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Abstract. Finite-state technology is considered the preferred model for
representing the phonology and morphology of natural languages. The
attractiveness of this technology for natural language processing stems
from four sources: modularity of the design, due to the closure proper-
ties of regular languages and relations; the compact representation that
is achieved through minimization; efficiency, which is a result of linear
recognition time with finite-state devices; and reversibility, resulting from
the declarative nature of such devices.

However, when wide-coverage grammars are considered, finite-state
technology does not scale up well, and the benefits of this technology
can be overshadowed by the limitations it imposes as a programming en-
vironment for language processing. This paper focuses on several aspects
of large-scale grammar development. Using a real-world benchmark, we
compare a finite-state implementation with an equivalent Java program
with respect to ease of development, modularity, maintainability of the
code and space and time efficiency. We identify two main problems,
abstraction and incremental development, which are currently not ad-
dressed sufficiently well by finite-state technology, and which we believe
should be the focus of future research and development.

1 Introduction

Finite-state technology (FST) denotes the use of finite-state devices, such as au-
tomata and transducers, in natural language processing (NLP). Since the early
works which demonstrated the applicability of this technology to linguistic repre-
sentation [1,2,3], FST is considered adequate for describing the phonological and
morphological processes of the world’s languages [4,5]. Even non-concatenative
processes such as circumfixation, root-and-pattern morphology or reduplication,
were shown to be in principle implementable in FST [6,7].

The utility of FST for NLP was emphasized by the implementation of several
toolboxes which provide extended regular expression languages and compilers
which convert expressions to finite-state automata and transducers. These in-
clude INTEX [8]; FSM [9], which is a unix-based set of programs for manipu-
lating automata and transducers; FSA Utilities [10], which is a freely available,
Prolog implemented system; and XFST [5], which is a commercial package as-
sumed to be the most suitable for linguistic applications by providing the most
expressive language.
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The benefits of FST for NLP stem from several properties of finite-state
devices:

True representation: Following the pioneering work of Johnson [1], it is now
clear that the kind of phonological and morphological rules that are common
in linguistic theories can be directly implemented as finite-state relations.
The implementation of linguistically motivated rules in FST is therefore
straightforward and direct [11].

Modularity: The closure properties of regular languages and relations provide
various means for combining regular expressions, supporting a variety of
operations on the languages these expressions denote. For example, closure
under union facilitates a separate development of two grammar fragments
which can then be directly combined in a single operation. The most useful
operations under which transductions are closed is probably composition,
which is the central vehicle for implementing replace rules [3,11].

Compactness: Finite-state automata can be minimized, guaranteeing that for
a given language, an automaton with a minimal number of states can al-
ways be generated. Toolboxes can apply minimization either explicitly or
implicitly to improve storage requirements.

Efficiency: When an automaton is deterministic, recognition is optimally ef-
ficient (linear in the length of the string to be recognized). Automata can
always be determinized, and toolboxes can take advantage of this to improve
time efficiency.

Reversibility: Finite-state automata and transducers are inherently declara-
tive: it is the application program which either implements recognition or
generation. In particular, transducers can be used to map strings from the
upper language to the lower language or vice versa with no changes in the
underlying finite-state device.

These benefits encouraged the development of several large-scale morphological
grammars for a variety of languages, including some with complex morphology
such as German, French, Finnish, Turkish, Arabic and Hebrew.

The main claim of this paper, however, is that finite-state technology is still
inferior to its alternatives when the development of large-scale grammars is con-
cerned. This claim is supported by a realistic experiment defining a sophisticated
morphological task, both using FST (section 2) and with a direct implementa-
tion in Java of the same grammar (section 3). We compare the two approaches
in section 4 along several axes. The conclusion (section 5) is the identification
of two main Achilles Heels in contemporary technology: the lack of abstrac-
tion mechanisms and the computational burden of incremental changes. We
believe that these two issues should be the focus of future research in finite-state
technology.

2 A Motivating Example

In order to evaluate the scalability of finite-state technology we consider, as
a benchmark, a large-scale task: accounting for the morphological and ortho-
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graphic phenomena of Hebrew, a natural language with non-trivial morphology.
Clearly, languages with simple morphology (e.g., English) do not benefit from
FST approaches, simply because it is so inexpensive to generate and store all the
inflected forms. It is only when relatively complicated morphological processes
are involved that the benefits of FST become apparent, and Hebrew is chosen
here only as a particular example; the observations reported in section 4 are
valid in general, for all similar tasks.

Hebrew, like other Semitic languages, has a rich and complex morphology. The
major word formation machinery is root-and-pattern, where roots are sequences
of three (typically) or more consonants and patterns are sequences of vowels and,
sometimes, also consonants, with “slots” into which the root’s consonants are
inserted. After the root combines with the pattern, some morpho-phonological
alterations take place, which may be non-trivial. The combination of a root
with a pattern produces a lexeme, which can then be inflected in various forms.
Inflectional morphology is highly productive and consists mostly of suffixes, but
sometimes of prefixes or circumfixes. The morphological problems are amplified
by issues of orthography. The standard Hebrew script leaves most of the vowels
unspecified. Furthermore, many particles, including prepositions, conjunctions
and the definite article, attach to the words which immediately follow them. As
a result, surface forms are highly ambiguous.

The finite-state grammar which we used as a benchmark here is HAMSAH
[12], an XFST implementation of Hebrew morphology. The grammar is obtained
by composing a large-scale lexicon of Hebrew (over 20,000 entries) with a large
set of rules, implementing mostly morphological and orthographic processes in
the language. As the lexicon is developed independently [13] and is represented
in XML, it must be converted to XFST before it can be incorporated in the
grammar. This is done by a set of Perl scripts which had to be specifically
written for this purpose. In other words, the system itself is not purely finite-
state, and we maintain that few large-scale systems for morphological analysis
can be purely finite-state, as such systems must interact with independently
developed components such as lexicons, annotation tools, user interfaces etc.

A specialized set of rules implements the morphological processes which apply
to each major part of speech. For example, figure 1 depicts a somewhat simplified
version of the rule which accounts for the wt suffix of Hebrew nouns. This rule
makes extensive use of composition (denoted by ‘.o.’) and replace rules (‘->’
and ‘<-’). The effect of this rule is dual: on the surface level, it accounts for
alterations in the concatenation of the suffix with the stem (e.g., iih becomes ih,
wt changes to wi and a final h or t are elided); on the lexical level, it changes
the specification of number from singular to plural.

The rule should be read from the center outwards. The variable noun de-
notes the set of all lexical items whose part of speech is noun; by default, these
nouns are singular masculine. In XFST, a set of words is identified with with
the identity transduction which relates each word in the set with itself. The first
composition on top of the noun transduction selects only those nouns whose
plural attribute is lexically specified as wt (other nouns may be lexically speci-
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fied for a different plural suffix). Of those, only the ones whose number attribute
is singular are selected. Then, the value singular in the lexical (upper) string
is replaced by plural in the context of immediately following the attribute
number. In the surface (lower) language, meanwhile, a set of compositions op-
erators takes care of the necessary orthographic changes, and finally, the plural
suffix wt is concatenated to the end of the surface string.

define pluralWTNoun [
[
[ plural <- singular || number _ ]
.o. $[number singular]
.o. $[plural wt]
.o. noun
.o. [ i i h -> i h || _ .#. ]
.o. [ i t -> i || _ .#. ]
.o. [ w t -> w i || _ .#. ]
.o. [ [h|t] -> 0 || _ .#. ]
] [ 0 .x. [w t] ]
];

Fig. 1. XFST account of plural nouns

This rule is a good example of how a single phenomenon is factored out
and accounted for independently of other phenomena: the rule refers to lexi-
cal information, such as ‘number’ or ‘plural’, but completely ignores irrelevant
information such as, say, gender. However, it also hints at how information is
manipulated by regular expressions. Since finite-state networks have no memory,
save for the state, all information is encoded by strings which are manipulated
by the rules. Thus, a simple operation such as changing the value of the number
feature from singular to plural must be carried out by the same replace rules
which account for the changes to the surface form. Furthermore, there is no way
to structure such information, as is common in programming languages; and
there is no way to encapsulate it.

3 An Alternative Implementation

We re-implemented the HAMSAH grammar directly as a Java program. The
method we used was analysis by generation: we first generated all the inflected
forms induced by the lexicon and store them in a database; then, analysis is
simply a database lookup. It is common to think that for languages with rich
morphology such a method is impractical. While this may have been the case
in the past, contemporary computers can efficiently store and retrieve millions
of inflected forms. Of course, this method would break in the face of an infi-
nite lexicon (which can easily be represented with FST), but for most practical
purposes it is safe to assume that natural language lexicons are finite.
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To separate linguistic knowledge from processing code as much as possible, our
Java implementation uses a database of rules, which are simple string transduc-
tions intended to account for simple (mostly morpheme boundary) morphologi-
cal and orthographic alterations. When generating inflected forms, the program
identifies certain conditions (e.g., a plural suffix wt is to be attached to a noun).
It then looks up this condition in the rule database and retrieves the action
to apply, depending on the suffix of the input string. An example of the rule
database, with alterations pertaining to the suffix wt (cf. figure 1), is depicted in
figure 2. For most morphological processes, solutions such as this can accurately
stand for linguistic rules of the form depicted in figure 1.

When input ends in: iih it wt h, t default
Replace it by: ih i wi ε
Then add: wt wt wt wt wt

Fig. 2. Direct account of plural nouns

Note that rules such as the one depicted in figure 2 are generation rules,
and must not be confused with the kind of ad-hoc rules used at run time for,
e.g., stemming. They fully reflect the linguistic knowledge encoded in finite-state
replace rules. Granted, the example rule is simplistic, and more complex phe-
nomena require more complicated representation, but since most of morphology
takes place along morpheme boundaries, this is a reasonable representation.

The morphological analyzer was obtained by directly implementing the rules
and applying them to the lexicon. The number of inflected forms (before at-
taching prefixes) is 473,880 (over 300,000 of those are inflected nouns, and close
to 150,000 are inflected verb forms). In addition to inflected forms, the analyzer
also allows as many as 174 different sequences of prefix particles to be attached
to words; separation of prefixes from inflected forms is done at analysis time. The
direct implementation is equivalent to the finite-state grammar: this was verified
by exhaustively generating all the inflected forms with each of the systems and
analyzing them with the other system.

4 Comparison and Evaluation

Having described the XFST benchmark grammar and its direct Java implemen-
tation, we now compare the two approaches along several axes. It is important
to emphasize that we do not wish to compare the two systems, but rather the
methodology. In particular, we chose XFST as it is one of the most efficient, and
certainly the most expressive, FST toolbox available. A recent comparison of
XFST with the FSA Utilities package [14] shows that the latter simply cannot
handle grammars of the scale of HAMSAH. The following is a list of issues in
which finite-state technology turned out to be problematic compared with the
alternative; in the next section we focus on issues that we believe should be given
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more attention in future research on FST. All experiments were done on a dual
2GHz processor Linux machine with 2.5Gb of memory.

Truthfulness. One of the assets of FST is that it allows for a very accurate
implementation of linguistic rules. However, a good organization of the software
can provide a clear separation between linguistic knowledge and processing in
any programming environment, so that linguistic rules can be expressed concisely
and declaratively, as exemplified in figure 2.

Reversibility. A clear advantage of FST is that grammars are fully reversible.
However, with the analysis by generation paradigm the same holds also for a
direct implementation: the generator is directly implemented, and the analyzer
is implemented as search in the database of generated forms.

Expressivity. Here, the disadvantages of finite-state technology as a program-
ming environment are clear. Programming with finite-state technology is very
different from programming in ordinary languages, mainly due to the highly
constrained expressive power of regular relations (programmers sometimes feel
that they are working with their hands tied behind their backs). While FST can
theoretically account for non-concatenative processes, existing toolboxes pro-
vide a partial, and sometimes overly complicated, solutions for such problems.
Sometimes a trans-regular operation is called for, and many other times the
constrained expressivity of regular relations is too limiting.

Portability. XFST is a proprietary package with three versions available for three
common operating systems. Other finite-state toolboxes are freer; FSA is open
source, but as we noted earlier it simply cannot cope with grammars the size
of HAMSAH. FSM is available for a variety of Unix operating systems, as a bi-
nary only, whereas INTEX is distributed as a Windows executable. In contrast,
a Java implementation can be delivered to users with all kinds of (contempo-
rary) operating systems and hardware, and is optimally portable. The practical
portability limitations directly hamper the utilization of finite-state technology
in practical, commercial systems.

Abstraction. Large-scale morphological grammars tend to be extremely non-
modular. Each surface string is associated, during its processing, with a lexical
counterpart which describes its structure. The lexical string is constantly re-
written by the rules, as in figure 1. Due to the inherent sequentiality of strings, all
the information which is associated with surface strings is encoded sequentially.
In particular, adding a piece of information (e.g., adding the feature gender to an
existing grammar which did not specify this property) requires a change in all the
rules which account for this information; there is no way to abstract away from
the actual implementation of this information, and the grammar developer must
be consistent with respect to where this information is specified (i.e., whether it
precedes or follows information on number).

Since information cannot be encapsulated and the language provides no ab-
straction mechanisms, collaborative development of finite-state grammars is dif-
ficult. All grammar developers must be aware of how information is represented
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at all times. Furthermore, since the only data type is strings, debugging becomes
problematic: very few errors can be detected at compile time.

In contrast, a direct Java implementation benefits from all the advantages of
developing in an object-oriented environment. For example, the modules which
inflect nouns and adjectives inherit from the same module, accounting for all
nominals, which in turn inherits from a general module of inflection rules.

Collaborative development. A different facet of modularity has to do with the
qualifications of the grammar developers. In order to take advantage of the full
power of XFST, grammar developers must be simultaneously trained linguists
and experienced programmers. With a direct implementation, a true interdisci-
plinary collaboration is enabled where a linguist can be in charge of characteriz-
ing the linguistic phenomena (and building the rule database) and a programmer
can be responsible only for the actual implementation.

Maintenance. A by-product of the non-modularity of FST grammars is that
maintaining them is difficult and expensive. It is hard to find a single person who
is knowledgeable in all aspects of the design, and any change in the grammar is
painful. This must be added to the poor compile-time performance, which again
hampers maintainability.

Compile-time efficiency. A major obstacle in the development of XFST gram-
mars is the speed of compilation. As is well known, many of the finite-state oper-
ators result in huge networks: theoretically, composition of networks of m and n
states yields a network with O(m×n) states, and replace rules are implemented
using composition. This leads to temporary networks which are sometimes larger
than the available memory, requiring disk access and thereby slowing compila-
tion down dramatically. While automata can always be minimized, this is not
the case for transducers [15].

Theoretically, it is very easy to come up with very small regular expressions
whose compilation is intractable. For any integer n > 2, there exists an n-
state automaton A, such that any automaton that accepts the complement of
L(A) needs at least 2n−2 states [16]. An example of an XFST expression whose
compilation time is exponential in n is: ~[ [a|b]* a [a|b]^n b [a|b]* ]. In
practice, the complete Hebrew grammar is represented, in XFST, by a network of
approximately 2 million states and 2.2 million transitions. Compiling the entire
network takes over 48 minutes and requires 3Gb of memory.

Compilation time is usually considered a negligible criterion for evaluating
system performance. However, when developing a large-scale system, the ability
to make minor changes and quickly re-make the system is crucial. With XFST,
modification of even a single lexical entry requires at least an intersection of
(the XFST representation of) this entry with the network representing the rules
which apply to it. As a concrete example, adding a single two-character proper
name (which does not inflect) to the lexicon increased the size of the network
by 9 states and 10 arcs, but took almost three minutes to compile. Adding a
two-character adjective resulted in the addition of 27 states and 30 arcs, and
took about the same time.
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In the direct implementation, modification of a single lexical entry requires
generation of all inflected forms of this entry, which takes a fraction of a second;
the time it takes to generate k lexical entries is proportional to k and is inde-
pendent of the size of the remainder of the system. The analysis program is not
altered.

To summarize the differences, figure 3 shows the time it takes to compile a
network when k lexical entries are modified, for three values of k, corresponding
to the number of adjectives, adverbs and the size of the entire lexicon. This
time is compared with the time it takes to generate all inflected forms of these
sub-lexicons in the analysis by generation paradigm.

#items 360 (adverbs) 1,648 (adjectives) 21,400 (all)
FST 13:47 13:55 48:12
Java 0:14 3:59 30:34

Fig. 3. Compilation/generation times (in minutes) when some lexical items change

Run-time efficiency. While finite-state automata guarantee linear recognition
time, this is not the case with transducers, which cannot always be determinized
[17]. Even when a device can be determinized, the determinization algorithm is
inefficient (theoretically, the size of the deterministic automaton can be expo-
nential in the size of its non-deterministic counterpart).

As it turns out, storing a database of half a million inflected forms (along
with their analyses) is inexpensive, and retrieving items from the database can
be done very efficiently. We experimented with two versions: one uses MySQL
as the database and the other loads the inflected forms into a hash table. In this
latter version, most of the time is spent on loading the database, and retrieval
time is negligible.

We compared the performance of the two systems on four tasks, analyzing text
files of 10, 100, 1,000 and 10,000 tokens. The results are summarized in figure 4,
and clearly demonstrate the superiority of the direct implementation. In terms of
memory requirements, XFST requires approximately 57Mb of memory, whereas
the Java implementation uses no more than 10Mb. This is not a significant issue
with contemporary hardware.

5 Discussion

We compared the process of developing a large-scale morphological grammar for
Hebrew with finite-state technology with a direct implementation of the mor-
phological rules in Java. Our conclusion is that finite-state technology remains
superior to its alternatives with respect to the true representation of linguistic
knowledge, and is therefore more adequate for smaller-scale grammars, especially
those whose goal is to demonstrate specific linguistic phenomena rather than
form the basis of large practical systems. However, viewed as a programming
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#Tokens 10 100 1,000 10,000
FST 1.25 2.40 12.97 118.71
Java+MySQL 1.24 3.04 8.84 44.94
Java+Hash 5.00 5.15 5.59 7.64

Fig. 4. Time performance of both analyzers (in seconds)

environment, FST suffers from severe limitations, the most significant of which
are lack of abstraction and difficulties in incremental processing.

Abstraction is the essence of computer science and the key to software de-
velopment. Working with regular expressions and developing rules which use
strings as the only data structure does not leave much space for sophisticated
abstraction. Several works attempt to remedy this problem. XFST itself provides
a limited solution, in the form of flag diacritics [5]. These are feature-value pairs
which can be added to the underlying machines in order to add limited memory
to networks; a similar solution, which is fully worked-out mathematically, is pro-
vided by finite-state registered automata [7]. These approaches are too low-level
to provide the kind of abstraction that programmers have become used to. A step
in the right direction is the incorporation of feature structures and unification
into finite-state transducers [18], and in particular the recent proposal to use
typed feature structures as the entities on which such transducers operate [19].
More research is needed in order to fully develop this direction and incorporate
its consequences into a finite-state based grammar development framework.

The problem of incremental grammar development, exemplified in figure 3,
can also be remedied by incorporating some recent theoretical results, in partic-
ular in incremental construction of lexicons [20,21], into an existing framework.
Ordinary programming languages benefit from decades of research and innova-
tion in compilation theory and optimization. In order for finite-state technology
to become a viable programming environment for natural language morphology
applications, more research is needed along the lines suggested here.
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