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Learning to Identify Semitic Roots

Ezra Daya

Abstract

The standard account of word-formation processes in Semitic languages describes words as combi-

nations of two morphemes: aroot and apattern. The root consists of consonants only, by default three

(although longer roots are known), calledradicals. The pattern is a combination of vowels and, possibly,

consonants too, with ‘slots’ into which the root consonants can be inserted. Words are created byinterdigi-

tating roots into patterns: the first radical is inserted into the first consonantal slot of the pattern, the second

radical fills the second slot and the third fills the last slot.

Identifying the root of a given word is an important task. Although existing morphological analyzers for

Hebrew only provide a lexeme (which is a combination of a root and a pattern), for other Semitic languages,

notably Arabic, the root is an essential part of any morphological analysis simply because traditional dictio-

naries are organized by root, rather than by lexeme. Furthermore, roots are known to carry some meaning,

albeit vague. We believe that this information can be useful for computational applications.

We present a machine learning approach, augmented by limited linguistic knowledge, to the problem of

identifying the roots of Semitic words. To the best of our knowledge, this is the first application of machine

learning to this problem. While there exist programs which can extract the root of words in Arabic and

Hebrew, they are all dependent on labor intensive construction of large-scale lexicons which are components

of full-scale morphological analyzers. The challenge of our work is to automate this process, avoiding the

bottleneck of having to laboriously list the root and pattern of each lexeme in the language, and thereby gain

insights that can be used for more detailed morphological analysis of Semitic languages.
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1 Introduction

1.1 Linguistic background

The standard account of word-formation processes in Semitic languages describes words as combinations

of two morphemes: aroot and apattern.1 The root consists of consonants only, by default three (although

longer roots are known), calledradicals. The pattern is a combination of vowels and, possibly, consonants

too, with ‘slots’ into which the root consonants can be inserted. Words are created byinterdigitating roots

into patterns: the first radical is inserted into the first consonantal slot of the pattern, the second radical fills

the second slot and the third fills the last slot. See Shimron (2003) for a survey.

As an example of root-and-pattern morphology, consider the Hebrew2 rootsg.d.l, k.t.b andr.$.m and the

patternshaCCaCa, hitCaCCut andmiCCaC, where the ‘C’s indicate the slots. When the roots combine with

these patterns the resulting lexemes arehagdala, hitgadlut, migdal, haktaba, hitkatbut, miktab, har$ama,

hitra$mut, mir$am, respectively. After the root combines with the pattern, some morpho-phonological

alternations take place, which may be non-trivial: for example, thehitCaCCut pattern triggers assimilation

when the first consonant of the root ist or d : thus,d.r.$+hitCaCCut yields hiddar$ut. The same pattern

triggers metathesis when the first radical iss or $ : s.d.r+hitCaCCut yieldshistadrut rather than the expected

*hitsadrut. Semi-vowels such asw or y in the root are frequently combined with the vowels of the pattern,

so thatq.w.m+haCCaCa yields haqama, etc. Frequently, root consonants such asw or y are altogether

missing from the resulting form.

These matters are complicated further due to two sources: first, the standard Hebrew orthography leaves

most of the vowels unspecified. It does not explicatea ande vowels, does not distinguish betweeno andu

vowels and leaves many of thei vowels unspecified. Furthermore, the single letterw is used both for the

vowelso andu and for the consonantv, whereasi is similarly used both for the voweli and for the consonant

1An additional morpheme,vocalization, is used to abstract the pattern further; for the present purposes, this distinction is

irrelevant.
2To facilitate readability we use a transliteration of Hebrew using ASCII characters in this document:

’ b g d h w z x v i k l m n s y p c q r $ t

� � � � � � � � � � � � � � � { � � � � � �



y. On top of that, the script dictates that many particles, including four of the most frequent prepositions, the

definite article, the coordinating conjunction and some subordinating conjunctions all attach to the words

which immediately follow them. Thus, a form such asmhgr can be read as a lexeme (“immigrant”), as

m-hgr “from Hagar”or even asm-h-gr “from the foreigner”. Note that there is no deterministic way to tell

whether the firstm of the form is part of the pattern, the root or a prefixing particle (the prepositionm

“from”).

The Hebrew script has 22 letters, all of which can be considered consonants. The number of tri-

consonantal roots is thus theoretically bounded by223, although several phonological constraints limit this

number to a much smaller value. For example, while roots whose second and third radicals are identical

abound in Semitic languages, roots whose first and second radicals are identical are extremely rare (see

McCarthy (1981) for a theoretical explanation). To estimate the number of roots in Hebrew we compiled a

list of roots from two sources: a dictionary (Even-Shoshan, 1993) and the verb paradigm tables of Zdaqa

(1974). The union of these yields a list of 2152 roots.3

While most Hebrew roots are regular, many belong toweak paradigms, which means that root conso-

nants undergo changes in some patterns. Examples includei or n as the first root consonant,w or i as the

second,i as the third and roots whose second and third consonants are identical. For example, consider the

patternhCCCh. Regular roots such asp.s.q yield forms such ashpsqh. However, the irregular rootsn.p.l,

i.c.g, q.w.m andg.n.n in this pattern yield the seemingly similar formshplh, hcgh, hqmh andhgnh, respec-

tively. Note that in the first and second examples, the first radical (n or i ) is missing, in the third the second

radical (w) is omitted and in the last example one of the two identical radicals is omitted. Consequently, a

form such ashC1C2h can have any of the rootsn.C1.C2, C1.w.C2, C1.i.C2, C1.C2.C2 and even, in some

cases,i.C1.C2.

While the Hebrew script is highly ambiguous, ambiguity is somewhat reduced for the task we consider

here, as many of the possible lexemes of a given form share the same root. Still, in order to correctly identify

the root of a given word, context must be taken into consideration. For example, the form$mnh has more

than a dozen readings, including the adjective “fat” (feminine singular), which has the root$.m.n, and the

3Only tri-consonantal roots are counted. Ornan (2003) mentions 3407 roots, whereas the number of roots in Arabic is estimated

to be 10,000 (Darwish, 2002).
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verb “count”, whose root ism.n.i, preceded by a subordinating conjunction. In the experiments we describe

below we ignore context completely, so our results are handicapped by design.

1.2 Machine learning techniques in natural language processing

There is a dramatic increase in research on machine learning methods in natural language processing (NLP)

in the last years, using different learning methods to automatically extract linguistic knowledge from natural

language corpora which replace or augment those constructed by the linguist. Traditional machine learn-

ing uses corpora as data for training and testing, applying mainly statistical and rule-based methods and

sometimes a hybrid between the two. Many problems in natural language processing require learning of

a mapping from one discrete structure to another. Examples are parsing (learning a function from strings

to trees); named entity extraction (learning a function from strings to an underlying segmentation identify-

ing people, places, locations and so on); and machine translation (learning a function from sentences in a

source language to sentences in a target language). A very common approach to these tasks is to use some

kind of generative model, for example a hidden Markov model, or history-based models. These approaches

are probabilistic, in that they attempt to model a joint or conditional probability distribution over possible

structures. There are several challenges in applying these methods to natural language, since NLP problems

involve rich structures, and feature spaces are often very high dimensional and very sparse (Collins, 2003).

In many machine learning applications it is necessary to make decisions that depend on the outcomes of

several different classifiers in a way that provides a coherent inference that satisfies some constraints: the

sequential nature of the data or other domain specific constraints. Consider, for example, the problem of

chucking natural language sentences where the goal is to identify several kinds of phrases (e.g., noun phrases

and verb phrases) in sentences. A task of this sort involves multiple predictions that interact in some way.

One way to address the problem is to use two classifiers for each type of phrases, one of which recognizes the

beginning of the phrase, and the other its end. Clearly, there are constraints over the predictions; for instance,

phrases cannot overlap and there may also be probabilistic constraints over the order of phrases and over

their lengths. The goal is to maximize some global measure of accuracy, not necessarily to maximize the

performance of each individual classifier involved in the decision.
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Moreover, this method is also used in complex morphological problems involving a large number of

targets, such as morphological disambiguation of Hebrew. Morphological analysis is a crucial stage in a va-

riety of natural language processing applications. Due to the complex structure of the Hebrew morphology,

several optional analyses can be provided for each word, and a disambiguation process is needed. Given

the large number of potential targets, the problem can be addressed by combining several classifiers, each

predicting the value of one component of the analysis. The results of the naı̈ve classifiers can be combined

in a sophisticated manner, taking into account the constraints that hold among the various components.

In this work we apply several machine learning techniques to the problem of root identification. In

all the experiments described in this paper we use SNoW (Roth, 1998) as the learning environment, with

winnowas the update rule (usingperceptronyielded comparable results). SNoW is a multi-class classifier

that is specifically tailored for learning in domains in which the potential number of information sources

(features) taking part in decisions is very large, of which NLP is a principal example. It works by learning

a sparse network of linear functions over a pre-defined or incrementally learned feature space. SNoW has

already been used successfully as the learning vehicle in a large collection of natural language related tasks,

including POS tagging, shallow parsing, information extraction tasks, etc., and compared favorably with

other classifiers (Roth, 1998; Punyakanok and Roth, 2001; Florian, 2002). Typically, SNoW is used as a

classifier, and predicts using a winner-take-all mechanism over the activation values of the target classes.

However, in addition to the prediction, it provides a reliable confidence level in the prediction, which enables

its use in an inference algorithm that combines predictors to produce a coherent inference.

1.3 Research objectives

Identifying the root of a given word is an important task. Although existing morphological analyzers for

Hebrew only provide a lexeme (which is a combination of a root and a pattern), for other Semitic languages,

notably Arabic, the root is an essential part of any morphological analysis simply because traditional dictio-

naries are organized by root, rather than by lexeme. Furthermore, roots are known to carry some meaning,

albeit vague. We believe that this information can be useful for computational applications.

We present a machine learning approach, augmented by limited linguistic knowledge, to the problem
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of identifying the roots of Semitic words. To the best of our knowledge, this is the first application of

machine learning to this problem. While there exist programs which can extract the root of words in Arabic

(Beesley, 1998a; Beesley, 1998b) and Hebrew (Choueka, 1990), they are all dependent on labor intensive

construction of large-scale lexicons which are components of full-scale morphological analyzers. Note that

Buckwalter (2002)’s Arabic morphological analyzer only uses “word stems – rather than root and pattern

morphemes – to identify lexical items. (The information on root and pattern morphemes could be added

to each stem entry if this were desired.)” The challenge of our work is to automate this process, avoiding

the bottleneck of having to laboriously list the root and pattern of each lexeme in the language, and thereby

gain insights that can be used for more detailed morphological analysis of Semitic languages. As we show

presently, identifying roots is a non-trivial problem even for humans, due to the complex nature of Semitic

derivational and inflectional morphology and the peculiarities of the orthography.

We focus on Hebrew in the first part of this paper. We discuss in section 2 a simple, baseline, learning ap-

proach and then propose several methods for combining the results of interdependent classifiers (section 3).

Then, the same technique is applied to Arabic in section 4 and we demonstrate comparable improvements.

In section 5 we discuss the influence of global constraints on local classifiers. We conclude with suggestions

for future research.

Previous versions of this work were published as Daya, Roth, and Wintner (2004) and Daya, Roth, and

Wintner (Forthcoming).
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2 Näıve classification methods

2.1 Data and methodology

We take a machine learning approach to the problem of determining the root of a given word. For training

and testing, a Hebrew linguist manually tagged a corpus of 15,000 words (a set of newspaper articles). Of

these, only 9752 were annotated; the reason for the gap is that some Hebrew words, mainly borrowed but

also some frequent words such as prepositions, do not have roots; we further eliminated 168 roots with more

than three consonants and were left with 5242 annotated word types, exhibiting 1043 different roots. Table 1

shows the distribution of word types according to root ambiguity.

Number of roots 1 2 3 4

Number of words 4886 335 18 3

Table 1: Root ambiguity in the corpus

Table 2 provides the distribution of the roots of the 5242 word types in our corpus according to root

type, whereRi is thei-th radical (note that some roots may belong to more than one group).

Paradigm Number Percentage

R1 = i 414 7.90%

R1 = w 28 0.53%

R1 = n 419 7.99%

R2 = i 297 5.66%

R2 = w 517 9.86%

R3 = h 18 0.19%

R3 = i 677 12.92%

R2 = R3 445 8.49%

Regular 3061 58.41%

Table 2: Distribution of root paradigms
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As assurance for statistical reliability, in all the experiments discussed in the sequel (unless otherwise

mentioned) we performed 10-fold cross validation runs for every classification task during evaluation. We

also divided the test corpus into two sets: adevelopment setof 4800 words and aheld-out setof 442 words.

Only the development set was used for parameter tuning. A givenexampleis a word type with all its

(manually tagged) possible roots. In the experiments we describe below, our system produces one or more

root candidatesfor each example. For each example, we definetp as the number of candidates correctly

produced by the system;fp as the number of candidates which are not correct roots; andfn as the number

of correct roots the system did not produce. As usual, we definerecall as tp
tp+fp andprecisionas tp

tp+fn;

we then computef -measure for each example (withα = 0.5) and (macro-) average to obtain the system’s

overallf -measure.

To estimate the difficulty of this task, we asked six human subjects to perform it. Subjects were asked to

identify all the possible roots of all the words in a list of 200 words (without context), randomly chosen from

the test corpus. All subjects were computer science graduates, native Hebrew speakers with no linguistic

background. The average precision of humans on this task is 83.52%, and with recall at 80.27%,f -measure

is 81.86%. Two main reasons for the low performance of humans are the lack of context and the ambiguity

of some of the weak paradigms.

2.2 Direct prediction

To establish a baseline, we first performed two experiments with simple, baseline classifiers. All the experi-

ments we describe in this work share the same features and differ only in the target classifiers. The features

that are used to characterize a word are both grammatical and statistical:

• Location of letters (e.g., the third letter of the word isb ). We limit word length to 20, thus obtaining

440 features of this type (recall that the size of the alphabet is 22).

• Bigrams of letters, independently of their location (e.g., the substringgd occurs in the word). This

yields 484 features.

• Prefixes (e.g., the word is prefixed byk$h “when the”). We have 292 features of this type, corre-
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sponding to 17 prefixes and sequences thereof.

• Suffixes (e.g., the word ends withim, a plural suffix). There are 26 such features.

In the first of the two experiments, referred to as Experiment A, we trained a classifier to learn roots as a

single unit. The two obvious drawbacks of this approach are the large set of targets and the sparseness of the

training data. Of course, defining a multi-class classification task with 2152 targets, when only half of them

are manifested in the training corpus, does not leave much hope for ever learning to identify the missing

targets.

In Experiment A, the macro-average precision of ten-fold cross validation runs of this classification

problem is 45.72%; recall is 44.37%, yielding anf -score of 45.03%. In order to demonstrate the inadequacy

of this method, we repeated the same experiment with a different organization of the training data. We chose

30 roots and collected all their occurrences in the corpus into a test file. We then trained the classifier on the

remainder of the corpus and tested on the test file. As expected, the accuracy was close to 0%.

2.3 Decoupling the problem

In the second experiment, referred to as Experiment B, we separated the problem into three different tasks.

We trained three classifiers to learn each of the root consonants in isolation and then combined the results

in the straight-forward way (a conjunction of the decisions of the three classifiers). This is still a multi-

class classification but the number of targets in every classification task is only 22 (the number of letters

in the Hebrew alphabet) and data sparseness is no longer a problem. As we show below, each classifier

achieves much better generalization, but the clear limitation of this method is that it completely ignores

interdependencies between different targets: the decision on the first radical is completely independent of

the decision on the second and the third.

We observed a difference between recognizing the first and third radicals and recognizing the second

one, as can be seen in table 3. These results correspond well to our linguistic intuitions: the most difficult

cases for humans are those in which the second radical isw or i, and those where the second and the third

consonants are identical. Combining the three classifiers using logical conjunction yields anf -measure of

8



52.84%. Here, repeating the same experiment with the organization of the corpus such that testing is done

on unseen roots yielded 18.1% accuracy.

R1 R2 R3 root

Precision: 82.25 72.29 81.85 53.60

Recall: 80.13 70.00 80.51 52.09

f -measure: 81.17 71.13 81.18 52.84

Table 3: Accuracy of SNoW’s identifying the correct radical

To demonstrate the difficulty of the problem, we conducted yet another experiment. Here, we trained

the system as above but we tested it on different words whose roots were known to be in the training set.

The results of experiment A here were 46.35%, whereas experiment B was accurate in 57.66% of the cases.

Evidently, even when testing only on previously seen roots, both naı̈ve methods are unsuccessful.

9



3 Combining interdependent classifiers

Evidently, simple combination of the results of the three classifiers leaves much room for improvement.

Therefore we explore other ways for combining these results. We can rely on the fact that SNoW provides

insight into the decisions of the classifiers – it lists not only the selected target, but rather all candidates,

with an associated confidence measure. Apparently, the correct radicals are chosen among SNoW’s top-n

candidates with high accuracy. In table 4, we present the recall of the correct root radicals among top-n

candidates.

R1 R2 R3

top-1 80.13 70.00 80.51

top-2: 91.83 85.94 92.08

top-5: 97.78 96.52 98.09

top-10: 99.46 99.30 99.60

Table 4: Recall of SNoWs identifying the correct radical among top-n candidates

This observation calls for a different way of combining the results of the classifiers which takes into

account not only the first candidate but also others, along with their confidence scores.

3.1 HMM combination

We considered several ways, e.g., via HMMs, of appealing to the sequential nature of the task (R1 followed

by R2, followed byR3). Not surprisingly, direct applications of HMMs are too weak to provide satisfactory

results, as suggested by the following discussion. The approach we eventually opted for combines the

predictive power of a classifier to estimate more accurate state probabilities.

Given the sequential nature of the data and the fact that our classifier returns a distribution over the

possible outcomes for each radical, a natural approach is to combine SNoW’s outcomes via a Markovian

approach. Variations of this approach are used in the context of several NLP problems, including POS

tagging (Scḧutze and Singer, 1994), shallow parsing (Punyakanok and Roth, 2001) and named entity recog-
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nition (Tjong Kim Sang and De Meulder, 2003).

Formally, we assume that the confidence supplied by the classifier is the probability of a state (radical,

r) given the observationo (the word),P (r|o). This information can be used in the HMM framework by

applying Bayes rule to compute

P (o|r) =
P (r|o)P (o)

P (r)
,

whereP (o) andP (r) are the probabilities of observingo and being atr, respectively. That is, instead of

estimating the observation probabilityP (o|r) directly from training data, we compute it from the classifiers’

output. Omitting details (see Punyakanok and Roth (2001)), we can now combine the predictions of the

classifiers by finding the most likely root for a given observation, as

r = argmaxP (r1r2r3|o, θ)

whereθ is a Markov model that, in this case, can be easily learned from the supervised data. Clearly, given

the short root and the relatively small number of values ofri that are supported by the outcomes of SNoW,

there is no need to use dynamic programming here and a direct computation is possible.

However, perhaps not surprisingly given the difficulty of the problem, this model turns out to be too sim-

plistic. In fact, performance deteriorated to anf -score of37.79%. We conjecture that the static probabilities

(the model) are too biased and cause the system to abandon good choices obtained from SNoW in favor of

worse candidates whose global behavior is better.

For example, the root&.b.d was correctly generated by SNoW as the best candidate for the word&wb-

dim, but sinceP (R3 = b|R2 = b), which is 0.1, is higher thanP (R3 = d|R2 = b), which is 0.04, the root

&.b.b was produced instead. Note that in the above example the root&.b.b cannot possibly be the correct

root of&wbdim since no pattern in Hebrew contains the letterd, which must therefore be part of the root. It

is this kind of observations that motivate the addition of linguistic knowledge as a vehicle for combining the

results of the classifiers. An alternative approach, which we investigate in section 3.4 , is the introduction

of higher-level classifiers which take into account interactions between the radicals (Punyakanok and Roth,

2001).

11



3.2 Adding linguistic constraints

The experiments discussed previously are completely devoid of linguistic knowledge. In particular, exper-

iment B inherently assumes that any sequence of three consonants can be the root of a given word. This is

obviously not the case: with very few exceptions, all radicals must be present in any inflected form (in fact,

only w, i, n and in an exceptional casel can be deleted when roots combine with patterns). We therefore

trained the classifiers to consider as targets only letters that occurred in the observed word, plusw, i, n and

l, rather than any of the alphabet letters. The average number of targets is now 7.2 for the first radical, 5.7

for the second and 5.2 for the third (compared to 22 each in the previous setup).

In this model, known as thesequential model(Even-Zohar and Roth, 2001), SNoW’s performance

improved slightly, as can be seen in table 5 (compare to table 4). Combining the results in the straight-

forward way yields anf -measure of 58.89%, a small improvement over the 52.84% performance of the

basic method. This new result should be considered baseline. In what follows we always employ the

sequential model for training and testing the classifiers, using the same constraints. However, we employ

more linguistic knowledge for a more sophisticated combination of the classifiers.

R1 R2 R3 root

Precision: 83.06 72.52 83.88 59.83

Recall: 80.88 70.20 82.50 57.98

f -measure: 81.96 71.34 83.18 58.89

Table 5: Accuracy of SNoW’s identifying the correct radical, sequential model

3.3 Combining classifiers using linguistic knowledge

SNoW provides a ranking on all possible roots. We now describe the use of linguistic constraints to re-rank

this list. We implemented a function, dubbedthe scoring functionbelow, which uses knowledge pertaining

to word-formation processes in Hebrew in order to estimate the likelihood of a given candidate being the

root of a given word. The function practically classifies the candidate roots into one of three classes: good

candidates, which are likely to be the root of the word; bad candidates, which are highly unlikely; and
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average cases.

Definition 1 A root r = r1r2r3 is

• in Paradigm P1if r1 ∈ {w, i, n};

• in Paradigm P2if r2 ∈ {w, i};

• in paradigm P3if r3 ∈ {h, i};

• in paradigm P4if r2 = r3;

• regular if none of the above holds.

Given a wordw and a candidate rootr = r1r2r3, the scoring function approximates the likelihood ofr

being the root ofw by implementing the following constraints:

Constraint 1 If r is regular thenr1, r2, r3 must occur inw in this order. Furthermore, eitherr1r2r3 are

consecutive inw, or a single letter intervenes betweenr1 and r2 or betweenr2 and r3 (or both). The

intervening letter betweenr1 and r2 can only be w, i, t (ifr1 is $ or s), d (if r1 is z) or v (if r1 is c). The

intervening letter betweenr2 andr3 can only be w or i.

Constraint 2 If r is in Paradigm P1and not inP2, P3or P4paradigms, thenr2, r3 must occur inw in this

order. Furthermore, eitherr2r3 are consecutive inw, or a single letter intervenes betweenr2 andr3 . The

intervening letter can only be w or i.

Constraint 3 If r is in Paradigm P2and not inP1 or P3 paradigms, thenr1, r3 must occur inw in this

order. Furthermore, eitherr1r3 are consecutive inw, or a single letter intervenes betweenr1 andr3 . The

intervening letter can only be w, i, t (ifr1 is $ or s), d (ifr1 is z) or v (ifr1 is c).

Constraint 4 If r is in Paradigm P3and not inP1 or P2 paradigms, thenr1, r2 must occur inw in this

order. Furthermore, eitherr1r2 are consecutive inw, or a single letter intervenes betweenr1 andr2 . The

intervening letter can only be w, i, t (ifr1 is $ or s), d (ifr1 is z) or v (ifr1 is c).
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Constraint 5 If r is in Paradigm P4and not inP1 or P2 paradigms, thenr1, r2 must occur inw in this

order. Furthermore, eitherr1r2 are consecutive inw, or a single letter intervenes betweenr1 andr2 . The

intervening letter can only be w, i, t (ifr1 is $ or s), d (ifr1 is z) or v (ifr1 is c).

Constraint 6 r must occur in the pre-compiled list of roots.

The decision of the function is based on the observation that when a root is regular it either occurs

in a word consecutively or with a certain single letter between any two of its radicals (constraint 1). The

scoring function checks, given a root and a word, whether this is the case. If the condition holds, the scoring

function returns a high value. The weak paradigms constrains (2 - 5) are assigned a middle score, since in

such paradigms we are limited to a partial check on the root as we only check for the occurrence of two

root radicals instead of three in the word. The scoring function does not treat roots that are in more than one

paradigm, since these roots are very rare in Hebrew and it is very difficult to predict their behaviour in the

word-formation process. In this case, the scoring function returns an average score as a default value. We

also make use in this function of our pre-compiled list of roots. A root candidate which does not occur in

the list (constraint 6) is assigned the low score.

The actual values that the function returns were chosen empirically by counting the number of occur-

rences of each class in the training data. Thus, “good” candidates make up 74.26% of the data, hence the

value the function returns for “good” roots is set to 0.7426. Similarly, the middle value is set to 0.2416 and

the low – to 0.0155.

As an example, considerki$lwn, whose only possible root isk.$.l. Here, the correct candidate will be

assigned the high score, sincek.$.l is a regular root and its radicals occur consecutively in the word with a

single intervening letteri betweenk and$ (constraint 1). The candidate root$.l.i will be assigned a middle

score, since this root is in paradigm P3 and constraint 4 holds. The candidate root$.l.n will score low, as it

does not occur in the list of roots (constraint 6).

In addition to the scoring function we implemented a simple edit distance function which returns, for a

given root and a given word, the inverse of the edit distance between the two. For example, forhipltm, the

(correct) rootn.p.l scores1/4 whereasp.l.t scores1/3.
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We then run SNoW on the test data and rank the results of the three classifiersglobally, where the order

is determined by the product of the three different classifiers. This induces an order onroots, which are

combinations of the decisions of three independent classifiers. Each candidate root is assigned three scores:

the product of the confidence measures of the three classifiers; the result of the scoring function; and the

inverse edit distance between the candidate and the observed word. We rank the candidates according to the

product of the three scores (i.e., we give each score an equal weight in the final ranking).

In order to determine how many of the candidates to produce for each example, we experimented with

two methods. First, the system produced the top-i candidates for a fixed value ofi. The results on the

development set are given in table 6.

i = 1 2 3 4

Precision 82.02 46.17 32.81 25.19

Recall 79.10 87.83 92.93 94.91

f -measure 80.53 60.52 48.50 39.81

Table 6: Performance of the system when producing top-i candidates.

Obviously, since most words have only one root, precision drops dramatically when the system produces

more than one candidate. This calls for a better threshold, facilitating a non-fixed number of outputs for each

example. We observed that in the “difficult” examples, the top ranking candidates are assigned close scores,

whereas in the easier cases, the top candidate is usually scored much higher than the next one. We therefore

decided to produce all those candidates whose scores are not much lower than the score of the top ranking

candidate. The drop in the score,δ, was determined empirically on the development set. The results are

listed in table 7, whereδ varies from 0.1 to 1 (δ is actually computed on the log of the actual score, to avoid

underflow).

These results show that choosingδ = 0.4 produces the highestf -measure. With this value forδ, results

for the held-out data are presented in table 8. The results clearly demonstrate the added benefit of the

linguistic knowledge. In fact, our results are slightly better than average human performance, which we

recall as well. Interestingly, even when testing the system on a set of roots which donotoccur in the training
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δ = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Precision 81.81 80.97 79.9378.86 77.31 75.48 73.71 71.80 69.98 67.90

Recall 81.06 82.74 84.0385.52 86.49 87.61 88.72 89.70 90.59 91.45

f -measure 81.43 81.85 81.9382.06 81.64 81.10 80.52 79.76 78.96 77.93

Table 7: Performance of the system, producing candidates scoring no more thanδ below the top score.

corpus, we obtain anf -score of 65.60%. This result demonstrates the robustness of our method.

Held-out data Humans

Precision: 80.90 83.52

Recall: 88.16 80.27

f -measure: 84.38 81.86

Table 8: Results: performance of the system on held-out data.

It must be noted that the scoring function alone isnota function for extracting roots from Hebrew words.

First, it only scores a given root candidate against a given word, rather than yield a root given a word. While

we could have used it exhaustively on all possible roots in this case, in a general setting of a number of

classifiers the number of classes might be too high for this solution to be practical. Second, the function

only produces three different values; when given a number of candidate roots it may return more than one

root with the highest score. In the extreme case, when called with all223 potential roots, it returns on the

average more than 11 candidates which score highest (and hence are ranked equally).

Similarly, the additional linguistic knowledge is not merelyeliminatingillegitimate roots from the rank-

ing produced by SNoW. Using the linguistic constraints encoded in the scoring function only to eliminate

roots, while maintaining the ranking proposed by SNoW, yields much lower accuracy. Specifically, when we

use only the list of roots as the single constraint when combining the three classifiers, thereby implement-

ing only a filter of infeasible results, we obtain a precision of 65.24%, recall of 73.87% and anf -measure

of 69.29%. Clearly, our linguistically motivated scoring does more than elimination, and actuallyre-ranks

the roots. We conclude that it is only thecombinationof the classifiers with the linguistically motivated
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scoring function which boosts the performance on this task.

3.4 Sequential combination

In the previous methods, three classifiers for each radical were trained independently, disregarding the de-

pendency between the root radicals. In Hebrew and Arabic, some letters cannot appear in a sequence, mostly

due to phonetic restrictions. For example, if the first radical iss, the second radical cannot bez, c or e. Tak-

ing into account the dependency between the root radicals is an interesting learning experiment which may

provide a better results. Of course, during training we know what the correct root is, and all we need is

to consider the previous root radical. In other words, the classifier of the first radical does not require any

change, and we only need to add one more feature to the feature set of each of the two other classifiers.

While the training process is relatively simple, the testing process requires a more sophisticated routine.

Consider a specific example of some wordw. We already trained a classifier forR1 (the first root

radical), so we can look at the predictions of theR1 classifier forw. Assume that this classifier predicts

a1, a2, a3, ..., ak with confidence scoresc1, c2, ..., ck respectively (the maximum value ofk is 22). For each

valueai (1 ≤ i ≤ k) predicted by theR1 classifier, we run theR2 classifier where the value of the feature

for R1 is ai. That is, we run theR2 classifierk times for each wordw (k depends onw). Then, we check

which value ofi (wherei runs from1 to k) gives the best sum of the two classifiers, both the confidence

measure of theR1 classifier onai and the confidence measure of theR2 classifier. This gives a confidence

ranking forR2. We perform the same evaluation forR3, using the results of theR2 classifier as the value of

theR3 added feature. We also checked the results of taking the best value ofi disregarding the confidence

score of the previous classifier, as shown in table 9 on the development set and in table 10 on the held-out

data.

The results of this experiment are not better than the ones reported in section 3.3. We conjecture that the

reason, similarly to many machine learning tasks in NLP, is data sparseness. While there are very frequent

letter sequences, most root sequences occur rarely. Extending the annotated corpus would probably provide

better results.
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Development set Regarding previous score Disregarding previous score

Precision: 76.99% 76.87%

Recall: 84.78% 84.78%

f -measure: 80.7% 80.63%

Table 9: Results: Combining dependent classifiers - development set

Held-out data Regarding previous score Disregarding previous score

Precision: 77.11% 77.07%

Recall: 89.44% 89.66%

f -measure: 82.82% 82.89%

Table 10: Results: Combining dependent classifiers - held-out data

3.5 Learning bigrams

In the first experiments of this research, we trained a classifier to learn roots as a single unit. As already

mentioned, the drawbacks of this approach are the large set of targets and the sparseness of the training

data. Then, we decoupled the problem into three different classifiers to learn each of the root consonants

in isolation and then combined the results in various ways. Training the classifiers in thesequential model,

considering as targets only letters that occurred in the observed word, plusw, i, n andl, reduced the number

of targets from 22 to approximately 7. This facilitates a different experiment whereby bigrams of the root

radicals, rather than each radical in isolation, are learned, taking advantage of the reduced number of targets

for each radical. On one hand, the average number of targets is still relatively large (about 50), but on the

other, we only have to deal with a combination of two classifiers. In this method, each of the classifiers

should predict two letters at once. For example, we define one classifier to learn the first and second radicals

(R1R2), and a second classifier to learn the second and third radicals (R2R3). Alternatively, the first and

third radicals can be learned as a single unit by a different classifier. In this case, we only need to combine

this classifier with one of the above mentioned classifiers to obtain the complete root.

It should be noted that the number of potential roots for a given word example in combining three
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different classifiers (for each of the root radicals) is determined by multiplying the number of targets of each

of the classifiers. In this classification problem, each classifier predicts two root radicals; meaning that the

classifiers overlap in one radical. This common radical should be identical in the combination (e.g.,R1R2

andR2R3 overlap inR2), and thus the number of potential roots is significantly reduced. The results of

these experiments on the development set are reported in table 11 and on the held-out data in table 12.

Development set R1R2&R2R3 R1R2&R1R3 R2R3&R1R3

Precision: 82.11 79.71 79.11

Recall: 85.28 86.4 86.64

f -measure: 83.67 82.92 82.71

Table 11: Accuracy of combining classifiers of root radicals bigrams - development set.

Held-out data R1R2&R2R3 R1R2&R1R3 R2R3&R1R3

Precision: 84.61 80.95 80.82

Recall: 82.88 83.78 82.76

f -measure: 83.73 82.34 81.78

Table 12: Accuracy of combining classifiers of root radicals bigrams - held-out data.

As can be seen in table 11, these experiments yield results which are comparable to those of section

3.3. Reducing the number of classifiers seems to be crucial for the task of combining several interdependent

classifiers. In this specific learning problem of roots, we can point out two main reasons for receiving these

results: First, the sequential model significantly reduced the number of potential targets in each classifier

(by almost 70%); second, overlapping classifiers reduced the potential number of root candidates. These

factors may not be valid in similar learning problems.

3.6 Error analysis

Looking at the questionnaires filled in by our subjects (section 2.1), it is obvious that humans have prob-

lems identifying the correct roots in two general cases: when the root paradigm is weak (i.e., when the
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root is irregular) and when the word can be read in more than one way and the subject chooses only one

(presumably, the most prominent one). Our system suffers from similar problems: first, its performance

on the regular paradigms is far superior to its overall performance; second, it sometimes cannot distinguish

between several roots which are in principle possible, but only one of which happens to be the correct one.

To demonstrate the first point, we evaluated the performance of the system on a different organization of

the data. We tested separately words whose roots are all regular, vs. words all of whose roots are irregular.

We also tested words which have at least one regular root (mixed). The results are presented in table 13,

and clearly demonstrate the difficulty of the system on the weak paradigms, compared to almost 95% on the

easier, regular roots.

Regular Irregular Mixed

Number of words 2598 2019 2781

Precision: 92.79 60.02 92.54

Recall: 96.92 73.45 94.28

f -measure: 94.81 66.06 93.40

Table 13: Error analysis: performance of the system on different cases.

A more refined analysis reveals differences between the various weak paradigms. Table 14 listsf -

measure for words whose roots are irregular, classified by paradigm. As can be seen, the system has great

difficulty in the cases ofR2 = R3 andR3 = i.

Paradigm f -measure

R1 = i 70.57

R1 = n 71.97

R2 = i/w 76.33

R3 = i 58.00

R2 = R3 47.42

Table 14: Error analysis: the weak paradigms
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Finally, we took a closer look at some of the errors, and in particular at cases where the system produces

several roots where fewer (usually only one) are correct. Such cases include, for example, the wordhkwtrt

(“the title”), whose root is the regulark.t.r; but the system produces, in addition, alsow.t.r, mistaking thek

to be a prefix. This is the kind of errors which are most difficult to fix.

However, in many cases the system’s errors are relatively easy to overcome. Consider, for example, the

word hmtndbim (“the volunteers”) whose root is the irregularn.d.b. Our system produces as many as five

possible roots for this word:n.d.b, i.t.d, d.w.b, i.h.d, i.d.d. Clearly some of these could be eliminated. For

example,i.t.d should not be produced, because if this were the root, nothing could explain the presence of

theb in the word;i.h.d should be excluded because of the location of theh. Similar phenomena abound in

the errors the system makes; they indicate that a more careful design of the scoring function can yield still

better results, and this is a direction we intend to pursue in the future.
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4 Extension to Arabic

Although Arabic and Hebrew have a very similar morphological system, being both semitic languages, the

task of learning roots in Arabic is more difficult than in Hebrew, for the following reasons:

• There are 28 letters in Arabic which are represented using approximately 40 characters in Buckwalter

(2002)’s transliteration of Modern Standard Arabic orthography. Thus, the learning problem is more

complicated due the increased number of targets (potential root radicals) as well as the number of

characters available in a word.

• The number of roots in Arabic is significantly higher. We pre-compiled a list of 3822 trilateral roots

from Buckwalter’s list of roots, 2517 of which occur in our corpus. According to our lists, Arabic has

almost twice as many roots as Hebrew.

• Not only is the number of roots high, the number of patterns in Arabic is also much higher than in

Hebrew.

• While in Hebrew the only possible letters which can intervene between root radicals in a word arei

andw, in Arabic there are more possibilities. The possible intervening letter sequences betweenr1

andr2 arey, w, A, t andwA, and betweenr2 andr3 y, w, A andA}.4

We applied the same methods discussed above to the problem of learning (Modern Standard) Arabic

roots. For training and testing, we produced a corpus of 31,991 word types (we used Buckwalter (2002)’s

morphological analyzer to analyze a corpus of 152,666 word tokens from which our annotated corpus was

produced). Table 15 shows the distribution of word types according to root ambiguity.

We then trained naı̈ve classifiers to identify each radical of the root in isolation, using features of the

same categories as for Hebrew. Despite the rather pessimistic starting point, each classifier provides sat-

isfying results, as shown in table 16, probably owing to the significantly larger training corpus. The first

three columns present the results of each of the three classifiers, and the fourth column is a straight-forward

combination of the three classifiers.

4‘}’ is a character in Buckwalter’s transliteration.
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Roots Words

1 28741

2 2258

3 664

4 277

5 48

6 3

Table 15: Arabic root ambiguity in the corpus

R1 R2 R3 root

Precision: 86.02 70.71 82.95 54.08

Recall: 89.84 80.29 88.99 68.10

f -measure: 87.89 75.20 85.86 60.29

Table 16: Accuracy of SNoW’s identifying the correct radical in Arabic

We combined the classifiers using linguistic knowledge pertaining to word-formation processes in Ara-

bic, by implementing a function that estimates the likelihood of a given candidate to be the root of a given

word. The function actually checks the following cases:

• If a root candidate is indeed the root of a given word, then we expect it to occur in the word consecu-

tively or with one of{y, w, A, t, wA} intervening betweenR1 andR2, or with one of{ y, w, A, A} }

betweenR2 andR3 (or both).

• If a root candidate does not occur in our pre-compiled list of roots, it cannot be a root of any word in

the corpus.

We suppressed the constraints of weak paradigms in the Arabic experiments, since in such paradigms

we are limited to a partial check on the root as we only check for the occurrence of two root radicals instead

of three in the word. This limitation seems to be crucial in Arabic, considering the fact that the number
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of roots is much higher and in addition, there are more possible intervening letter sequences between the

root radicals. Consequently, more incorrect roots are wrongly extracted as correct ones. Of course, this is

an over-simplistic account of the linguistic facts, but it serves our purpose of using very limited and very

shallow linguistic constraints on the combination of specialized “expert” classifiers. Table 17 shows the

final results.

Precision: 78.21%

Recall: 82.80%

f -measure: 80.44%

Table 17: Results: Arabic root identification

The Arabic results are slightly worse than the Hebrew ones. One reason is that in Hebrew the number of

roots is smaller than in Arabic (2152 vs. 3822), which leaves much room for wrong root selection. Another

reason can be the fact that in Arabic word formation is a more complicated process, for example by allowing

more characters to occur in the word between the root letters as previously mentioned. This may have caused

the scoring function to wrongly tag some root candidates as possible roots.
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5 Improving local classifiers by applying global constraints

In section 3 we presented several methods addressing the problem of learning roots. In general, we trained

stand-alone classifiers, each predicting a different root component, in which the decision for the complete

root depends on the outcomes of these different but mutually dependent classifiers. The classifiers outcomes

need to respect some constraints that arise from the dependency between the root radicals, requiring a level

of inference on top the predictions, which is implemented by the scoring function (section 3.3).

In this section we show that applying global constraints, in the form of the scoring function, not only

improves global decisions but also significantly improves the local classification task. Specifically, we show

that the performance of identifying each radical in isolation improves after the scoring function is applied.

In this experiment we trained each of the three radical classifiers as above, and then applied inference to

re-rank the results. The combined classifier now predicts the complete root, and in particular, induces a

confidence measure on each of the radicals which, due to re-ranking, may differ from the original prediction

of the local classifiers.

Table 18 shows the results of each of the radical classifiers after inference with the scoring function.

There is a significant improvement in each of the three classifiers (10% inR1, 16% inR2 and 8% inR3)

after applying the global constraints (table 18 vs. table 5). The most remarkable improvement is of theR2

classifier. The gap betweenR2 and other classifiers, as stand-alone classifiers with no external knowledge

is 10-12%, due to linguistic reasons. Now, after employing the global constraints, the gap is reduced to only

4%. In such scenarios, global constraints can significantly aid local classifiers.

R1 R2 R3

Precision: 89.67 84.7 89.27

Recall: 93.08 90.17 93.16

f -measure: 91.34 87.35 91.17

Table 18: Accuracy of each classifier after applying global constraints.

Since the most dominant constraint is the occurrence of the candidate root in the pre-comipled list of

roots, we examined the results of applying only this constraint on each of the three classifiers, as a single
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global constraint. Although there is an improvement of: 6%, 10% and 3% forR1, R2 andR3 respectively,

as shown in table 19, applying this single constraint still performs worse than applying all the constraints

mentioned in 3.3. Again, we conclude that re-ranking the candidtaes produced by the local classifiers is

essential for improving the accuracy, and filtering out infeasible results is not sufficient.

R1 R2 R3

Precision: 86.33 78.58 83.63

Recall: 88.59 83.75 88.82

f -measure: 87.45 81.08 86.15

Table 19: Accuracy of each classifier applying the list of roots as a single constraint.

Finally, to further emphasize the contribution of global inference to local classification, we repeated the

same experiment, measuring accuracy of each of the radical classifiers induced by the root identification

system, forArabic. The results are listed in table 20, and show a significant improvment over the basic

classifiers (compare to table 16).

R1 R2 R3

Precision: 90.41 84.40 87.92

Recall: 92.90 89.59 92.19

f -measure: 91.64 86.92 90.01

Table 20: Accuracy of each classifier after applying global constraints (Arabic).
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6 Conclusions

We have shown that combining machine learning with limited linguistic knowledge can produce state-of-the-

art results on a difficult morphological task, the identification of roots of Semitic words. Our best result, over

80% precision, was obtained using simple classifiers for each of the root’s consonants, and then combining

the outputs of the classifiers using a linguistically motivated, yet extremely coarse and simplistic, scoring

function. This result is comparable to average human performance on this task.

This work can be improved in a variety of ways. As is well-known from other learning tasks, fine-

tuning of the feature set can produce additional accuracy; we expect this to be the case in this task, too. In

particular, introducing features that capture contextual information is likely to improve the results. Similarly,

our scoring function is simplistic and we believe that it can be improved. The edit-distance function can

be improved such that the cost of replacing characters reflect phonological and orthographic constraints

(Kruskal, 1999).

In another track, there are various other ways in which different inter-related classifiers can be combined.

Here we only used a simple multiplication of the three classifiers’ confidence measures, which is then

combined with the linguistically motivated functions. We intend to investigate more sophisticated methods

for this combination.

Finally, we plan to extend these results to more complex cases of learning tasks with a large number of

targets, in particular such tasks in which the targets are structured. We are currently working on morpho-

logical disambiguation in languages with non-trivial morphology, which can be viewed as a POS tagging

problem with a large number of tags on which structure can be imposed using the various morphological

and morpho-syntactic features that morphological analyzers produce.
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