.

The Cartesian product is instrumental in the definition of a very powerful concept, that of relations.
When A and B are sets, a relation from A to B is a subset of the Cartesian product of A and B. Formally,
R is a relation from A to B if and only if R C A x B. If R is a relation from A to B, it is a set of pairs;
when a pair (x,y) is in the set (i.e., when (z,y) € R), we write R(x,y), or sometimes xRy, and we say
that R holds for (x,y).

Example 1.8 Relation

Let A be the set of all articles in German and B the set of all German nouns. The Cartesian product A x B is
the set of all article—noun pairs. Any subset of this set of pairs is a relation from A to B. In particular, the set
R = {(z,y) | z € Aandy € B and x and y agree on number, gender and case} is a relation. Informally,
R holds for all pairs of article—-noun which form a grammatical noun phrase in German: such a pair is in
the relation if and only if the article and the noun agree.

Relations are a special case of sets. In particular, the concept of a “universal domain” for relations from
A to B is well defined: it is the entire Cartesian product of A and B. It is therefore possible to define the
complement of a relation: if R is a relation from A to B, its complement is denoted R and is defined as
(A x B) \ R,thatis, as all those pairs in the Cartesian product that are not members in R.

Another useful notion is that of the inverse of a relation. If R is a relation from A to B, then its inverse,
denoted R~!, is defined as {(z,y) | {y,x) € R}. That is, the inverse or R consists of all the pairs of R,
each in a reverse order. R~! is a relation from B to A.

A very important kind of relation is a function. A relation R from A to B is said to be functional if and
only if it pairs each member = € A with exactly one member of B.

Example 1.9 Function

Let A = {apple, banana, strawberry, grapefruit} and B = {green, yellow, red}. The Cartesian product of
A and B is the set which pairs each fruit in A with each color in B. The relation which relates each fruit
with its “true” color is R = {{apple, green), (banana, yellow), (strawberry, red), (grapefruit, yellow)}.
The inverse of Ris R~ = {(green, apple), (yellow, banana), (red, strawberry), (yellow, grapefruit)}. No-
tice that R~ no longer relates fruit to their colors; rather, it relates colors to the fruits that bear them.

The relation R is a function. Informally, this is because each fruit has exactly one color. The relation R ~*
is not a function, since some colors (e.g., yellow) are the colors of many fruits.

Relations are defined over two sets. A special case of relations that is of special interest is relations in
which the two sets are identical. If R is a relation from a set A to itself, we say that R is defined in A. We
discuss some properties of such relations below.

A relation R in A is reflexive if and only if for every € A, xRx, that is, if every element in A is
related to itself. A relation R in A is symmetric if whenever x Ry also y Rx; that is, whenever two elements

(© 2001 by Shuly Wintner
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are members of R they are also members of R ~!; it is asymmetric if whenever xRy, it implies that y Rz
does not hold. A relation R in A is anti-symmetric if whenever x Ry and y Rz we can deduce that z = y.
Finally, a relation R in A is transitive if whenever Ry and yRz, also xRz.

Example 1.10 Properties of relations

Let A be a set of human beings; say, the set of residents of Finland. Let R be a relation in A, defined by
xRy y if and only if = and y are relatives. In other terms, R is the set {(z,y) | = is a relative of y}. The
relation R, is reflexive, because every person is a relative of himself; it is symmetric, because if I am your
relative then you are my relative; it is therefore neither asymmetric nor anti-symmetric; and it is transitive,
since if x is a relative of y and y is a relative of z, then z is a relative of z (through y).

Let R» be the relation defined by xRy if and only if x is a parent of y. R» is not reflexive, since it is not
the case that every person is his/her own parent; it is not symmetric, since it is not the case that my child
is my parent; in fact, it is asymmetric since whenever z is a parent of y, y is not a parent of z; and it is
therefore vacuously anti-symmetric. R is not transitive: if z is a parent of y and y is a parent of z, it does
not follow that z is a parent of z. However, the relation R 3 defined as z R3y if and only if = is an ancestor
of y is transitive.

So far we have only looked at binary relations, that is, relations over two sets. However, it is possible
to extend this notion to more than two sets: for example, a ternary relation, or a relation over three sets, A,
B and C, is defined as a subset of the Cartesian product of A, B and C, that is, it is a collection of triples,
where the first element is a member of A, the second — of B and the third — of C'. In the same way we can
define n-ary relations for any natural number n.

1.3 Strings

Formal languages are defined with respect to a given alphabet. The alphabet is simply a finite set of
symbols, each of which is called a lettzer. This notation does not mean, however, that elements of the
alphabet must be “ordinary” letters; they can be any symbols, such as numbers, or digits, or words. It is
customary to use ‘X’ to denote the alphabet. A finite sequence of letters is called a string. For simplicity,
we usually forsake the traditional sequence notation in favor of a more straight-forward representation of
strings.

Example 1.11 Strings

Let ¥ = {0,1} be an alphabet. Then all binary numbers are strings over ¥. Instead of (0,1,1,0,1) we
usually write 01101.

IfY = {a,b,¢,d,...,y,z} is an alphabet then cat, incredulous and supercalifragilisticexpialidocious are
strings, as are tac, qqq and kjshdflkwjehr.

The length of a string w is the number of letters in the sequence, and is denoted |w]|. A very special
string is the unique string of length 0. It is called the empty string and is usually denoted e (but sometimes
A).

If wy and wo are two strings over the same alphabet ¥, we can create a new word by writing w o
following w;. This operation is called concatenation, and is formally defined as follows: let w; =
(z1,...,2,) and wa = (y1,...,Ym). The concatenation of w; and ws, denoted wy - ws, is the string
(z1,..,Zn,Y1,---,Ym)- Note that the length of w - ws is the sum of the lengths of w; and ws: |wy -ws| =
|wy| + |wa|. When it is clear from the context, we sometimes omit the ‘> symbol when depicting concate-
nation.

(© 2001 by Shuly Wintner



6 CHAPTER 1. SET THEORY

Example 1.12 Concatenation

Let ¥ = {a,b,e,d,...,y,z} be an alphabet. Then master - mind = mastermind, mind - master =
mindmaster and master - master = mastermaster. Similarly, learn - s = learns, learn - ed = learned
and learn - ing = learning.

Notice that when the empty string € is concatenated with any string w, the resulting string is w. Formally,
for every string w, w - € = € - w = w.

We define an exponent operator over strings in the following way: for every string w, w ° (read: w raised
to the power of zero) is defined as €. Then, forn > 0,w™ is defined as w1 aw. Informally, w™ is obtained

by concatenating w with itself n times. In particular, w! = w.

Example 1.13 Exponent

Ifw = go,thenw® = e, w! = w = go,w? = w! -w = w-w = gogo, w? = gogogo and so on.

A few other notions that will be useful in the sequel: the reversal of a string w is denoted w ** and is
obtained by writing w in the reverse order. Thus,if w = (z1,T2,...,2,), w = (z,, 2 1,...,21).

Example 1.14 Reversal

LetY = {a,b,c,d,...,y, 2} be an alphabet. If w is the string saw, then w is the string was. If w = madam
then w!* = madam = w. In this case we say that w is a palindrome.

Given a string w, a substring of w is a sequence formed by taking contiguous symbols of w in the order
in which they occur in w. If w = (x1,...,x,) then forany ¢, j suchthat 1 < i < j < n, (x;,...x;) isa
substring of w. Another way to define substrings is by saying that w .. is a substring of w if and only if there
exist (possibly empty) strings w; and w, such that w = wy - w. - w,. Two special cases of substrings are
prefix and suffix: if w = w; - w, - w, then w; is a prefix of w and w,. is a suffix of w. Note that every prefix
and every suffix is a substring, but not every substring is a prefix or a suffix.

Example 1.15 Substrings

Let ¥ = {a,b,c,d,...,y,z} be an alphabet and w = indistinguishable a string over X.. Then €, in, indis,
indistinguish and indistinguishable are prefixes of w, while €, e, able, distinguishable and indistinguishable
are suffixes of w. Substrings that are neither prefixes nor suffixes include distinguish, gui and is.

14 Languages

Given an alphabet ¥, the set of all strings over X is denoted by ¥ * (the reason for this notation will become
clear presently). Notice that no matter what the alphabet is, ¥ * is always infinite. Even for an impoverished
alphabet that consists of a single letter only, say 3 = {a}, ¥ * contains the strings a® = ¢,a' = a,a® = aa,
etc., and in general for every k > 0 the string a* is in £*. Since one cannot impose a bound on the length
of a string in X*, it is impossible to bound the number of its elements, and hence X * is infinite.

A formal language over an alphabet X is simply a subset of 3 *. Any subset, be it finite or infinite, is a
language. Since X* is always infinite, the number of its subsets is also infinite. In other words, given any
alphabet 3, even an extremely impoverished alphabet consisting of a single character, there are infinitely
many formal languages over X! Some possible (formal) languages over a “natural” alphabet are depicted

in the following example.

(© 2001 by Shuly Wintner
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Example 1.16 Languages

LetX = {a,b,c,...,y z}. Then X* is the set of all strings over the Latin alphabet. Any subset of this set
is a language. In particular, the following are formal languages:

o X

o the set of strings consisting of consonants only;

o the set of strings consisting of vowels only;

o the set of strings each of which contains at least one vowel and at least one consonant;
o the set of palindromes: strings that read the same from right to left or from left to right;
o the set of strings whose length is less than 17 letters;

o the set of single-letter strings;

o the set {i, you, he, she, it, we, they};

o the set of words occurring in Joyce’s Ulysses;

o the empty set;

Note that the first five languages are infinite while the last five are finite.

We can now “lift” some of the string operations defined above to languages. If L is a language then
the reversal of L, denoted L%, is the language {w | w® € L}, that is, the set of reversed L-strings. Con-
catenation can also be lifted to languages: if L, and L, are languages, then L; - L is the language defined
as {wy - we | wy; € Ly and wo € Lo} the concatenation of two languages is the set of strings obtained by
concatenating some word of the first language with some word of the second.

Example 1.17 Language operations

Let Ly = {i, you, he, she, it, we, they} and Lo = {smile, sleep}. Then LB = {i, uoy, eh, ehs, ti, ew, yeht}
and Ly - Lo = {ismile, yousmile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep,
shesleep, itsleep, wesleep, theysleep}.

In the same way we can define the exponent of a language: if L is a language then L ° is the language
containing the empty string only, {€}. Then, fori > 0, L* = L-L‘~!, thatis, L’ is obtained by concatenating
L with itself 7 times.

Example 1.18 Language exponentiation

Let L be the set of words {bau, haus, hof, frau}. Then L° = {e}, L' = L and L? = {baubau,
bauhaus, bauhof, baufrau, hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau,
fraubau, frauhaus, frauhof, fraufrau}.

Sometimes it is useful to consider not a particular number of concatenations, but “any” number. Infor-
mally, given a language L one might want to consider the language obtained by concatenating some word
of L with some other word of L, then concatenating the result with yet another word, and so on and so
forth. The language obtained by considering any number of concatenations of words from L is called the
Kleene closure of L and is denoted L*. Formally, it is defined as U;’io L*, which is a terse notation for the

(© 2001 by Shuly Wintner



8 CHAPTER 1. SET THEORY

unioning of L® with L', then with L2, L? and so on ad infinitum. When one wants to leave L° out, one
writes Lt = |J;2, L.

Example 1.19 Kleene closure

Let L = {dog, cat}. Observe that L° = {e}, L' = {dog, cat}, L? = {catcat, catdog, dogcat, dogdog} ,etc.
Thus L* contains, among its infinite set of strings, the strings ¢, cat, dog, catcat, catdog, dogcat, dogdog,
catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

As another example, consider the alphabet ¥ = {a, b} and the language L = {a, b} defined over X. L * is
the set of all strings over a and b, which is exactly the definition of ¥ *. The notation for ¥* should now
become clear: it is simply a special case of L*, where L = 3.

Further reading

Most of the material presented in this chapter can be found in any introductory textbook on set theory of
formal language theory. A very formal presentation of this material is given by Hopcroft and Ullman (1979,
chapter 1). Just as rigorous, but with an eye to linguistic uses and applications, is the presentation of Partee,
ter Meulen, and Wall (1990, chapters 1-3).

(© 2001 by Shuly Wintner



Chapter 2

Regular languages

2.1 Regular expressions

A formal language is simply a set of strings, a subset of ¥*, and we have seen a variety of languages in
the previous chapter. As languages are sets, they can be specified using any of the specification methods
for sets discussed in section 1.1. However, when languages are fairly regular, they can be characterized
by more regular means. In other words, if the languages one is interested in are not arbitrarily complex, a
formal and simple means of specifying them can be more useful than the general, rather informal predicate
notation. For example, suppose ¥ is an alphabet, say ¥ = {a, b}, and suppose one wants to specify the
language that contains all and only the strings which start with three a’s and end in three b’s. There is an
infinite number of such strings, of course, and therefore an enumeration of the members of the language is
not an option. In predicate notation, this language can be described as {w | w € ¥ * and w starts with “aaa’
and ends with “bbb”}. However, this is not a formal notation, and when informal specification are used, one
runs the risk of vague and ambiguous specifications. It is advantageous, then, to have a more formal means
for specifying languages.

We now present such a formalism, called regular expressions. It is a meta-language: a language for
specifying formal languages. Its “syntax” is formally defined and is relatively simple. Its “semantics” will
be sets of strings in a formal language. The formalism defines regular expressions: formal expressions over
some alphabet X, augmented by some special characters. It also defines a mapping, called denotation, from
regular expressions to sets of strings over X. In other words, every well-formed regular expression denotes
a set of strings, or a language. Regular expressions over an alphabet X are defined as follows:

i

e () is a regular expression

e cis aregular expression

e if ¢ € ¥ is a letter then a is a regular expression

e if 7y and ry are regular expressions then so are (ry + r2) and (71 - 72)
e if 7 is a regular expression then so is (r)*

o nothing else is a regular expression over X..

Example 2.1 Regular expressions

Let X be the alphabet {a, b, c, ..., y, z}. Some regular expressions over this alphabet are §), a, ((c - a) - t),
((m-e)-(0)*)-w), (a+ (e+ (i + (0+u)))), ((a+ (e + (i + (0+uw)))))*, etc.
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Now that the form of regular expressions is defined, we can define their meanings. For every regular
expression r its denotation, [[]], is a set of strings defined as follows:

e [[0] is the empty set {§
e [[€]l is the singleton set containing the empty string only: {e}
e if a € ¥ is a letter then [[a]] is the singleton set containing a only: {a}

e if r; and r, are two regular expressions whose denotations are [[r1]] and [[r>]], respectively, then

[(r1 4+ r2)Nis [r1TU [r20 and [(r1 - r2) T is [ra 1 - [r21

e if 7 is a regular expression whose denotation is [[r] then the denotation of (r) * is [r]*

Example 2.2 Regular expressions and their denotations
Following are the denotations of the regular expressions of the previous example:

0 0
€ {e}

a {a}

((c-a)-t) {c-a-t}

(((m-e)-(0)*)-w) {mew, meow, meoow, meooow, meoooow, ...}
(a+(e+G+0+u)  {aeiou}

((a+(e+ (i + (0o+u)))))* the set containing all strings of 0 or more vowels

Regular expressions are useful because they enable us to specify complex languages in a formal, concise
way. Of course, finite languages can still be specified by enumerating their members; but infinite languages
are much easier to specify with a regular expression, as the last instance of the above example shows.

For simplicity, we will omit the parentheses around regular expressions when no confusion can be
caused. Thus, the expression ((a + (e + (i + (0 +w)))))* will be written as (a + e + i + o + u)*. Also, if
¥ ={a1,as,...,a,}, we will use T as a shorthand notation for a; + as + - - - + a,,. As was the case with
string concatenation and language concatenation, we sometimes omit the ‘-> operator in regular expressions,
so that the expression ¢ - a - t can be written cat.

Example 2.3 Regular expressions

To exemplify the power and expressiveness of regular expressions, we present here a few expressions de-
noting rather complex languages.

Given the alphabet of all English letters, ¥ = {a,b,¢,...,y, 2z}, the language ¥* is denoted by the regular
expression X* (recall our convention of using ¥ as a shorthand notation). The set of all strings which
contain a vowel is denoted by £* - (a + e + i + 0 + u) - £*. The set of all strings that begin in “un” is
denoted by (un)X*. The set of strings that end in either “tion” or “sion” is denoted by £ * - (s + t) - (ion).
Note that all these languages are infinite.

What languages can be expressed as the denotations of regular expressions? This is an important ques-
tion which we will discuss in detail in section 4.2. For the time being, suffice it to say that not every
language can be thus specified. The set of languages which can be expressed as the denotation of regular
expressions is called regular languages. It is a mathematical fact that some languages, subsets of X *, are
not regular. We will encounter such languages in the sequel.
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2.2. PROPERTIES OF REGULAR LANGUAGES 11

2.2 Properties of regular languages

We have defined the class of regular languages above as the class of languages that can be specified by
regular expressions. It is important to note that this is a set of languages, that is, a set of sets of strings. In
this section we discuss some properties of this class of languages. This will be related to a discussion of the
expressiveness of this class, which we defer to section 4.2.

When classes of languages are discussed, some of the interesting properties to be investigated are clo-
sures with respect to certain operators. Recall from section 1.4 that several operators, such as concatenation,
union, Kleene-closure etc., are defined over languages. Given a particular operation, say union, it is inter-
esting to know whether the class of regular languages is closed under this operation. When we say that
regular languages are closed under union, for example, we mean that whenever we take the union of two
regular languages, the result — which is a language — is guaranteed to be a regular language. More generally,
a class of languages L is said to be closed under some operation ‘e’ if and only if whenever two languages
Ly, L are in the class (L1, Ly € L), also the result of performing the operation on the two languages is in
this class: L; @ Ly € L.

Closure properties have a theoretical interest in and by themselves, but they are especially important
when one is interested in processing languages. For example, if we have an efficient computational imple-
mentation for regular languages (say, one which could tell us whether a given string indeed belongs to a
given language), and we know that certain languages are regular, then we can freely use the operators that
the regular languages are closed under, and still preserve computational efficiency in processing. At a more
concrete level, suppose we have a part-of-speech tagger: a program that determines the part of speech of
each word in a running text, when the words are members of some regular language. Suppose we now want
to extend the language so that the coverage of the tagger is improved. We can simply test our tagger on the
language extension: those words that are not in the original language. Assuming that this is also a regular
language, and assuming that the regular languages are closed under union, we can simply take the union of
the two languages: the original one and its extension, and the tagger should be able to cope efficiently with
this new language, as it is guaranteed to be regular.

What operations, then, are the regular languages closed under? It should be fairly easy to see that they
are closed under union, concatenation and Kleene-closure. Since any regular language, by definition, is the
denotation of some regular expression, whenever we have a regular language we can refer to some regular
expression (perhaps not unique) of which it is the denotation. Thus, when given two regular languages, L |
and Lo, there always exist two regular expressions, r1 and 72, such that [[r1]] = L; and [[r2]] = Ls. It
is therefore possible to form new regular expressions based on 71 and 72, such as r; - ro, 71 + 72 and r7.
Now, by the definition of regular expressions and their denotations, it follows that the denotation of r ; - r5
is Ly - Lo: [[r1 - 2]l = Ly - Lo. Since r; - 2 is a regular expression, its denotation is a regular language,
and hence L; - L, is a regular language. Since L; and L, are arbitrary (regular) languages, the logical
process outlined above is valid for any two regular languages: hence the regular languages are closed under
concatenation. In exactly the same way we can prove that the class of regular languages is closed under
union and Kleene-closure.

Of course, the fact that the regular languages are closed under some operations does not imply that they
are closed under any operation. However, one of the reasons for the attractiveness of regular languages
is that they are known to be closed under a wealth of useful operations: intersection, complementation,
exponentiation, substitution, homomorphism, etc. These properties come in very handy both in practical
applications that use regular languages and in mathematical proofs that concern them. For example, there
exist several extended regular expression formalisms that allow the user to express regular languages using
not only the three operators that define regular expressions, but also a wealth of other operators (that the
class of regular languages is closed under). It is worth noting that such “good behavior” is not exhibited by
more complex classes of languages, such as the context-free languages that we will meet in chapter 3. See
section 3.7 for more details.
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2.3 Finite-state automata

In the previous chapter we presented formal languages as abstract entities: sets of strings of letters taken
from some predefined alphabet. In section 2.1 we presented a meta-language, regular expressions, which
is a formalism for specifying languages. We also defined the set of languages that can be denoted by
regular expressions, namely the set of regular languages. This section is dedicated to a different take on
languages: we present languages as entities generated by a computation. This is a very common situation
in formal language theory: many language families (such as the class of regular languages) are associated
with computing machinery that generates them. The dual view of languages (as the denotation of some
specifying formalism and as the output of a computational process) is central in formal language theory.

The computational device we define in this section is a very simple one. The easy way to envision it
would be to think of a finite set of states, connected by a finite number of transitions. Each of the transitions
is labeled by a letter, taken from some finite alphabet, and we will continue to use X for the alphabet. A
computation starts at a designated state, the start state or initial state, and it moves from one state to another
along the labeled transitions. As it moves, it prints the letter which labels the transition. Thus, during a
computation, a string of letters is printed out. Now some of the states of the machine are designated final
states, or accepting states. Whenever the computation reaches a final state, the string that was printed so
far is said to be accepted by the machine. Since each computation defines a string, the set of all possible
computations defines a set of strings, or in other words, a language. We say that this language is accepted
or generated by the machine.

The computational devices we define here essentially contain a finite number of states. Therefore, they
are called finite-state automata. In order to visualize finite-state automata we will usually depict them
graphically. The states will be depicted as circles; the initial state will be shaded, and will usually be the
leftmost (or, sometimes, topmost) state in the picture; the final states will be depicted by two concentric
circles. The transitions will be depicted as arcs connecting the circles, with the labels placed next to them.
The alphabet will usually not be explicitly given: we will usually assume that the alphabet is simply the
collection of all the letters that label the arcs in an automaton.

Example 2.4 Finite-state automaton

The following automaton has four states: qg,q:1,¢> and gs. It has four arcs: one, labeled ¢, connects qq
with ¢1; the second, labeled a, connects ¢; with g-; and the other two, labeled ¢ and r, connect ¢ with ¢3.
The initial state is qg, which is shaded and depicted as the leftmost state, and the only final state is g3, as is
evident from the double circle.

t

The above presentation of finite-state automata was rather intuitive and informal. Formally, a finite-
state automaton is a five-tuple, or a sequence of five elements. The first element is a finite set of states; it
is customary to use () for this set. The next element is an alphabet, or a finite set of letters, and we use ¥
as usual for this set. Then, the third element is the start state of the automaton, which must of course be an
element in (); we use qp for this state. The fourth element, usually J, is a relation from states and alphabet
symbols to states. Finally, the last element, F', is a set of final states, so that F' C (). Thus, an automaton A
is written as (@, X, qo, 9, F).

Example 2.5 Finite-state automaton

The finite-state automaton of example 2.4 can be formally written as A = (Q, X, qo, , F'), where Q =
{q07 q1,42, q3}a ¥ = {C, a, ta T}, F= {93} and 5 = {<QO7 c, q1>7 <q17a7 q2>7 <q27 t: q3>7 <q27 T, q3>}
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2.3. FINITE-STATE AUTOMATA 13

Now that automata are formally defined, we can discuss the way by which they generate, or accept,
languages. Informally, when looking at a graphical depiction of an automaton, one can construct a “path”
by starting in the initial state, moving along the transition arcs (in the direction indicated by the arrows) and
reaching one of the final states. During such a journey, the sequence of letters that label the arcs traversed,
in the order in which they were traversed, constitutes a string, and this string is said to be accepted by the
automaton.

To capture this notion formally, we first extend the transition relation from single arcs to “paths”. For-
mally, we define the reflexive transitive extension of the transition relation ¢ as a new relationA, 0, from states
and strings to states. The extended relation is defined as follows: first, for every state ¢ € @, (g, €, ¢) holds.
In other words, the empty string can lead from each state to itself, but nowhere else. In addition, if a certain
string w labels the path from the initial state to some state ¢, and there is an outgoing transition from q to
¢’ labeled a, then the string w - a labels a path from the initial state to ¢ '. Formally, for every string w € %*
and letter a € X, if 6(¢, w, ¢") and 6(q’, a, ¢") then 0(q,w - a,q").

Example 2.6 Paths

For the finite-state automaton of example 2.4, 5 is the following set of triples:

<(I0,€; q0>, <q1,€7 CI1>, <(I2,€, CI2>; <(I3; 6,q3>7 <(I0; &) Q1>; <(I1; G,Q2>; <(I2,t; CI3>, <Q2,T, q3>7
<q0, ca, q2>’ <q1,at7 CI3>, <q1,ar, q3>7 <q07 cat, q3>7 <q0, car, q3>

Note that the middle element of each triple is a string, rather than a letter as was the case with ¢.

A string w is accepted by an automaton if and only if there is a path labeled w which leads from the
initial state to any of the final states. Formally, we write w € L(A) and say that w is accepted by the
automaton A = (Q), qo, X, d, F') if and only if there exists a state ¢y € F' such that S(qo, w) = q¢. The
language accepted by a finite-state automaton is the set of all strings it accepts.

Example 2.7 Language accepted by an automaton
The automaton of example 2.4 accepts exactly two strings: cat, along the path go — ¢1 — g2 — g3, and car,
along the same path (albeit with a different final transition). Therefore, its language is {cat, car}.

Automata are computational devices for computing languages, and so an automaton can be viewed as an
alternative definition for a language. In example 2.8 (page 14) we present a number of automata generating
some languages we encountered in this chapter.

We introduce the convention of writing ‘?° for “any character of ¥ in example 2.8. Another convention
we will use in subsequent examples of automata would be to label a single transition by more than one
symbol, instead of drawing several transitions between the two nodes, each labeled by one of the symbols.

We now slightly amend the definition of finite-state automata to include what is called e-moves. By
our original definition, the transition relation ¢ is a relation from states and alphabet symbols to states. We
now extend d: the transition relation is now defined over states, but rather than alphabet symbols, its second
coordinate is now ¥ U {e}, that is, any arc in an automaton can be labeled either by some alphabet symbol
or by the special symbol €, which as usual denotes the empty word. The implication is that while traversing
the automaton, one can transit from one state to another without printing out any symbol, or in other words,
that a word w can be accepted by the automaton by traversing more arcs than the number of characters in
w. It is possible to show that for every finite-state automaton with e-transitions there exists an equivalent
finite-state automaton (accepting the same language) without e-moves.
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14 CHAPTER 2. REGULAR LANGUAGES

Example 2.8 Some finite-state automata

We start with an automaton which accepts no string at all, that is, which generates the empty language.
This automaton has a single state, which by definition has to be the initial state, so @ = {qo}. Since we
don’t want the automaton to accept any string, no final states are necessary, and hence F' = (). For the
same reason, no transitions are required, and thus § = () as well. Graphically, this automaton is depicted as

follows:

Since there are no final states, for no string w does there exist a state ¢y € F' such that 6 (g0, w, qy) is
defined, and hence the language accepted by the automaton is empty.

Now consider the language which consists of a single string, a. An automaton which accepts this language
must have at least one accepting state, and indeed one such state suffices. There must be a transition labeled
a leading from the initial state to this single final state. A finite-state A whose language L(A) is {a} is:

@®—@

What if we wanted an automaton to accept a language of one string only, but we wanted the accepted string
to be the empty string? In other words, what would an automaton A look like when L(A) = {e}? Again, a
single final state is required, but since we want the machine to accept the empty string, the final state must
coincide with the initial state. No transitions are necessary, as we don’t want the automaton to accept any

other string. Here it is:

Note the difference from the first automaton in this example.

Next, consider an automaton the language of which consists of the set of strings of one or more ‘a’s:
{a, aa, aaa, aaaa, . ..}. We need to provide paths from the initial state to a final state labeled by a, by aq,
aaa, etc., and the number of paths must be infinite. But since finite-state automata have a finite number of
states, an exhaustive enumeration of these states is impossible. Instead, one could use a finite number of
states in an infinite number of paths: this can be achieved using loops, or circular paths. The following
automaton has only two states and only two transitions, but the language it generates is infinite. This is
because the transition that leads from ¢, to itself can be traversed an infinite number of times. Since ¢q; is
a final state, it can be reached in infinitely many different ways: by walking the path a, or by walking the
path aa, or aaa, and so on, ad infinitum. The language it accepts is therefore the required one.

a
— @)
Similarly, an automaton for accepting the language of zero or more occurrences of a would be:

.

What will an automaton accepting X.* look like? We can use a convention by which the wildcard symbol
?” stands for any character of X, and depict the automaton as follows:

?
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Example 2.9 Automata with e-moves

The language accepted by the following automaton is {do, undo, done, undone}:

@®——O——®O——O——®—"—O——@®
~_ ~_

Note that in order for the automaton to accept, say, undo, an accepting path must traverse the e-arc that
connects q4 with gg. While traversing this arc, no symbol is read (or generated): the € is taken to denote the
empty word, as usual.

Finite-state automata, just like regular expressions, are devices for defining formal languages. As was
the case with regular expressions, it is interesting to investigate the expressiveness of finite-state automata.
Interestingly, it is a mathematical fact that the class of languages which can be generated by some finite-
state automaton is exactly the class of regular languages. In other words, any language that is the denotation
of some regular expression can be generated by some finite-state automaton, and any language that can be
generated by some finite-state automaton is the denotation of some regular expression. Furthermore, there
are simple and efficient algorithms for “translating” a regular expression to an equivalent automaton and
vice versa.

Example 2.10 Equivalence of finite-state automata and regular expressions

For each of the regular expressions of example 2.2 we depict an equivalent automaton below:

0

a —a’

((c-a) 1) - () —

((m-€) (") -w) - : -
a,e,i,0,u U

(a+(e+(i+ (0 +u)))) —’ ?

(a+ (e + (i + (0 + )" 3 a,e,i,0,u

© ©®

2.4 Minimization and determinization

The finite-state automata presented above are non-deterministic. By this we mean that when the compu-
tation reaches a certain state, the next state is not uniquely determined by the next alphabet symbol to be
printed. There might very well be more than one state that can be reached by a transition that is labeled by
some symbol. This is because we defined automata using a transition relation, §, which is not required to be
functional. For some state ¢ and alphabet symbol a, § might include the two pairs (g, a,q1) and (g, a, g2)
with ¢; # ¢». Furthermore, when we extended J to allow e-transitions we added yet another dimension
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16 CHAPTER 2. REGULAR LANGUAGES

of non-determinism: when the machine is in a certain state ¢ and an e-arc leaves ¢, the computation must
“guess” whether to traverse this arc.

Much of the appeal of finite-state automata lies in their efficiency; and their efficiency is in great part
due to the fact that, given some finite-state automaton A and a string w, it is possible to determine whether
ornot w € L(A) by “walking” the path labeled w, starting with the initial state of A, and checking whether
the walk leads to a final state. Such a walk takes time that is proportional to the length of w. But when
automata are non-deterministic, an element of guessing is introduced, which might very well impair the
efficiency: no longer is there a single walk along a single path labeled w, and some control mechanism
must be introduced to check that all possible paths are taken.

The good news is that non-determinism works for us: it is sometimes much easier to construct a non-
deterministic automaton for some language. And we can rely on two very important results: every non-
deterministic finite-state automaton is equivalent to some deterministic one; and every finite-state automaton
is equivalent to one that has a minimum number of nodes, and the minimal automaton is unique. We now
explain these two results.

First, it is important to clarify what is meant by “equivalent”. We say that two finite-state automata
are equivalent if and only if they accept the same language: every string that is accepted by one of the
automata is accepted by the other. Note that two equivalent automata can be very different from each other,
they can have different numbers of states, different accepting states etc. All that counts is the language that
they generate. In the following example and in future ones, we suppress the identities of the nodes when
depicting automata.

Example 2.11 Equivalent automata

The following three finite-state automata are equivalent: they all accept the set {go, gone, going}.
n g

i/o—»o—»c@
g 0 n e

Ay o 0 @ o ®

A

Note that A; is deterministic: for any state and alphabet symbol there is at most one possible transition. A o
is not deterministic: the initial state has three outgoing arcs all labeled by g. The third automaton, A 3, has
e-arcs and hence is not deterministic. While A, might be the most readable, A, is the most compact as it
has the fewest nodes.

As we said above, given a non-deterministic finite-state automaton A it is always possible to construct
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an equivalent deterministic automaton, one whose next state is fully determined by the current state and the
alphabet symbol, and which contains no e-moves. Sometimes this construction yields an automaton with
more states than the original, non-deterministic one. However, this automaton can then be minimized such
that it is guaranteed that no deterministic finite-state automaton generating the same language is smaller.
Thus, it is always possible to determinize and then minimize a given automaton without affecting the lan-
guage it generates. From an efficiency point of view, then, we can always deal with deterministic automata.
For convenience, we can go on using non-determinism and e-arcs in our automata, as these can always be
removed.

2.5 Operations on finite-state automata

We know from the previous section that finite-state automata are equivalent to regular expressions, or in
other words, that any regular language can be generated by some automaton. We also know from section 2.2
that the regular languages are closed under several operations, including union, concatenation and Kleene-
closure. So, for example, if L and L, are two regular languages, there exist automata A; and A, which
accept them, respectively. Since we know that L1 ULs is also a regular language, there must be an automaton
which accepts it as well. The question is, can this automaton be constructed using the automata A 1 and A45?
In this section we show how simple operations on finite-state automata can correspond to some operators
on languages.

We start with concatenation. Suppose that A; is a finite-state automaton such that L(A;) = Ly, and
similarly that A, is an automaton such that L(A») = Lo. We describe an automaton A such that L(A) =
Ly - Ly;. A wordw is in Ly - Ly if and only if it can be broken into two parts, w; and ws, such that
w = w; -ws,and w; € Ly, ws € Lo. In terms of automata, this means that there is an accepting path for
wy in A; and an accepting path for wo in As; so if we allow an e-transition from all the final states of A
to the initial state of A5, we will have accepting paths for words of L1 - Ls. The finite-state automaton A is
constructed by combining A; and A in the following way: its set of states, (), is the union of ()1 and Q)»;
its alphabet is the union of the two alphabets; its initial state is the initial state of A; its final states are the
final states of As; and its transition relation is obtained by adding to §; U 2 the set of e-moves described
above: {(qr,€, qo2) | g5 € F1} where gy, is the initial state of A,. This construction is graphically depicted
in example 2.12 (page 18).

In a very similar way, an automaton A can be constructed whose languages is L1 U Lo by combining
A; and A,. Here, one should notice that for a word to be accepted by A it must either be accepted by A |
or by A (or by both). The combined automaton will have an accepting path for every accepting path in 4 ;
and in A,. The idea is to add a new initial state to A, from which two e-arcs will lead to the initial states
of Ay and A,. The states of A will be the union of the states of A; and A,, plus the new initial state. The
transition relation will be the union of d1 with J2, plus the new e-arcs. The final states will be the union of
F and F5. This construction is depicted graphically in example 2.13 (page 18).

An extension of the same technique to construct the Kleene-closure of an automaton is rather straight-
forward. However, all these results are not surprising, as we have already seen in section 2.2 that the regular
languages are closed under these operations. Thinking of languages in terms of the automata that accept
them comes in handy when one wants to show that the regular languages are closed under other operations,
where the regular expression notation is not very suggestive of how to approach the problem. Consider the
operation of complementation: if L is a regular language over an alphabet 3, we say that the complement
of L is the set of all the words (in ¥*) that are not in L, and write L for this set. Formally, L = ¥* \ L.
Given a regular expression r, it is not clear what regular expression 7/ is such that [r']] = [[r]]. However,
with automata this becomes much easier.

Assume that a finite-state automaton A is such that L(A) = L. Assume also that A is deterministic in
the sense that its behavior is defined for every symbol in X, at every state. If this is not the case, simply
determinize it while preserving its language. To construct an automaton for the complemented language,
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Example 2.12 Concatenation of finite-state automata
Suppose A; and A, are schematically depicted as the two triangles below. Then the combined automaton
is obtained by adding the e-arcs as shown below:

Example 2.13 Union of finite-state automata
An automaton A whose language is L(A;) U L(A5):

©)

all one has to do is change all final states to non-final, and all non-final states to final. In other words, if
A=(Q,%,q0,0,F),then A = (Q, %, q0,6,Q \ F) is suchthat L(A) = L. This is because every accepting
path in A is not accepting in A, and vice versa.

Now that we know that the regular languages are closed under complementation, it is easy to show
that they are closed under intersection: if L; and Lo are regular languages, then L; N Ly is also regular.
This follows directly from fundamental theorems of set theory, since L1 N Lo can actually be written as

L, U Ly, and we already know that the regular languages are closed under union and complementation.
In fact, construction of an automaton for the intersection language is not very difficult, although it is less
straight-forward than the previous examples.
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2.6 Applications of finite-state automata in natural language pro-
cessing

Finite-state automata are efficient computational devices for generating regular languages. An equivalent
view would be to regard them as recognizing devices: given some automaton A and a word w, applying the
automaton to the word yields an answer to the question: Is w a member of L(A), the language accepted by
the automaton? This reversed view of automata motivates their use for a simple yet necessary application
of natural language processing: dictionary lookup.

Example 2.14 Dictionaries as finite-state automata

Many NLP applications require the use of lexicons or dictionaries, sometimes storing hundreds of thousands
of entries. Finite-state automata provide an efficient means for storing dictionaries, accessing them and
modifying their contents. To understand the basic organization of a dictionary as a finite-state machine,
assume that an alphabet is fixed (we will use £ = {a, b, ..., z} in the following discussion) and consider
how a single word, say go, can be represented. As we have seen above, a naive representation would be to
construct an automaton with a single path whose arcs are labeled by the letters of the word go:

. g o
80 - O—0——0©

To represent more than one word, we can simply add paths to our “lexicon”, one path for each additional
word. Thus, after adding the words gone and going, we might have:

g o) 1 n g
/ @) @) @) (@) ©
. g 0 n e
go, gone, going : o e} '®) e} ®
&
o)
O——0©
This automaton can then be determinized and minimized:
. n
Z/ O—0O0——o©o
. g 0 n e
go, gone, going : o e} ® '®) )

With such a representation, a lexical lookup operation amounts to checking whether a word w is a member
in the language generated by the automaton, which can be done by “walking” the automaton along the path
indicated by w. This is an extremely efficient operation: it takes exactly one “step” for each letter of w. We
say that the time required for this operation is linear in the length of w.

The organization of the lexicon as outlined above is extremely simplistic. The lexicon in this view is
simply a list of words. For real application one is usually interested in associating certain information with
every word in the lexicon. For simplicity, assume that we do not have to list a full dictionary entry with each
word; rather, we only need to store some morpho-phonological information, such as the part-of-speech of
the word, or its tense (in the case of verbs) or number (in the case of nouns). One way to achieve this goal is
by extending the alphabet X: in addition to “ordinary” letters, X can include also special symbols, such as
part-of-speech tags, morpho-phonological information, etc. An “analysis” of a (natural language) word w
will in this case amount to recognition by the automaton of an extended word, w, followed by some special
tags.
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Example 2.15 Adding morphological information to the lexicon

Suppose we want to add to the lexicon information about part-of-speech, and we use two tags: —N for
nouns, —V for verbs. Additionally, we encode the number of nouns as -sg or -p/, and the tense of verbs as
-inf, -prp or -psp (for infinitive, present participle and past participle, respectively). It is very important to
note that the additional symbols are multi-character symbols: there is nothing in common to the alphabet
symbol -sg and the sequence of two alphabet letters (s,g)! In other words, the extended alphabet is:

Y¥={ab,c,...,y,2-N,-V,-sg, -pl, -inf, -prp, -psp}

With the extended alphabet, we might construct the following automaton:

g 0 i n g v pp

@) @) @) @) @) @) @) ©
E e v -psp

@) @) @) ©
-V -inf

@) ©

The language generated by the above automaton is no longer a set of words in English. Rather, it is a set of
(simplisticly) “analyzed” strings, namely {go-V-inf, gone-V-psp, going-V-prp}.

Regular languages are particularly appealing for natural language processing for two main reasons.
First, it turns out that most phonological and morphological processes can be straight-forwardly described
using the operations that regular languages are closed under, and in particular concatenation. With very few
exceptions (such as the interdigitation word-formation processes of Semitic languages or the duplication
phenomena of some Asian languages), the morphology of most natural languages is limited to simple
concatenation of affixes, with some morpho-phonological alternations, usually on a morpheme boundary.
Such phenomena are easy to model with regular languages, and hence are easy to implement with finite-
state automata. The other advantage of using regular languages is the inherent efficiency of processing
with finite-state automata. Most of the algorithms one would want to apply to finite-state automata take
time proportional to the length of the word being processed, independently of the size of the automaton. In
computational terminology, this is called linear time complexity, and is as good as things can get.

In the next section we will see how two languages can be related such that one language contains only
a set of natural language strings, while the other contains a set of analyzed strings, with the appropriate
mapping from one language to the other.

2.7 Regular relations

We emphasized in the previous chapter a dual view of finite-state automata: as the mechanism is completely
declarative, automata can be seen as either recognizing languages or generating them. In other words,
depending on the application, one can use a finite-state automaton to generate the strings of its language
or to determine whether a given string indeed belongs to this language. Finite-state automata are simply
yet another way for defining (regular) languages, with the additional benefit that they are associated with
efficient algorithms for manipulating such languages.

While this functionality is sufficient for some natural language applications, as was shown in section 2.6,
sometimes it is useful to have a mechanism for relating two (formal) languages. For example, a part-of-
speech tagger can be viewed as an application that relates a set of natural language strings (the source
language) to a set of part-of-speech tags (the farget language). A morphological analyzer can be viewed as
a relation between natural language strings (the surface forms of words) and their internal structure (say,
as sequences of morphemes). For dictionary lookup of some Semitic languages, one might want to relate
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surface forms with their root and pattern (as some dictionaries are indexed by root). In this section we
discuss a computational device, very similar to finite-state automata, which defines a relation over two
regular languages.

Example 2.16 Relations over languages

Consider a simple part-of-speech tagger: an application which associates with every word in some natural
language a tag, drawn from a finite set of tags. In terms of formal languages, such an application implements
a relation over two languages. For simplicity, assume that the natural language is defined over ¥ =
{a,b,...,z} and that the set of tags is ¥» = {PRON, V, DET, ADJ, N, P}. Then the part-of-speech relation
might contain the following pairs, depicted here vertically (that is, a string over X is depicted over an
element of X5:

I know some new tricks said the Cat in the Hat
PRON V DET ADJ N A" DET N P DET N

As another example, assume that 31 is as above, and ¥, is a set of part-of-speech and morphological tags,
including {-PRON, -V, -DET, -ADJ, -N, -P, -1, -2, -3, -sg, -pl, -pres, -past, -def, -indef }. A morphological
analyzer is basically an application defining a relation between a language over ¥ ; and a language over X 5.
Some of the pairs in such a relation are (vertically):

I know some new tricks
I-PRON-1-sg know-V-pres some-DET-indef new-ADJ trick-N-pl

said the Cat in the Hat
say-V-past the-DET-def  cat-N-sg in-P the-DET-def hat-N-sg

Finally, consider the relation that maps every English noun in singular to its plural form. While the relation

is highly regular (namely, adding “s” to the singular form), some nouns are irregular. Some instances of
this relation are:

cat hat ox child mouse sheep goose
cats hats oxen children mice sheep geese

With the terminology we introduced so far we can define relations such as exemplified above in a simple
way. A relation is defined over rwo alphabets, ;1 and ¥ (the second alphabet is sometimes denoted A). Of
course, the two alphabets can be identical, but for many natural language applications they differ. A relation
in ¥* x ¥* is regular if and only if its projections on both coordinates are regular languages. Informally, a
regular relation is a set of pairs, each of which consists of one string over X ; and one string over X5, such
that both the set of strings over X1 and those over X5 constitute regular languages.

2.8 Finite-state transducers

In the previous chapter we introduced finite-state automata as a computational device for defining regular
languages. In a very similar way, finite-state transducers are a computational device for defining regular
relations. Transducers are very similar to automata: the most significant difference is that the arcs are not
labeled by single letters, but rather by pairs of symbols: one symbol from ¥ ; and one symbol from X,.
Formally, a finite-state transducer is a six-tuple (@, qo, X1, X2, d, F'). Similarly to automata, () is a finite set
of states, qq is an element of (), the initial state, F is a subset of (), the final (or accepting) states, X1 and 3o
are alphabets: finite sets of symbols, not necessarily disjoint (or different). Except for the addition of X 5, the
only difference between automata and transducers is the transition relation d: while for automata, 0 relates
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states and alphabet symbols to states, in our case ¢ relates a state and two alphabet symbols, one from each
alphabet, to a new state. Formally, ¢ is a relation over (), X1, Y5 and @), or a subset of @ x 31 x Yy X Q.

Example 2.17 Finite-state transducers

Following is a finite-state transducer relating the singular forms of two English words with their plural
form. In this case, both alphabets are identical: ¥, = 35 = {a,b,...,2z}. The set of nodes is Q =
{¢1,42,-..,q11}, the initial state is g and the set of final states is F' = {g¢s,q11 }. The transitions from one
state to another are depicted as labeled arcs; each arc bears two symbols, one from ¥ ; and one from X»,
separated by a colon (:). So, for example, (g1, 0, €, ¢2) is an element of J.

g%)o:eo:es:se:e
$:8 h:h e:e e:e p:p
@)

Observe that each path in this device defines rwo strings: a concatenation of the left-hand side labels of the
arcs, and a concatenation of the right-hand side labels. The upper path of the above transducer thus defines
the pair goose:geese, whereas the lower path defines the pair sheep:sheep.

What constitutes a computation with a transducer? Similarly to the case of automata, a computation
amounts to “walking” a path of the transducer, starting from the initial state and ending in some final state.
Along the path, arcs bear bi-symbol labels: we can view the left-hand side symbol as an “input” symbol
and the right-hand side symbol as an “output” symbol. Thus, each path of the transducer defines a pair of
strings, an input string (over ;) and an output string (over X5). This pair of strings is a member of the
relation defined by the transducer.

Formally, to define the relation induced by a transducer we must extend the relation ¢ from single
transitions to paths, as we did for automata. The extended relation, d, defined over Q, 1%, ¥5* and Q,
is defined as follows: for each ¢ € Q, ¢ (g, ¢, €,q) holds, that is, each state is related to itself through an
¢ : € path; then, if §(q, w1, w2, g2) and 8(q2, a, b, gs), then 8(qy, wy - @, ws - b, g3) holds: if there is a path
labeled wy : wso from ¢; to ¢» and an arc labeled a : b from ¢» to g3, then there is also a path labeled
wi - a : wsy - bfrom q; to gs. Finally, a pair w; : wy is accepted (or generated) by the transducer if and only
if & (go, w1, w2, wy) holds for some final state ¢y € F'. The relation defined by the transducer is the set of
all the pairs it accepts.

As a shorthand notation, when an arc is labeled by two identical symbols, we depict only one of them
and omit the colon. As we did with automata, we usually suppress the identities of the nodes.

Example 2.18 Shorthand notation for transducers
With the above conventions, the transducer of example 2.17 is depicted as:

o:.e o:e S e
9/>o O—O0—0——0
s h e e p

@) O @) O O ©

Of course, the above definition of finite-state transducers is not very useful: since each arc is labeled
by exactly one symbol of 3; and exactly one symbol of X5, any relation that is implemented by such a
transducer must relate only strings of exactly the same length. This should not be the case, and to overcome
this limitation we extend the definition of § to allow also e-labels. In the extended definition, § is a relation
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over @, 1 U {e}, ¥3 U {€} and ). Thus a transition from one state to another can involve “reading” a
symbol of 3; without “writing” any symbol of ¥, or the other way round.

Example 2.19 Finite-state transducer with e-labels
With the extended definition of transducers, we depict below an expanded transducer for singular—plural
noun pairs in English.

0O—0—0—0—©

)

Note that e-labels can occur on the left or on the right of the ‘:
transducer are goose:geese, sheep:sheep, ox:oxen and mouse:mice.

separator. The pairs accepted by this

It is worth noting that there exist variants of finite-state transducers in which the arcs are labeled not by
single alphabet symbols but rather by strings thereof. For simplicity, we will only consider transducers as
presented in this section.

2.9 Properties of regular relations

In the previous sections we discussed several properties of finite-state automata. The main observation
was that finite-state automata generate exactly the set of regular languages; we also listed a few closure
properties of such automata. The extension of automata to transducers carries with it some interesting
results. First and foremost, finite-state transducers define exactly the set of regular relations. Many of the
closure properties of automata are valid for transducers, but some are not. As these properties bear not only
theoretical but also practical significance, we discuss them in more detail in this section.

Given some transducer 7', consider what happens when the labels on the arcs of 1" are modified such that
only the left-hand symbol remains. In other words, consider what is obtained when the transition relation
d is projected on three of its coordinates: (), X1 and @) only, ignoring the ¥, coordinate. It is easy to see
that a finite-state automaton is obtained. We call this automaton the projection of T' to X1 . In the same way,
we can define the projection of T' to 3 » by ignoring }; in the transition relation. Since both projections
yield finite-state automata, they induce regular languages. Therefore the relation defined by 7' is a regular
relation.

We can now consider certain operations on regular relations, inspired by similar operations on regular
languages. For example, union is very easy to define. Recall that a regular relation is a subset of the
Cartesian product of X7 x 33, that is, a set of pairs. If R; and R, are regular relations, then R; U Ry is
defined, and it is straight-forward to show that it is a regular relation. To define the union operation directly
over transducers, we can simply extend the technique delineated in section 2.5 (see example 2.13), namely
add a new initial state with two arcs labeled € : € leading from it to the initial states of the given transducers.

In a similar way, the operation of concatenation can be extended to regular relations: if R and R,
are regular relations then R; - R = {(wy - we, w3 - wy) | (w1, ws) € Ry and (w2, w4) € Ro}. Again, the
technique delineated in example 2.12 can be straight-forwardly extended to the case of transducers, and it
is easy to show that R; - R» is a regular relation.
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Example 2.20 Operations on finite-state transducers

Let R, be the following relation, mapping some English words to their German counterparts:
R, = {tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit, pineapple:Ananas, coconut:Koko}
Let R, be a similar relation: Ry = {grapefruit:pampelmuse, coconut:Kokusnuf3}. Then

Ry U Ry = {tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit,
grapefruit:pampelmuse, pineapple:Ananas, coconut:Koko ,coconut:Kokusnuf3}

A rather surprising fact is that regular relations are not closed under intersection. In other words, if R {
and R, are two regular relations, then it very well might be the case that R1 N R; is not a regular relation.
It will take us beyond the scope of the material covered so far to explain this fact, but it is important to
remember it when dealing with finite-state transducers. For this reason exactly it follows that the class of
regular relations is not closed under complementation: since intersection can be expressed in terms of union
and complementation, if regular relations were closed under complementation they would have been closed
also under intersection, which we know is not the case.

A very useful operation that is defined for transducers is composition. Intuitively, a transducer re-
lates one word (“input”) with another (“output”). When we have more than one transducer, we can view
the output of the first transducer as the input to the second. The composition of 7'y and T relates the
input language of 74 with the output language of 75, bypassing the intermediate level (which is the out-
put of T and the input of T5). Formally, if R; is a relation from X} to 33 and R» is a relation from
35 to X3 then the composition of 1 and R», denoted 21 o R», is a relation from X7 to X3 defined as
{{wy,ws) | there exists a string wo € X% such that wi Rywy and wy Rows }.

Example 2.21 Composition of finite-state transducers
Let R; be the following relation, mapping some English words to their German counterparts:

Ry = {tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit,
grapefruit:pampelmuse, pineapple:Ananas, coconut:Koko ,coconut:Kokusnuf3}

Let R5 be a similar relation, mapping French words to their English translations:

Ry = {tomate:tomato, ananas:pineapple, pampelmousse:grapefruit,
concombre :cucumber, cornichon:cucumber, noix-de-coco:coconut}

Then Ry o R; is a relation mapping French words to their German translations (the English translations are
used to compute the mapping, but are not part of the final relation):

Ry o Ry = {tomate:Tomate, ananas:Ananas, pampelmousse:Grapefruit, pampelmousse:Pampelmuse,
concombre:Gurke, cornichon:Gurke, noix-de-coco:Koko, noix-de-coco:Kokusnufie}

Further reading

A very good formal exposition of regular languages and the computing machinery associated with them is
given by Hopcroft and Ullman (1979, chapters 2-3). Another useful source is Partee, ter Meulen, and Wall
(1990, chapter 17). For natural language applications of finite-state technology refer to Roche and Schabes
(1997a), which is a collection of papers ranging from mathematical properties of finite-state machinery to
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linguistic modeling using them. The introduction (Roche and Schabes, 1997b) can be particularly useful,
as will be Karttunen (1991). Koskenniemi (1983) is the classic presentation of Two-Level Morphology,
and an exposition of the two-level rule formalism, which is demonstrated by an application of finite-state
techniques to the morphology of Finnish. Kaplan and Kay (1994) is a classic work that sets the very basics
of finite-state phonology, referring to automata, transducers and two-level rules. As an example of an
extended regular expression language, with an abundance of applications to natural language processing,
see Beesley and Karttunen (Forthcoming). Finally, Karttunen et al. (1996) is a fairly easy paper that relates
regular expressions and relations to finite automata and transducers, and exemplifies their use in several
language engineering applications.
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Chapter 3

Context-free grammars and languages

3.1 Where regular languages fail

Regular languages and relations were proven very useful for various applications of natural language pro-
cessing, as the previous chapters demonstrate. Applications that require relatively “shallow” linguistic
knowledge, especially around the finite domains of linguistics (e.g., morphology and phonology), such as
dictionary lookup, morphological analysis and generation, part-of-speech tagging, etc., are easily modeled
with finite-state techniques. However, there is a limit to what can be achieved with such means. The theo-
retical reason to this limit lies in the limited expressiveness of regular languages. We mentioned in passing
that not all languages over X are regular, but we did not hint at what kind of languages lie beyond the
regular ones. This is the topic of this section.

To exemplify a non-regular language, consider a simple language over the alphabet ¥ = {a, b} whose
members are strings that consist of some number, n, of ‘a’s, followed by the same number of ‘b’s. Formally,
this is the language L = {a" - b" | n > 0}. Note that this is very different from the language {a*b*}: for a
string to be a member of L, the number of a’s must be identical to the number of b’s. Now let us assume that
this language is regular, and therefore that a deterministic finite-state automaton A exists whose language is
L. Consider the language L; = {a’ | i > 0}. Since every string in this language is a prefix of some string
(a® - b%) of L, there must be a path in A starting from the initial state for every string in L ;. Of course, there
is an infinite number of strings in L;, but by its very nature, A has a finite number of states. Therefore there
must be two different strings in L; that lead the automaton to a single state. In other words, there exist two
strings, a/ and a*, such that j # k but §(go,a’) = 6(qo, a*). Let us call this state g. There must be a path
labeled b7 leading from ¢ to some final state q s, since the string a/b/ is in L. This situation is schematically
depicted below:

e = ~ P - ~
@ . O
Therefore, there is also an accepting path a*b7 in A, and hence also a*’ is in L, in contradiction to our
assumption. Since our assumption leads to a contradiction, it must be false, and hence no deterministic
finite-state automaton exists whose language is L.

We have seen one language, namely L = {a™ - b™ | n > 0}, which cannot be defined by a finite-state
automaton and therefore is not regular. In fact, there are several other such languages, and there is a well
known technique, the so called pumping lemma, for proving that certain languages are not regular. If a
language is not regular, then it cannot be denoted by a regular expression. We must look for alternative
means of specification for non-regular languages.
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3.2 Grammars

In order to specify a class of more complex languages, we introduce the notion of a grammar. Intuitively,
a grammar is a set of rules which manipulate symbols. We distinguish between two kinds of symbols:
terminal ones, which should be thought of as elements of the target language, and non-terminal ones,
which are auxiliary symbols that facilitate the specification. It might be instructive to think of the non-
terminal symbols as synfactic categories, such as Sentence, Noun Phrase or Verb Phrase. However, formally
speaking, non-terminals are simply a set of symbols, and they have no “special”, external interpretation
where formal languages are concerned. Similarly, terminal symbols might correspond to letters of some
natural language, or to words, or to nothing at all, when the grammar is of some non-natural language.
Terminal symbols are simply elements of some finite set.

Rules can express the internal structure of “phrases”, which should not necessarily be viewed as natural
language phrases. Rather, they induce an internal structure on strings of the language, but this structure can
be arbitrary, and does not have to be motivated by anything more than the convenience of expressing the
required language. A rule is a non-empty sequence of symbols, a mixture of terminals and non-terminals,
with the only requirement that the first element in the sequence be a non-terminal one. We write such
rules with a special symbol, ‘—’, separating the distinguished leftmost non-terminal from the rest of the
sequence. The leftmost non-terminal is sometimes referred to as the head of the rule, while the rest of the
symbols are called the body of the rule.

Example 3.1 Rules

Assume that the set of terminals is {the, cat, in, hat} and the set of non-terminals is {D, N, P, NP, PP}.
Then possible rules over these two sets include:

D — the NP —- DN
N — cat PP — P NP
N — hat NP — NP PP
P—in

Note that the terminal symbols correspond to words of English, and not to letters as was the case in the
previous chapter.

Consider the rule NP — D N. If we interpret NP as the syntactic category noun phrase, D as determiner
and N as noun, then what the rule informally means is that one possible way to construct a noun phrase is
by concatenating a determiner with a noun. More generally, a rule specifies one possible way to construct
a “phrase” of the category indicated by its head: this way is by concatenating phrases of the categories
indicated by the elements in the body of the rule. Of course, there might be more than one way to construct
a phrase of some category. For example, there are two rules which define the structure of the category NP
in example 3.1: either by concatenating a phrase of category D with one of category N, or by concatenating
an NP with a PP.

In example 3.1, rules are of two kinds: the ones on the left have a single terminal symbol in their body,
while the ones on the right have one or more non-terminal symbols, but no rule mixes both terminal and
non-terminal symbols in its body. While this is a common practice when grammars for natural languages are
concerned, nothing in the formalism requires such a format for rules. Indeed, rules can mix any combination
of terminal and non-terminal symbols in their bodies. However, we will keep the convention of formatting
rules in grammars for natural languages in this way.

A grammar is simply a finite set of rules. Since we must specify the alphabet and the set of non-
terminals over which a particular grammar is defined, we say that, formally, a grammar is a four-tuple
G = (V,X, P,S), where V is a finite set of non-terminal symbols, ¥ is an alphabet of terminal symbols,
P is a set of rules and S is the start symbol, a distinguished member of V. The rules (members of P) are
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sequences of terminals and non-terminals with a distinguished first element which is a non-terminal, that is,
members of V' x (V U X)*.

Note that this definition permits rules with empty bodies. Such rules, which consist of a left-hand side
only, are called e-rules, and are useful both for formal and for natural languages. Example 3.11 below will
make use of an e-rule.

Example 3.2 Grammar

The set of rules depicted in example 3.1 can constitute the basis for a grammar G = (V, X, P, S), where
V ={D, N, P, NP, PP},% = {the, cat, in, hat}, P is the set of rules and the start symbol S is NP.

In the sequel we will depict grammars by listing their rules only, as we did in example 3.1. We will
keep a convention of using uppercase letters for the non-terminals and lowercase letters for the terminals,
and we will assume that the set of terminals is the smallest that includes all the terminals mentioned in the
rules, and the same for the non-terminals. Finally, we will assume that the start symbol is the head of the
first rule, unless stated otherwise.

So far we talked about “rules” and “grammars” in general. In fact, formal language theory defines rules
and grammars in a much broader way than that which was discussed above, and our definition is actually
only a special case of rules and grammars. For various reasons that have to do with the format of the rules,
this special case is known as context-free rules. This has nothing to do with the ability of grammars to refer
to context; the term should not be taken mnemonically. However, although the term can be quite confusing,
especially for natural language applications, it is well established in formal language theory and we will
therefore use it here. In the next chapter we will present other rule systems and show that context-free
rules and grammars indeed constitute a special case. In this chapter, however, we use the terms “rule” and
“context-free rule” interchangeably, as we do for grammars, derivations etc.

3.3 Derivation

Formally speaking, each non-terminal symbol in a grammar denotes a language. For a simple rule such as
N — cat we say that the language denoted by N includes the symbol cat. For a more complex rule such
as NP — D N, the language denoted by NP contains the concatenation of the language denoted by D with
the one denoted by N. Formally, for this rule we say that L(NP) D L(D) - L(N). Matters become more
complicated when we consider a rule such as NP — NP PP. This is a recursive rule: a single non-terminal
occurs both in the head and in the body of the rule, and hence we must define the language denoted by NP
in terms of itself! While this might look strange, it is in fact well-defined and solutions for such recursive
definitions are available.

In order to define the language denoted by a grammar symbol we need to define the concept of deriva-
tion. Derivation is a relation that holds between two forms, each a sequence of grammar symbols. Formally,
given a grammar G = (V, X, P, S), we define the set of forms to be (V' U X)*: the set of all sequences of
terminal and non-terminal symbols. We say that a form « derives a form 3, denoted by a = 3, if and only
if a =y Ay, and 8 = ;7.7 and A — ~. is arule in P. A is called the selected symbol. Informally, this
means that « derives (3 if a single non-terminal symbol, A, occurs in «, such that whatever is to its left in
a, the (possibly empty) sequence of terminal and non-terminal symbols v;, occurs at the leftmost edge of
B; and whatever is to the right of A in «, namely the (possibly empty) sequence of symbols ., occurs at
the rightmost edge of 3; and the remainder of 3, namely -y ., constitutes the body of some grammar rule of
which A is the head.
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Example 3.3 Derivation

Let G be the grammar of example 3.1, with NP the start symbol. The set of non-terminals of G is V' = {D,
N, P, NP, PP} and the set of terminals is ¥ = {the, cat, in, hat}. The set of forms therefore contains
all the (infinitely many) sequences of elements from V' and X, such as (), (NP), (D cat P D hat), (D N),
(the cat in the hat), etc.

Let us start with a simple form, (NP). Observe that it can be written as ~y;NP~,., where both 7; and ~, are
empty. Observe also that NP is the head of some grammar rule: the rule NP — D N. Therefore, the form
is a good candidate for derivation: if we replace the selected symbol NP with the body of the rule, while
preserving its environment, we get ;D N-y,. = D N. Therefore, (N) = (D N).

We now apply the same process to (D N). This time the selected symbol is D (we could have selected N, of
course). The left context is again empty, while the right context is v, = N. As there exists a grammar rule
whose head is D, namely D — the, we can replace the rule’s head by its body, preserving the context, and
obtain the form (the N). Hence (D N) = (the N).

Given the form (the N), there is exactly one non-terminal that we can select, namely N. However, there are
two rules that are headed by N: N — cat and N — hat. We can select either of these rules to show that both
(the N) = (the cat) and (the N) = (the hat).

Since the form (the car) consists of terminal symbols only, no non-terminal can be selected and hence it
derives no form.

We now extend the derivation relation from a single step to an arbitrary number of steps. To formalize
the concept of “any number of applications”, one usually uses the reflexive transitive closure of a relation.
In our case, the reflexive transitive closure of the derivation relation is a relation over forms, denoted ° :*>’,
and defined recursively as follows: a = 3 if a = f3,orif a = yand v = S3. Simply put, this definition
means that the extended derivation relation ‘=’ holds for two forms, o and B, either if « directly derives
B, or if a directly derives some intermediate form, -y, which is known to (transitively) derive 3.

Example 3.4 Extended derivation
In example 3.3 we showed that the following derivations hold:

(1) (NP) = (DN)

(2) (DN) = (theN)

(3) (theN) = (the cat)
Therefore, we trivially have:

4) (NPy = (DN)

(5) (DN) = (theN)

(6) (theN) = (the cat)

From (2) and (6) we get

(7) (DN) = (the cat)
and from (1) and (7) we get

(8) (NP) = (the cat)

From here on we use the term “derivation” in reference to the extended, transitive relation; the original
relation will be referred to as immediate derivation. The derivation relation is the basis for defining the
language denoted by a grammar symbol. Consider the form obtained by taking a single grammar symbol,
say (A); if this form derives a sequence of terminals, say {a1, . . . a,, ), then we say that the terminal sequence
(which is a string of alphabet symbols) is a member of the language denoted by A. Formally, the language of
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some non-terminal A € V', denoted L(A),is {a;---a, | a; € T for 1 <i < nand (A) = (a1,...,a,)}.
That is, the language denoted by A is the set of strings of terminal symbols that are derived by (A). The
language of a grammar G, L(G), is the language denoted by its start symbol, L(.S). When a string w is in
L(G) we say that w is grammatical.

Example 3.5 Language of a grammar

Consider again the grammar G = (V, X, P, S) where V = {D, N, P, NP, PP}, ¥ = {the, cat, in, hat}, the
start symbol S is NP and P is the following set of rules:

D — the NP - DN
N — cat PP — P NP
N — hat NP — NP PP
P—in

It is fairly easy to see that the language denoted by the non-terminal symbol D, L(D), is the singleton
set {the}. Similarly, L(P) is {in} and L(N) = {cat, hat}. It is more difficult to define the languages
denoted by the non-terminals NP and PP, although is should be straight-forward that the latter is obtained
by concatenating {in} with the former. We claim, without providing a proof, that L(NP) is the denotation
of the regular expression (the - (cat + hat) - (in- the - (cat + hat))*).

3.4 Derivation trees

The derivation relation is the basis for the definition of languages, but sometimes derivations provide more
information than is actually needed. In particular, sometimes two derivations of the same string differ not
in the rules that were applied but only in the order in which they were applied. Consider again the grammar
of example 3.5. Starting with the form (NP) it is possible to derive the string the cat in two ways:

(1) (NP) = (DN) = (D cat) = (the cat)
(2) (NP) = (D N) = (the N) = (the cat)

Derivation (1) applies first the rule N — cat and then the rule D — the whereas derivation (2) applies the
same rules in the reverse order. But since both use the same rules to derive the same string, it is sometimes
useful to collapse such “equivalent” derivations into one. To this end the notion of derivation trees is
introduced.

A derivation tree (sometimes called parse tree, or simply tree) is a visual aid in depicting derivations, and
a means for imposing structure on a grammatical string. Trees consist of vertices and branches; a designated
vertex, the root of the tree, is depicted on the top. Then, branches are simply connections between pairs of
vertices. Intuitively, trees are depicted “upside down”, since their root is at the top and their leaves are at the
bottom. An example for a derivation tree for the string the cat in the hat with the grammar of example 3.5
is given in example 3.6 (page 32).

Formally, a tree consists of a finite set of vertices and a finite set of branches (or arcs), each of which is
an ordered pair of vertices. In addition, a tree has a designated vertex, the root, which has two properties: it
is not the target of any arc, and every other vertex is accessible from it (by following one or more branches).
When talking about trees we sometimes use family notation: if a vertex v has a branch leaving it which
leads to some vertex u, then we say that v is the mother of u and u is the daughter, or child, of v. If u has
two daughters, we refer to them as sisters. Derivation trees are defined with respect to some grammar G,
and must obey the following conditions:

1. every vertex has a label, which is either a terminal symbol, a non-terminal symbol or €;

2. the label of the root is the start symbol;
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Example 3.6 Derivation tree

NP /NP\PP
/NN
D N P

the cat in the hat

3. if a vertex v has an outgoing branch, its label must be a non-terminal symbol; furthermore, this
symbol must be the head of some grammar rule; and the elements in the body of the same rule must
be the labels of the children of v, in the same order;

4. if a vertex is labeled €, it is the only child of its mother.

A leaf is a vertex with no outgoing branches. A tree induces a natural “left-to-right” order on its leaves;
when read from left to right, the sequence of leaves is called the frontier, or yield of the tree.

By the way we defined them, derivation trees correspond very closely to derivations. In fact, it is easy
to show that for a form «;, a non-terminal symbol A derives « if and only if « is the yield of some parse
tree whose root is A. In other words, whenever some string can be derived from a non-terminal, there
exists a derivation tree for that string, with the same non-terminal as its root. However, sometimes there
exist different derivations of the same string that correspond to a single tree. In fact, the tree representation
collapses exactly those derivations that differ from each other only in the order in which rules are applied.

Example 3.7 Correspondence between trees and derivations

Consider the tree of example 3.6. Each non-leaf vertex in the tree corresponds to some grammar rule (since
it must be labeled by the head of some rule, and its children must be labeled by the body of the same rule).
For example, the root of the tree, which is labeled NP, corresponds to the rule NP — NP PP; the leftmost
D-labeled vertex corresponds to the rule D — the. This tree represents the following derivations (among
others):

(1) NP=NPPP=DNPP=DNPNP=DNPDN= the NPDN = thecatP DN
= the cat in D N = the cat in the N = the cat in the hat

(2) NP = NP PP = DN PP = the N PP = the cat PP = the cat P NP = the cat in NP
= the catin D N = the cat in the N = the cat in the hat

(3) NP = NP PP = NP P NP = NP PDN = NP P D hat = NP P the hat = NP in the hat
= D N in the hat = D cat in the hat = the cat in the hat

While exactly the same rules are applied in each derivation (the rules are uniquely determined by the tree),
they are applied in different orders. In particular, derivation (2) is a leftmost derivation: in every step the
leftmost non-terminal symbol of a derivation is expanded. Similarly, derivation (3) is rightmost.

Sometimes, however, different derivations (of the same string!) correspond to different trees. This can
happen only when the derivations differ in the rules which they apply. When more than one tree exists
for some string, we say that the string is ambiguous. Ambiguity is a major problem when grammars are
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used for certain formal languages, in particular for programming languages. But for natural languages,
ambiguity is unavoidable as it corresponds to properties of the natural language itself.

Example 3.8 Ambiguity

Consider again the grammar of example 3.5, and the following string:
the cat in the hat in the hat

What does this sequence of words mean? Intuitively, there can be (at least) two readings for this string:
one in which a certain cat wears a hat-in-a-hat, and one in which a certain cat-in-a-hat is inside a hat. If we
wanted to indicate the two readings with parentheses, we would distinguish between

((the cat in the hat) in the hat)
and
(the cat in (the hat in the hat))

This distinction in intuitive meaning is reflected in the grammar, and hence two different derivation trees,
corresponding to the two readings, are available for this string:

/ / \

/\

/\

/ \ D N
/ \
D/ \N / \ / \ /\
/\ /\ P
1 1 1 1 D N D/ \N
the cat in the hat in the hat l l l l

the cat in the hat in the hat

Using linguistic terminology, in the left tree the second occurrence of the prepositional phrase in the hat
modifies the noun phrase the cat in the hat, whereas in the right tree it only modifies the (first occurrence
of) the noun phrase the hat. This situation is known as syntactic or structural ambiguity.

3.5 Expressiveness

In example 3.5 above we presented a context-free grammar whose language, we claimed, is regular. How-
ever, recall from section 3.1 that the motivation behind the introduction of context-free grammars was the
inability of regular expressions to denote certain languages (or, in other words, the limitations of the class of
regular languages). We must therefore show that context-free grammars do provide the means for describing
some non-regular languages.

In this section we will concentrate on a formal (that is, not natural) example, for the sake of simplicity.
The language that was shown to be non-regular in section 3.1 is L = {a™b™ | n > 0}, and this is the
language for which we provide a context-free grammar here. The grammar, G = (V, X, P, S), has two
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terminal symbols: ¥ = {a, b}, and three non-terminal symbols: V' = {5, A, B}, with S the start symbol.
The idea is to have S derive strings of one or more ‘a’s, and B — strings of ‘b’s. But of course, the grammar
must somehow guarantee that the number of the ‘a’s matches the number of the ‘b’s. This is achieved by
guaranteeing that whenever an A is added to some form, a B is also added.

Example 3.9 A context-free grammar for L = {a™b" | n > 0}

(1) S—ASB
2) S—ab
3) A—a
) B—b

The idea behind the grammar of example 3.9 is simple: the language of the non-terminal A is simply
{a}, and similarly L(B) = {b}. The language of S is more complicated. With the second rule, S — a b, S
can derive the string a b. The first rule is recursive: it expands an occurrence of S in a form to A S B. Since
the A will derive a and the B will derive b, this amounts to replacing an occurrence of S in a form with a S b.
Note that whenever an a is added to the left of the S, a b is added on its right. This ensures that the number
of the as matches the number of the bs. Eventually, the S in a form can be expanded into a b, to complete
the derivation.

Example 3.10 Derivation with the grammar G

An example derivation with the grammar G of example 3.9 is given below. The derived string is a a b b,
which is indeed in the language of G. The number above the derivation arrow corresponds to the number
of the rule of G that was used for the derivation.

(S) = (ASB)
X (AabB)
2 (Aabb)
TS (aabb)

What if we were interested in a slightly different language, namely L’ = {a™b™ | n > 0}? Notice that
the only difference between the two languages lies in the empty string, €, which is a member of the new
language. A grammar for L' is given in example 3.11 to demonstrate the use of what is know as e-rules,
that is, rules with empty bodies. There is nothing in the definition of a rule which requires that its body be
non-empty. When an e-rule participates in a derivation, whenever its head is the selected element in some
form, it is replaced by the empty sequence, that is, the length of the form decreases.

Example 3.11 A context-free grammar for L’ = {a™b™ | n > 0}

(1) S—>ASB
) S—e
3) A—a
) B—b

This grammar is very similar to the grammar for L of example 3.9; the only difference is that the halting
condition for the recursion, namely rule (2), now expands S to € rather to a b. This allows for the empty
string to be a member of the language: a derivation for e simply starts with (S) and applies the second rule,
yielding ().
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Since the language L = {a™b™ | n > 0} is not a regular language, and since we have shown above a
context-free grammar for generating it, we have proven that some context-free languages are not regular
languages. This brings up an interesting question: what is the relationship between these two classes of
languages? There are only two possibilities: either the context-free languages properly contain the regular
languages, or they simply overlap: they have a non-empty intersection, but each class contains members
that are not members of the other class. It turns out that it is relatively simple to show that the former is the
case: every regular language is also context-free. In other words, given some finite-state automaton which
generates some language L, it is always possible to construct a context-free grammar whose language is L.
The regular languages are properly contained in the context-free languages.

To validate the above claim, we conclude this section with a discussion of converting automata to
context-free grammars. The rationalization is that if we can show, for any finite-state automaton A, a
grammar G such that L(A) = L(G), then we have proven that any regular language is context-free. In
other words, in what follows we “simulate” a computation of a finite-state automaton by a derivation of a
context-free grammar.

Let A = (Q, qo, 9, F') be a deterministic finite-state automaton with no e-moves over the alphabet X.
The grammar we define to simulate A is G = (V, X, P, S), where the alphabet ¥ is that of the automaton,
and where the set of non-terminals, V/, is the set () of the automaton states. In other words, each state of the
automaton is translated to a non-terminal of the grammar. The idea is that a single (immediate) derivation
step with the grammar will simulate a single arc traversal with the automaton. Since automata states are
simulated by grammar non-terminals, it is reasonable to simulate the initial state by the start symbol, and
hence the start symbol S is gg. What is left, of course, are the grammar rules. These come in two varieties:
first, for every automaton arc §(q, a) = ¢’ we stipulate a rule ¢ — a ¢'. Then, for every final state gy € F,
we add the rule gy — €. This process is demonstrated for a small grammar in example 3.12.

Example 3.12 Simulating a finite-state automaton by a grammar

Consider the simple automaton (@, qo, d, F'y depicted below, where @ = {qo,q1,92,q3}, F = {q3} and ¢
is {<q07 m, (I1>: <q1 , €, Q2>: <q27 o, q2>7 <q27 w, q3>7 <q07 w, Q2>}3

- : -
\E/U
0
The grammar G = (V, X, P, S) which simulates this automaton has V' = {qo, q1,¢2,q3}, S = qo and the
set of rules:

(1) g—->maq
(2) @1 —eq
(3) @2—oq
4) @—wg
(5) @ —=wae
(6) qs — €

The string meoow, for example, is generated by the automaton by walking along the path g9 — ¢1 — ¢2 —
G2 — @2 — q3. The same string is generated by the grammar with the derivation

(qo) = (mq1) = (megz) = (meogs) = (meoogs) = (meoowqs) = (meoow)

We will not provide a proof that the language of the grammar indeed coincides with the language of the
automaton, but the validity of this proposition should be easy to see.
It is extremely important to realize that while for every finite-state automaton A a grammar G exists
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such that L(A) = L(G), the reverse does not hold. There exist grammars whose language cannot be
generated by any finite-state automaton. Our conclusion, then, is that the class of regular languages is
properly contained within the class of context-free languages.

Observing the grammar of example 3.12, a certain property of the rules stands out: the body of each
of the rules either consists of a terminal followed by a non-terminal or is empty. This is a special case of
what are known as right-linear grammars. In a right-linear grammar, the body of each rule consists of a
(possibly empty) sequence of terminal symbols, optionally followed by a single non-terminal symbol. Most
importantly, no rule exists whose body contains more than one non-terminal; and if a non-terminal occurs in
the body, it is in the final position. Right-linear grammars are a restricted variant of context-free grammars,
and it can be shown that they generate all and only the regular languages.

3.6 Linguistic examples

Context-free grammars are a powerful device, both for the specification of formal (e.g., programming)
languages and for describing the syntax (and, sometimes, also other aspects) of natural languages. One of
the reasons for their appeal is their efficiency: while not as efficient to implement as finite-state automata,
there exist algorithms that determine whether a given string is in the language of some grammar in time that
is proportional to the cube of the length of the string. Compared to finite-state automata, where the time for
such a task is proportional to the length of the string (that is, linear rather than cubic), this might seem a
major difference; but given the extended expressiveness of context-free languages over regular languages,
this is sometimes worth the price. In this section we exemplify some characteristic linguistic issues that can
be handled elegantly with context-free grammars.

Let us start with the basic structure of sentences in English. The grammar of example 3.5 can be easily
extended to cover verb phrases, in addition to noun phrases: all that is required is a set of rules that derive
verbs, say from a non-terminal called V, and a few rules that define the structure of verb phrases:

V — sleeps VP =V

V — smile VP — VP NP
V — loves VP — VP PP
V — saw

Now all that is needed is a rule for sentence formation: S — NP VP, and the augmented grammar can
derive strings such as the cat sleeps or the cat in the hat saw the hat. The grammar, along with an example
derivation tree, are depicted in example 3.13 (page 37).

There are two major problems with the grammar of example 3.13. Firstly, it ignores the valence of
verbs: there is no distinction among subcategories of verbs, and an intransitive verb such as sleeps might
occur with a noun phrase complement, while a transitive verb such as loves might occur without one. In
such a case we say that the grammar overgenerates: it generates strings that are not in the intended language.
Secondly, there is no treatment of subject—verb agreement, so that a singular subject such as the cat might
be followed by a plural form of verb such as smile. This is another case of overgeneration. Both problems
are easy to solve.

To account for valence, we simply replace the non-terminal symbol V by a set of symbols: Vtrans,
Vintrans, Vditrans etc. We also change the grammar rules accordingly:

VP — Vintrans Vintrnas — sleeps
VP — Vtrans NP Vintrans — smile
VP — Vditrans NP PP Vtrans — loves

Vditrans — give

To account for agreement, we can again extend the set of non-terminal symbols such that categories that
must agree reflect in the non-terminal that is assigned for them the features on which they agree. In the very
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37

Example 3.13 A context-free grammar for English sentences

The extended grammar is G = (V, X, P, S) where V. = {D, N, P, NP, PP, V, VP, S}, ¥ = {the, cat, in, hat,
sleeps, smile, loves, saw}, the start symbol is S and P is the following set of rules:

S —+ NP VP
NP - DN
NP — NP PP
PP — P NP
VP =V

VP — VP NP
VP — VP PP

A derivation tree for the cat sleeps is:

the cat

D — the

N — cat
N — hat

P —in

V — sleeps
V — smile
V — loves
V — saw

sleeps

simple case of English, it is sufficient to multiply the set of “nominal” and “verbal” categories, so that we
get Dsg, Dpl, Nsg, Npl, NPsg, NPpl, Vsg, Vip, VPsg, VPpl etc. We also change the set of rules accordingly:

S — NPsg VPsg
NPsg — Dsg Nsg
NPsg — NPsg PP
PP — P NP

VPsg — Vsg
VPsg — VPsg NP
VPsg — VPsg PP
Nsg — cat

Nsg — hat
P—in

Vsg — sleeps

Vsg — smiles

Vsg — loves

Vsg — saw

Dsg — a

S — NPpl VPpl
NPpl — Dpl Npl
NPpl — NPpl PP

VPpl — Vpl
VPpl — VPpl NP
VPpl — VPpl PP
Npl — cats
Npl — hats

Vpl — sleep
Vpl — smile
Vpl — love
Vpl — saw
Dpl — many

Context-free grammars can be used for a variety of syntactic constructions, including some non-trivial
phenomena such as unbounded dependencies, extraction, extraposition etc. However, some (formal) lan-
guages are not context-free, and therefore there are certain sets of strings that cannot be generated by
context-free grammars. The interesting question, of course, involves natural languages: are there natu-
ral languages that are not context-free? Are context-free grammars sufficient for generating every natural
language? This is the topic we discuss in the next chapter.
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3.7 Formal properties of context-free languages

In section 2.9 we discussed some closure properties of regular languages and came to the conclusion that
that class was closed under union, intersection, complementation, concatenation, Kleene-closure etc. These
are useful properties, both for theoretical reasoning with regular languages and for practical applications.
Unfortunately, context-free languages are no so “well-behaved”. We discuss some of their closure properties
in this section.

It should be fairly easy to see that context-free languages are closed under union. Given two context-
free grammars G1 = (V1,%1, P, S1) and G2 = (Va, X2, Py, Ss), a grammar G = (V, X, P, S) whose
language is L(G1) U L(G2) can be constructed as follows: the alphabet 3 is the union of X1 and X5, the
non-terminal set V' is a union of V; and V5, plus a new symbol S, which is the start symbol of G. Then,
the rules of GG are just the union of the rules of G'; and G2, with two additional rules: S — S; and § — S5,
where S; and S» are the start symbols of G; and G, respectively. Clearly, every derivation in G'; can be
simulated by a derivation in G using the same rules exactly, starting with the rule § — S, and the same is
true for derivations in G'5. Also, since S is a new symbol, no other derivations in G are possible. Therefore
L(G) = L(G1) U L(G2).

A similar idea can be used to show that the context-free languages are closed under concatenation: here
we only need one additional rule, namely S — S; Sz, and the rest of the construction is identical. Any
derivation in G' will “first” derive a string of G; (through S1) and then a string of G2 (through S»). To
show closure under the Kleene-closure operation, use a similar construction with the added rules S — € and
S—SS;.

However, it is possible to show that the class of context-free languages is not closed under intersection.
That s, if L; and L, are context-free languages, then it is not guaranteed that L N L, is context-free as well.
From this fact it follows that context-free languages are not closed under complementation, either. While
context-free languages are not closed under intersection, they are closed under intersection with regular
languages: if L is a context-free language and R is a regular language, then it is guaranteed that L N R is
context-free.

Further reading

Context-free grammars and languages are discussed by Hopcroft and Ullman (1979, chapters 4, 6) and
Partee, ter Meulen, and Wall (1990, chapter 18). A linguistic formalism that is based on the ability of
context-free grammars to provide adequate analyses for natural languages is Generalized Phrase Structure
Grammars, or GPSG (Gazdar et al., 1985).
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Chapter 4

The Chomsky hierarchy

4.1 A hierarchy of language classes

We have encountered so far three types of mechanisms for defining languages: expressions, automata and
grammars. Let us focus on grammars in this chapter. We have seen two types of grammars: context-free
grammars, which generate the set of all context-free languages; and right-linear grammars, which generate
the set of all regular languages. Right-linear grammars are a special case of context-free grammars, where
additional constraints are imposed on the form of the rules (in this case, at most one non-terminal symbol
can be present in the body of a rule, and it must be the final element). The pattern that we emphasize here
is that by placing certain constraints on the form of the rules, we can constrain the expressive power of the
formalism. What would happen if we used this rationalization in the reverse direction, that is, allowed more
freedom in the form of the rules?

One way to extend the expressiveness of grammars is to allow more than a single non-terminal symbol
in the head of the rules. With context-free grammars, a rule can be applied (during a derivation) when its
head is an element in a form. We can extend this formalism by referring, in the application of rules, to a
certain context. While a context-free rule can specify that a certain non terminal, say A, expands to a certain
sequence of terminals and non-terminals, say «;, a rule in the extended formalism will specify that such an
expansion is allowed only if the context of A in the form, that is, A’s neighbors to the right and left, are
as specified in the rule. Due to this reference to context, the formalism we describe is known as context-
sensitive grammars. A rule in a context-sensitive grammar has the form a1 A as — a1 fas, where ay, as
and 3 are all (possibly empty) sequences of terminal and non-terminal symbols. The other components of
context-sensitive grammars are as in the case of context-free grammars. For example, a context-sensitive
rule might expand a verb phrase to a ditransitive verb such as love only if it is preceded by a nominative
noun phrase and followed by an accusative one: NPnom VP NPacc — NPnom love NPacc. This format
of rules is mostly known from phonology, where phonological processes are usually described as “some
phoneme A is realized as 8 when it is preceded by a1 and followed by a”.

As usual, the class of languages that can be generated by context-sensitive grammars is called the
context-sensitive languages. Considering that every context-free grammar is a special case of context-
sensitive grammars (with an empty context), it should be clear that every context-free language is also
context-sensitive, or in other words, that the context-free languages are contained in the set of the context-
sensitive ones. As it turns out, this containment is proper, that is, there are context-sensitive languages that
are not context-free.

What we are finding is a hierarchy of classes of languages: the regular languages are properly contained
in the context-free languages, which are properly contained in the context-sensitive languages. These, in
turn, are known to be properly contained in the set of languages generated by the so-called unrestricted or
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general phrase structure grammars. This hierarchy of language classes was first defined by Noam Chomsky,
and is therefore called the Chomsky Hierarchy of Languages. It is schematically depicted below:

Phrase-structure
languages

Context-sensitive
languages

Context-free
languages

Regular
languages

4.2 The location of natural languages in the hierarchy

The Chomsky Hierarchy of Languages reflects a certain order of complexity: in some sense, the lower the
language class is in the hierarchy, the simpler are its possible constructions. This is a very informal notion,
and indeed there is nothing sacred about this particular hierarchy: one could conceive of criteria other than
the form of the rules for defining language classes, and get at a different hierarchy altogether. However,
given the significance of the Chomsky hierarchy in formal language theory and computer science in general,
it is interesting to investigate the location of formal languages with respect to this hierarchy. In other words,
where does the class of natural languages fall? Are there natural languages that are trans-regular (cannot
be described by a regular expression)? Are there any that are trans-context-free (cannot be described by a
context-free grammar)? Beyond the expressive power of even context-sensitive grammars?

In his 1957 Syntactic Structures (Chomsky, 1957), Noam Chomsky presents a theorem that says “En-
glish is not a regular language”; as for context-free languages, Chomsky says “I do not know whether or
not English is itself literally outside the range of such analyses”. Incredibly, it was for many years well
accepted that natural languages stood beyond the expressive power of context-free grammars, with not a
single well established proof. To illustrate this situation, here are a few quotes from introductory texts in
linguistics.

In one of the most popular syntax textbooks, An introduction to the principles of transformational
syntax (Akmajian and Heny, 1976, pp. 84-86), in a chapter titled “The need for transformations”, the authors
present a small fragment of English that deals with auxiliary constructions. They present a small CFG for the
fragment, show that it undergenerates, then amend it and show that the amended grammar overgenerates.

(© 2001 by Shuly Wintner



4.2. THE LOCATION OF NATURAL LANGUAGES IN THE HIERARCHY 41

Finally, they modify the grammar again, and show that it generates the required language, but does not
“express linguistically significant generalizations about the language”. They conclude:

Since there seem to be no way of using such PS rules to represent an obviously significant
generalization about one language, namely, English, we can be sure that phrase structure gram-
mars cannot possibly represent ALL the significant aspects of language structure. We must
introduce a new kind of rule that will permit us to do so.

The logic that Akmajian and Heny are applying is the following: try to list as many grammars as
possible for a given language; if you can’t find one that is context-free, the language is trans-context-free.
But a natural language, and indeed any language, will have an infinite number of grammars. It is logically
impossible to search through all of them for one that is context-free. Hence this technique of demonstration
by enumeration of candidate grammars, in order to show that they are inappropriate, is out of the question.

In a similar way, Peter Culicover in “Syntax” (Culicover, 1976) presents a sequence of infinitely many
sentences with an increasing degree of embedding, and a series of CF rules that manage to capture increas-
ingly more complex constructions. He concludes (p. 28):

In general, for any phrase structure grammar containing a finite number of rules like (2.5),
(2.52) and (2.54) it will always be possible to construct a sentence that the grammar will not
generate. In fact, because of recursion there will always be an infinite number of such sen-
tences. Hence, the phrase structure analysis will not be sufficient to generate English.

Later on (p. 50) he explores a phenomenon of affix hoping in auxiliary constructions in English, and con-
cludes that “this makes it impossible to capture the observed generalizations in purely phrase structure
terms”. Again, no proof is given.

What is the source for this confusion? Perhaps the reason lies in the notion of “context-freeness”;
one might be misled to believe that context-free grammars cannot capture phenomena that involve con-
text. This misconception runs so deep, that you find incredible statements such as in Transformational
grammar (Grinder and Elgin, 1973). The authors present (p. 56) what must be the simplest context-free
grammar for a small subset of English, and demonstrate that while it correctly generates the girl saw the
boy, it also wrongly generates the girl kiss the boy. They claim that “this well-known syntactic phenomenon
demonstrates clearly the inadequacy of ... context-free phrase-structure grammars”. More precisely, they
state (p. 58) that:

The defining characteristic of a context-free rule is that the symbol to be rewritten is to be
rewritten without reference to the context in which it occurs... Thus, by definition, one cannot
write a context-free rule that will expand the symbol V' into kiss in the context of being im-
mediately preceded by the sequence the girls and that will expand the symbol V' into kisses in
the context of being immediately preceded by the sequence the girl. In other words, any set of
context-free rules that generate (correctly) the sequences the girl kisses the boy and the girls
kiss the boy will also generate (incorrectly) the sequences the girl kiss the boy and the girls
kisses the boy. The grammatical phenomenon of Subject-Predicate agreement is sufficient to
guarantee the accuracy of: “English is not a context-free language”.

Exactly the same phenomenon is used by Emmon Bach in Syntactic theory (Bach, 1974, p. 77) to reach
the same conclusion. After listing several examples of subject-verb agreement in English main clauses, he
says:

These examples show that to describe the facts of English number agreement is literally im-
possible using a simple agreement rule of the type given in a phrase-structure grammar, since
we cannot guarantee that the noun phrase that determines the agreement will precede (or even
be immediately adjacent) to the present-tense verb.
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Of course, such phenomena are trivial to describe with context-free grammars, as outlined in section 3.6.
Similarly, Joan Bresnan in A realistic transformational grammar (Bresnan, 1978, pp. 37-38) lists some
more examples of number agreement in English, indicating that:

In many cases the number of a verb agrees with that of a noun phrase at some distance from it...
this type of syntactic dependency can extend as far as memory or patience permits... the distant
type of agreement... cannot be adequately described even by context-sensitive phrase-structure
rules, for the possible context is not correctly describable as a finite string of phrases.

It should be emphasized that context-free rules can take care of dependencies that go far beyond “im-
mediate adjacency”. For example, we could augment the grammar of example 3.13 to allow relative clause
modification of noun phrases by separating singular and plural categories (as suggested in section 3.6) and
adding the rules NPsg — NPsg that S and NPpl — NPpl that S, and thus account for sentences in which the
subject and the verb agree on number, even though they might be separated from each other by a full clause,
whose length might not be limited.

There have been, however, some more serious attempts to demonstrate that natural languages are not
context-free. We have seen so far one wrong way of demonstrating that a language is not context-free.
How, then does one go about proving such a claim? There are two main techniques. One is direct: there is a
lemma, known as the pumping lemma, that describes some mathematical property of context-free languages
in terms of their string sets. To prove that a particular language is not context-free, one can simply prove
that the set of strings of that language does not comply with this property. However, the property is rather
complex; direct proofs of non context-freeness are rare.

More useful than the pumping lemma are two closure properties of context-free languages: closure
under intersection with regular languages and under homomorphism. Suppose we want to check whether
English is context-free. If we can find some regular language, and show that its intersection with English
is not context-free, then we know that English itself is not context-free. The target language — in the
intersection of English and some regular language — should be one that is obviously not context-free, and
usually one uses a variant of what’s called “copy languages”. The canonical example of a copy language
is {fww | w € ¥*}. In other words, if we can show that when English is intersected with some regular
language it yields a copy language, then English is provably not context-free. Using such techniques, it was
demonstrated quite convincingly — using data from Dutch, Swiss-German and other languages — that there
are certain constructions in natural languages that cannot be generated by context-free grammars.

We will not demonstrate here the non-context-freeness of natural languages, as both the linguistic data
and the mathematics of the proof are beyond the scope of this course. It is much simpler, though, to show
that natural languages are not regular; in particular, we demonstrate below that English is not a regular
language.

A famous example for showing that natural languages are not regular has to do with phenomena known
as center embedding. The following is a grammatical English sentence:

A white male hired another white male.
The subject, A white male, can be modified by the relative clause whom a white male hired:
A white male — whom a white male hired — hired another white male.

Now the subject of the relative clause can again be modified by the same relative clause, and in principle
there is no bound to the level of embedding allowed by English. It is obtained, then, that the language L zrg
is a subset of English:

Lirg = {A white male (whom a white male)™ (hired)" hired another white male | n > 0}

There are two important points in this argument: first, L g is not a regular language. This can be easily
shown using a similar argument to the one we used in order to demonstrate that the language {a "b" | n > 0}
is not regular, in section 3.1.
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The second point is that all the sentences of Ly are grammatical English sentences, while no “similar”
sentence, in which the exponents of the clauses whom a white male and hired differ, is a grammatical
English sentence. In other words, Ly is the intersection of the natural language English with the regular
set

Lyeg = {A white male (whom a white male)* (hired)" hired another white male}

Lyeg is indeed regular, as it is defined by a regular expression. Now assume towards a contradiction that
English were a regular language. Then since the regular languages are closed under intersection, and since
Lyeg is a regular language, then so would have been the intersection of English with L reg, namely Lyyg.
Since Lypg is known to be trans-regular, we get at a contradiction, and therefore our assumption is falsified:
English is not a regular language.

As noted above, similar considerations — albeit with a more complicated set of data, and a more in-
volved mathematical argument — can be used to demonstrate that certain natural languages stand beyond
the expressive power of even context-free languages.

4.3 Weak and strong generative capacity

In the discussion of the previous section we only looked at grammars as generating sets of strings (i.e.,
languages), and ignored the structure that a grammar imposes on the strings in its language. In other words,
when we say that English is not a regular language we mean that no regular expression exists whose deno-
tation is the set of all and only the sentences of English. Similarly, when a claim is made that some natural
language, say Dutch, is not context-free, it should be read as saying that no context-free grammar exists
whose language is Dutch. Such claims are propositions on the weak generative capacity of the formalisms
involved: the weak generative capacity of regular expressions is insufficient for generating English; the
weak generative capacity of context-free languages is insufficient for Dutch. Where natural languages are
concerned, however, weak generative capacity might not correctly characterize the relationship between
a formalism (such as regular expressions or context-free grammars) and a language (such as English or
Dutch). This is because one expects the formalism not only to be able to generate the strings in a language,
but also to associate them with “correct” structures.

In the case of context-free grammars, the structure assigned to strings is a derivation tree. Other lin-
guistic formalisms might assign other kinds of objects to their sentences. We say that the strong generative
capacity of some formalism is sufficient to generate some language if the formalism can (weakly) generate
all the strings in the language, and also to assign to them the “correct” structures. Unlike weak generative
capacity, which is a properly defined mathematical notion, strong generative capacity is poorly defined,
because no clear definition of the “correct” structure for some string in some language exists.

As an extreme example, consider some subset of English, defined with the following grammar, G 1:

S — NP VP D — the
NP —- DN N — cat

N — hat
PP — P NP P—in
VP>V V — sleeps
VP — V NP V — saw
VP — V PP V — loves

This grammar defines sentences such as the cat sleeps, the cat saw the hat, the cat sleeps in the hat, etc.
But GG; not only generates such sentences; it also associates each of them with a derivation tree. Now
observe that the language generated by G, is finite: there is no recursion in the rules, and so one can easily
enumerate all the sentences in the language.

Now consider an alternative grammar, GG 2, with the following rules:
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S — the cat sleeps

S — the cat sleeps in the cat
S — the cat sleeps in the hat
S — the cat saw the hat

S — the cat loves the hat

S — the cat loves the cat

In other words, G5 has a production rule for every possible sentence of the language generated by G ;. Since
L(Gh) is finite, the number of rules in G5 is finite, too. Furthermore, by its construction, the language
generated by (G2 is identical to the language generated by G'1. In terms of their weak generative capacity,
we would say that the grammars are equivalent: they generate exactly the same sets of strings. However, in
terms of their strong generative capacity, it is obvious that G'; and G5 assign completely different structures
to the strings in their (common) language: clearly, the trees admitted by G ; are more informative than
the flat tress admitted by G5. We might say that G is superior to G5, as it corresponds more closely
to the intuitions we have when we think of the structure of English sentences; but such a claim is not a
mathematical proposition and cannot be proven.

(1 and G5 above are two context-free grammars, and hence assign the same kind of structure (derivation
trees) to the strings in their languages. When two grammars that are instances of different formalisms are
concerned, matters become more complicated: it is not only difficult to evaluate the “correctness” of the
structures assigned to strings; these structures might be completely different entities. For example, in some
linguistic theories strings are associated with complex entities called feature structures rather than with
strings. It is very difficult to define relationships between structures of one formalism and those of another.

To summarize, the picture that emerges from the above discussion is that comparison of different gram-
mars, and therefore also of different linguistic formalisms, can only be done on the basis of their weak
generative capacity. This is the notion that grammar equivalence captures; this is the notion that should be
used when referring to the appropriateness of some formalism for some language (or a class of languages).
Strong generative capacity is interesting in and by itself, but it is not a notion that is amenable to formal,
mathematical investigation.

Further reading

The Chomsky Hierarchy of Languages is due to Chomsky (1956). The location of the natural languages in
this hierarchy is discussed in a variety of papers, and by far the most readable, enlightening and amusing
is Pullum and Gazdar (1982), on which section 4.2 is based. Several other works discussing the non-context-
freeness of natural languages are collected in Part III of Savitch et al. (1987). Rounds, Manaster-Ramer,
and Friedman (1987) inquire into the relations between formal language theory and linguistic theory, in
particular referring to the distinction between weak and strong generative capacity. Works showing that
natural languages cannot be described by context-free grammars include Bresnan et al. (1982) (Dutch),
Shieber (1985) (Swiss-German) and Manaster-Ramer (1987) (Dutch). Miller (1999) is a recent book ded-
icated to generative capacity of linguistic formalisms, where strong generative capacity is defined as the
model theoretic semantics of a formalism.
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