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Abstract We present a syntactic parser of (transcripts of) spoken Hebrew: a dependency parser of the
Hebrew CHILDES database. CHILDES is a corpus of child–adult linguistic interactions. Its Hebrew
section has recently been morphologically analyzed and disambiguated, paving the way for syntactic an-
notation. This paper describes a novel annotation scheme of dependency relations reflecting constructions
of child and child-directed Hebrew utterances. A subset of the corpus was annotated with dependency
relations according to this scheme, and was used to train two parsers (MaltParser and MEGRASP)
with which the rest of the data were parsed. The adequacy of the annotation scheme to the CHILDES
data is established through numerous evaluation scenarios. The paper also discusses different annotation
approaches to several linguistic phenomena, as well as the contribution of morphological features to the
accuracy of parsing.
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1 Introduction

Child–adult interactions are a basic infrastructure for psycholinguistic investigations of child language
acquisition and development. The corpora available through the CHILDES database (MacWhinney,
2000), consisting of spoken transcripts in over twenty five languages, have been an indispensable source
for this line of research for the past thirty years. This database is unique in that it provides its users
not only with raw data from monologic, dyadic, and multi-party interactions (all following a unified
and established transcription scheme) but also with tools for the application of theoretically-motivated
and well-tested analyses. The most developed feature of the system is the MOR program, an automatic
Part-of-Speech tagger with functionality in thirteen varied languages – including Cantonese, Japanese,
and Hebrew (in addition to Romance and Germanic languages). More recent work has focused on the
automatic syntactic parsing of these data, most notably with the parser that was developed by Sagae
et al. (2010) for the English section of CHILDES.

The current paper reports on a similar endeavor, focusing on automatic syntactic parsing of (a subset
of) the Hebrew section of the CHILDES database. This subset includes two corpora with full, reliable, and
disambiguated Part-of-Speech and morphological annotation (Albert et al., forthcoming): the Berman
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longitudinal corpus (Berman and Weissenborn, 1991) and the Ravid longitudinal corpus. Each of these
corpora includes naturalistic data collected on either a weekly or a monthly basis from six Hebrew-
speaking children and their care-takers, yielding approximately 110,000 utterances in total (Nir et al.,
2010).

Similarly to the syntactic structure that Sagae et al. (2010) induce on the English section of CHILDES,
the parser for Hebrew makes use of dependency relations, connecting the surface tokens in the utterance
through binary, asymmetric relations of head and dependent. In this we join a growing body of automatic
parsers that rely on dependency-based syntactic representations (Kübler et al., 2009). These represen-
tations are particularly adequate for the annotation of Hebrew child–adult interactions for a number
of reasons. Hebrew is a language with relatively complex morphology and flexible constituent structure;
morphologically-rich languages such as Arabic have been successfully analyzed using a dependency-based
parser (Hajič and Zemánek, 2004). More importantly, a dependency-based parser relies on the explicit
specification of dependencies (i.e., the name of the functional relation), which provides a representation of
the relations assumed to be learned by the child, unlike parsers based on constituent structure, in which
such information is implicit and requires further derivation (Ninio, Forthcoming). Finally, this choice
makes our annotation more consistent with the syntactic structure of the English section of CHILDES,
which may be useful for cross-linguistic investigations.

This work makes several contributions. First, we defined the first dependency annotation scheme
for spoken Hebrew (Section 4). Second, we developed a parser for the Hebrew section of the CHILDES
database, annotating utterances with syntactic dependency relations (Section 5). The parsed corpus
will be instrumental to researchers interested in spoken Hebrew, language acquisition and related fields.
We evaluated our parser in different scenarios (Section 6); the results demonstrate that the parser is
both accurate and robust. Furthermore, we experimented with alternative annotation methods of several
constructions, as well as with different approaches to tokenization of the input and with different sets
of morphological features (Section 7), showing the impact of such choices on the accuracy of parsing.
The parser, the manually annotated corpus, and the automatically parsed corpora are all available for
download from the main CHILDES repository.

2 Related Work

To the best of our knowledge, the only parser of Hebrew was introduced by Goldberg (2011). It focuses
on written Hebrew and has two versions, one that produces constituent structures and one that generates
dependency relations. The scheme presented by Goldberg (2011) was generated from the original format
of a constituent structure treebank (Sima’an et al., 2001; Goldberg and Elhadad, 2009), a relatively small
corpus that includes around 6200 sentences taken from an Israeli daily newspaper.

Several features set our work apart from Goldberg (2011): first, we focus on spoken, colloquial Hebrew,
rather than on written, journalistic language. In particular, our corpus includes samples produced by
adult, non-expert speakers as well as by children who are still acquiring their grammar. The study
of spoken language requires dealing with utterance complexity at varying levels. On the one hand,
spoken language implies short utterances (as witnessed by Sagae et al. (2010)) that are thus generally
simpler and easier to parse. On the other hand, utterances are partial and lack any standard formal
structure, and some may be ungrammatical (in the traditional sense), especially those produced by
children. Spoken language is also characterized by repetitions, repairs, and interruptions within the same
utterance and even across utterances. Furthermore, a single utterance may contain more than one clause.
These characteristics raise issues that to date have not been addressed in the automatic syntactic analysis
of Hebrew.

Second, the parser described by Goldberg (2011) relies on data represented via Hebrew orthography.
Hebrew orthography is ambiguous, since vowels are represented only partially (if at all), so that many
words are homographic (Wintner, 2004). Our transcription explicitly encodes vowels as well as other
phonological information that is highly relevant for ambiguity resolution, such as lexical stress (Albert
et al., forthcoming). But it is not a phonetic encoding: the transcription distinguishes between similar-
sounding phonemes that are written differently in the standard Hebrew script, e.g., t. “Tet” and t “Tav”,
or k “Kaf” and q “Quf”. This approach significantly reduces morphological ambiguity, and renders moot
some of the problems that restrict the capabilities of Goldberg’s parser. Moreover, functional elements
(the definite article, prepositions, and conjunctions) that are concatenated with the subsequent token
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in the standard orthography are separated in our transcription; e.g., we- ha- yeled “and the child”.
This allows us to make sure that each lexeme is treated separately and consistently at the lexical,
morphological, and syntactic levels. In addition, multi-word expressions are systematically transcribed
as a single token, as in the case of s̆alāt. raxōq “remote control”, lāyla t.ov “good night”, etc. Consequently,
the level of morphological ambiguity of each transcribed token is very low. Any remaining ambiguity is
subsequently resolved in an automatic process (akin to part-of-speech tagging), so that the input for
parsing is completely disambiguated. Albert et al. (forthcoming) show that the automatic morphological
disambiguation module achieves an accuracy of 96.6%. This is in contrast to written Hebrew which
suffers from high morphological ambiguity, and for which automatic morphological disambiguation is
less accurate (Lembersky et al., forthcoming).

Furthermore, Goldberg’s scheme itself is partial, i.e., not all relations existing in the data are labeled.
In contrast, the scheme we developed provides fully annotated data (Section 4). As such, our work is
similar in spirit to Sagae et al. (2010), who, motivated by the same goals, constructed a parser for the
English section of the CHILDES corpus. Sagae et al. (2010) developed a scheme of 37 distinct grammatical
relations which was used for annotating the Eve corpus (Brown, 1973). The annotation included both
manual and automatic analyses of 18,863 utterances, 10,280 adult and 8,563 child. During the annotation
procedure, the corpus was used for training a data-driven parser which was then tested on an independent
corpus of child–adult interactions. Cross-validation evaluation of the parser’s performance showed a low
error rate, of between 6 and 8%. Both the English and the Hebrew data sets follow the CHAT transcription
guidelines (MacWhinney, 2000), and attempt to reflect the flow of the conversation as accurately as
possible. The transcription standard also marks tokens that should be ignored by morphological and
syntactic analyses, for example in the case of false starts or repetitions.1

Tsarfaty et al. (2012) also address Hebrew; they are concerned with joint evaluation of morphological
segmentation and syntactic parsing, specifically in morphologically rich languages such as Hebrew. The
motivation is that standard evaluation metrics for syntactic parsing do not take into account the under-
lying morphological segmentation that may produce errors which do not reflect actual parsing errors.
Their proposed method allows for precise quantification of performance gaps between the use of gold
morphological segmentation and that of predicted (non-gold) morphological segmentation. This work is
representative of an emerging research program whose main goal is to develop techniques for parsing
morphologically-rich languages (Tsarfaty et al., 2010; Seddah et al., 2011; Tsarfaty et al., 2013).

While this line of works is of course relevant to Hebrew parsing in general, it does not seem to be
as relevant to parsing CHILDES data. The transcription we use (Section 3.2) allows high accuracy of
morphological segmentation and part-of-speech tagging, as many of the ambiguity issues that normally
arise in processing Hebrew are already resolved. In addition, for evaluation purposes we manually tag
all remaining morphological ambiguity, rendering the morphological analysis disambiguated. Thus, our
data do not reflect the rich morphology and high level of ambiguity of standardly written Hebrew, which
motivate such a joint evaluation metric.

For parsing (and evaluation) we compare MaltParser (Nivre et al., 2006) and MEGRASP (Sagae and
Tsujii, 2007). MaltParser is an architecture of transition-based parsers that can support various learning
and parsing algorithms, each accompanied with its feature set and parameters, which can be directly
optimized. The feature set is derived from the surface forms, the base forms and the morphological
information of a subset of the tokens in the data structures (i.e., the queue and the stack) that comprise
the state of the parser.

Marton et al. (2013) evaluate the effect of morphological features on parsing Arabic, a sister-language
to Hebrew, using MaltParser. This study shows that the most important features for parsing written
Arabic utterances are ‘case’ and ‘state’, while ‘gender’, ‘number’ and ‘person’ did not improve the accu-
racy of parsing Arabic when gold morphological information was present. Case is irrelevant for Hebrew;
the state of nouns is, but construct state nouns are not common in spoken language, and in our corpus
in particular. However, ‘gender’, ‘number’ and ‘person’ may prove to be more helpful when the training
set is enhanced with corpora which are automatically annotated for morphological features. We explore
this direction in Section 6.5 .

1 However, the Hebrew transcriptions are not always consistent with respect to these markings. Corrections have been
made on these corpora where possible but some problematic instances may remain which may have a negative impact on
the quality of the parsing.
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MEGRASP was chosen because it was used for dependency parsing of the English section of CHILDES
(Sagae et al., 2010). The algorithm is a dependency version of the data-driven constituent parsing algo-
rithm for probabilistic GLR-like parsing described by Sagae and Lavie (2006). The parser is compatible
with the format of the CHILDES database since CHILDES syntactic annotations are represented as
labeled dependencies.

3 Characteristics of the Hebrew CHILDES Corpus

3.1 Representation

The corpora in the CHILDES database include three levels of data, each referred to as a tier (MacWhin-
ney, 2000). The main tier contains (a transcription of) actual utterances; the mor tier contains disam-
biguated lexical and morphological analyses of the utterances; and the gra tier lists the syntactic analyses
of the utterances. The data are organized in a one-to-one format, where every token in the main tier has
exactly one counterpart in the mor tier and the gra tier.2

In the CHILDES database and throughout this work, dependency structures are represented linearly
as triplets i|j|REL, where i is the index of a token in the utterance (starting from 1), j is the index of
the head of the current token (the special Root marker is given the index 0), and REL is the label of
the relation between them.

Example 1 shows an utterance with all three tiers. The elements in each of the three tiers are vertically
aligned. The utterance consists of two tokens, Pat “you” and mes̆aqēret “lie”. Below each token, the mor
tier specifies the morphological analysis. The first token is analyzed as a personal pronoun (pro:pers) of
feminine gender and singular number; the second token is a participle (part), again in feminine singular.
The third line specifies the gra tier: the first token is a dependent of the second, and the dependency
relation is Aagr (agreeing argument, Section 4); and the second token is the root, depending on the special
index 0. For convenience, we also add a fourth line, with a full English translation of the utterance.

(1) Pat “you”
pro:pers|gen:fm&num:sg

1|2|Aagr

mes̆aqēret “lie”
part|gen:fm&num:sg

2|0|Root

“You are lying!”

3.2 Tokenization

Tokenization is a crucial aspect of data preparation required for successful syntactic analysis, particularly
for morphologically complex languages. Hebrew, which tends to be synthetic, is rich in bound morphology,
and tokens that consist of more than a single morpheme are quite common. One such example is the class
of simple prepositions be- “in”, le- “to”, and ke- “as” that are frequently fused with the definite article, as
in the case of ba- “in the”. Two other common examples are complex prepositions with suffixed personal
pronouns, for example, bĭsvīlēk. “for you”, and nouns that systematically take pronominal pronouns as
bound inflectional suffixes marking possession, for example, Paxot̄i “my sister”. These cases make it
difficult to determine how many morphemes are to be counted in the analysis of one token (Dromi and
Berman, 1982).

Previous studies on dependency-based parsers for other morphologically complex languages have
considered similar issues, as in the case of the Prague Arabic Dependency Treebank (Hajič and Zemánek,
2004). Arabic, even more than Hebrew, is rich in bound, inflected morphemes, not only in the nominal
system (as in the case of nouns with possessive suffixes) but also in the verbal system, where verbs can
take accusative suffixes. The morphological analysis of the Prague Arabic Treebank is based on the idea of
splitting words into morphs or segments, each receiving its own morphological analysis (Smrž and Pajas,
2004). Thus, prepositions and suffixed pronouns are considered separate tokens (e.g., biduni “without
me” is split into bi- duni), even if they are orthographically attached in Modern Standard Arabic script.
Nouns with possessive suffixes are also split into two tokens (the noun and the pronominal suffix).

2 This one-to-one alignment is automatically verified by the Chatter program:
http://talkbank.org/software/chatter.html
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A similar approach is presented by the dependency-based parser for Turkish (Eryiğit et al., 2008). In
the case of this agglutinative language, dependency relations are specified between morphemes (referred
to as inflectional groups or IGs) rather than between words. This morpheme-driven analysis resulted in
more accurate parsing. However, since the mechanisms for bound morphology are much less productive in
Hebrew compared to Arabic (let alone the agglutinative Turkish), we resorted to the following solution:
the data were pre-processed and particular tokens were split to allow for a partial morpheme-bound
representation. Thus, definite prepositions such as ba- “in the” are split to two tokens, as in be- “in” ha-
“the”; prepositions fused with personal pronouns are treated similarly, for example, bĭsvīlēk. “for you”
is split into bĭsvīl “for” Pat “you”, as are nouns inflected for possession; we split such cases to three
morphemes: for example, Paxot̄i “my sister” is split into Paxot “sister” s̆el “of” Panī “I”.

Our motivation is largely computational rather than linguistic; presumably, such a split representa-
tion reduces data sparseness. Certain fused forms occur only rarely, possibly making it more difficult for
the parser to identify and analyze them correctly. However, these changes are only aimed at improving
syntactic analysis. In order to avoid any theoretically controversial decision as well as more practical
implications, for example to the analysis of Mean Length of Utterance (Dromi and Berman, 1982), we
merge the split tokens back together once parsing is complete, omitting any intra-word relations. Unsur-
prisingly, with only a single exception, none of the split morphemes is involved in non-local dependency
relations, so this merge operation is well-defined.

4 Annotation Scheme for Hebrew CHILDES

As noted above, our scheme is inspired by the grammatical relations defined for the annotation of the
English section of CHILDES (Sagae et al., 2010). This is done mostly for issues that are not language-
specific but rather represent general characteristics of spoken language, such as repetitions and repairs, on
the one hand, and the inclusion of vocatives and communicative elements, on the other. In addition, some
of the relations that were defined similarly in the two schemes relate to specific features of child–adult
interactions, including onomatopoeias, enumerations, serialization of verbs, and topicalizations.

Moreover, our scheme remained consistent with the issue of how to treat coordinate constructions,
a relation that poses challenges for dependency annotation in general. In adopting the English scheme,
the coordinating conjunction was defined as the head of a coordination construction and the coordinated
elements were defined as the dependents. This relation is labeled Coord. Also, we took into consideration
the work of Goldberg (2011) on dependency parsing of written Hebrew, specifically in Section 7 where
we evaluate alternative approaches for specific relations.

In contrast to the English scheme, we distinguish between three types of dependents for Hebrew:
arguments [A], modifiers [M] and others. Arguments are dependents that are typically semantically
required by the head, their properties are determined by the head, and they can occur at most once
(often, exactly once). Modifiers, on the other hand, are non-obligatory dependents: typically, they select
the head that they depend on and, consequently, they may occur zero or more times. The Others group
includes relations in which the dependents are neither arguments nor modifiers of the heads, or relations
in which the dependents do not relate specifically to any other token in the utterance. For example, the
Com label marks the relation in which a communicator is the dependent. A communicator is generally
related to the entire utterance, and so we mark the root of the utterance as the head of the communicator.
The Others group also contains relations for two special cases where we present two optional analyses for
a construction: the copula construction (Section 7.1) and constructions containing the accusative marker
(Section 7.2). The second approach for both of these linguistic issues is marked with a relation whose
name starts with X.

Typically in dependency-based parsers, the root of an utterance is an inflected verb or a copula in
verbless copula utterances, carrying the tense marking in the clause. In utterances with no verb and no
copula, where there is no element carrying a tense, the head is the predicating element. Copulas and
existential markers, as well as other forms of the verb hayā “be”, are discussed elaborately in Section 7.1.
When an utterance is lacking any of the above, the root is the element on which the other elements
depend (such as the noun with respect to its modifiers). In single word utterances, the single token is by
default the root.

The annotation scheme is comprised of 24 basic dependency relations and a few more complex depen-
dency relations (combinations of two basic dependency relations; see Section 4.4). The complete list of
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the basic dependency relations is given in Appendix A. We discuss below some of the main constructions
covered by our scheme.

4.1 Verb Arguments, Agreeing and Non-agreeing

Two main relations are defined between verbs and their arguments. One relation, Aagr, requires the verb
and its argument to agree; at most one argument can stand in this relation with any given verb. The
other relation, Anonagr, imposes no agreement constraints, and the number of such arguments can be
zero or more.3

In Example 2, the verb rocē “want” is the head of its agreeing argument Panī “I” (both are singular);
it is also the head of its non-agreeing argument t.ipōt “drops” (a plural noun).

(2) Panī “I”
pro:person|num:sg

1|3|Aagr

loP “no”
neg

2|3|Mneg

rocē “want”
part|num:sg

3|0|Root

t.ipōt “drops”
n|num:pl

4|3|Anonagr

“I don’t want drops.”

Other non-agreeing relations include the relation between the verb and its indirect (or oblique) objects,
where the nominal element is preceded by a preposition. The Anonagr dependency is marked on the
prepositional element and the nominal element is marked as the argument of that preposition, Aprep;
see Example 3. An alternative representation of prepositional phrases is discussed in Section 7.3.

(3) Poy “oh no”
co

1|3|Com

, “,”
,

2|3|Punct

pagāQti “I-hurt”
v

3|0|Root

be- “in”
prep

4|3|Anonagr

Siwān “Sivan”
pro:person

5|4|Aprep

“Oh no, did I hurt Sivan?”

Non-agreeing arguments can also occur as finite clausal dependents of the verb. In such cases, the
subordinating conjunction is marked as Anonagr. In addition, it is treated as the head of the subordinate
clause, and the finite verb of the subordinate clause is dependent on it in a SubCl relation, as in Example 4.

(4) Patā “you”
pro:person|gen:ms&num:sg

1|2|Aagr

rocē “want”
part|gen:ms&num:sg

2|0|Root

s̆e- “that”
conj:subor

3|2|Anonagr

Panī “I”
pro:person|num:sg

4|5|Aagr

Pesarēq “comb”
v|num:sg

5|3|SubCl

Pet “ACC”
acc

6|5|Anonagr

Patā “you”
pro:person

7|6|Aprep

“Do you want me to comb your hair?”

When the subordinate clause is introduced by something other than a subordinating conjunction, the
finite verb of the clause is directly dependent on the finite verb of the main clause, again in a Anonagr

relation, such as in Example 5, where the verb qarā “happen” (the head of the subordinate clause) is
directly dependent on the matrix verb tirPī “look”.

(5) Poy “oh no”
co

1|2|Com

tirPī “look”
v

2|0|Root

ma “what”
que

3|4|Aagr

qarā “happen”
v

4|2|Anonagr

le- “to”
prep

5|4|Anonagr

hiP “she”
pro:person

6|5|Aprep

“Oh no, look what happened to her.”

When the non-agreeing argument is an infinitival verb phrase, the relation between the head of the
verb phrase and its (verbal or nominal) head is Ainf; see Example 6.

(6) Paz “so”
adv

1|2|Com

titēn “you-let”
v

2|0|Root

le- “to”
prep

3|2|Anonagr

Panī “I”
pro:person

4|3|Aprep

laQavōr “pass”
v

5|2|Ainf

“So let me pass.”

3 The standard terminology, of course, is subject for Aagr and object for Anonagr. We use formal, rather than functional
labels, for consistency and to avoid theory-specific controversies.
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4.2 Modifiers

Modification in Hebrew may occur for both nouns and verbs. Several relations specify nominal modifiers;
these include Mdet for the relation between a determiner and a noun, Mquant for quantifiers, and Madj for
adjectival modification. Another type of nominal modification is represented in noun-noun compounds,
which in Hebrew are constructed by combining a morphologically-marked noun (said to be in the con-
struct state) with another noun (recall that when such compunds are idiomatic they are represented as
a single token). We mark the relation between the two nouns as Mnoun, as in Example 7.

(7) we- “and”
conj

1|0|Root

bifnīm “inside”
adv

2|3|Madv

yes̆ “there is”
exs

3|1|Coord

xelqēy “part”
n

4|3|Aexs

matēk. et “metal”
n

5|4|Mnoun

“And inside there are parts of metal.”

Verbal modifiers include Madv for adverbs (Example 8) and Mneg for negation (Example 2), as well
as Mpre for prepositional phrase modifiers (Example 9).

(8) ma “what”
que

1|2|Anonagr

Qos. īm “do”
part

2|0|Root

Qak. s̆āyw “now”
adv

3|2|Madv

“What do we do now?”

(9) be- “in”
prep

1|4|Mpre

masrēq “comb”
n|gen:ms&num:sg

2|1|Aprep

Paxēr “different”
adj|gen:ms&num:sg

3|2|Madj

tistarqī “you-comb oneself”
v

4|0|Root

“Comb your hair with a different comb.”

When a subordinate clause is a modifier (rather than an argument) of a verb or a noun, the relation
between the verb or noun and the subordinating conjunction is labeled Msub. If the clause is a relative
clause, the relation between the relativizer and the head of the relative clause is labeled RelCl, as in
Example 10.

(10) balōn “balloon”
n|gen:ms&num:sg

1|0|Root

s̆e- “that”
conj:subor

2|1|Msub

hitpocēc “burst”
v|gen:ms&num:sg

3|2|RelCl

“A balloon that burst.”

4.3 Other Relations

Vocatives are named entities that refer to another speaker in the conversation, most commonly followed
by a question or request in the second person. Vocatives depend on the root of the utterance in a Voc

relation (Example 11).

(11) Pasaf “Asaf”
n:prop

1|3|Voc

, “,”
,

2|3|Punct

tedabēr “speak”
v

3|0|Root

“Asaf, speak up.”

Communicators include discourse markers such as Pavāl “but”, Paz “so”, ken “yes”, etc., as well as
verbs such as tirPē “look” and bōPi “come here”. Like Voc, the root of the utterance is the head of the
relation and the communicator is the dependent. The main difference between the two relations is that
Com does not include named entities. See Examples 5, 6.

The relation Coord specifies coordination, relating between conjuncts and conjunctions, most com-
monly we- “and”. As noted above, we follow Sagae et al. (2010) in dealing with these constructions: the
head is the coordinating conjunction and the dependents are the conjuncts. If there are two or more
conjuncts with multiple coordinators, the coordinators are linked from left to right (the rightmost co-
ordinator is the head of the others) by a Coord relation. In the absence of a coordinator the rightmost
conjunct is the head of the relation. See Example 12.

7



(12) huP “he”
pro:person|gen:ms&num:sg

1|3|Aagr

rac “run”
v|gen:ms&num:sg

2|3|Coord

we- “and”
conj

3|0|Root

hitxabēP “hide”
v|gen:ms&num:sg

4|3|Coord

mePaxorēy “behind”
prep

5|4|Mpre

ha- “the”
det

6|7|Mdet

Qec “tree”
n

7|5|Aprep

“He ran and hid behind the tree.”

4.4 Elision Relations

Spoken language often includes missing elements, whether as a result of true ellipsis or of interruptions
and incomplete utterances. In the English section of CHILDES, Sagae et al. (2010) decided to mark
missing elements as elided and to relate to them in the analysis using elision relations. Such relations
combine two basic relations: one between the elided element and its presumed head, and one between
the elided element and its dependent. Following the scheme for English, we also mark missing elements
with elision relations.

In Example 13, ha- “the” is marked with the Mdet-Aprep relation. Mdet stands for the relation
between ha- “the” and a missing element, presumably a noun; Aprep stands for the relation that would
have held between the missing noun and the preposition leyād “near”.

(13) leyād “near”
prep

1|0|Root

ha- “the”
det

2|1|Mdet-Aprep

“Near the.”

4.5 Child Invented Language

As the CHILDES corpus is comprised of child and adult interactions, child-specific forms and construc-
tions are rather frequent. These include neologisms, babbling, and incoherent speech. Such forms can be
detached from the utterance, labeled with the Unk relation which marks unknown relations (Example 14);
or, when the syntactic function of such forms is known to the annotator, they can take the place of a
known relation (e.g., the neologism bdibiyabi in Example 15).

(14) curu “curu”
chi

1|3|Unk

gam “also”
adv

2|3|Madv

lecayēr “paint”
v

3|0|Root

“??? also to paint.”

(15) Qak. s̆āyw “now”
adv

1|3|Madv

Panī “I”
n|num:sg

2|3|Aagr

holēk. et “walk”
part|num:sg

3|0|Root

le- “to”
prep

4|3|Anonagr

bdibiyabi “bdibiyabi”
chi

5|4|Aprep

“Now I am going to bdibiyabi.”

5 Methodology

5.1 Parsing

We manually annotated a subset of the Hebrew CHILDES corpus described in Section 3 according to
the schema of Section 4. The data were annotated by two lexicographers; all disagreements were resolved
by a third annotator, a linguist who specializes in syntactic analysis.

This manually annotated corpus consists of 12 files: 8 files from the Ravid corpus and 4 from the
Berman corpus. The 8 files of the Ravid corpus contain transcriptions of the same child at different ages
(ranging from 1;11 to 2;05). The 4 files of the Berman corpus reflect 4 different children (all different
from the child in the Ravid corpus) at different ages (2;04, 3;00, 3;03 and 3;06). Statistical data of the
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Utterances Tokens MLU MLUw
Corpus Files Total CS Total CS Total CS Total CS
Ravid 8 4107 1541 13863 3975 3.9 2.9 3.4 2.6

Berman 4 2224 1126 9392 4241 4.9 4.3 4.2 3.8

Table 1 Statistics of corpora used for evaluation. MLU is the average number of morphemes per utterance. MLUw is the
average number of tokens per utterance. CS is Child Speech.

corpora are given in Table 1. The data presented here refer to the corpora after splitting fused morphemes
(Section 3.2) and exclude punctuation.

We then trained two dependency parsers on the manually-annotated texts, MEGRASP (Sagae and
Tsujii, 2007) and MaltParser (Nivre et al., 2006). MEGRASP works directly on the CHILDES format in
which the corpora are stored. MaltParser supports a number of formats, including the CoNLL-X shared
task format (Nivre et al., 2007). An advantage of using MaltParser is that it also supports costume-made
formats, allowing variation in the lexical and morphological information available for the learning algo-
rithm. We used a format similar to CoNLL, but added columns to represent independent morphological
attributes (instead of the concatenated FEATS column). Using MaltParser, we examined the effect of
adding morphological features (e.g., number and person) to the default feature set (Section 6.5).

To achieve the best possible results using MaltParser we used the recently developed MaltOptimizer
(Ballesteros and Nivre, 2012). MaltOptimizer analyzes the training data in a three-phase process and
outputs the recommended configuration under which to run MaltParser (e.g., a certain parsing algorithm
or a feature set that yield the best results). Since MaltOptimizer is restricted to the CoNLL format and
does not support custom formats, we used it as follows. We concatenated the morphological features into
the FEATS column, to adapt the input to the CoNLL format. We ran this version of the parser with
MaltOptimizer, and converted the files back to our custom format as suggested by MaltOptimizer. For
example, MaltParser supports a Split function that splits the values of a certain column according to a
delimiter. If MaltOptimizer suggested to split the FEATS column, we did so by placing the morphological
information in the separate morphological columns. In the following sections, there is practically no
difference between using our format and the CoNLL format. The main difference is when we evaluated
the contribution of the morphological data to parsing (Section 6.5); there we examined various kinds of
subsets of features, not all of which are supported by the regular CoNLL format.

5.2 Evaluation

We conducted both In-domain evaluation, where training is on parts of the Ravid corpus and testing
is on other parts of the same corpus (held out during training), and Out-of-domain evaluation, where
training is done on the files of the Ravid corpus and testing is done on the files of the Berman corpus. We
did not explore any domain adaptation techniques (Nivre et al., 2007; Plank, 2011), we merely evaluated
the robustness of the parser when tested on a different domain. We ran both MEGRASP and MaltParser
on these evaluation scenarios. We also ran a 5-fold cross-validation on the Ravid corpus and on both
corpora combined.

The evaluation metrics that we used are unlabeled attachment score (UAS) and labeled attachment
score (LAS). In UAS a token is considered correctly annotated if its head is the same head that is
marked in the gold-standard — regardless of the grammatical relation. In LAS a token is considered
correctly annotated if both the head and the grammatical relation are the same as in the gold-standard.
In addition we report Exact Match (EXM), the percentage of utterances that are parsed without any
errors. These are standard metrics in the evaluation of dependency parsing (Kübler et al., 2009).

To examine the quality of the parsers and the annotation scheme on individual relations, we used fur-
ther metrics that are relation specific — URecallr (unlabeled recall), LRecallr (labeled recall), UPrecisionr

(unlabeled precision) and LPrecisionr (labeled precision) for some relation r (Kübler et al., 2009). Let
lg(x) be the gold label of token x and l(x) the label assigned by the parser. Similarly, let hg(x) be the
head that token x is attached to in the gold file and h(x) the head that token x is attached to by the
parser. Then:
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URecallr =
|{x | lg(x) = r ∧ hg(x) = h(x)}|

|{x | lg(x) = r}|

LRecallr =
|{x | lg(x) = l(x) = r ∧ hg(x) = h(x)}|

|{x | lg(x) = r}|

UPrecisionr =
|{x | l(x) = r ∧ hg(x) = h(x)}|

|{x | l(x) = r}|

LPrecisionr =
|{x | lg(x) = l(x) = r ∧ hg(x) = h(x)}|

|{x | l(x) = r}|

The first two metrics are refinements of the recall metric for each relation as the analysis is with
respect to the appearances of the relation in the gold standard files. The Recallr measures compute the
percentage of tokens labeled r in the gold data that were correctly parsed. The other two metrics are
refinements of the precision metric for each relation as the analysis is with respect to the appearances of
the relation in the parsed model files. The Precisionr measures compute the percentage of tokens labeled
r in the parsed data that were correctly parsed. For each of the UAS and LAS precision and recall pairs
we report also the (balanced) F -score, the harmonic mean of precision and recall.

In addition to testing the corpus as a whole we show results that relate separately to two types of
data: child-directed speech (CDS) and child speech (CS). First, we trained and tested on both types of
data (All-All); to investigate whether children learn primarily from the language spoken to them or from
their peers, we trained on CDS and tested on CS (CDS-CS), and then trained and tested on CS only
(CS-CS); for completion, we also trained and tested on CDS (CDS-CDS).

In the in-domain evaluation scenario we built the training set and test set for each of these config-
urations separately, using 8 files of the Ravid corpus. The files of the Ravid corpus are chronologically
ordered by the age of the target child and thus in the in-domain evaluation scenario the held-out set
always contains utterances of the same child at an older age. In this configuration, the training set is
comprised of 80 percent of the utterances of the relevant data type in the corpus, holding out 20 percent
for the test set. The training set of the All-All configuration contains 3286 utterances (11155 tokens), the
CS training set contains 1237 utterances (3246 tokens) and the CDS training set contains 2066 utterances
(7946 tokens). The 80 percent of CS and CDS were derived from the set of utterances (of their respective
data types) in the corpus, and not from the training set of both data types. Consequently, the sum of the
sizes of the CS and CDS training sets does not necessarily equal the size of the training set of the All-All
configuration. In the CDS-CS configuration the training set and test set are comprised of utterances of
different data types so the entire set of utterances of each data type in the corpus was used, and not just
80 percent of it.

In the out-of-domain evaluation scenario the training sets and test sets of the different configurations
were taken from different sets of files, so the entire set of utterances of the respective data type was used.
For all evaluation scenarios, we excluded punctuation and single-token utterances, to avoid artificial
inflation of scores.

6 Results

6.1 In-domain Evaluation

We first present the results for the in-domain scenario. Recall that we ran MaltOptimizer in order to
achieve the best parser configuration with respect to the training set. In the All-All configuration, ac-
cording to MaltOptimizer, the training set contained approximately 3.9% utterances with non-projective
trees.4 MaltOptimizer recommended using the Stack parsing algorithm in its non-projective eager version
(Nivre, 2009; Nivre et al., 2009). See Appendix B.1 for a full description of the parameters chosen by the
optimizer.

4 A dependency tree is projective if it has no crossing edges. For some languages, especially when word order is rather
free, non-projective trees are preferred for better explaining sentence structure (Kübler et al., 2009, page 16).

10



Table 2 shows the accuracy of parsing obtained by both parsers, in all four evaluation scenarios.
Considering the relatively small training set, both parsers achieve reasonable results. Evidently, Malt-
Parser proves to be better than MEGRASP on this domain. The difference in the All-All configuration
is statistically significant for all three metrics (p < 0.05).

Evaluation scenario MEGRASP MaltParser
Train Size Test Size UAS LAS EXM UAS LAS EXM
All 3286 All 590 87.4 82.3 62.7 91.2 86.6 71.1
CS 1237 CS 183 91.9 87.3 75.4 93.9 89.1 78.1

CDS 2066 CDS 400 85.4 80.8 56.7 89.2 83.9 63.2
CDS 2566 CS 969 84.2 78.5 62.3 88.2 82.5 68.2

Table 2 Results: accuracy of parsing, in-domain.

To show the contribution of MaltOptimizer, we also ran MaltParser with its default parameters, which
allows only projective dependency trees. The settings of the default parsing algorithm are discussed in
Appendix B.2. In the All-All configuration, the UAS was 84.5 and the LAS was 80.5 — lower than the
results obtained by both the optimized MaltParser and MEGRASP. Thus, the adaptation of the parsing
algorithm and feature set to our corpora using MaltOptimizer was clearly instrumental for improving
parsing accuracy.

In general, the Exact Match accuracy is high, mostly due to the relatively short length of the utter-
ances in our corpora. It is interesting to compare these results to Exact Match results of other tasks. In
the CoNLL-X shared task (Nivre et al., 2007), different parsers were evaluated for token-based measures,
such as LAS and UAS, by parsing 13 test-sets of various languages. Ballesteros et al. (2012) expanded
this evaluation of parsers by calculating not only token-based but also sentence-based measures, such as
Exact Match. They also drew a correlation between average sentence length and Exact Match accuracy.
The test-set of Arabic had the highest average sentence length (37.2 tokens) and the lowest Exact Match
score (9.6 with MaltParser, 6.2 averaged across parsers). On the other hand, the test-sets of Chinese
and Japanese had the shortest average sentence length (5.9 and 8.9 tokens, respectively) and the high-
est Exact Match scores (68.1 with MaltParser and 49.5 averaged across parsers for Chinese, 75.3 with
MaltParser and 59.6 averaged across parsers for Japanese). These results are in accordance with our
results, as both the Ravid and Berman corpora exhibit a short average utterance length and high Exact
Match scores, arising from the fact that they reflect adult-child interactions at early stages of language
development.

Note also the low EXM when testing on CDS as opposed to the high EXM when testing on CS.
Recall that the utterances in CDS are longer on average (Table 1) and so there is a higher chance that
one of the tokens in an utterance is tagged erroneously.

To see which relations are more difficult for the parsers to predict, we evaluated the accuracy of
the parsers on specific relations. Table 3 shows the relation-specific metrics for interesting individual
relations, in the All-All configuration. Relations that occur with a small set of tokens as dependents
(such as Mdet, where the dependent is mainly the token ha- “the”), or after a specific type of token (such
as Aprep, occurring after a preposition) achieved a score of 97% or above in all the four metrics. The
frequent relations Aagr and Root reached high scores of over 92% unlabeled recall and precision, 89%
labeled. Also accurate were the relations Mneg and Aexs. The more problematic relations were Com and
Voc and modifiers such as Madv, Mquant and Mpre, which can sometimes be ambiguous even for human
annotators. Amongst the modifiers the labeled scores of Mpre were especially low, due to the confusion
between it and Anonagr when deciding whether a preposition is an argument or a modifier of a verb, in
certain cases a decision that could be hard for a human annotator.

Figure 1 shows the learning curves of MEGRASP and MaltParser on this task. We trained the parsers
on an increasingly larger training set, from 400 utterances up to 3200 utterances with increments of 400,
and tested on a fixed test set of 590 utterances (2474 tokens) in the All-All configuration. We plotted
UAS and LAS scores as a function of the number of utterances in the training set. The curves suggest
that more training data could further improve the accuracy of the parser.
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UAS LAS
Relation Recall Precision F-score Recall Precision F-score
Root 93.2 92.7 92.9 93.2 92.4 92.8
Aagr 92.1 95.2 93.6 89.5 91.9 90.7
Aprep 99.4 98.2 98.8 99.4 97.6 98.5
Anonagr 94.6 92.6 93.6 89.2 84.3 86.7
Mdet 99.1 98.6 98.8 98.6 98.6 98.6
Madv 87.1 80.4 83.6 78.5 71.6 74.9
Com 74.6 71.2 72.7 65.7 66.7 66.2
Mpre 79.7 75.8 77.7 61.0 58.1 59.5
Aexs 97.6 95.2 96.4 97.6 95.2 96.4
Mquant 78.6 87.5 82.8 50.0 87.5 63.6

Table 3 Results: accuracy of parsing of some individual relations, in-domain.

Fig. 1 MEGRASP and MaltParser in-domain learning curves.

6.2 Out-of-domain Evaluation

We also evaluated the parsers on a different domain than the one they were trained on. For the All-All
configuration, according to MaltOptimizer, the training set contained approximately 3.8% utterances
with non-projective trees. Similarly to the in-domain scenario, MaltOptimizer suggested the Stack algo-
rithm (Nivre, 2009; Nivre et al., 2009), but in contrast to the in-domain scenario, it recommended the
Stack non-projective version. This algorithm postpones the SWAP transition of the Stack algorithm as
much as possible. The parameters selected for this configuration are discussed in Appendix B.3.

We trained the parsers on the 8 files of the Ravid corpus and tested on the 4 files of the Berman
corpus. Table 4 lists the results.

Evaluation scenario MEGRASP MaltParser
Train Size Test Size UAS LAS EXM UAS LAS EXM
All 4107 All 1614 78.4 73.1 51.3 82.0 77.1 55.6
CS 1541 CS 761 69.2 61.4 42.0 74.7 68.0 50.7

CDS 2566 CDS 853 81.3 76.3 48.8 85.0 79.7 53.6
CDS 2566 CS 761 73.6 66.6 47.7 77.8 72.1 55.5

Table 4 Results: accuracy of parsing, out-of-domain.

Unsurprisingly, the accuracy of the parser in the out-of-domain evaluation scenario is considerably
lower than in the in-domain evaluation scenario. The decrease in accuracy when parsing the CS data
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type can be explained by the fact that the test set of the Berman corpus contains utterances by four
different children, all different from the child who is recorded in the training set. They are also children
of different ages, and three of the four children in the test set are recorded at an older age than the child
in the training set.

Another point to notice is that also in this scenario, MaltParser performed better than MEGRASP,
but the differences between the parsers are slightly smaller in some metrics than in the in-domain
evaluation scenario. One possible explanation is that MaltParser was run with optimized parameters as
suggested by MaltOptimizer (e.g., parsing algorithm and feature set) that are configured according to the
training set. In the out-of-domain evaluation scenario the differences in the types of utterances between
the training set and the test set are more substantial than in the in-domain evaluation scenario. As a
result the optimized parameters are less effective and hence the accuracy is poorer. Still, the advantage
of MaltParser over MEGRASP in the All-All configuration is significant for all three metrics (p < 0.05).

As in the in-domain evaluation scenario, we present a learning curve of the parsers when parsing the
same out-of-domain dataset on training sets varying in size (Figure 2). The size of the test set is 1614
utterances (8750 tokens). Here, too, the learning curves of both parsers suggest that there is room for
improvement with more training data.

Fig. 2 MEGRASP and MaltParser out-of-domain learning curves.

6.3 Learning from Child-directed Speech vs. Child Speech

Is it better to train the parser on child speech or on child directed speech? The in-domain and out-of-
domain tests yield conflicting evidence. The in-domain data suggest that for parsing child speech it is
better to learn from child speech than from child-directed speech. This is despite the fact that in the
CDS-CS configuration the training set is larger.

To examine the possibility that the specific CS test set used in both configurations contributes to
this difference, we evaluated the CDS-CS configuration with a training set similar in size to the CS-
CS training size (i.e., 1237 utterances) and with an identical test set to the one used in the CS-CS
configuration. Table 5 shows the results of the modified CDS-CS evaluation (line 2) compared to the
CS-CS evaluation (line 1) and the original CDS-CS evaluation (line 3).

When running the modified CDS-CS configuration, accuracy was considerably higher than the original
CDS-CS configuration, possibly due to this CS test set being easier to parse than the 969 utterances
of the test set of the CDS-CS configuration presented in line 3. This could be contributed also to the
fact that the test set was taken from the recordings of the child at an older age, thus it is perhaps more
similar to CDS data than the CS test set of the original CDS-CS configuration which consists of the
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Evaluation scenario MEGRASP MaltParser
Train Size Test Size UAS LAS EXM UAS LAS EXM
CS 1237 CS 183 91.9 87.3 75.4 93.9 89.1 78.1

CDS 1237 CS 183 91.1 85.5 69.9 92.3 88.0 77.6
CDS 2566 CS 969 84.2 78.5 62.3 88.2 82.5 68.2

Table 5 Results: accuracy of parsing, in-domain, CDS vs. CS.

entire CS data. The scores of the modified CDS-CS configuration were slightly lower than the CS-CS
scores, but the differences are not statistically significant.

The fact that training on CS has some advantage over training on CDS when parsing CS can be
partially explained by the fact that the age range of the files of the Ravid corpus is rather small, the
difference between the first file and the eighth file being only 7 months. Note that in the CDS-CDS
configuration the scores are also relatively low. It is apparent that training on CDS confuses the parser
to some degree. This can be explained by the richer structure of CDS compared to CS and by the different
constructions and relations uttered by the same adults when the child matures.

However the out-of-domain data (Table 4) suggest that when parsing child speech it is better to learn
from child-directed speech than from child speech. To further examine this result we trained the parsers
on a CDS dataset similar in size to the CS dataset (i.e., the training set consists of 1541 CDS utterances).
Table 6 shows the results of the modified CDS-CS evaluation (line 2) compared to the CS-CS evaluation
(line 1) and the original CDS-CS evaluation (line 3). The results suggest that there is some advantage to
training on child-directed speech when parsing child speech, in contrast to the trend that emerged from
the in-domain task.

Evaluation scenario MEGRASP MaltParser
Train Size Test Size UAS LAS EXM UAS LAS EXM
CS 1541 CS 761 69.2 61.4 42.0 74.7 68.0 50.7

CDS 1541 CS 761 72.8 64.9 45.3 76.4 69.8 49.7
CDS 2566 CS 761 73.6 66.6 47.7 77.8 72.1 55.5

Table 6 Results: accuracy of parsing, out-of-domain, CDS vs. CS.

The best scores for out-of-domain training, and the closest scores to the in-domain case, are obtained
in the CDS-CDS configuration. This should most probably be attributed to the smaller variance that is
expected in CDS between different adults, in contrast to the relatively substantial differences in CS.

6.4 Cross-validation

In addition to evaluating our annotation scheme on the same domain and on a different domain, we
also tested it on the corpora as a whole without any distinction to participants or ages. The cross-
validation process allows for a more robust evaluation of the entire data. To this end we evaluated the
entire set of 12 files (concatenated into one large file) using 5-fold cross-validation. Similarly to previous
evaluations, each fold of the cross-validation analysis had its parsing algorithm and feature set selected
using MaltOptimizer. The results, presented in Table 7, clearly show the advantage of MaltParser over
MEGRASP (the differences are statistically significant). They also underline the robustness of both
parsers across domains and speakers.

Evaluation scenario MEGRASP MaltParser
Train Test UAS LAS EXM UAS LAS EXM
All All 84.0 79.3 60.6 89.5 85.8 70.2

Table 7 Results: 5-fold cross-validation.
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In addition, we performed a similar 5-fold cross-validation on the 8 files of the Ravid corpus, thereby
restricting the cross-evaluation to a single domain (Table 8). Here we retained the domain, but ignored
the age factor of the participant in the interaction, since, unlike in the regular in-domain scenario, the
test set is not made of conversations in which the participant is necessarily older than in the training
set. This scenario should be compared to the results of the evaluation of CHILDES in English (Sagae
et al., 2010). Cross-validation on the Eve corpus of the English section of CHILDES (using MEGRASP)
yielded an average result of 93.8 UAS and 92.0 LAS. However, the English training set was considerably
larger (around 60,000 tokens compared to around 15,000 in the training set of each fold of our in-domain
cross-validation evaluation).

Evaluation scenario MEGRASP MaltParser
Train Test UAS LAS EXM UAS LAS EXM
All All 87.0 82.2 63.5 90.8 86.7 71.0

Table 8 Results: 5-fold cross-validation, Ravid corpus.

The advantage of MaltParser over MEGRASP is statistically significant (p < 0.05) for both the
Berman and the Ravid corpora, across all three measures.

6.5 Adding Morphological Features to Improve Parsing

Several morphological features are relevant for parsing. The gender, number and person of tokens are
crucial for determining agreement. The argument of a verb can be either an agreeing argument (specified
by the Aagr relation) or a non-agreeing argument (specified by the Anonagr relation). The ‘form’ feature
of a token can indicate whether a verb is in the imperative mood or the infinitive mood. More specifically,
the ‘form’ feature can help determine the Ainf relation, which only holds for infinitival verbs. Awareness
of such features was proven useful for parsing of Arabic (Marton et al., 2013). In this section we investigate
the impact on parsing accuracy of using such features. To this end, we modify the feature set of MaltParser
(such functionality is currently limited in MEGRASP).

In some cases the optimized parameters for MaltParser, suggested by MaltOptimizer, already include
morphological features. In this section we start with a feature set that does not include any of the
four morphological features mentioned above (we refer to this set of features as NoMorph). We then
add different subsets of features to the feature set and evaluate the accuracy of MaltParser using these
features. The subsets that we test include adding up to three tokens from the top of the data structures
used by the selected parsing algorithm, with references to the following data custom columns:

– VERBFORM, indicating the ‘form’ feature described above
– NUM, indicating the ‘number’ feature of the token
– PERS, indicating the ‘person’ feature of the token
– GEN, indicating the ‘gender’ feature of the token

As described in Section 6.1, the configuration suggested by MaltOptimizer for the in-domain All-
All scenario included using the Stack parsing algorithm. The morphological features may appear in the
various data structures of the algorithm, and the parser may use their values to aid its decisions.

Table 9 shows the accuracy of parsing (the in-domain task in the All-All configuration) with the
features whose addition to NoMorph yields the highest improvement. The test set consisted of 590
utterances (2474 tokens). Although VERBFORM provided some improvement in itself (second row), it
did not provide further improvement when added to the combination of PERS, NUM and GEN (line 3).
None of the improvements is statistically significant (p > 0.1).

Table 10 depicts the changes in the scores of some specific relations when PERS, NUM, and GEN of
the elements in the three top positions of the stack were added to the NoMorph features.5 This set of
features improved the scores of these relations (except Anonagr) in almost every metric. Specifically, the
big improvement in Ainf is clearly attributed to the verb form information that was made available to the

5 The number of occurrences of the relation Root is not identical to the number of utterances since in some cases an
elision relation (e.g., Aagr-Root) was used instead.
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Feature set UAS LAS EXM
NoMorph 90.5 85.9 71.7
NoMorph + VERBFORM (Lookahead [0]) 90.9 86.2 71.9
NoMorph + PERS, NUM and GEN (Stack [0], Stack[1], and Stack [2]) 91.6 86.8 71.5

Table 9 Results: feature improvements. NoMorph is the MaltOptimizer suggested feature set without the morphological
extended information.

parser. Note also that for some relations the increase in the labeled scores is higher than in the unlabeled
scores, indicating the contribution of the features to identifying the grammatical relation correctly.

UAS LAS
Relation Occurrences Recall Precision Recall Precision
Root 585 +0.8 +1.1 +0.8 +0.9
Anonagr 295 +0.7 -0.8 -0.4 -1.7
Aagr 343 +1.5 +1.0 +2.9 +0.8
Ainf 16 +6.2 +10.0 +12.5 +14.9

Table 10 Results: feature improvements, individual relations. Occurrences refers to the actual number of times this relation
appears in the test set.

7 Linguistic Issues

Different frameworks of dependency-based parsers produce different analyses for existing linguistic con-
troversies (Nivre, 2005). In addition to testing for feature improvement, our work aims to investigate
whether contrasting approaches to actual syntactic annotation yield different accuracy rates. Several
syntactic constructions that frequently occur in our data can be annotated in two distinctly-motivated
ways. In this section, we check empirically these different approaches to syntactic analysis. All evalua-
tions used MaltParser and were conducted on the in-domain task, in the All-All configuration; the size of
the training set was thus 3286 utterances (11155 tokens) and the size of the test set was 590 utterances
(2474 tokens).

In the following sections, we use two terms to refer to alternative analyses. The term Approach A
refers to the annotation scheme described in Section 4, while the term Approach B refers to an alternative
approach that we present for the first time in this section.

7.1 Copula Constructions and Other Forms of hayā “be”

First, we examine utterances with some form of the functional verb hayā “be”, which we term hayā con-
structions. In Hebrew, hayā constructions function in a variety of contexts, mainly copula and existential
constructions (Rosen, 1966; Berman, 1978). For both types of constructions, which are quite common in
Hebrew, the verbal form appears in either past or future tense. In present tense, the two constructions
diverge. For copula constructions, the realization of the tense-carrying element is in some cases optional,
and it usually takes the form of a pronoun when it is explicitly expressed. Thus, the same clause can
occur without a copula, as in Peitan gavōah “Eitan tall”, or with a copula in the form of a pronoun, as
in Peitan huP gavōah “Eitan he tall”. For existential constructions, the verbal form alternates with the
suppletive (non-verbal) forms yes̆ “there is” or Peyn “there is not”.

Previous dependency-based parsers have suggested different ways to deal with copula constructions.6

The scheme used for annotating English data within CHILDES (Sagae et al., 2010) views the verbs ‘be’,
‘become’, ‘get’, etc., like other verbs, as the heads, and their nominal predicates as the dependents, as
in Example 16:

6 Examples in this section do not necessarily label the dependencies, either because the original work did not label them
or because the label names are not relevant in our context.
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(16) Mary
1|2

is
2|0

a
3|4

student
4|2

In Hebrew, however, there is no consistent paradigm of copula verbs. Moreover, the optionality of
the copula in present-tense constructions requires consideration (Haugereid et al., 2013). The Stanford
Parser English scheme (de Marneffe et al., 2006), for example, is motivated by the need for adaptablity
to languages in which the copula is not necessarily explicitly represented. In this scheme, the nominal
predicate is viewed as the head and the copula as its dependent. The subject is also dependent on the
nominal predicate (Example 17). According to de Marneffe and Manning (2008), an additional motivation
for this decision was to help applications extract the semantic information of the clause through the direct
relation between the subject and the predicate.

(17) Bill
1|3

is
2|3

big
3|0

Alternatively, while the Prague Arabic Dependency Treebank (Hajič and Zemánek, 2004) treats a
group of verbs which may act as copulas (referred to as “kana “be” and her sisters”) as a subset of the
entire verbal group and thus as heads, in clauses with zero copula the nominal element is analyzed as
the head, as in Example 18.

(18) al-’amru “The-matter”
1|2

wād. ih. un “clear”
2|0

“The matter is clear.”

The scheme for annotating written Hebrew presented by Goldberg (2011) is similar in this respect
to the Prague Arabic dependency scheme. In a non-verbal clause with zero copula, the predicate is the
head and the subject is its dependent (Example 19); when the copula is present, the predicate is also
the head and the copula is its dependent (Example 20).

(19) ha- “the”
1|2

yēled “child”
2|3

xak. ām “smart”
3|0

“The child is smart.”

(20) ha- “the”
1|2

yēled “child”
2|4

huP “he”
3|4

xak. ām “smart”
4|0

“The child is smart.”

The past and future forms of hayā, in contrast, are viewed as ordinary verbs, and form the root of
the sentence they appear in (Example 21).

(21) ha- “the”
1|2

menorā “lamp”
2|3

haytā “be”
3|0

semel “symbol”
4|3

xas̆ūv “important”
5|4

“The lamp was an important symbol.”

Our scheme for spoken Hebrew uses the label Acop to mark the relation between the copula and its
argument, the copula being the head (Approach A). Alternatively, we use the label Xcop to mark the
relation in which the copula is the dependent (Approach B). Similarly, we use the labels Aexs and Xexs for
the two approaches of the existential marker. We automatically converted the annotation of Approach A
to Approach B. Example 22 depicts an utterance containing an existential marker annotated according
to Approach A, where the head is the existential element. The result of its conversion to Approach B is
shown in Example 23.

(22) yes̆ “there is”
exs

1|0|Root

le “to”
prep

2|1|Anonagr

hiP “she”
pro:person

3|2|Aprep

dimyōn “imagination”
n

4|1|Aexs

“She is imaginative.”
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(23) yes̆ “there is”
exs

1|4|Xexs

le “to”
prep

2|1|Anonagr

hiP “she”
pro:person

3|2|Aprep

dimyōn “imagination”
n

4|0|Root

“She is imaginative.”

We trained MaltParser on data annotated with both approaches and evaluated the accuracy of pars-
ing. The test set included 590 utterances (2474 tokens) out of which 45 utterances (271 tokens) included
at least one occurrence of either Acop (Xcop in Approach B) or Aexs (Xexs in Approach B) according
to the gold standard annotation. Table 11 shows the accuracy of parsing with the two alternatives of
hayā constructions. Table 12 shows the accuracy when evaluating the alternative approaches only on
the 45 utterances (271 tokens) that contain the Acop (Xcop) or Aexs (Xexs) relations. Evidently, Ap-
proach A yields slightly better results, but the differences between the two approaches are not statistically
significant (p > 0.1).

Approach A Approach B
UAS LAS UAS LAS
91.2 86.6 90.9 86.3

Table 11 Linguistic issues: hayā constructions.

Approach A Approach B
UAS LAS UAS LAS
90.0 88.6 87.4 85.2

Table 12 Linguistic issues: only utterances containing hayā constructions.

Copula-less constructions are rather common in Hebrew, and are far more common than utterances
with a pronominal copula. Still, the training set of the in-domain evaluation scenario includes only 45 of
them, just above 1% of all utterances. Since nominal predicates are more often dependent on verbs, it is
inconsistent to mark them as the root of utterances when they contain a hayā form.

7.2 The Accusative Marker

Another form that presents a challenge for dependency-based parsing is the Hebrew accusative marker,
Pet. This morpheme behaves much like a preposition: it can either introduce a lexical noun phrase or
inflect with a pronominal suffix, and it expresses Verb-Patient relations, similarly to other prepositions
in Hebrew. Although the analysis of Pet as a preposition is conventional (Danon, 2001), its distributional
properties distinguish it from other prepositions: it is restricted and is expressed on the surface if and
only if the following noun is definite. The syntactic status of Pet is thus unclear, and two types of analysis
are possible: one option is to treat the dependency between Pet and the noun following it similarly to
the relation specified for all other prepositions in our scheme, with the noun functioning as the argument
of Pet; the alternative is to treat the accusative marker as a dependent of the noun. In the first type of
analysis we label the relation between the verb and the accusative marker Anonagr and between Pet and
the nominal element Aprep, as in Example 24.

(24) loP “no”
neg

1|2|Mneg

rocē “want”
part|num:sg

2|0|Root

Pet “ACC”
acc

3|2|Anonagr

ha- “the”
det

4|5|Mdet

t.ipōt “drops”
n|num:pl

5|3|Aprep

“(I) don’t want the drops!”

In the second analysis, the nominal element is viewed as directly dependent on the verb (in a relation
labeled Anonagr), with a relation labeled Xacc assigned to Pet, as shown in Example 25.

(25) lo P “no”
neg

1|2|Mneg

rocē “want”
part|num:sg

2|0|Root

Pet “ACC”
acc

3|5|Xacc

ha- “the”
det

4|5|Mdet

t.ipōt “drops”
n|num:pl

5|2|Anonagr
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“(I) don’t want the drops!”

The implication of the first analysis is that all constructions containing a verb followed by a preposition
are treated systematically. This representation, however, results in inconsistency between definite and
indefinite direct object constructions: in the latter case, since Pet is not realized, the noun is directly
dependent on the verb as Anonagr, and so these two parallel constructions are structurally distinct
(Example 26). While the second analysis reflects consistency between definite vs. indefinite constructions,
it renders cases of explicit Pet inconsistent with other prepositional phrases (e.g., Example 9 above.)7

(26) loP “no”
neg

1|2|Mneg

rocē “want”
part|num:sg

2|0|Root

t.ipōt “drops”
n|num:pl

3|2|Anonagr

“(I) don’t want drops!”

We automatically converted our original annotation scheme of Pet as the head of the following nominal
element (Approach A, Example 24) to the alternative scheme, where Pet is a dependent of the nominal
head (Approach B, Example 25). We trained MaltParser on data annotated in accordance with both
approaches and evaluated the accuracy of parsing, again for the in-domain evaluation task in the All-All
configuration. Table 13 shows the accuracy of parsing for the two alternatives. The test set contained
590 utterances (2474 tokens) out of which 41 utterances (215 tokens) contained at least one occurrence
of Pet. We also show (Table 14) the accuracy when parsing only the 41 utterances that contain Pet.
While there is a small advantage to Approach A, the differences between the two approaches are not
statistically significant (p > 0.1).

Approach A Approach B
UAS LAS UAS LAS
91.2 86.6 90.6 86.1

Table 13 Linguistic issues: accusative marker.

Approach A Approach B
UAS LAS UAS LAS
95.3 92.6 94.9 90.7

Table 14 Linguistic issues: only utterances containing an accusative marker.

The small difference in accuracy between the two approaches is supported by the distribution in
the training data of prepositional arguments of verbs (consistent with Approach A) and of indefinite
nominal arguments of verbs (consistent with Approach B). Both are relatively common in the training
data, perhaps explaining why neither approach has a significant advantage over the other.

7.3 Prepositions as Dependents

In the annotation scheme we presented, prepositional phrases are headed by the preposition, labeled
with the Aprep relation. An alternative analysis views prepositional phrases as headed by the nominal
element, with the preposition depending on this head. In order to examine this alternative, we reversed
the direction of all occurrences of the Aprep relation. In Approach A, this relation is headed by the
preposition (including the accusative marker Pet and the possessive marker s̆el). In Approach B, the
nominal element is the head and the preposition depends on it in an Xprep relation. As a result, in
Approach B the nominal element is directly dependent on the verb or noun that the preposition was

7 In the annotation scheme for written Hebrew (Goldberg, 2011), the marker Pet is the head of the nominal element.
According to Goldberg (2011), the reason for this decision is to adapt to cases where Pet may appear whereas the subsequent
nominal element is elided. These types of sentences are rather formal and we do not expect to encounter them in spoken
language. No such constructions occur in our corpus.
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dependent on in Approach A. Since the accusative marker is also affected by this transformation, this is
an extension of the approach discussed in Section 7.2.

Example 27 presents an utterance containing a prepositional phrase annotated according to Ap-
proach A, where the head is the preposition. The result of the conversion is shown in Example 28.

(27) Siwān “Sivan”
n:prop

1|2|Aagr

tagīd “say”
v

2|0|Root

le “to”
prep

3|2|Anonagr

PīmaP “mom”
n

4|3|Aprep

“Sivan will tell mom.”

(28) Siwān “Sivan”
n:prop

1|2|Aagr

tagīd “say”
v

2|0|Root

le “to”
prep

3|4|Xprep

PīmaP “mom”
n

4|2|Anonagr

“Sivan will tell mom.”

We trained the parser (again, on the in-domain task in the All-All scenario) with the alternative
approaches and evaluated the accuracy of parsing. Table 15 compares the results of the original scheme
(Approach A) with the alternative representation (Approach B).

Approach A Approach B
UAS LAS UAS LAS
91.2 86.6 88.8 82.6

Table 15 Linguistic issues: prepositions.

There is a significant advantage to Approach A in both UAS and LAS (p < 0.05). This advantage
can be explained by the decrease in accuracy of the Anonagr and Mpre relations, especially the latter.
Recall that there is a direct relation between a verb and a direct object labeled Anonagr, regardless of the
annotation approach. With Approach B, nominal elements in prepositional phrases are directly attached
to verbs as well, with no intervening preposition that could indicate whether this nominal element is a
modifier or an argument. Thus, nominal elements are possibly mistaken for arguments when they are in
fact modifiers.

7.4 Prepositional Arguments of Verbs

A prepositional phrase following a verb can be either the verb’s argument or its modifier. The decision is
hard, even for human annotators, and the phenomenon is ubiquitous, with over 1100 cases in our corpora.
For example, the preposition le- “to” is considered a modifier of the verb (with the Mpre relation) in
Example 29, but an argument (with the Anonagr relation) in Example 30.

(29) Panī “I”
pro:person|pers:1&num:sg

1|2|Aagr

PaQas. ē “will-do”
v|pers:1&num:sg

2|0|Root

le- “to”
prep

3|2|Mpre

Patā “you”
pro:person

4|3|Aprep

baQayōt “problems”
n

5|2|Anonagr

“I will cause you problems.”

(30) Qak. s̆āyw “now”
adv

1|2|Madv

tagīdi “say”
v

2|0|Root

le- “to”
prep

3|2|Anonagr

Panī “I”
pro:person

4|3|Aprep

Siwān “Sivan”
n:prop

5|2|Voc

“Now tell me, Sivan.”

These subtle differences between prepositional arguments and modifiers of verbs lead to poor (labeled)
recall and precision of the Mpre relation, as is evident in Table 3. In order to improve the overall accuracy
of the parser, we altered the annotation scheme and created a new relation, Averb, that uniformly labels
the attachment between a verb and a preposition, independently of whether the prepositional phrase is
an argument or a modifier. The Mpre relation remains when a preposition is dependent on a noun, and
the Anonagr relation now represents arguments of verbs which are not prepositions. We then trained
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Approach A Approach B
UAS LAS UAS LAS
91.2 86.6 90.6 86.6

Table 16 Linguistic issues: introduction of the Averb relation.

the parser (again, on the in-domain task in the All-All scenario) and evaluated the accuracy of parsing.
Table 16 compares the results of the original scheme (Approach A) with the alternative representation
(Approach B).

In the All-All configuration, there seems to be a slight overall decrease in unlabeled accuracy, but
the difference is not statistically significant. Closer inspection of the confusion matrices shows that in
Approach B, the accuracy of the Averb relation is quite high (over 90% in all individual metrics), and the
accuracy of Anonagr actually improves slightly (compared with Approach A), but the accuracy of Mpre
drops dramatically. Indeed, Mpre is confused with both Averb and Anonagr. We believe that a larger
training corpus may be able to shed more light on this result.

7.5 Token Representation

The last issue we examined with respect to a potential effect on parsing accuracy is token representation.
A morph-based approach calls for the split of words into morphemes, the atomic units that are combined
to create words, whereas a word-based approach refers to words as the minimal units of the language
(Blevins, 2006; Tsarfaty and Goldberg, 2008). Recall that in order to reduce sparseness of data, we pre-
processed the transcripts, splitting pronominal suffixes and inflected prepositions to separate tokens; this
renders the representation of the corpora partially morph-based. Using our annotated data and a simple
conversion script we can investigate the differences between the word-based approach and the morph-
based approach. More specifically, we examine the accuracy of parsing on data in which pronominal
suffixes and inflected prepositions were not split.

We trained MaltParser on a version of the data that reflects such a word-based approach to token
representation (Approach B). We compared the accuracy of parsing in this case to the accuracy obtained
by MaltParser on the split data (Approach A), in the in-domain evaluation task and the All-All sce-
nario. Table 17 shows the results. The morph-based representation is better, but the differences are not
significant (p > 0.1). Evaluation restricted to utterances that include a split token reveals similar results.

Approach A Approach B
UAS LAS UAS LAS
90.7 85.9 90.0 85.1

Table 17 Linguistic issues: token representation.

7.6 Summary

In this section we examined various alternatives for relations in our annotation scheme, where both
annotation approaches are linguistically plausible. Most of our evaluations showed no significant difference
between the alternatives, except one (preposition as dependents) which showed a significant advantage
to Approach A. The reason for these results could be that the data set is too small for any significant
advantage for either approach. It is possible that the characteristics of these specific corpora — especially
the relatively short utterances and the lack of morphological ambiguity — had an effect on the outcome,
preventing any significant advantage. Most likely, which annotation approach of the two is selected is
less important, as long as it is plausible (both linguistically and computationally) and consistent. Thus,
we conclude that the annotation scheme proposed originally (as described in Section 4) is as suitable for
our corpora as the alternative annotation approaches. This is the scheme we use for the released version
of our corpora.
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8 Conclusions

We presented a new annotation scheme for Hebrew spoken language, as part of the Hebrew section of the
CHILDES database. The scheme handles some of the unique linguistic characteristics of Hebrew spoken
language in general and child and child-directed language in particular. We showed that a parser trained
on data annotated using this scheme achieves good results when parsing the same domain and is also
adaptable to other domains, in spite of the relatively small data set available. It is worth noting that the
transcriptions were sometimes erroneous or ill-formed; this had an effect on the quality of the syntactic
analysis, and future acquired data should help in this respect.

We showed that both MaltParser and MEGRASP produced relatively good accuracy. In both eval-
uation scenarios, MaltParser proved to be the better of the two, thanks to parameter tuning done by
MaltOptimizer. In future work, it would be interesting to experiment with more parsers, especially
transition-based ones that may be more adequate for a corpus of short utterances such as ours, but also
graph-based ones. Several such parsers exist that could be trained on our corpus (McDonald et al., 2005;
Bohnet, 2010; Zhang and Clark, 2011).

We examined the differences between learning from CDS and CS. Within the same domain there was
no significant difference and both configurations yielded relatively high accuracy. However, when parsing
out-of-domain (and, crucially, on different children) there was a clear advantage to training on CDS. We
attribute this to the simplicity of the CS in the in-domain scenario as well as to differences in CS between
the training set and the test set (and within the test set) in the out-of-domain scenario. We conclude
that, as expected, there is some difficulty to adapt CS from one domain to another (also recalling the
age gap between the domains) whereas CDS is more stable and less varied across domains.

Working with MaltParser allowed us to evaluate the impact of features derived from the morphological
tier of the corpora. Although the accuracy of parsing using the feature set without extended morphological
data is quite high, due to the fact that the basic feature set was optimized by running MaltOptimizer and
to the presence of a gold standard morphological tier, when we used detailed morphological information
we were able to improve the accuracy of parsing even more. The best accuracy was exhibited using the
morphological attributes ‘gender’, ‘person’ and ‘number’. Future work in this area can embark on a more
systematic approach that has the sole purpose of examining the contribution of morphological features.
This includes extracting more morphological attributes other than those that were used in this work, as
well as a more elaborate search for subsets of features that are derived from MaltParser data structures.

We examined different annotation approaches for a few linguistic constructions, such as hayā con-
structions and accusative marker constructions. In most cases, significant advantages to either approach
were not revealed. This can be attributed to the characteristics of this corpus, and in particular its small
size. Another possible explanation may very well be that as long as the annotation is consistent it can
produce reasonable results, regardless of the specific annotation approach. It would be interesting to
see if this is a cross-linguistic phenomenon, e.g., for copula constructions that are challenging in several
languages.

We utilized the fact that the input to the syntactic process is a fully disambiguated gold standard
morphological tier. An interesting extension is to evaluate the parser on data with a morphological tier
that was created automatically. Apart from an obvious decrease in accuracy we expect that this may also
introduce some different effects when examining feature sets or linguistic issues. Another extension to
this work is parsing of Hebrew spoken language from other domains. We leave these research directions
for future research.
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A Dependency Relations

Table 18 summarizes the basic dependency relations we define in this work. We list below all the relations, providing a
brief explanation and a few examples.
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Arguments Modifiers Others
Aagr Mdet Voc

Anonagr Madj Com
Aprep Mpre Coord
Ainf Mposs Srl
Acop Mnoun Enum
Aexs Madv RelCl

Mneg SubCl
Mquant Unk
Msub Punct

Table 18 Taxonomy of dependency relations.

AgreementArgument (Aagr) Specifies the relation between an argument and a predicate that mandates agreement.

(31) Pat “you”
pro:person|gen:fm&num:sg

1|2|Aagr

mes̆aqēret “lie”
part|gen:fm&num:sg

2|0|Root

“You are lying!”

Non-agreementArgument (Anonagr) Specifies any argument of a verb which need not agree with the verb, including indirect
arguments.
(32) Panī “I”

pro:person|num:sg

1|3|Aagr

loP “no”
neg

2|3|Mneg

rocē “want”
part|num:sg

3|0|Root

t.ipōt “drops”
n|num:pl

4|3|Anonagr

“I don’t want drops.”
Subordinate Clause (SubCl) Specifies the relation between a complementizer and the main verb of a subordinate clause.

(33) Patā “you”
pro:person|gen:ms&num:sg

1|2|Aagr

rocē “want”
part|gen:ms&num:sg

2|0|Root

s̆e- “that”
conj:subor

3|2|Anonagr

Panī “I”
pro:person|num:sg

4|5|Aagr

Pesarēq “comb”
v|num:sg

5|3|SubCl

Pet “ACC”
acc

6|5|Anonagr

Patā “you”
pro:person

7|6|Aprep

“Do you want me to comb your hair?”

ArgumentOfPreposition(Aprep) Specifies the relation between a preposition and its argument.
NonFiniteArgument (Ainf) This relation is specified between a verb or a noun in the main clause and its non-finite verbal

argument.

(34) Paz “so”
adv

1|2|Com

titēn “you-let”
v

2|0|Root

le- “to”
prep

3|2|Anonagr

Panī “I”
pro:person

4|3|Aprep

laQavōr “pass”
v

5|2|Ainf

“So let me pass.”

ArgumentOfCopula (Acop) Specifies the relation between a copula and its predicate (either nominal or adjectival). See
Section 7.1 for further discussion regarding this relation.

(35) Dani “Dani”
n:prop

1|2|Aagr

hayā “be”
cop

2|0|Root

s̆am “there”
adv

3|2|Acop

“Dani was there.”

ArgumentOfExistential (Aexs) Specifies a relation between an existential element and a nominal or adjectival predicate.
See Section 7.1 for further discussion regarding this relation.

(36) Pavāl “but”
conj

1|3|Com

kaPn “here”
adv

2|3|Madv

Peyn “is not”
exs

3|0|Root

yarōq “green”
adj

4|3|Aexs

“But there is no green here.”

Mdet Specifies a relation between a determiner and a noun.

(37) ha- “the”
det

1|2|Mdet

Pōzen “ear”
n

2|0|Root

“The ear.”

Madj Specifies a relation between an adjective and a noun.
Mpre Specifies a relation between a dependent preposition and a head noun or a verb.

(38) be- “in”
prep

1|4|Mpre

masrēq “comb”
n|gen:ms&num:sg

2|1|Aprep

Paxēr “different”
adj|gen:ms&num:sg

3|2|Madj

tistarq̄i “you-comb oneself”
v

4|0|Root

“Comb your hair with a different comb.”
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Mposs Specifies a relation between a noun and a subsequent possessive marker, noted by the token ‘̆sel’, headed by the
noun.

(39) Pavāl “but”
conj:coord

1|4|Com

ze “this”
pro:den|gen:ms&num:sg

2|4|Aagr

ha- “the”
det

3|4|Mdet

cad “side”
n|gen:ms&num:sg

4|0|Root

s̆el “of”
prep

5|4|Mposs

Pan̄i “I”
pro:person

6|5|Aprep

“But this is my side.”

Mnoun Specifies a noun–noun relation, where the first noun, the head, is in the construct state.

(40) holkīm “walk”
v

1|0|Root

lanūax “rest”
v

2|1|Ainf

be- “in/at”
prep

3|2|Mpre

cel “shadow”
n

4|3|Aprep

ha- “the”
det

5|6|Mdet

Qec “tree”
n

6|4|Mnoun

“Going to rest in the tree’s shadow.”

Madv Specifies a relation between a dependent adverbial modifier and the verb it modifies.

(41) ma “what”
que

1|2|Anonagr

Qos.īm “do”
part

2|0|Root

Qak. s̆āyw “now”
adv

3|2|Madv

“What do we do now?”

Mneg Specifies a negation of a verb or a noun.

(42) Panī “I”
pro:person|num:sg

1|3|Aagr

loP “no”
neg

2|3|Mneg

mak̄ir “recognize”
part|num:sg

3|0|Root

sipūr “story”
n

4|3|Anonagr

Qal “on”
prep

5|4|Mpre

yans̆ūf “owl”
n

6|5|Aprep

“I don’t know a story about an owl.”

Mquant Specifies a relation between a noun and a nominal quantifier, headed by the noun.

(43) yes̆ “there is”
adv

1|0|Root

le- “to”
prep

2|1|Anonagr

Patā “you”
pro:person

3|2|Aprep

raq “only/just”
qn

4|5|Mquant

bēt.en “stomach”
n

5|1|Aagr

“You only have a stomach.”

Msub Specifies a relation between a nominal element and a relativizer of a relative clause, headed by the nominal element.
The main predicate of the subordinate clause is marked as the dependent of the relativizer with a RelCl relation.

(44) balōn “balloon”
n|gen:ms&num:sg

1|0|Root

s̆e- “that”
conj:subor

2|1|Msub

hitpocēc “explode”
v|gen:ms&num:sg

3|2|RelCl

“A balloon that exploded.”

Voc Specifies a vocative.

(45) Asaf “Asaf”
n:prop

1|3|Voc

, “,”
,

2|3|Punct

tedabēr “speak”
v

3|0|Root

“Asaf, speak up.”

Com Specifies a communicator.

(46) Paz “so”
adv

1|3|Com

huP “he”
pro:persom|gen:ms&num:sg

2|3|Aagr

nafāl “fall”
v|gen:ms&num:sg

3|0|Root

mi- “from”
prep

4|3|Mpre

po “adv”
adv

5|4|Aprep

“So he fell from here.”

Coordination (Coord) Specifies a coordination relation between coordinated items and conjunctions, most commonly we-
“and”, headed by the conjunction.

(47) tagīdi “say”
v

1|7|Com

ze “this”
pro:dem|gen:ms&num:sg

2|3|Aagr

hayā “be”
v|gen:ms&num:sg

3|7|Coord

ks̆e- “when”
conj:subor

4|3|Msub

hayīt “be”
v|gen:fm&num:sg

5|4|SubCl

qt.anā “small”
adj|gen:fm&num:sg

6|5|Acop

we- “and”
conj

7|0|Root

Qak. s̆āyw “now”
adv

8|10|Madv

Pat “you”
pro:person|gen:fm&num:sg

9|10|Aagr

gdolā “big”
adj|gen:fm&num:sg

10|7|Coord

“Tell me, this was when you were little and now you are grown up?”

Serialization (Srl) Specifies a serial verb.

(48) bōPi “come”
v|form:imp&gen:fm&num:sg

1|2|Srl

nevaqēr “visit”
v

2|0|Root

maxār “tomorrow”
adv

3|2|Madv

Pet “ACC”
acc

4|2|Anonagr

PīmaP “mother”
n

5|4|Aprep

s̆el “of”
prep

6|5|Mposs

hiP “she”
pro:person

7|6|Aprep

“Let’s visit her mother tomorrow.”

Enumeration (Enum) Specifies an enumeration relation.

24



(49) Paxāt “one”
num

1|11|Enum

, “,”
,

2|11|Punct

s̆tāyim “two”
num

3|11|Enum

, “,”
,

4|11|Punct

s̆alōs̆ “three”
num

5|11|Enum

, “,”
,

6|11|Punct

PārbaQ “four”
num

7|11|Enum

, “,”
,

8|11|Punct

xamēs̆ “five”
num

9|11|Enum

, “,”
,

10|11|Punct

s̆es̆ “six”
num

11|0|Root

“One, two, three, four, five, six.”

Unknown (Unk) Specifies an unclear or unknown word — most commonly a child invented word — which appears discon-
nected from the rest of the utterance and often functions as a filler syllable.

(50) boP “come”
v

1|2|Srl

naQas.e “do”
v

2|0|Root

parcūf “face”
n

3|2|Anonagr

s̆el “of”
prep

4|3|Mposs

e “e”
chi

5|2|Unk

s.aqīt “bag”
n

6|4|Aprep

“Let’s make a face of a bag.”

Punctuation (Punct) Specifies a punctuation mark, always attached to the root.

(51) Pat “you”
pro:person|gen:fm&num:sg

1|3|Aagr

loP “no”
neg

2|3|Mneg

crik. ā “necessary”
adj|gen:fm&num:sg

3|0|Root

lefaxēd “be scared”
v

4|3|Ainf

, “,”
,

5|3|Punct

xamudā “cute”
n|gen:fm&num:sg

6|3|Voc

. “.”

.

7|3|Punct

“You shouldn’t be scared, sweety.”

B The effect of MaltOptimizer

B.1 The features chosen by MaltOptimizer

The Stack non-projective eager algorithm uses three data structures: a stack Stack of partially processed tokens; a queue
Input which holds nodes that have been on Stack; and a queue Lookahead which contains nodes that have not been on
Stack. This algorithm facilitates the generation of non-projective trees using a SWAP transition which reverses the order
of the top two tokens on Stack by moving the top token on Stack to Input. The recommended feature set for the All-All
configuration is depicted in Table 19. The features reflect positions within these data structures, where ‘0’ indicates the first
position. For example, the feature ‘POSTAG (Stack[0])’ specifies the part-of-speech tag of the token in the first position
(i.e., the top) of the Stack data structure. The NUM, GEN, PERS and VERBFORM features are short for the number,
gender, person and verb form morphological features, respectively. Merge and Merge3 are feature map functions which
merge two feature values and three feature values into one, respectively. ldep returns the leftmost dependent of the given
node; rdep return the rightmost dependent; head returns the head of the node. For definitions of the rest of the features,
refer to Nivre et al. (2007).

POSTAG (Stack[0])

POSTAG (Stack[1])

POSTAG (Stack[2])

POSTAG (Input[0])

POSTAG (Lookahead[0])

POSTAG (Lookahead[1])

Merge(POSTAG (Stack[1]), POSTAG (Stack[0]))

Merge3(POSTAG (Stack[2]), POSTAG (Stack[1]), POSTAG (Stack[0]))

Merge3(POSTAG (Stack[1]), POSTAG (Stack[0]), POSTAG (Lookahead[0]))

Merge3(POSTAG (Stack[0]), POSTAG (Lookahead[0]), POSTAG (Lookahead[1]))

DEPREL, ldep(Stack[0])

DEPREL, rdep(Stack[0])

DEPREL, ldep(Stack[1])

POSTAG, ldep(Stack[1])

DEPREL, rdep(Stack[1])

Merge3(POSTAG (Stack[1]), DEPREL, ldep(Stack[1]), DEPREL, rdep(Stack[1]))

FORM (Stack[0])

FORM (Stack[1])

FORM (Lookahead[0])

LEMMA (Stack[1])

LEMMA (Stack[2])

NUM (Stack[0])

GEN (Stack[0])

PERS (Stack[0])

VERBFORM (Stack[0])

Table 19 In-domain, All-All configuration, MaltOptimizer recommended feature set.
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B.2 MaltParser’s default features

MaltParser’s default parsing algorithm is Nivre arc-eager (Nivre, 2003), which uses two data structures: a stack Stack of
partially processed tokens and a queue Input of remaining input tokens. The feature set used by Nivre-arc is depicted in
Table 20.

POSTAG (Stack[0])

POSTAG (Stack[1])

POSTAG (Input[0])

POSTAG (Input[1])

POSTAG (Input[2])

POSTAG (Input[3])

DEPREL (Stack[0])

DEPREL, ldep(Stack[0])

DEPREL, rdep(Stack[0])

DEPREL, ldep(Input[0])

FORM (Stack[0])

FORM (Input[0])

FORM (Input[1])

FORM, head(Stack[0])

Table 20 In-domain, All-All configuration, MaltParser default feature set.

B.3 The features chosen by MaltOptimizer for the out-of-domain configuration

The feature set for the out-of-domain configuration suggested by MaltOptimizer is depicted in Table 21. The similarities
between the suggested MaltOptimizer configurations of the in-domain and out-of-domain scenarios are not surprising, as
the training set of the in-domain scenario is a subset of the training set of the out-of-domain scenario.

POSTAG (Stack[0])

POSTAG (Stack[1])

POSTAG (Stack[2])

POSTAG (Lookahead[0])

POSTAG (Lookahead[1])

POSTAG (Lookahead[2])

Merge(POSTAG (Stack[1]), POSTAG (Stack[0]))

Merge3(POSTAG (Stack[2]), POSTAG (Stack[1]), POSTAG (Stack[0]))

Merge3(POSTAG (Stack[1]), POSTAG (Stack[0]), POSTAG (Lookahead[0]))

Merge3(POSTAG (Stack[0]), POSTAG (Lookahead[0]), POSTAG (Lookahead[1]))

Merge3(POSTAG (Lookahead[0]), POSTAG (Lookahead[1]), POSTAG (Lookahead[2]))

DEPREL, ldep(Stack[0])

DEPREL, rdep(Stack[0])

DEPREL, ldep(Stack[1])

POSTAG, ldep(Stack[1])

DEPREL, rdep(Stack[1])

Merge3(POSTAG (Stack[0]), DEPREL, ldep(Stack[0]), DEPREL, rdep(Stack[0]))

Merge3(POSTAG (Stack[1]), DEPREL, ldep(Stack[1]), DEPREL, rdep(Stack[1]))

Merge(POSTAG (Stack[1]), FORM (Lookahead[0]))

FORM (Stack[0])

FORM (Stack[1])

FORM (Lookahead[0])

LEMMA (Stack[0])

LEMMA (Lookahead[0])

LEMMA (Stack[1])

NUM (Stack[0])

GEN (Stack[0])

PERS (Stack[0])

VERBFORM (Stack[0])

NUM (Stack[1])

GEN (Stack[1])

PERS (Stack[1])

VERBFORM (Stack[1])

Table 21 Out-of-domain, All-All configuration, MaltOptimizer recommended feature set.
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