FG 2006:
The 11th conference on
Formal Grammar

Malaga, Spain, July 29-30, 2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION

Preface

Welcome to FG-2006, the 11th conference on Formal Gramnhés.year's
conference includes 12 contributed papers covering, ad,uswide range of
areas of formal grammar. In addition to the papers includetthis volume,
the conference features also two invited talks by

= Josef van Genabith, Dublin City University
= Laura Kallmeyer, Universitat Tubingen

We are grateful to the members of the Program Committee &r telp
in reviewing and ranking the twenty four submissions: Anrieeifle (Paris
7, FR), Pierre Boullier (INRIA, FR), Gosse Bouma (Groningih), Chris
Brew (Ohio State, US), Wojciech Buszkowski (Poznan, PL)ri&fh Butt
(Universitaet Konstanz, DE), Alexander Clark (Royal Hallyy University,
UK), Berthold Crysmann (DFKI, DE), Philippe de Groote (LORIFR),
Denys Duchier (LORIA, FR), Tim Fernando (Trinity Colleg&;)] Annie
Foret (IRISA - IFSIC, FR), Nissim Francez (Technion, IL),rGard Jaeger
(University of Bielefeld, DE), Aravind Joshi (UPenn, US)akbto Kanazawa
(National Institute of Informatics), Stephan Kepser (Tinglen, DE), Alexan-
dra Kinyon (University of Pennsylvania, US), Geert-JaniifyDFKI, DE),
Shalom Lappin (King’s College, UK), Larry Moss (Indiana, })Stefan
Mueller (Universitaet Bremen, DE), Mark-Jan Nederhof (M&l&nck Insti-
tute for Psycholinguistics, NL), James Rogers (Earlhamegel US), Ed
Stabler (UCLA, US), Hans Joerg Tiede (lllinois Wesleyan) |Ul&sse Tseng
(LORIA, FR), Willemijn Vermaat (Utrecht, NL), Anssi Yli-hae (Helsinki,
FI).

We are indebted to all the authors who submitted papers tongeting,
and to all participants of the Confernece.

Paola Monachesi, Gerald Penn, Giorgio Satta and Shuly Wintiuly 2006

Contents

1 Treating clitics with Minimalist Grammars 1
M AXIME AMBLARD

2 Logical Grammars with Emptiness 15
Houpa ANoUN & A LAIN LECOMTE

3 P-TIME Decidability of NL1 with Assumptions 29
MaRrIiA BuLINska

4 Program Transformations for Optimization of Parsing
Algorithms and Other Weighted Logic Programs 39
JasoN E1sNER AND JoHN BrLaTz

5 On Theoretical and Practical Complexity of TAG Parsers
CarLos GOMEZ-RoDpRIGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

6 Properties of Binary Transitive Closure Logic over Trees
SrePHAN KEPSER

7 Pregroups with modalities 91
ALEKSANDRA KisLAK-MALINOWSKA

8 Simpler TAG Semantics through Synchronization 103

ReBEccA NESSON AND STUART SHIEBER

9 Encoding second order string ACG with Deterministic Tree

Walking Transducers. 119
SYLVAIN SALVATI

61

vi / FG-2006

10 Sidewards without copying 133
EpwarD P. STABLER

11 English prepositional passives in HPSG 147
JEsSE TSENG

12 Linearization of Affine Abstract Categorial Grammars 161
Ryo Y OsHINAKA

1

Treating clitics with Minimalist
Grammars

M AXIME AMBLARD

Abstract

We propose an extension of Stabler’s version of cliticsttneat for a wider coverage
of the french language. For this, we will present the lexagties needed in the lexicon.
Then, we will show the recognition of complex syntactic pbraena as (left and right)
dislocation, clitic climbing over modal and extractionritaleterminer phrase. The main
goal of this presentation is the syntax-semantic interfacelitics analyses in which we
will stress on clitic climbing over verb and raising verb.

Keywords MINIMALIST GRAMMARS, SYNTAX-SEMANTIC INTERFACE, A-CALULUS, CLI-
TICS.

Minimalist Grammars (MG) is a formalism which was introddde Sta-
bler (1997), based on the Minimalist Program, Chomsky (19%Be main
idea which is kept from the Minimalist Program is the introtion of con-
stituent move in the formal calculus. Such a “move” operafittroduces
flexibility in a system which seems to be like Categorial Gnaans (CG). We
try to recover the correspondance in CG, between syntatrtictares and
logical forms (interpretative level of the sentence).

This formalisation introduces constraints on the use ofenoles, and by
this way makes the syntactic calculus decidable. Thesergeamare lexi-
calised and all steps of the analysis are triggered by tloerimdtion extracted
from the lexicon: from a sentence, it selects a subset of svdral each word
corresponds a sequence of features, and it is the first etevhtire sequence
in the derivation which triggers the next rules.

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

2/ MAXIME AMBLARD

An advantage of this system is that the structure of the tadds con-
stant. The coverage of the grammar is extended by adding lemaeats to
the lexicon, never by adding new structural rules. The #finat system of
these grammars contains only two kinds of rules: move angjen@aut ex-
tensions exist for both). We refer the reader to Stabletislas and others for
presentation of the use of MG, Stabler (1997), Vermaat (1.999

Clitics are the normal form for pronoun in romance langudde syn-
tactic and semantic behavior of clitics in these languagesamplex. For
French, clitics often climb over auxiliary verb. Ed Staljpeoposes in Stabler
(2001) a partial lexicon for french clitics recognition aaaalysis.

We propose here to extend this lexicon to several well-knbnguis-
tic problems. These problems interfere affefient levels of analysis. Sub-
ject raising is typically a semantic question whereas thie dlimbing over
modals is a syntactic question. We propose a new lexicontgosyintactic
analysis and then we will show how our semantic interfaceesosemantic
questions.

We will use the description of clitics proposed by PerimuittePerimutter
(1971). He proposes a filter to recognize the right orderit€slfor romance
languages, from where we extract the subfilter:

[{je/tu/---}Ind{me/te/se - - - }I{le/la/les/ - - - }[{lui/leur}|yler].

[nominative| negative reflexive| accusative dative| locative| genitive].

In the first part, we propose an extension of Stabler’s varsioclitics
treatment for a wider coverage of the french language. Her the will
present the lexical entries needed in the lexicon. Then, vlleshow the
recognition of complex syntactic phenomena as (left anhtyidislocation,
clitic climbing and extraction from determiner phrase. Thain goal of this
presentation is the last part: the syntax-semantic irgerfiar clitics analyses
in which we will stress on clitic climbing over verb and raigiverb.

1.1 Lexicon for french clitics
1.1.1 Stabler analysis

Stabler’s works on clitics are inspired by Sportiche Spbi (1992), who
proposes the following treatment:

Clitics are not elements moved from position XBut are coreferent to
this position. The clitics appearing in the structure bditha features their
co-refering XP would bear. Furthermore, clitics do not form an autonomous
syntactic object, but they are built into a unit with somethos

In this work, two parts in the cliticization are distinguézh The first one
is an empty element which takes an argumental position fl@wverb. The

TREATING cLITIcS WITH MG / 3

second is the phonological treatment of the unit - the clitiche surface
structure.

We introduce lexical entries which are phonologically eyrintt carry spe-
cial features which need to be unified with features of thenphagical part
of the clitic. The two diferent parts are connected by a move operation. If just
one of these items occurs in the sentence, derivation fails.

We sum up this treatment in the derivation as follows - theogation
recall the main feature of the word and the annotation o tieeall the word
which eisthetrace

(1) donnee_¢

Jeany la,g donnee_g = Jeany la donnegy
t. Jeany la donneg,

Jean { tjeanla donneg;,.

John t tyeanit givese.

John give it.

In more details, the derivation is the following:

Derivation 1 Derivation of Jean la donne

Lexicon:
Jean D -k e =TC e D-k-G
donne V e =>V=D+k=Dv
€ =Acc3+kT | la =v+G Acc3

Derivation step by step:

1.
2.

3.

selection of lexical entry : [donne :: V]

selection of lexical entry ::: =>V =D +k =D v] (which adds the
syntactic component to the verb).

head movement. This is a merge between the two previomemte
where The phonological part of the argument moves to the @bgi
cal part of the head.

. selection of lexical entry :: D -k -G]. This is the empty argumental

verb position.

. merge.
. There is a licensee “k” in first position, a move operatisrtiiggered.

After this step, the derivation tree is :

e:=Dv
/donng

4 /| MAXIME AMBLARD

7. selection of lexical entry : [Jean :: D -k].
8. merge.
9. selection of lexical entry : [la :=v +G Acc3], the clitic takes part in
the derivation.
10. merge.
11. move : the feature in the empty argument of the verb anféttere in
the clitic are cancelled.
12. selection of lexical entry €[:: =Acc3+K T] - to the end of the deriva-
tion.
13. merge.
14. move : resolution of nominative case :

>

Jean :: <

Rea N

la:: >

e/ /\
| €
>

/\
€l <
/donng S
€
15. selection of lexical entry €f: =T C] - empty “complement” position.
16. merge ; end of the derivation with feature 'c’ : acceptanc

In his presentation, Stabler proposes a lexicon for acmasatative and
reflexive clitics recognition. He ensures the right ordethvgeveral verbal
types. The analysis is driven by the head and the next clitidetroduce
will have to be assigned verbal type as they occur in the Retmnfilter's
order.Stabler uses the SMC - shortest move condition - ttudedhe use of
a reflexive and an accusative clitics in the same sentence.

1.1.2 Extension: genitive, oblique and nominative clitics

We can extend this first approach of french clitics treatnerdther cases,
in particular genitive, oblique and nominative. This sectwill present the
lexical entries and the process of acceptance of derivation

We call “state of a verb” the basic type of the head currendlydied. For
example, if a verb has a accusative clitic its type will be ¢Ac

TREATING cLITIcS WITH MG / 5

For genitive and oblique clitics, we just add in the lexicamo thew empty
argumental positions and a list of possible types for eaitib.cl

In a first time, we introduce a new verbal type for beginnirg tliticiza-
tion and another where the cliticization is finished. We tiadim “clitic” and
“endclitic”.

Following the Perlmutter filter Perlmutter (1971), the ficfitic we have
to treat for keeping the right order is the genitive one. Wet @adenitive state
which is connected to the “clitic” state. The verbal stategas to the genitive
state by means of a lexical entry the phonological form ofchhis “en” and
carries a licensee feature“en”:

[en] :: [clitic <=, +EN, genitif].

From this state we pass to all the other states of the chitiicin, for exam-
ple :
[le] :: [genitif <=, +G, acq.
and if there is only a genitive clitic, we use phonologicaltypty entry to
go to the end of the cliticization.

[1 :: [genitif <=, finclitic].

The “oblique” clitics are treated the same way, except ttahf“oblique”
it is impossible to go back to “genitive”. All lexical entseof this type have
a “y” phonological form.

[y] :: [clitic <=, +Y, obliquq.
[V] :: [genitive<=, +Y, obliqud.

In the same way, from oblique we can pass to other possilile states,
as for example :

[le] :: [oblique<=, +G, acq.
[leur] :: [oblique<=, +F, daf].
[] :: [oblique<=, finclitic].

The nominative case is treated the same way. But the usesgdribcedure
to add new clitic treatment is quadratic in the number ofdakentries. For
the nominative pronoun, a discussion could be opened aritainlitic state.
We consider here that they are clitics.

Another discussion about negative form could rise arouadtatus of the
negation marker whose position is after the pronoun.

For the moment, we do not treat the negative form in a right s@yve
will not include it in this presentation, but we assume tieg treatment of
nominative clitics is outside the clitic cluster. All the @iological pronoun
entries take a verbal form in “endclitic” state and give a n@sbal form in
“Nom’”(inative) state.

6/ MAXIME AMBLARD

We add an empty verb argument which must be included in theadiem
before the clitic treatment:

[1:[d,—Subj—casé.
The sketch of the analysis is:

* ladonnes_nome
» Jesupjla donnee_nome
= Jetjela donnee
It itgivee
| give it
We add in the lexicon a basic feature “Nom” and the lexicatiestof the
nominative pronouns, for example:

[je] :: [= finclitic, +SubjNoni.
[noug :: [= finclitic, +SubjNoni.
The derivation continues with a phonologically empty erstryhe end of

the derivation.
[]:: [= nom +caset].

1.2 Recognition of complex phenomena

This treatment of french clitics is simple and can be integgtaeasily into a
larger analysis.

climbing over modal
We treat the clitic climbing over the whole verbal clusteparticular over
modal.

The modal is combine with the verb in the inflexion step. THéekion
is treated with head movement and all clitics take their ovate after this
treatment.

If there are words which must be inserted between the verlrenchodal
- for sentences with adverbs - we first build the verbal ctunstit after which
we treat the clitics. In this situation, the clitics couldnab over the verb
constituent or stand after.

For example, in french we can analyse a sentence as:

(2) Jelaivu.
| him have seen.
| have see him.

by building the constituerdi vu. We can extend to sentences with inserted
word: “Je I'ai souvent vu7 “I have often see him” with a derivation as :

(3) ai souvent Vie_nom €-F

TREATING cLITICS WITH MG / 7

I' ¢ ai souvent Vue_nom e — | @i souvent VUe_yom €
e — e — |
Je,nom ' @i souvent Vie_nom €. — Je l'ai souvent Vie e
e — | e —

lit often sawn
| often sawn him.

dislocation

Clitic can be a direct recovery of a not-“empty verbal argatiidor example
in case of nominal dislocation.

There is a non empty verbal argument which must be extracted the
main sentence and become an indirect argument of the verb.

We build a verb with an “argument which must be extracted”egedminer
phrase - DP - must be outside the main sentence. This statedduced by
a pause or comma. It modifies the determiner phrase in tierdnt ways
which depend on the side of the extraction:

* it adds a licensee for the left dislocation and cliticizatio
= it adds a licensee for cliticization (and nothing for rigligldcation)

The main problem is to include in the sentence the right paitawill be
replaced by the clitic.

Left dislocation: the DP is extracted from the sentence;eguan first po-
sition and recovered by a clitic.

(4) Marie lg voit tropce type, — Ce typg, Marie lg voit trop.

That guy, Marie him sees too much.
Lexical entry of modifier of DP.
[,]1:[=>d,d,—H, —dislog.

The comma will be placed after the DP by a head movement. Téte fir
licensee will be cancelled with the licensor of the clitidahe second with
another entry that we must add in the classical “comp” enthig last entry
is used to finish the derivation).

[]::[=tc +DISLOQ.

Right dislocation : In this case the determiner phrase isquaat the end
of the sentence. For the homogeneity of the mechanism, wa hcehcee of
recovered by a clitic, and another for the extraction at titeaf the sentence.

[,]1:[d<=,d,—H, —dislog.

The “comp” phase uses a weak move which lets the phonoloigical of

the constituent in its place - here, at the end of the sentence
(5) Marie lg voit trop, ce type. — Marie lg voit trop, ce type

|

Marie him sees too much, that guy.

8/ MAXIME AMBLARD

In fact, this extraction seems to be very similar to questidm questions,
an argument of the verb is extracted to take another positidghe surface
level of the sentence.

Extraction from DP

With the same kind of mechanism, we can extract an argumesmyton-
stituent. The determiner phrase can be complex and we éstnegrgument
of the DP. For example:

(6) Pierre en voit la fin - (Pierre voit la fin du film).
Peter of-it sees the end - Peter sees the end of the movie.

We build “la fin e_en” and the cliticization allowed the extraction of the
genitive. “Pierre en voit la fin.”

Raising verb
Raising verbs are verbs where one of the arguments is a vdrbranof the
other arguments is shared by both verbs, like in the sentence

(7) ll semble le lui donner.
He seems it him give.
He seems give it to him.

where the pronoun “II” is subject of the two verbs “sembletiddonner”.
The second verb must be in infinitive form.

In this case, the sentence has the following structures:

[subject raisingverb clitic infinitive_verb].

Araising verb takes as an argument a verb in infinitive fornith & special
inflexion “infinitive” - and without subject. The infinitivenflexion has the
lexical entry:

[-inf]::[=>v, verbe].
“verbe” is the feature needed before starting the clitiatiment. A verbal
form gets a “verbe” type after the verb receives its inflexion

The raising verb selects such a “verb”, then a DP subjecttamltecomes
a VP of type “raisingv” which means a VP which has not yet reegithe in-
flexion feature and will be able to receive new clitics (intfgadar pronoun).

For example:

[semble]::Everbe,=d, raisingv].

This verb should receive its inflexion and its subject. Itdais this mech-
anism until the end of the derivation:

=semblda répare-inf

e —|

=semble € la répare-inf

e — |
= Je semblee la répare-inf

|

TREATING cLITIcS WITH MG / 9

| seem ¢ it repare-inf

|

| seem repare it

1.3 Semantic interface
1.3.1 How to use the syntgfsemantic interface

From a sentence, we build a formula of higher order logic Whépresents
its propositional structure. We associate to each lexictyeaA-term and to
each syntactic rule an equivalent semantic rule. We asshaté¢hte syntactic
analysis drives the semantic calculus.

A-terms application occurs only when an element has no fesitive as-
sume the following functions:

1 if the number of feature of x 0
fealX) =1\ g else

1lif feat(x)=1 or feat(y)=1
senix.y) = { Oelse

Syntactic and semantic synchronisation: after any opmrati the syn-
tactic calculus, the semantic counter part computes#mefunction and if
sentx,y) = 1, we perform the functionnal application of the tweterms.
To known which application to perform, we look at the typelod semantic
terms.

A semantic tree represents the semantic counter part oétitersce. Itis a
tree where the leaves are the semantic part of the lexicaés@nd the inner
nodes contain the-term built and the direction of the head (of the syntactic
part). We use the following notation:

= breaker between direction head atiterm :+.
= application: @

Applications are carried out when syntax allows it, therefavhen the
function sem= 1 for one of the two terms. The following applications are
possible:

if sem (A-term 1,2-term 2)=1 else
>+ A-term 1@A-term 2 >+ A-term 1,A-term 2

A-terml A-term 2 A-term1l A-term 2

If a move operation cancelled the last feature, we représbgta unary
branch in the tree.

Remark. There are twofilérent possibilities for the semantic calculus: ei-
ther to wait for elements to be completely discharged or imédiately per-
form the application. But both fail in dierent cases: immediate application

10/ MAXIME AMBLARD

fails in case of “late adjunction” and the other possibifd§is in questions
treatment. The right solution seems to be intermediateonisists in deter-
mining a subset of features which must be consumed befoteatpns will
be performed. For the moment, we choose the first possitiléter on, we
shall do diterently but this only involve changes in tfeatfunction.

1.3.2 Example of semantic treatment
Clitic semantics

We present a syntactic treatment of clitics in twfielient parts. One is phono-
logically empty and is the non empty argument of the verbother is syntac-
tically empty but it is a phonological recovery of the firsieohe semantical
part of the clitic is in the argumental position and this iseefvariable which
must be bound in the context. The phonological recovery igl@ntity.

lexical entries| syntactic form | semantic form
la dat<= +G acc| Id
t(la) p-case-G | X

* Free variable, bound in the context - we could use the Boakgtorithm
to determinated how this variables are bounded, Bonatag)200
We briefly present a semantic tree for a clitic treatment:

(8) Jean larépare.
John it repairs.
John repairs it.

In the semantic tree of the part of the clitisization above,de not repre-
sent the identity operator (except for the clitic one).

<+ t(la) @ Infl @ donne, je

|
<t Infl @ donne, je, t(la)

la::ld <~ Infl@ donne, je, t(1a)

T

Infl <+ donne, je, t(la)

N

<+ donne, t(la) je
/\

donne t(la)

The last part of the tree is built by a move which creates abigthveen the
phonological part of the clitic and the argumental part.

TREATING cLITICS WiTH MG / 11

Over raising verbs
For the semantic calculus, raising verbs are predicateshathke a subject
and an action as argument. They apply a variable at thisractio
We present the analysis of the sentence:
(9) Je semble la réparer.
| seem it repair.
| seem repair it.

The A-terms, semantic counter-part of lexical entries are:

sembler| ASAv.(seem y S(V))
Je I

€a Y*

réparer | Ax Ay .repair (y, X)

* this variable is bound in the context

The semantic counter part of the pronoun is a constant ngfed the
speaker “I”. The clitic subject climbs over the raising vdtizan be the sub-
ject of both verbs in the sentence due to the semantic steioftthe raising
verb. If the main verb of the sentence has a subject, thecgtiolh will not
introduce a new variable in the formula, else the main vedulea variable
which stands at the subject place. The raising verb invalissvariable by
duplication of its subject.

The syntactic analysis builds the following structure:

(l@(inflexion@(seen@(la(in finitive@re pare))))

which allows the computation of the formula: “la reparer”
Ax.repair(x, Y)
and this term is applied to the raising veaSAv.(seem y S(v))
Av.seenfv, repair(v, Y))
At the end of the calculus, we construct the formula:
preqseenil, repair(l, Y)))
where Y is bound in the context.

This is the formula we want to construct for representingdiaposition-

nal semantics of the sentence. The subject clitic syntlbticlimbs over the
main verb, and semantically climbs over the two verbs.

1.4 Conclusion and future work

In this paper, we presented an extension of Ed Stabler'ositipns on french
clitics in minimalist grammars. The new lexicon makes it gibke to treat
several other syntactic phenomena, the same way as clitibiclg, e.g. ex-
traction from NP or right and left dislocation.

12/ MAXIME AMBLARD

Then, we proposed a syntax-semantic interface for Minsh&@8rammars.
The aim of this calculus is to build a formula of higher ordegit. The se-
mantic calculus A-calculus - is driven by the syntactic one. We emphasize on
the way to recognize clitics and semantic implication afhdling with raising
verbs.

For future work, we want to integrate the negation into thengmar. We
consider that the neg-marker “ne” is a clitic and must beipoated in the
treatment of french clitics. There is another complex pinegimon to consider
concerning with clitics in the imperative mode (and negatio

Other cases of raising verbs exist which are more complewilg sev-
eral syntactic clitic climbings as in:

(10) Je la laisse le lui donner.
| her let it (to) him give.
| let her give it to him.
where clitics take place in fierent orders.
Moreover, we want to continue to modelize the semartfiect of clitics
in sentences, in particular for interaction between qdianscope and clitics,
which can introduce ambiguities in sentences like:

(11) Je la laisse tous les lui donner.
| her let all them him give.
| let her gives all to him.

Acknowledgement

The writer like to thank Christian Retoré and Alain Lecorfaecrucial sup-
ports and one of the anonymous TALN 2006 referees for impocamments
and examples of this paper.

References

Bonato, R. 2006.An Integrated Computational Approach to Binding TheoRh.D.
thesis, University of Verona.

Chomsky, N. 1995The Minimalist Program MIT Press, Cambridge.

Perlmutter. 1971. Deep and surface structure constragyritax.Rineharté Winston

Sportiche, D. 1992. Clitic constructionBhrase Structure and the Lexicon

Stabler, Ed. 1997. Derivational minimalisniLogical Aspect of Computational Lin-
guistic.

Stabler, Ed. 2001. Recognizing head movemémgical Aspects of Computational
LinguisticsSpringer-Verlag(2099).

RererENCES / 13

Vermaat, W. 1999.Controlling movement: Minimalism in a deductive perspecti
Master’s thesis, Universiteit Utrecht.

2

Logical Grammars with Emptiness

Houpa ANouN & A LAIN LECOMTE

Abstract

The purpose of this paper is to show that we can work in thé spivinimalist Gram-
mars by means of an undirected deductive system c#ltg#l, enhanced with constraints
on the use of assumptions. Lexical entries can be linkeddoesees of controlled hy-
potheses which represent intermediary sites. These assmpnust be introduced in
the derivation and then discharged in tandem by their prepély which will there-
fore manage to find its final position: this allows to logigadimulatemoveoperation.
Relevance of this formalism will be stressed by showing li#its to analyze dificult
linguistic phenomena in a neat fashion.

Keywords LoGicAL GRAMMARS, MINIMALIST PROGRAM, SYNTAX/SEMANTICS INTER-

FACE, NON-LINEAR PHENOMENA

2.1 Introduction

Type Logical Grammars (Lambek (1958), Moortgat (1997)) Btidimalist
Grammars (Chomsky (1995), Stabler (1997)) are two thrivivepries ded-
icated to natural language analysis. Each one has itssigrassets. In fact,

the first framework is computationally attractive as it wodompositionally

and gives the semantics for free. While the second one idhgsen a re-
duced number of rules guaranteeing processfhgiency (Harkema (2000)).
Despite their apparentfiiérences, these theories share the same philosophy:
they are both lexicalized and present universal sets of ithigt allow to ex-
plain various linguistic phenomena in multitude of natdaalguages.

Our goal is to bridge the gap between Categorial and Minsh&ram-
mars by proposing a new logical formalisf#GE (i.e. Logical Grammars
with Emptiness) which captures Minimalist operations. finergeandmove
in a deductive setting. This match between logical framé&aoid Minimalist

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

15

16/ Houpa ANouN & A LAIN LEcoMmTE

Program proves to be fruitful as it gives a better understeyaf the diferent
mechanisms involved in Minimalist derivations.

Lecomte, A. and Retoré, C. have already proposed a logistés that sim-
ulates Minimalist Grammars: Lecomte and Retore (2001)s Ttter system
is built upon elimination rules for both the slashes andémsor. The absence
of any form of introduction rules leads to affieient system. However, this
restriction is not beneficial insofar as it violates the espondence between
syntactic types and semantic representations. In our nepogal, we want
to keep a tranparent interface between syntax and seméagtieintroducing
abstraction rules which are applied in a controlled fashion

Like Abstract Grammars and Lambda-Grammars (de Grootel(2&ad
Muskens (2003))LGE grammars are based upon an undirected logical sys-
tem which has two interfaces (syntactic-phonetic, syitasgmantics) owing
to Curry-Howardcorrespondence. A syntactic derivation is then a deductive
proof of a given sequent built using appropriate inferendes: Both phonetic
form and semantic representation result frasterms combination which is
carried out in parallel with the syntactic derivation, greach deductive rule
encapsulates a computational step within the simply typedlculus.

The originality of LGE stems from the refinement introduced in hypo-
thetical reasoning. Our model aims at preserving the adgastof this tech-
nigue (e.g. dealing with unbounded dependencies) whilstcaining its use
in order to reduce the size of the search space. Thus, insfeaohsider-
ing freely accessible logical axioms, our system is equippih finite se-
quences of consumable controlled hypotheses which arehatlato certain
lexical entries that are expected to move. Such linked Hgs®s represent
original sites occupied by their associated entry in therDesure (i.e. before
the displacement operation). They should be introduceitigtine derivation
and then abstracted at the same time by their proper entighwtill conse-
quently reach its target. In the case of overt constituentament, interme-
diary positions occupied by non-pronounced variableshélbystematically
replaced by phonetically-empty traces; this explains tieae of our formal-
ism’s name: Logical Grammar with Emptiness.

In this paper, we will prove thahovels a metaphoric notion which can be rig-
orously formalized using Logic. Moreover, we will show hawdapture com-
plex linguistic phenomena (e.g. binding, discontinuitythin £LGE thanks to
the combination between Logic power and Minimalist Progrdeas.

2.2 Bases of£G&
2.2.1 Types & Terms

In this section, we survey the relevant bases inhereAZ6.
Following earlier proposal by Curry, HB. in Curry (1961) aather more

LogicaL GRAMMARS WITH EmMPTINESS / 17

recent research work: de Groote (2001), Muskens (2003)system dis-
tinguish between two fundamental levels of grammar. The léngel is an
abstractlanguage (tectogrammar) which encapsulates universatiples
The second level is eoncreteone which may contain a range of components
(e.g. phenogrammar, semantics) used to encode crossslicgariation (e.g.
word order, lexical semantics).

Our core logic operates on abstract syntactic types whiehratuctively
defined as follows:

TA) =A|T =T |'T

A is a finite set of atomic types that contains usual primitesiinimalist
grammars (e.gc (sentence)dacc (noun phrase with accusative casg)om
(noun phrase with nominative case). Composite types ateusimg the lin-
ear implication- and the exponential operator ! introduced in Girard (1987).

Our framework supports a two-dimensional concrete levalidg respec-
tively with phonetics and semantics. Therefore, we comsigl® kinds of
concrete types, namefy-types (o) anda-types (7;) whose definitions are
the following:

To:=S|T0 o To
Tr=elt|Ta—> T,

The setT g is composed of only one atomic typevhich represents phonetic
structures (structured trees), wher@ascontains two primitive (individu-
als) andt (truth values). Notice that composHetypes are built upon linear
implication—, whereas compositétypes use intuitionistic implications.
Both phonetic and semantic representation of expressiensasily defined
owing to A-calculus, thus leading to two sets of terms, namiltermsAg
and A-termsA,. Let ¥ be a finite set of phonetic constants afd finite
set of semantic constants. L®%, (resp.V,) be an infinite countable set of
typed phonetic (resp. semantic) variables. The\ggE) of well-typed linear
®-terms is inductively defined as follows:

1. eeAo(X) ande is of typest

2. if peX thengeAe(X) andg is of types

3. if (Xp: tp)eVo thenxpeAep(X)

4. if s ands, are®-terms of typesthens;es,eA ¢ (X) and itis of types (e
operator is used to combine phonetic structures, it is aeébsociative
nor commutative)

5. if ¢1 and¢, are®-terms of typeg; andt; —o t, with no common free
variable thend; ¢2)eAqo(X) and is of types,

6. if Xp is a variable of typé;, ¢; a ®-term of typet, andx, occurs free
exactly once inp; then @x. ¢1)eAo(X) and has typé; —t;

Le represents a phonetically empty element used for traces

18/ Houpa ANouN & A LAIN LEcoMmTE

. B .
Ao(Z) is provided with the usual relation gfreduction= enhanced with

two additional rewriting rulesp;ee é ¢1 andeegy i @1.

On the other hand, the sat(C) of A-terms is defined using a simply typed
A-calculus with two basic operations, namely intuitiordstipplication and
abstraction.

Finally, letr,4; be a function which assignsiatype to each atomic abstract
type (we assume for instance thaj(C)=t, T1at(N)= €—t, T1at(dcasd= €).
Two homomorphismsg andr, are defined to link abstract types to concrete
types as follows:

Vte ﬂ,q‘;@(t)zs Vie A, ml(t)= Taat(t)
To(ti—otr)= To(t1) — 7o (t2) | Ta(ti—otz)=7i(t1) — 7a(t2)
7o (! t)=To(t1) (! t)= 7a(ta)

2.2.2 Lexical Entries & Controlled Hypotheses

We now introduce the notion of 2-dimensional signs whichthesbasic units
managed by our system. Such signs are of the following fognly) : ty,
where:

* ty e 7 (A) (abstract type)
* |p € Ag(X) andly is of concrete typeo(ty)
* |, € A (C) andl, is of concrete type,(ty)

We distinguish between three classes of signs, nansigble signs (when
lp € Vo andl, € V,), constansigns (whenrg € £ andl, € C) andcompound
signs (wherg, or I, is a compound term).

These signs are used to define lexical entries. LexicalemtiLGE are
proper axioms which can be coupled with prespecified seseat con-
trolled hypotheses. Such hypotheses will occupy interargdsites, they
should be introduced in the appropriate order and then digeld at the same
time by their associated entry.

Lexical entries obey the syntax below:

F(as, a) ity 3 lhyps

where:

* (8, , &) : tyis a 2-dimensional sign.

v lhypss ([Hy ot H o t], . [He o t = HY - t]) is a sequence of controlled
axioms of lengthlnypd=k, (¥ ie{1..k}, Hi=(hs , hy) and H{:(h(’ﬁi ,)
wherehy; € Vo (-variable) hy € V, (1-variable) andv;e Ao(X)) -

Lexical entries are classified in two groupistked entries(when k-0) and

free onegwhen k=0). Linked entries are coupled with non-empty sequences

of controlled hypotheses. Each hypothesis is encapsuiasgde an axiom

LocicaL GRAMMARS WiTH EmMPTINESS / 19

‘(hyi , ha):t - (W), , hyi):t " which can be either logical (ifi= hy;) or extra-
logical (if hyi# h;). Extra-logical axioms are extremely useful since they rep
resent pronounced variables or phonetically non-emptgratemming from
displacement (e.g. pronouns: he, her ...).
The abstract typgy of the lexical entry should verify the following specifica-
tion:

1. if k=0then ty is an arbitrary abstract type

2. ifk=1thentyt; - ... o t, —o (t—ot’)—t”

3. otherwise tyt;—o... — ty — (It —o t') —t”

Intuitively, the second (resp. third) point above means tha lexical entry
represents a constituent that needs to merge with exagitty0) expressions

of typest; ... t, respectively, and then move once (resp. an unspecified num-
ber of times, e.g. cyclic move) to reach its final position.

Finally, a lexicon is nothing else but a finite set of lexicatrees{ey, ...,e,}.

Let us illustrate the previous definitions in a concrete gxamf we as-
sume that\WhoneX) and (\eC) then the phonetic behavior and the seman-
tic representation of the relative pronownhioni can be modelled using the
linked entry below:

A¢ Am. me (whome ¢(e)) | . . .
(AP AQ AX. P(X) A Q(X) . (dacc - C) —~nN—on =3 [X DOaccF X dacc]

Our entry is linked to one hypothesis which will occupy thigtiah position
of ‘whom, namely the object of its relative clause (e(gook) whom Noam
wrote). This assumption will be discharged afterwards by itsteglantry,
thus guaranteeing the combination between the relativequroand its sub-
ordinate clause. Formal rules that manage this overt displent will be set
forth in the next section.

2.3 Logical simulation of Minimalism

2.3.1 Inference rules

Letlex={ey, &, ..., e} be a lexicon.LGE grammar with lexicorexis based

upon a deductive logical system which deals simultaneouily two inter-

faces (syntactic-phonetic, syntactic-semantic).

Judgments of our calculus are sequents of the following form
Ir(lo.l2):ty; E

where:

= T the contextis a finite multiset of 2-dimensional variabnsi

* (lp,1,) : tyis a 2-dimensional sign

20/ Houpa ANouUN & A LAIN LEcoMTE

= Eis a finite multiset containing identifiers of all linked lexri entries that
were used in the course of the derivation and whose assd@atimp-
tions are not yet discharged

Variable signs included in the contdxtcorrespond to controlled hypotheses
that were introduced in the course of the derivation. Eagiothesis will be
marked using a superscrip‘ffwhich points at the lexical entry to which the
assumption is attached (e>§,: hypothesis linked te entry).

The first group of£GE inference rules are axioms which coincide with
derivations’ leaves. Figure 1 shows axioms that our systgrpaerts.

e=(ray:ty3l)
Fay:ty; if I =()then0 else{e}

Lex

&= _-S3lnyp Ihyplil =X :ArYs:A)

7 Ctrl
Xg DA E Yo A0

FIGURE 1 Axioms of LG&(lex)

Our core logic includes extra-logical axioms which are asted from lex-
ical entries owing to ruléex If the involved entry is linked, then its identifier
is added to the multis&. On the other hand, our system excludes the freely
accessible identity axiom. Available axioms stem from coligd hypotheses
which are coupled with linked lexical entries. These axi@arsbe introduced
in the derivations by means @ftrl rule.

Linked entries in£GE& can be attached to more than one controlled hy-
pothesis. This specification has a very strong linguistitivaton. In fact, it
can happen that a constituent occupies more than one irdearjsite before
reaching its target. Such phenomenon is illustrated fdairee in the inter-
rogative sentencéWhich book did John file without reading i?’. In that
case, the wh-elemenivhich book occupied two positions before displace-
ment (in the D-structure), namely the complement of the Vigeband that
of the infinitivewithout reading After movement, the first position becomes
empty while the second is occupied by a pronounced vari@hlét the se-
mantic level, both these sites of origin represent the sebjexb
To account for such non-linear phenomena witfg&, we use the exponen-
tial ! whose behavior is described by the usual rules of lidegic (Girard
(1987)). Figure 2 presents the derived rules which are aeleto our study.

The generic process that handles the management of cextiofpothe-
ses can be summarized as follows. On the first hand, each psarof type

2For the sake of readability, we focus on the syntactic-ptioreterface

LogicaL GRAMMARS WITH EMPTINESS / 21

AsX;i5B"y¢:A; Ex A,x; :!B,yg ABr U, A Eg
‘ L i Le
A’X; 1Brys 1A Eq A,b; ABF Ug[Xs 1= by, Y = by] 1 A Ex

FIGURE2 Relevant derived rules for !

ty will get the decorated typhy if it is related to a linked entrg which is
attached to more than one controlled hypothesis. Thisfiwemsation is car-
ried out by means oiL rule. Intuitively, this means that a hypothesis which
represents only one controlled assumption (i.e. of typés a particular case
of hypotheses that encapsulatdéeastone controlled assumption (i.e. of type
Ity). On the second hand, contraction rulé iIs applied to gather all the hy-
potheses linked to a specific entgyin one assumption. This will make it
possible to abstract these hypotheses in tandem.

Now, the ground is well prepared to present our logical satioh of Min-
imalism. It is not dificult to simulatemergeoperation of Minimalist Gram-
mars in a logical setting. In our case, it is nothing else batdirect— elim-
ination (—E, cf. Fig.3) which merges twd®-terms (respa-terms) by means
of application operation.

'rfs:A—-B E1 Aray:A E]
A+ (fy84): B, E1UE]

—o

[+ fs:(C—D)—B;{e}UE; A,c;i :Crd,y:D;E]
F,A + (f¢ (/1C¢ d¢)) . B, E]_UE&

—-o |E %
FIGURE 3 Behavior of— connective

Moveoperation is logically captured thanks to the refined elation rule
—|E. This rule allows a constituent to reach its final positiynsimultane-
ously discharging its controlled hypotheses which ocatipitermediary po-
sitions. Our logical formalization ahoveoperation shares some ideas with
Vermaat's one in Vermaat (1999). In fact, we both consider dlperation as
the combination of two phases, namelynargestep and dypothetical rea-
soning step (abstraction over sites of origin). Thus, the elemethish are
expected to move are assigned a higher order type [)— B*. Such ele-
ments wait to merge with a constituent of typesM, which results from the
abstraction of the intermediary positions in the initialisture (of type D).
However, Vermaat proposal is encoded in a directional daécmoveopera-
tion is then captured using additional postulates whichtreduce structural

3The introduction rule of< is not freely available, it is rather encapsulated insickE rule
“Vermaat considers only the case wherefD

22/ Houpa ANOUN & A LAIN LECOMTE

flexibility in a controlled fashion. Our proposal is simpkes it is based upon
a flexible undirected calculus. Moreover, it makes it pdssib limit the op-
eration of hypothetical reasoning used in displacementhvis constrained
to a specific amount of hypotheses explicitly given by théciem.

Rule —IE cannot be applied unless the pre-conditfar verified: all linked
axioms coupled with the lexical enteymust be introduced in an appropriate
order (from the right to the left ofiys sequence) during the derivation of

(A, c;' : C+dy : D; E}). Once these assumptions are abstracted, entry
regains its final position and is automatically withdrawonfrthe multiset of
unstable lexical entries involved in the derivation. ‘

To formalize the pre-conditioh, we assume that each assumptiénof the
context encapsulates a kindlaétoryused to record some relevant data. This
additional parameter does not have any impact on our logicaém. It only
ensures theficiency of parsing by making the constraineasier to check.
The notationk™ | o] is used when the history of the assumption' is explic-
itly given. Otherwise, a functiohist() can be applied to a given hypothesis
x" to get its masked history. v

Owing to the contraction ruleLf, each hypothesig! gathers a sub-set of
controlled hypotheses related to engy The history of an assumptiox’
can then be encoded as a set of pairs of natural numbers. Shadimber
of each pair represents the index of an involved controllgabthesis taken
from Inyps Sequence, while the second one is nothing else but the depth
this hypothesis in the current bottom-up derivation.

Each deduction step updates the history of all assumptimisded in the
context. For instanceCtrl rule enables the introduction of a specific con-
trolled hypothesis of indekand initiates its history with the single pair (j, 0).
On the other hand, rules of Fig.2 and Fig.3 increrdiné depth of the pre-
viously introduced controlled hypotheses. We show below lvgical rules
enhanced with their explicit management of histories:

&= (- ‘3 Ihyp) Ihypli]l = (Xt AR Yy D A)
XL.OM A F oyt A O

Ctrl

A, x;‘ Lo1] 1B, y¢‘Lo-2J IBruy A Ex Lo
A, bgl_o-r U3 IBF Ug[Xy 1= by, Yy = by] 1 A, Ex !

5The number of deduction steps between the introductionehitpothesis and the current
state of the derivation
6Incrementing operation is denoted by*(){...;(,d);..)** =(...; (i, di +1);...}

LocicaL GRAMMARS WITH EMPTINESS / 23

Therefore, the side conditiancan be stated formally as follows:

o itp | V6 TSk Thypsl= Al d) € histc})
v(k, d) € hist(c)) V(k', d) e hist(c]), k<k = d<d

Finally, it is worth noticing that the constraintis significant only if the
considered derivations are in normal form. Therefore, ieeace of both the
freely accessible identity axiom and thel rule is necessary to the success
of our approach.

2.3.2 LGE grammars & generated language

LGE& grammars have two parameters, namely a lexicon and an atlstiic-
guished type. Let G(lex, ¢) be aLGE grammar andat’ an atomic syntactic
type. We say that a sequence of phonetic constambgr,...m, has abstract
type ‘at’ within G (i.e. le La(G)) iff:

3 X, Xa [Xg € struc(my, ...,my) A (- (X5, Xa) : at; 0)

wherestructm, ..., m,) is the range of phonetic structures built usingper-
ator and whose leaves are, m, ...,m, in that order.

Notice that the convergence of derivations requires th@dluiction and the
simultaneous abstraction of all controlled assumptioladed to involved lex-
ical entries.

Finally, checking whether a sequence of phonetic constasmtecognized by
the grammayg (i.e. le £(G)) amounts to verifying thdthas abstract type

2.3.3 Example of£LGE derivations

This section is devoted to the study of a hybrid examplere logicians met
Godel than physicists knew himhich involves two complex linguistic phe-
nomena: binding and discontinuity. The analysis of thesspmena within
the directional approach constitutes a real challengessearchers. All pro-
posed solutions are complex insofar as they led to the agtein$ the core
logic either by defining new syntactic connectives (distuarity connectives:
Morrill (2000)) or by introducing additional packages ofgtalates as in Hen-
driks (1995). However, our proposal is able to capture sindnpmenain an
elegant fashion without using any additional material.

Our treatment of binding follows the same ideas of Kayne. Rayne (2002)
where he argues that the antecedent-pronoun relatiorb@weerGodeland
him) stems from the fact that both enter the derivation togedkex doubling
constituent ([Godel, him]) and are subsequently sepaeftedmovement. In
our system, we account for this idea by defining a linked esitifgf. Fig. 4)
associated with the proper no@odel This entry requires the introduction
of two hypotheses (where the firtiim' is a pronounced one) which must be
discharged at the same time. Theref@ieentry will reach its final position

24/ Houpa ANOUN & A LAIN LECOMTE

thus making it possible to semantically link the pronourtwitis antecedent.

Id O-terms A-terms Abstract types Hyps
e A Py. Py(Godel) A P,. P,(Godel) (!dace—oC)—oC [X: dace-X:dacd 5
[X: dace-him:dacd

& logicians Logician n ()

e physicists Physicist n 0

e | Ax. Ay. (ye(metx)) AX. Ay. Meetpas(y,X) | dace—onom—o € 0

e | AX. Ay. (ye(knewex)) AX. Y. Knowpas(y,X) dacc—onhom—oC ()
AX. Y. AP.AQ. AP1. 1Q;. AP3. 1Qs. n—on—o

& | ((morey)eQe)e | More(ax. Qu)AQxX), | (dhoroc)—o 0
(thare(xeP(e))) AX. P1(X)AP2(x)) (dnhom—oC)—oC

FIGURE4 Example of£GE lexicon

On the other hand, we capture discontinuity by gatheringdifierent
components of a discontinuous expression in the same lexitgy. For in-
stance, entrgs defines the phonetic and semantic behavior of the discontin-
uous constitueningore... than).

We present, in the following, the main steps of our examlealysis. For
the sake of legibility, the bottom-up derivation tree isitsipito different key
parts which will be commented on progressively.

Lex T - Ctrl
AX. 1y. y o (knewe X) e o A 0 G0 Xd)l ek him da 0
AX. Y. Knowpas(y, X) |~ 2 nom " XE - Uace x,) - Gaco
—E
1t ;
X | Ay. ye (knewe him) \ . .
[lei] > dace + (2y. Knowpas(y, X1)) : Ghom — C; 0

xg)l Cdek AQ. ((moree logiciang e Q(¢)) o (thane (physicistss (e e (knews him)))) | . (dnom— C)
x') %"\ 1Qu. More(ix. Logician(x) A Qa(X) , Ax. Physicis{x) A Knowpas(x X)) | = c;0
xf; A b Q. ((moree logiciang e Q(¢)) (thane (physicists (e o (knews him)))) \ . (dhom — C)
X)77\ 1Qa. More(ax. Logician(x) A Qa(X) . Ax. Physicis(x) A Knowpas(x. X)) |~ —o ¢;0

The derivation above starts by introducing the last col@dohypothesis
(i.e. the assumption representing the accusative proniog)rof the sequence
attached tae; entry. This hypothesis, then, merges with lexical emgyy
means of-oE rule. On the other hand, a partial derivation is built by sm
utively combining entryes with entriese; ande,. The resulting sequent then
merges with the previous one. The last deduction step dabsgdout deco-
rating the type of the introduced hypothesis by a ! markerdeoto express
its ability to gather with the other controlled hypothesigéd to its proper
entry. At this stage of analysis, only the second contrdilgabthesis o&; has
been used. Moreover, it was involved in exactly three dedasteps after its

LocicaL GRAMMARS WITH EMPTINESS / 25

introduction, so we can deduce that its current historyiEt(XTl)z{(ZB)}.

Ctrl

AX. 2y. y e (Mete X)
AX. Ay. Meetpasdy, X)

Lex "
* Gacc =0 Onom — C; 0 Z!Tpl * acc Z " dace, 0
zZ, Z

—- E

Tl
Zlb . /ly' ye (met. Z(I))) e
(Zj;l] *acc F (Ay. Meetpas(y, 1) |- Anom —o C; 0

Tl
Zy | Ay.ye (metezy) . _
[ZEI] e (Ay. Meetpas(y, 21) | Ghom — €; 0

L

In this second part of analysis, the first controlled assionpinked toe; en-
try is introduced. Then, it merges witj entry which represents the past form
of the transitive verlmeet This branch of the derivation ends by a IL step like
the previous one. We can easily check that, at this pointefitrivation, the
history ofz!" assumption is nothing else but higtj={(1,2).

[X)_,d [7]_,d F(((mores logiciang e (¢ » (Mete zy))) » (thane (physicists (¢ « (knews him)))))-c-@
X/Tl --Yace -=HYacc - Ly

! ZE‘ More(Ax. Logician(x) A Meetpas(X, 2;) , AX. Physicis{x) A Knowpas(X. X))

(yg] ot (((moree logiciang e (e o (Mete yy))) » (thane (physicistss (¢ o (knewe him))))) &0

) More(Ax. Logician(x) A Meetpas(X, Y1) , AX. Physicis{x) A Knowpas(X, y1))

The partial derivation above stems from merging the twoipresly presented
branches into one tree. Contraction rule is then appliechtagsulate both
controlled hypotheses linked & in one assumptiopﬂl. The current history
of this latter compound assumption is: h}'éﬁ:{(l,4) ; (2,5).

Lex T
APy.Po(Gode) \ . e vh). (moree logiciang e ... \ .
(AP,.P,(Gode)) |+ (1dacc =€) — Cifer) y H0ace F More(..., .. G0

((moree logiciang e (mete Gode)) o (thane (physicists (knewe him))) co
More(Ax. Logician(x) A Meetpasi(x, Godel) , Ax. Physicis{x) A Knowpas(x, Godel)) |~ ™

— |E

The whole derivation ends by simultaneously dischargimjrodied hypothe-
ses linked to entry; by means of—<lE rule. In fact, the application of this
rule is allowed since the side-conditidnis entirely verified: agﬂl’s his-
tory shows, the leftmost hypothesis linkedgiowas introduced in the deriva-
tion after the rightmost one. The semantic representatimuosentence is
computed in tandem. Indeed, the final semantics coincidistteé intuitive
meaning of the sentence, namely that the set of logiciansm&toGodel is
larger than the range of physicists that knew him.

2.4 EnhancingLGé&

It is not difficult to notice that our logic is too flexible as the applicatif
movement is not constrained. For instance, if we assign ity elow to

"dgat represent noun phrases with dative case

26/ Houpa ANoUN & A LAIN LEcOMTE

the wh-elementwhich, we can analyze both sentencesttich man do you
think the child of. speaks&and which man do you think John loves the child
of _?’, where the first is ungrammatical.
(Am A¢ (whiche_ m) e_ ¢(e)
AP 2Q AX.P(X) A Q(X)
In fact, we need to control displacement operation to ruteatraction from
islands. For that purpose, we propose to enhaf@€ with some meta-rules
encoding locality constraints (e.g. SPIC: Specifier Isl@uhdition, SMC:
Shortest Move Condition). We focus in the following on t8BIC defined
in Koopman and Szabolcsi (2000) which stipulates that theed@lement
should be a member of the extraction domain @@mp': transitive closure
of the complement relation, or a specifier dd@np).
In order to locate the position of the head, the complemedtla specifier
inside a phonetic expression, we decorate the buildingtsire connective
e with a mode of composition taken from the $et >}. This mode points
towards the sub-tree where the head is locasediresp.s..) if the head is
located on the left (resp. right) sub-tree.
A linked lexical entry which is expected to undergo an ovemstituent
movement has a phonetic-term that obeys the following gynta

AXL e AXn AP AY1 oo A Yk 91, oo, Vi T(Xa, -+ 5 Xn) 05 Po(€))

In the expression aboveg, ..., Xy, Y1, ... , Yk (N > 0, k> 0) ared-variables of
arbitrary types, whered, is a®-variable of type sos. Moreoverf (resp.g)

is a function that takes (resp. k-1) ®-terms and builds a phonetic structure
using these parameters together with constants of

Intuitively, this syntax means that our entry will firstlymdine with n struc-
turesxy, ... , Xo by means of merge operation, thus leading to a maximal
projectionf(xy, ... , %). Then, the intermediary sites will be replaced by
traces in the initial structurBg and our maximal projection will be placed in
specifier position, hence making it possible to carry outekgected move-
ment. Finally, our resulting constituent can merge witheotstructures, thus
yielding a complete expression (evghomentry in section 2.2).

Notice that this syntax suits the type specification defimeddction 2.2
(points 2 & 3) if we add additional conditions, namely thattbtypes t (type
of intermediary sites) and t’ (type of the D-structure befarovement) are
atomic. The first condition (i.e<tA) follows from constraints proposed by
Koopman and Szabolcsi Koopman and Szabolcsi (2000) whicke$anoved
elements to be maximal projections (i.e. complete expvas3i However,
the latter condition (£ A) is a logical formalization of thenerge over move
principle Chomsky (1995) which stipulates that merge ojp@néhas priority
over movement because of its simplicity. Therefore, a ttinecthat will un-
dergo move operation should be complete.

:N —o (dgat =€) = C 3 [X: dgar+ X : dyar

REFERENCES / 27

According to the syntax of phonetic terms associated witiwedcelements,
SPIC condition can be encoded fiGE as a pre-condition of<lE rule (cf.
Fig 3) stipulating the inclusion of all occurrencesivariablece within the
extraction domain of thé-termd,,. Therefore, adding this meta-rule &
prevents us from analyzing the previous ungrammaticakseet

2.5 Conclusion & Future Work

LGE is a new logical formalism which proposes a deductive situtaof
Minimalist Program. Our proposal is powerful enough to diescseveral lin-
guistic phenomena such as medial extraction, bindingasé#liand disconti-
nuity thanks to using linked lexical entries (related totroled hypotheses).
Moreover, one can solve over-generation problems caus#uetdyeedom of
displacement by adding some meta-rules encoding localitgtcaints.

In addition, it is not difficult to show that these grammars are richer than
context free grammars as they are able to generate crospethdencies lan-
guages (e.ga"b™c"d™ | n, m> 0}). In fact, this latter language is recognized
by £LGE grammar containing the lexicon beldw

Fep (Vie(l.4)
F AX. Ay. AZ. Au. Xe(ye(zeu)): ty
F A P.AX. Ay. Az. Au. P(aX, Y, Cez, U): ty —o ty
F AP.AX. Ay. AZ. Au. P(X, by, z, deu): ty —o ty

The next direction to explore concerns the studygi& formal proper-

ties: expressive power, decidability, and complexity. W antend to build
bridges betwee’GE and other well-known grammatical frameworks (e.g.
Minimalist Grammar, TAGS).
Finally, we are developing a meta-linguistic toolkit usitigg proof assistant
(Cog Team (2004)), in order to study logical propertie£6iE grammars be-
ing enhanced with packages of meta-constraints. This itordk help users
manage complex derivations by automatically handling stadlenical proofs
thanks to powerful computation tools (strategies).

References
Chomsky, N. 1995The minimalist programMIT Press.

Coq Team. 2004. The coq proof assistant, reference mareralpn 8.0. Tech. rep.,
INRIA.

Curry, HB. 1961. Some logical aspects of grammatical stnest In R. Jackobson,
ed.,Symposium in Applied Mathematiggges 56—68.

8In that caseA={p1,P2,P3,Pa,c} andty denotes the composite type—o p2—o p3—ops—oC

28/ Houpa ANoOUN & A LAIN LEcOMTE

de Groote, P. 2001. Towards abstract categorial gramnma8@th Annual Meeting of
the Association for Computational Linguisti@ulouse.

Girard, Jean-Yves. 1987. Linear logitheoretical Computer Sciené&@:1-102.
Harkema, H. 2000. A recognizer for minimalist grammarsIViiPT.

Hendriks, P. 1995Comparatives and Categorial GrammaPh.D. thesis, University
of Groningen, The Netherlands.

Kayne, R. 2002. Pronouns and their antecedents. In S. E.e€ly,Sd. Derivation
and Explanation in the Minimalist ProgranBlackwell.

Koopman, H. and A. Szabolcsi. 2000. Verbal complexesCumrent series in Lin-
guistic TheoryMIT Press.

Lambek, J. 1958. The mathematics of sentence structneerican Mathematical
Monthly.

Lecomte, A and C Retore. 2001. Extending lambek grammaisgiadl account of
minimalist grammars. 1r39th Annual Meeting of the Association for Computa-
tional Linguistics pages 354—362. Toulouse.

Moortgat, M. 1997. Categorial type logic. In V. B. . ter Menje=d.,Handbook of
Logic and Languagechap. 2. Elsevier.

Morrill, G. 2000. Type logical anaphora. Tech. rep., Unsigat Politecnica,
Catalunya.

Muskens, R. 2003. Language, lambdas, and logidRdsource Sensitivity in Binding
and AnaphoraStudies in Linguistics and Philosophy. Kluwer.

Stabler, E. 1997. Derivational minimalism. In C. Retore,, éagical Aspects of
Computational LinguisticsSpringer.

Vermaat, W. 1999.Controlling Movement: Minimalism in a deductive perspeeti
Master’s thesis, master’s thesis, Utrecht University.

3

P-TIME Decidability of NL1 with
Assumptions

M ar1A BuLiNska

Abstract

Buszkowski (2005) showed that systems of Nonassociativable&k Calculus with
finitely many nonlogical axioms are decidable in polynontiae and generate context-
free languages. The same holds for systems with unary niedaktudied in Moortgat
(1997),n-ary operations, and the rule of permutation, studied gedé2004). The poly-
nomial time decidability for Classical Nonassociative Lk Calculus was established
by de Groote and Lamarche (2002). We study Nonassociativebkl Calculus with
identity enriched with a finite set of assumptions. To prdwa this system is decidable
in polynomial time we adapt the method used in Buszkowskd$20The modification
is essential. The novelty is the lemma about the eliminatibeut rules with premisses
with empty antecedents for some auxiliary system. The gbifiteeness of the languages
generated of the systems of Nonassociative Lambek Calualso established.

Keywords Lawmsek caLcurus, P-TIME DECIDABILITY

3.1 Introduction and preliminaries

Nonlogical axioms can be of interest for linguistics for sl reason. We
can use them to describe subcategorization in natural &geguiror instance,
restrictive adjectives are a subcategory of adjectivesthEr by enriching
Nonassociative Lambek Calculus with finitely new axioms,o&a improve
its expressibility without lacking the nice computatiosghplicity.

First we describe the formalism of Nonassociative Lambelc@as with
identity constant (NL1). Let A& {p,q.r, ...} be the denumerable set of atoms
(primitive types).

The set of formulas (also called types) Tp1 is defined as tladlssh set ful-
filling the following conditions:

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

29

30/ MaRia BuLiNska

» 1eTpl,

= At C Tpl,

= if AABe Tpl, thenfeB) € Tpl, (A/B) € Tpl (A\B) € Tpl, where binary
connectives \ , / ,e , are calledeft residuation, right residuatigrand
product respectively.
The set of formula structures STR1 is defined recursivelpbews:

= A € STR1, whereA denotes an empty structure,

= Tpl C STR1,; these formula structures are called atomic formulest
tures,

= if XY € STR1, thenX oY) e STR1.

WesetKoA)=(AoX)=X

Substructures of a formula structure are defined in theviatig way:

= Aisonly substructure of,

= if Xiis an atomic formula structure, thénandX are only substructures of
X,

= if X = (X10Xy), thenX and all substructures of; andX; are substructures
of X.

By X[Y] we denote a formula structupé with a distinguished substructure
Y, and byX[Z] - the substitution o for Y in X.
Sequents are formal expressiofis> A such thatA € Tpl, X € STR1.

The Gentzen-style axiomatization of the calculus NL1 empplbe axiom
schemas:

(Id) A-=A (IR) A-1
and the following rules of inference:

(1L) i[ﬁ]]—:ﬁ
R e T R
(L) YXR(’?(A\g?]:cc, (\R) ’;"f—;\BB,
W oo VR ot
(cuT) Y_’Q;[Y])L[Aé*B

For any system S we write SX — Aif the sequenX — A s derivable
in S.

P-TIME DecmasiLity oF NL1 wita Assumptions / 31

The most general models of NL1 are residuated groupoid wéhtity.
A residuated groupoidavith identity is a structure
M= (M7S7'7\7/71)
such that
= (M,-,1) is a groupoid with identity in whicla-1 = a, 1-a = afor all
aeM
* (M,<)isaposet,
= \,/ are binary operations o¥ satisfying the equivalences:

(RES) ab<c iff b<a\c iff a<c/b
foralla,b,ce M.
Every residuated groupoid fulfills the following monotoitydaws:
(MON) If a<b then ca<cb and ac<hbc
(MRE) If a<b then c\a<c\b, a/c<b/c,
b\c<a\c, c/b<c/
foralla,b,ce M.

A modelis a pair (M, i) such thatM is a residuated groupoid with identity
andyu is an assignment of elements BF for atoms. One extends for all
formulas :
u@) =1, u(AeB)=uA) - uB),
u(A\B) = u(A)\u(B), u(A/B) = u(A)/u(B).
and formula structure:

uA) =p(1) =1, p(XoY) = pu(X) - uY).
A sequentX — A is said to be true in modelM,) if u(X) < w(A). In
particular a sequemt — A is said to be true in modeM, u) if 1 < u(A).
One can prove the following property for formula structures

(MON - STR) If u(Y) <u(Z) then wu(X[Y]) < u(X[Z)).

3.2 NL1 with assumptions

LetT be a set of sequents of the foln— B, whereA, B € Tpl. By NL1([C

) we denote the calculus NL1 with additional $ebf assumptions. NL1 is
strongly complete with respect to the residuated groupwittsidentity, i.e.

all sequents provable in NLI) are precisely those which are true in all mod-
els (M,) in which all sequents frorT are true. Soundness is easily proved
by induction on derivation in NLI{). Completeness follows from the fact
that the Lindenbaum algebra of NL1 is a residuated groupdldigdentity.

32/ MaRria BuLiNska

In general, the calculus NLIJ has not the standard subformula property,
since (CUT) is legal rule in this system . Thus we take intostderation the
subformula property in some extended form.
LetT be a set of formulas closed under subformulas and such thatralilas
appearing il belong toT. By aT-sequent we mean a sequéht-> A such
thatA and all formulas appearing i belong toT. Now, we can reformulate
the subformula property as follows:
EveryT-sequent provable in a system S has a proof in S such thaaiéats
appearing in this proof aré-sequents.

To prove the subformula property for NLI)(we will use special models,
namely a residuated groupoids with identity of cones oveemipreordered
groupoids with identity.

Let (M, <,-) be a preordered groupoid, that means, it is a groupoid with a
preordering (i.e. a reflexive and transitive relation)issging (MON).

AsetP ¢ Mis called aconeon M if a < bandb € P entailsa € P. LetC(M)
denotes the set of cones bh

The operations \, / onC(M) are defined as follows:

(M1) I={faeM:a<l}
(M2) PP, ={ce M:(dJac Py, bePy)c<ab)
(M3) P;\P,={ceM: (Yac P,)ace Py}
(M4) Py1/P;={ceM: (Vbe Py)cbe Py}.
A structure C(M),c,-,\,/, 1) is a residuated groupoid with identity. It is

called the residuated groupoid with identity of cones over given pre-
ordered groupoid with identity.

Let M be the set of all formula structures all of whose atomic sulsstires
belong toT andA € M. If a sequenX — A has a proof in NL1[) consisting
of T-sequents only, we writeX —1 A.

First, we define oM a relation<y,. X <, Y denotesX directly reduces t¢.
The definition of this relation is as follows:

Y[Z] <p Y[A] if Z -7,
Y[Z] <p Y[A] if Z -7 A
Y[AeB] <, Y[AcoB] if AeBeT.

A preordering< on M is defined as a reflexive and transitive closure of
the relation<,. Then X < Y iff there existYy,..., Yy, n > 0 such that

X=Yo,Y=YyandY_; <p Y, foreachi=1,...,n.
Clearly, (M, <, o, A) is a preordered groupoid with identityfulfilling (MON).

Next, we take into consideration the residuated groupoibogs with iden-

P-TIME DecmasiLity oF NL1 wita Assumptions / 33

tity C(M) = (C(M), S, -, \,/,1) over (M, <, o, A) defined above. An assign-
mentu onC(M) is defined by setting:

u(p) ={XeM: X -t p}
for all atomsp. One can easily prove that
WA = {XeM: X o1 A
forall AeT.
Fact 1 Every sequent provable ML1(T') is true in(C(M), w).

Proof. It suffice to show, that each axiom fraliis true in C(M), u). Assume
thatA — Bbelongstd'. ItyieldsA —1 B. We need to show tha(A) € u(B).
Let X € u(A). Then,X —1 A. By (CUT), we getX —t B, which yields
X € u(B). O

Lemma 2 The systerNL1(T') has the extended subformula property.

Proof. Let X — A be aT-sequent provable in NLI}. By fact 1 it is true in
the model C, 1), i.e. u(X) € u(A). SinceX e u(X), we haveX € u(A). But it
meansX —1 A. O

A sequentis said to beasicif itis a T-sequent of the form. — A, A — B,
Ao B — C. LetI be finite, and leT be a finite set of formulas, closed under
subformulas and such th&tcontains all formulas appearing In For such
T we shall describe arfective procedure which produces all basic sequents
derivable in NL1T).

LetSp consist of allT -sequent of the form (Id), all sequents fréh\ — 1
and allT-sequents of the form:

1cA—- A Acl—> A AoB— AeB,
Ao (A\B) - B, (A/B)o B — A.

AssumeS, has already been define8,1 is S, enriched with sequents

resulting from the following rules:

(S1)if(AcB—C)eSpand @eB) € T,then @e B — C) € S1,

(S2)if (Ao X > C) e Spand A\C) € T, then X — A\C) € Sp41,
(S3)if(XoeB— C)eSyand C/B) € T, then X — C/B) € Sp;1,

(S4)if (A »> A e Spand Ao X — C) € S, then X — C) € Sy,

(S5)if (A - A)e Spand Xo A — C) € Sy, then X — C) € Spy1,

(S6)if (A— B)e Sp,and Bo X — C) € Sy, then @o X — C) € Syi1,
(S7)if(A—>B)e Spand XoB— C) € Sy, then Xo A — C) € Spi1,
(S8)if(AocB—C)e Sp,and C — D) € S, then Ao B— D) € Sp,;1.
Clearly,S, C Sy, for all n > 0. We defineST as the join of this chairS™
is a set of basic sequents, hence it must be finite. It yiglds Sy, 1, for the

34/ Maria BuLiNska

leastk such thatSy = Sk,1, and thisk is not greater then the number of basic
sequents.

Fact 3 The set $ can be constructed in polynomial time.

Proof. Let n be the cardinality off. There aren, n?> andn® basic sequents
of the formA — A, A - BandA o B — C, respectively. Hence, we have
m = n® + n? + n basic sequents. The s8§ can be constructed in timert).

To getSj;1 from S; we must closes; under the rules (S1)-(S8) which can be
done in at mosin® steps for each rule. For example, to cl&eunder (S1)
we must check ifAo B — C) € S;j and (A e B) € T which needs at mosh
andn steps, respectively. The sequéné B — C is added tdS;,; only if it
doesn't belong to this set. To check this fact the masteps are needed. The
leastk such thaS" = Sy is at mosim. Then finely, we can construst’ from

T in time 0m?) = O(n'?). O

By S(T) we denote the system whose axioms are all sequents$foand
whose only inference rule is (CUT). Then, every prooS{T) consist ofT -
sequents only.

The fact that every basic sequent provabl&{iT) belongs toST, which is
used in a proof of an interpolation lemma 8¢T), is not obvious in NL1K),
because of sequents of the form— A.

By S(T)~ we denote the system whose axioms are all sequentsS$foand
whose only inference rule is (CUT) with premises without érgmtecedents.

Lemma 4 Forany sequent X> A, S(T)F X = A iff S(T)" + X - A.

Proof. The 'if’ direction is evident. To prove the ’'only if’ direiwin we show
thatS(T)~ is closed under (CUT), i.e.

() If S(T)" + X - BandS(T)" + Y[B] — A, thenS(T)" + Y[X] — A.

AssumeS(T) + X —» BandS(T)™ + Y[B] - A.

If X # A, thenS(T)™ + Y[X] — A by definition ofS(T)".

If X = A, then the sequet — Bis of the formA — BandS(T)” + A — B,
which means thah — B is an axiom ofS(T)~. To prove (*) we proceed by
induction on derivation of second premi¥B] — A.

If Y[B] — Ais an axiom ofS(T)~, then (Y[B] — A) € ST. ST is closed under
(CUT). Hence, Y[A] — A) € ST which yieldsS(T)™ + Y[A] — A.

If Y[B] — Ais a conclusion of (CUT) from premises without empty an-
tecedents, theN[B] = Z[Y’] and for someC € T, S(T)" + Y — C and
S(T)™ + Z[C] — A. We consider the following cases.

I. Bis contained iny’. ThenY’ = Y'[B].
(1) Y'[B] # B. By the induction hypothesis, (*) holds fox — B and
Y'[B] — C, soS(T)™ + Y[A] — C. SinceY’[B] # B, we haveY’[A] #
A. Using (CUT), we ge8(T)™ + Z[Y'[A]] — A, which mean$(T)™

P-TIME DecmasiLity oF NL1 wita Assumptions / 35

Y[A] = A
(2) Y'[B] = B. By the induction hypothesis, (*) holds fox — B and
B — C,soS(T)” + A — C. Using inductive hypothesis t& — C and
Z[C] — A we getS(T)™ + Z[A] — A, which means$S(T)™ + Y[A] —
A
Il. BandY’ do not overlap. Them is contained irZ and does not overlap
C in Z. We write Z[C] = Z[B,C]. From the assumption we haw =*
A. By induction hypothesis, (*) holds fok — B andZ[B,C] — A, so
S(T)” + Z[A,C] — A. By (CUT),S(T)” + Z[A,Y’] — A, which means
S(T)" + Y[A] - A
O

Corollary 5 Every basic sequents provable ifT9 belongs to S.

Proof. We proceed by induction on proofs$(T). AssumeX — Ais a basic
sequent derivable iB(T). If X — Ais an axiom ofS(T), then X — A) € ST.
If X — Ais a conclusion of (CUT), we consider three cases.

(1) X = A. By lemma 4,A — Ahas a proof inS(T)". HenceA — Ais an
axiom, which means — A) € ST.

(2) X = B. By lemma 4, there exists a proof such tBat> A is a conclusion
from premisesB — C andC — A, whereC # A. Since proofs in S(T)
consist withT-sequents onlyB — C andC — A are basic sequents. By
induction hypothesis g — C) € ST and C — A) € ST. ST is closed
under (CUT), soB — A) € S™.

(3) X = Bo C. By lemma 4, there exists a proof such tllat C — Alis a
conclusion from premises without empty premises. Henesy, #ne of the
form: (BoC—-D,D—->A)or(B—D,DoC—-A)or(C— D,BoD —
A). By the same argument as in (2), in each case, weRyeE (— A) € ST.

O

Now, we can state an interpolation lemma &{iT).

Lemma 6 If S(T) - X[Y] — A, then there exists @ T such that $T) +
Y - Dand §T) + X[D] — A.

Proof. We proceed by induction on proofs${(T).

I. AssumeX[Y] — A is an axiom ofS(T). We consider the following
cases.

(1) X[Y] = Y. ThenY = X (observe, that this case includes subcése
A). We setD = A. We haveS(T) + X — A from assumption and
S(T)+A— A since A — A)eST.

(2) X[Y] =B,Y = A. ThenX[Y] = X[A] = B=BoAorX[Y] =AoBand
D = 1. We haveS(T) - A —» 1andS(T) - B— A.(Bo1l — B) e ST,

36/ MaRria BuLiNska

soS(T) - Bo1l — B. Using (CUT) we getS(T) + X[1] — A. For
X[Y] = A o Bthe argumentis dual.

(B)X[Y] =BoC,Y # A. ThenY =BorY =C, henceD =BorD =C,
respectively.

(4) X[Y] = BoC, Y = A. ThenX[A] has one of the formA o (B o C),
(BoC)oA,(AoB)oC,(BoA)oC,Bo(A0C),Bo(CoA). For example,
if X[A] = Ao (BoC), we haveS(T) + A — 1 and using (CUT) to
S(T) + BoC —» AandS(T) - 1oA — A we getS(T) + 1o(BoC) — A.

Il. AssumeX[Y] — A s the conclusion of (CUT). TheK[Y] = Z[Y’] and

forsomeB e T: S(T) + Y — BandS(T) + Z[B] — A
In this part the proof is analogous to the proof of lemma 2 isBwwski

(2005). The following cases are considered.

(1) Y is contained inY’. ThenY’ = Y’[Y]. By the induction hypothesis,
there existdD € T such thatS(T) + Y — D andS(T) + Y'[D] — B.
Using (CUT) with the premiseZ[B] — A andY’[D] — B we get
S(T) + Z[Y’[D]] — A, which mean$(T) + X[D] — A.

(2) Y’ is contained inY. ThenX[Y] = X[Y[Y']] = Z[Y’] and Z[B] =
X[Y[B]]. By the induction hypothesis, there exidis € T such that
S(T) + Y[B] - D andS(T) + X[D] — A. Using (CUT) with the
premisesy’ — BandY[B] — D we getS(T) - Y[Y’]] — D.

(3) Y andY’ do not overlap. Thel is contained irZ and does not overlap
B in Z. We write Z[B] = Z[B,Y]. By the induction hypothesis, there
existsD € T such thatS(T) + Y — D andS(T) + Z[B,D] — A.
Using (CUT) with the premise¥” — B andZ[B,D] — B we get
S(T) + Z[Y’,D] — A, which mean$(T) + X[D] — A.

O

Lemma 7 For any T-sequent X A, X ->1t AiffS(T) F X - A.

Proof. Recall, thatX —1 A means that the sequeXit— A has the proof in
NL1(T") consisting withT -sequents only.

To prove 'if’ direction observe thaX —1 A, for all sequentX — Ain ST.
The T-sequents which are axioms of NIIQ(belong toSy. Thus, to prove
the ’only if’ direction it sufices to show that all inference rules of NIC)(
restricted toT -sequents, are admissibleS(T). For example, let us consider
(1L). AssumeX[A] — A. By lemma 6, there exidD € T such thatS(T) ~

A — DandS(T) + X[D] — A. Since Dol — D) € ST, thenS(T) - Dol —
D. By two applications of (CUT), we g&(T) + X[A o 1] — A, which means
S(T) + X[1] — A. O

Theorem 8 If T is finite, thenNL1(I") is decidable in polynomial time.

Proof. LetT be a finite set of sequents of the foBn— C and letX — Abe a
sequent. Leh be the number of logical constants and atomX i A andr'.

RereRENCES / 37

As T we choose the set of all subformulas of formulas appearing in A
and formulas appearing In Since the number of subformulas of any formula
Bis equal to the number of logical constants and aton hhasn elements
and we can construct it in time 1}). By lemma 2, NL1[) + X — A iff

X -1 A.Bylemma7X —t Aiff S(T) - X — A. Proofs inS(T) are actually
derivation trees of a context-free grammar whose prodoatites are the
reversed sequents fro8Y. Checking derivability in context-free grammars
is P-TIME decidable. For example, by known CYK algorithntgan be done
in time not exceedt - n%, wherek is the size oST. By the proof of fact 3, the
size of ST is at most %) andS' can be constructed in B%%). Hence, the
total time is 00%?), i.e. NL1() is P-TIME decidable. O

By theorem 8, we have immediately that languages genergtdtblrate-
gorial grammar based on the system NIL)14re context-free. In Buszkowski
(2005) the analogous result was established forf)LL(I") with permuta-
tion rule and Generalized Lambek Calculus (GLY(The context-freeness
of the languages generated by Nonassociative Lambek Qaladre studied
by Buszkowski (1986), Kandulski (1988) and Jager (2004)ifBka (2005)
obtained the weak equivalence of context-free grammargemmars based
on the associative Lambek calculus with finite set of simmelogical ax-
ioms of the formp — q, wherep, g are primitive types.

References

Bulihska, M. 2005. The Pentus Theorem for Lambek Calculitls imple Nonlogi-
cal Axioms. Studia Logica81:43-59.

Buszkowski, W. 1986. Generative capacity of Nonasso@dtambek CalculusBul-
letin of Polish Academy of Sciences. Mathemadi#t$07-516.

Buszkowski, W. 2005. Lambek Calculus with Nonlogical Axienin C. Casadio, P. J.
Scott, and R. A. G. Seely, edtanguage and Grammaftudies in Mathematical
Linguistics and Natural Language, pages 77-93. CSLI Paiiias.

de Groote, P. and F. Lamarche. 2002. Clasical Non-Asseeidtambek Calculus
. Studia Logica71:355-388. Special issue: The Lambek calculus in logic and
linguistics.

Jager, G. 2004. Residuation, Structural Rules and CoRtednessJournal of Logic,
Language and Informatioh3:47-59.

Kandulski, M. 1988. The equivalence of Nonassociative LeknBategorial Gram-
mars and Context-Free Grammazsitschrift fir mathematische Logik und Grund-
lagen der Mathematik2:34—41.

Moortgat, M. 1997. Categorial Type Logics. In J. van Bentram A. ter Meulen,
eds., Handbook of Logic and Languagpages 93-177. Amsterdam, Cambrigde
Mass.: Elsvevier, MIT Press.

4

Program Transformations for
Optimization of Parsing Algorithms and
Other Weighted Logic Programs

JAsON EISNER AND JOHN BrLarz

Abstract
Dynamic programming algorithms in statistical naturalgaage processing can be
easily described as weighted logic programs. We give ainatand semantics for such
programs. We then describe several source-to-sourcefdrarations that fiect a pro-
gram’s dficiency, primarily by rearranging computations for betuge or by changing
the search strategy.
Keywords WEIGHTED LOGIC PROGRAMMING, DYNAMIC PROGRAMMING, PROGRAM TRANS-

FORMATION, PARSING ALGORITHMS

4.1 Introduction

In this paper, we show how somdieiency tricks used in the natural lan-
guage processing (NLP) community, particularly for pagstan be regarded
as specific instances of transformations on weighted logigramming al-
gorithms.

We define weighted logic programs and sketch the general @drthe
transformations, enabling their application to new praggén NLP and other
domains. Several of the transformations (folding, unfoddimagic templates)
have been known in the logic programming community, but ameegalized
here to our weighted framework and applied to NLP algorithve also
present a powerful generalization of folding—speculatiamhich appears
new and is able to derive some important parsing algorith#rally, our
formalization of these transformations has been simplfgdur use of “gap

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

39

40/ JasoN EisNER AND JOHN BLaTZ

passing” ideas from categorial grammar and non-groundsdrom logic
programming.

The framework that we use for specifying the weighted logagpams is
roughly based on that of Dyna (Eisner et al., 2005), an impleed system
that can compile such specifications infi@ent G++. Some of the programs
could also be handled by PRISM (Zhou and Sato, 2003), an mgaiéed
probabilistic Prolog.

It is especially useful to have general optimization teqghes for dy-
namic programming algorithms (a special case in our framk)ybecause
NLP researchers regularly propose new such algorithmsa®ynprogram-
ming is used to parse manyfiiirent grammar formalisms. It is also used in
stack decoding, grammar induction, finite-state methodd, syntax-based
approaches to machine translation and language modeling.

One might select program transformations either manuallgutomati-
cally. Our goal here is simply to illustrate the search spafceemantically
equivalent programs. We do not address the practical aquresfisearching
this space—that is, the question of where and when to apglyrémsfor-
mations. For some programs and their typical inputs, a foamstion will
speed a program up; in other cases, it will slow it down. Thaalaffect can
of course be determined empirically by running the tramafmt program (or
in some cases, predicted more quickly by profiling tiitransformedpro-
gram as it runs on typical inputs). Thus, at least in prirgiphe could apply
automatic local search methods.

4.2 Our Formalism
4.2.1 Logical Specification of Dynamic Programs

We will use context-free parsing as a simple running exanigeall that one
can write a logic program for CKY recognition (Younger, 19@3% follows,
whereconstit(X,1,K) is provable ff the grammar, starting at nonterminalcan
generate the input substring from positido positionk.

constit(X,l,K) :- rewrite(X,W), word(W,1,K).

constit(X,1,K) :- rewrite(X,Y,Z), constit(Y,1,J), constit(Z,J,K).

goal :- constit(s,0,N), length(N).

rewrite(s,np,vp). % tiny grammar
rewrite(np,”"Dumbo”).

rewrite(np,"flies”).

rewrite(vp,'flies”).

word("Dumbo”,0,1). % tiny input sentence
word("flies”,1,2).
length(2).

TRANSFORMATIONS ON WEIGHTED Locic PrRoGrAMS / 41

We say that this logic program isdynamic program because it satis-
fies a simple restriction: allariables (capitalized) in a rule’s left-hand side
(rule head) also appear on its right-hand side (riedy). Logic programs
restricted in this way correspond to the “grammatical dédansystems” dis-
cussed by Shieber et al. (1995). They can be evaluated bymesagenda-
based, bottom-up dynamic programming algorithm.

This paper, however, deals with general logic programsowithhis re-
striction. For example, one may wish to assert the avaitgloif an “epsilon”
word ateverypositionk in the sentencevord(epsilon,K,K). We emphasize this
because it is convenient for some of our transformationsttmduce new
non-dynamic rules. One can often eliminate non-dynamesr(ih particular,
the ones we introduce) to obtain a semantically equivalgnéchic program,
but we do not here explore transformations for doing so syatieally.

4.2.2 Weighted Logic Programs

We now define our notion afieightedogic programs, of which the most use-
ful in NLP are the semiring-weighted dynamic programs dsseudl by Good-
man (1999) and Eisner et al. (2005). See the latter paperddcassion of
relevant work on deductive databases with aggregation, (€iting, 2002,
Van Gelder, 1992, Ross and Sagiv, 1992).

Our running example is the inside algorithm for contexefparsing:

constit(X,l,K) += rewrite(X,W) * word(W,1,K).

constit(X,l,K) += rewrite(X,Y,Z) * constit(V,l,J) * constit(Z,J,K).

goal += constit(s,0,N) * length(N).

rewrite(s,np,vp) = 1. % p(s—npvp|s)
rewrite(np,"Dumbo”) = 0.6. % p(np — "Dumbo” | np)
rewrite(np,’flies”) = 0.4. % p(vp — "flies” | vp)
rewrite(vp,’flies”) = 1. % p(vp — "flies” | vp)

word("Dumbo”,0,1) = 1. % 1 for all words in the sentence
word("flies”,1,2) = 1.
length(2) = 1.

This looks just like the unweighted logic program in secto®.1, except
that now the body of each rule is an arbitragpressionand the- operator
is replaced by an “aggregation operator” such-asr max=. Since line 2 can
be instantiated for example asnstit(s,0,2) += rewrite(s,np,vp) * constit(np,0,1)
* constit(vp,1,2), the value ofrewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2) (if
any) is used as a summand (i.e., an operanépin the value otonstit(s,0,2).

1This is superior to a Prolog-style backtracking algorithmuns in polynomial time, rather
than wasting exponential time re-deriving the same cagstis in diferent contexts, or failing
to terminate if the grammar is left-recursive.

42/ JasoN EisNErR AND JOHN Brarz

We will formalize this in section 4.2.3 below.

The result—for this program—is that the computed valueapstit(s,0,2)
will be the inside probabilitys (0, 2) for a particular input sentence and gram-
mar? In practice one might wait until runtime to provide the déston of
the sentence (the rules faord andlength) and perhaps even of the grammar
(therewrite axioms). In this case our transformations would typicalyused
only on the part of the program specified at compile time. Busfmplicity,
we suppose in this paper that the whole program is specifieghapile time.

If the left-hand sides of two rules unify, then the rules mus the same
aggregation operator, to guarantee that each item is agjgebn a consistent
way. Eactronstit(. ..) item above is aggregated with.

4.2.3 Semantics of Weighted Logic Programs

In an unweighted logic program, the semantics is the set@fgiie items.
For weightedlogic programs, the semantics is a partial function that snap
each provable item to a value[r]. All items in our example take values in
R. However, one could use values of any type or types.

The domain of the-] function is the set of items for which there exist
finite proofs under thenweightedrersion of the program. We exteifd in

def

the obvious way to expressions on provable items: for exanjgl*y] =
X * Iyl

For each provable ground itemlet £(r) be the non-empty multiset of all
ground expressions on provable items such thats,= E instantiates some
rule of . Heres,= denotes the single aggregation operator shared by all those
rules.

We now interpret the weighted rules as a set of simultanequat®ns
that constrain thé-] function. If &= is +=, then we require that

= > [E]

EeP(r)
(putting[r] = oo if the sum diverges). More generally, we require that
[[I’ﬂ = [[El]] D [[Ezﬂ S ...

whereP(r) = {Ej, E», .. .}. For this to be well-definedy, must be associative
and commutative. i, = is the special operatey, as in the final rules of our
example, then we sét] = [E;] if P(r) is a singleton seE;}, and generate
an error otherwise.

In the terminology of the logic programming community, thisfinition
is equivalent to saying that the valuation functiphis a fixed point of the
monotone consequence operator.

2However, unlike probabilistic programming languages (Zlamd Sato, 2003), we do not
enforce that values be reals in [or have probabilistic interpretations.
3Such a fixed point need not be unique, and there is a rich limessfarch into attempting

TRANSFORMATIONS ON WEIGHTED Locic PRoGrRAMS / 43

Example. In the example of section 4.2.2, this means that for any @dai
X, I, K for which constit(X,1,K) is provable[constit(X, I, K)] equals

Y. 3vzlrewrite(X,Y,Z)] * [constit(Y,1,J)] * [constit(Z,d,K)]
+ Ywlrewrite(X,W)] * [word(W,1,J)]

where, for example, the first summation ranges over terrteip Y, Z such
that the summand has a value. We sum 0wz because they do not appear
in the rule’s headonstit(X,1,J), which is being defined.

Notation. We will henceforth adopt a convention of underlining anyivar
ables that appear only in a rule’s body, to more clearly iagi¢che range of
the summation. We will also underline variables that appearin the rule’s
head; these indicate that the rule is not a dynamic progragnie.

Discussion. Substitutingmax= for += throughout the program would find
Viterbi probabilities (best derivation) rather than iresigrobabilities (sum
over derivations). Similarly, we can obtain the unweightecbgnizer of sec-
tion 4.2.1 by writing expressions over boolean valties:

constit(X,l,K) |= rewrite(X,Y,Z) & constit(Y,l,J) & constit(Z,J,K).

In general, this framework subsumes the practically usetaé of Good-
man (1999), which requires all values to fall in a single sergiand all rules
to use only the semiring operations.

Definition. A program transformatio® : £ — %’ is defined to be
semantics-preservingf for every itemr which is provable byP, r is also
provable by?” and

[rlp = [rle
4.2.4 Computing Semantics by Forward-Chaining

A basic strategy for computing the semantics is “forwarding.” The idea
is to maintain current values for all proved items, and tqpgate updates to
these values, from the right-hand side of a rule to its leftdhside, until all
the equations are satisfied. (This might not halt: even areigived dynamic
program can encode an arbitrary Turing machine.)

to more precisely characterize the intuitive semanticsogfcl programs with negation or ag-
gregation. The interested reader should refer to Fittif@p22, or to, for example, Van Gelder
(1992) or Ross and Sagiv (1992) for a discussion of the seosanitaggregate logic programs.
In practice, one may obtain some single fixpoint by runnirgyfirward-chaining algorithm of
the section 4.2.4 below and hoping that it converges.

4Using| for “or” and & for “and.” The aggregation operatofs and&= can be regarded as
implementing existential and universal quantification.

5Dropping these requirements allows our framework to handleal networks, game trees,
and other interesting systems of equations. Note that Gantrfiside conditions” can be easily
handled in our framework (see Eisner et al., 2005).

44/ JasoN EisNER AND JoHN BLATZ

As already noted in section 4.2.1, Shieber et al. (1995) gaf@ward
chaining algorithm (elsewhere called “semi-naive bottoprevaluation”) for
unweighteddynamicprograms. Eisner et al. (2005) extended this to handle
the semiring-weighted case. Goodman (1999) gave a mixeditim.

Dealing with our full class of weighted logic programs—natt semiring-
weighted dynamic programs—is a substantial generalizalibe algorithm
must propagate arbitrary updates, derive values for noosgt items, and
obtain the value ofoo(3,3), if not explicitly derived, from (e.g.) the derived
value of foo(X,X) or foo(X,3) in preference to the less specifio(X,Y). Fur-
thermore, certain aggregation operators, but not all, geptiimizations that
are important for fliciency. We defer these algorithmic details to a separate
paper.

4.3 Folding

Weighted dynamic programs are schemata that define systesimwtane-
ous equations. Such systems can often be rearranged wétfiecting their
solutions. In the same way, weighted dynamic programs carabsformed
to obtain new programs with better runtime.

For a first example, consider our previous rule from secti@m4

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).

If the grammar ha®l nonterminals, and the input is amword sentence
or ann-state lattice, then the above rule can be instantiatedlin@{N® - n®)
different ways. For this—and the other parsing programs we denkere—
it turns out the runtime of forward chaining can be kept dow®f1) time
per instantiatior. Thus the runtime i©(N?® - n).

However, the following pair of rules is equivalent:

temp(X,Y,Z,1,J) =rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,,K) +=temp(X,Y,Z,1,J) * constit(Z,J,K).

We have just performed a weighted version of the clas$éidding trans-
formation for logic programs (Tamaki and Sato, 1984). Thiginal body
expression would be explicitly parenthesizedrasrite(X,Y,Z) * constit(Y,1,J))

* constit(Z,J,K); we have simply introduced a “temporary item” (like a tem-
porary variable in a traditional language) to hold the restithe parenthe-
sized subexpression, then “folded” that temporary itera the computation

6Assuming that the grammar is acyclic (in that it has no unaty cycles) and so is the in-
put lattice. Even without such assumptions, a meta-theafefcAllester (1999) allows one to
derive asymptotic runtimes of appropriately-indexed famvchaining from the number of in-
stantiations. However, that meta-theorem applies onlyeaighted dynamic programs. Similar
results in the weighted case require acyclicity. Then omeusa the two-phase method of Good-
man (1999), which begins with a run of McAllester's methodasnunweighted version of the
program.

TRANSFORMATIONS ON WEIGHTED Locic ProGgraMS / 45

of constit. The temporary item mentions all the capitalized varialiethe
expression.

Distributivity. A more important use appears when we combine folding
with the distributive law. In the example above, the secané's body sums
over the (underlined) free variables, Y, andz. However,Y appears only
in thetemp item. We could therefore have summed over value¥ bkfore
multiplying by constit(z,J,K), obtaining the following transformed program
instead:

temp2(X,Z,1,J) += rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,,K) +=temp2(X,Z,1,J) * constit(Z,J,K).

This version of the transformation is permitted only beeaudistributes
over*.” By “forgetting” Y as soon as possible, we have reduced the runtime
of CKY from O(N3 - n®) to O(N3 - n? + N? . nd).

Using the distributive law to improve runtime is a well-knotechnique.

Aji and McEliece (2000) present an algorithm inspired by jingction-tree
algorithm for probabilistic inference in graphical modelsich they call the
“generalized distributive law,” which is equivalent to egpted application of
the folding transformation, and which they demonstrate éoubeful on a
broad class of weighted logic programs.

A categorial grammar view of folding. From a parsing viewpoint, notice
that the itemtemp2(X,z,1,J) can be regarded as a categorial grammar con-
stituent: an incomplet® missing a subconstitueatat its right (i.e., arx/z)

that spans the substring fraro J. This leads us to an interesting and appar-
ently novel way to write the transformed program:

constit(X,l,K)/constit(Z,J,K) += rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,l,K) += constit(X,l,K)/constit(Z,J,K) * constit(Z,J,K).

HereA/B is syntactic sugar faglash(A,B). That is,/ is used as an infix functor
and does not denote division, However, it is mearsguggestivision: as the
second rule showsyB is an item which, if multiplied bys, yields a summand
of A. In effect, the first rule above is derived from the original rule Fa t
start of this section by dividing both sides bynstit(z,J,K). The second rule
multiplies the missing factatonstit(z,J,K) back in, now that the first rule has
summed ovey.

Notice thatk appears free (and hence underlined) in the head of the first
rule. The only slashed items that are actualtgvablein this program are
non-ground terms such asnstit(s,0,K)/constit(n,1,K). That is, they have the
form constit(X,1,K)/constit(Z,J,K) whereX,l,J are ground variables butremains
free. The equality of the tw& arguments (by internal unification) indicates
that the missing is always at theight of the X, while their freeness means

’Since all semirings enforce a similar distributive propeite trick can be applied equally
well to Viterbi parsing and unweighted recognition (sectb?2.3).

46/ JasoN EisNER AND JOHN BLATZ

that the right edge of the fulk and missingz are still unknown (and will
remain unknown until the second rule fills in a particutyr Thus, the first
rule performs a computation once falt possiblek—the source of folding’s
efficiency. Our earlier program wittemp2 could have been obtained by a
further automatic transformation that replacedcahstit(X,1,K)/constit(Z,J,K)
having freex with the more compactly storeemp2(X,z,1,J).

We emphasize that although our slashed items are inspiredtegorial
grammars, they can be used to describe foldingrigweighted logic pro-
gram. Section 4.5 will further exploit the analogy to obtainovel “specula-
tion” transformation.

Further applications. The folding transformation unifies various ideas that
have been disparate in the literature. Eisner and Satt®]5p@ed up parsing
with bilexical context-free grammars fro@(n°) to O(n*), using precisely
the above trick (see section 4.4 below). Huang et al. (200f)l@y the same
“hook trick” to improve the complexity of syntax-based MTtlviann-gram
language model.

Another parsing application is the common “dotted ruletkriEarley,
1970). If one’s CFG contains ternary rulgs— Y1 Y2 Y3, the naive CKY-
like algorithm take€O(N* - n*) time:

constit(X,l,L) += ((rewrite(X,Y1,Y2,Y3) * constit(Y1,1,J))

* constit(Y2,J,K)) * constit(Y3,K,L).
Fortunately, folding allows one to sum first ovet before summing sepa-
rately overy2 andJ, and then over3 andk:

temp(X,Y2,Y3,1,J) +=rewrite(X,Y1,Y2,Y3) * constit(Y1,l,J).

temp2(X,Y3,1,K) +=temp(X,Y2,Y3,,J) * constit(Y2,J,K).

constit(X,l,L) +=temp2(X,Y3,1,K) * constit(Y3,K,L).

This restore©(n®) runtime (more preciselD(N*-n? + N2-n® + N2-n?))8 by
reducing the number of nested loops. Even if we had declimedin oveiv1
andY2 in the first two rules, then the summation ovewould already have
obtainedO(n®) runtime, in dfect by binarizing the ternary rule. For exam-
ple, temp2(X,Y1,Y2,Y3,l,K) would have corresponded to a partial constituent
matching thedottedrule X — Y1 Y2 . Y3. The additional summations ovet
andY2 result in a more ficient dotted rule that “forgets” the names of the
nonterminals matched so fat,— ? ? . Y3. This takes further advantage of
distributivity by aggregating dotted-rule items (with) that will behave the
same in subsequent computation.

The variable elimination algorithm for undirected gragthimodels can be
viewed as repeated folding. An undirected graphical moxlgtesses a joint

8For a dense grammar, which may have upNfoternary rules. Tighter bounds on grammar
size would yield tighter bounds on runtime.

TRANSFORMATIONS ON WEIGHTED Locic PrRoGrAMS / 47

probability distribution oveP,Q by marginalizing (summing) over a product
of clique potentials:

marginal(P.Q) += p1(...) * p2(...) *--- *pn...).

where a function such g%(Q,X,Y) represents a clique potential over graph
nodes corresponding to the random varialgdesy. Assume without loss of
generality that variabl& appears as an argument onlyptQ1, pk+2, - - - » Pn-
We mayeliminatevariablex by transforming to

temp(...) 4= Praleen, X) T F (e, X,).
marginal(P,Qy= p1(...) *oooqp(lL) *temp(...).

The first line no longer mentionsbecause the second line sums over it. The
variable elimination algorithm applies this procedureeaedly to the last
line to eliminate the remaining variabl@s.

Common subexpression elimination. Folding can also be used multiple
times to eliminate common subexpressions. Consider tt@xfislg code for
bilexical CKY parsing:
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,l,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)
* constit(Y:H2,1,J) * constit(Z:H,J,K).

HereX:H is syntactic sugar fattlex(X,H), meaning a nonterminallexicalized
at head wordH. The program ectively has two types of rewrite rule, which
pass the head word to the left or right child, respectively.

We could fold together the last two factors of the first rul@lain

temp(Y:H,Z:H2,1,K) += constit(Y:H,l,J) * constit(Z:H2,J,K).

constit(X:H,I,K) +=rewrite(X:H,Y:H,Z:H2) * temp(Y:H,Z:H2,l,K).

constit(X:H,1,K) += rewrite(X:H,Y:H2,Z:H)

* constit(Y:H2,1,J) * constit(Z:H,J,K).

We canreusethis definition of theemp rule to fold together the last two fac-
tors of line 3—which is the same subexpression, modulo krieenaming.
(Below, for clarity, we explicitly and harmlessly swap th@mes ofH2 andH
inthetemp rule.)

temp(Y:H2,Z:H,1,K) += constit(Y:H2,1,J) * constit(Z:H,J,K).

constit(X:H,1,K) +=rewrite(X:H,Y:H,Z:H2) * temp(Y:H,Z:H2,l,K).

constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) * temp(Y:H2,Z:H,I,K).

Using the sameemp rule (modulo variable renaming) in both folding
transformations, rather than introducing a new tempoitem ifor each fold,
gives us a constant-factor improvement in time and space.

9Determining the optimal elimination order is NP-complete.

48/ JasoN EisNER AND JOHN BLATZ

Definition of folding. Our definition allows an additional use of the distribu-
tive law. The original program may define the value of itebyy aggregating
values not only over free variables in the body of one rulée,abso across
n rules. Thus, when defining the temp itesnwe also allow it to aggregate
across rules. In ordinary mathematical notation, we are perfogrargen-
eralized version of the following substitution:

Before After
r=Yi(EixF) = r=sxF
s=2%E = s=2E

given the distributive property,;(E; « F) = (3; Ei) =« F. The common context
in the original rules is the function “multiply by expressié,” so the temp
item s plays the role ofr /F. We will generalize by allowing this common
context to be an arbitrary functida.

We require that the rules defining the temp itesns= Y Ej, be in the
programalready before folding occurs. If necessary, their presence may be
arranged by a triviatlefinition introduction transformation that addgF =
> Ei. (Explicitly using the slashed itemyF for s will ensure that the vari-
able occurrence requirement below is met.) We claim witlpoaof that all
transformations in this paper are semantics-preservirteérsense of sec-
tion 4.2.3.

Below and throughout the paper, we use the notafipX] to denote the
literal substitution of expressioK for all instances of: in an expressiofr
over items, even iX contains variables that appearknor elsewhere in the
rule containing=[X]. We assume that is a distinguished item name, of the
same value type a8, and does not appear elsewhere.

Algorithm 4.3.1 (Folding transformation)

Given n distinct rules R...,R, in £, where each Rhas the form
r &= F[E;]. Given also a term s that unifies with the heads of exacfly n
rules in the program, all of which are distinct from the Rnd which re-
spectively take the formes= E; after this unification.

Then the folding transformation deletes the rules.R ,R,, replacing
them with a new rule &= F[9], provided that

=Any variable that occurs in any of the Bhich also occurs in either
or r must also occur in §°

» Eithere= or o=is simply=,*'or else the distributive properfjF[xo y]] =
[F[x]] ® [F[y]] holds for all assignments of terms to variables and all yal-
uation functiong-].*2

TRANSFORMATIONS ON WEIGHTED Locic PrRoGrRAMS / 49

As a tricky example, one can replace= p(1,J) * log(q(J,K)) with r += p(1,J)
*log(s(J)) in the presence af(J) *= q(J,K). HereE; is q(J,K), andF[x] is p(1,9)
*log(x).

4.4 Unfolding

In general, a folding transformation leaves the asymptuotitime alone, or
may improve it when combined with the distributive I&WThus, the inverse
of the folding transformation, callednfolding, makes the asymptotic time
complexity the same or worse. However, unfolding may be athgeous as
a precursor to some other transformation that improvesmenit also saves
space. Sometimes we can improve both time and space cotyfdgxinfold-
ing and then transforming the program further.

For example, recall the bilexical CKY parser given near thd ef sec-
tion 4.3. The first rule originally shown there has runti@E\? - n°), since
there areN possibilities for each ok,Y,z and n possibilities for each of
1LJ,K,H,H2. Suppose that instead of that slow rule, the original pnognar
had written the following folded version:

temp3(X:H,Z:H2,1,J) += rewrite(X:H,Y:H,Z:H2) * constit(Y:H,I,J).

constit(X:H,I,K) +=temp3(X:H,Z:H2,1,.J) * constit(Z:H2,J,K).

This partial program has asymptotic runtin@eﬁN3 n* 4+ N2 n5) and needs

O(N2 . n“) space to store the items (rule heads) it derives.

By unfolding thetemp3 item—that is, substituting its definition in place
each time it is used, which uses unification and relies omibligivity—and
then trimming away its now-unneeded definition, we recolerfirst rule of
the original program:

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)

* constit(Y:H,l,J) * constit(Z:H2,J,K).

This worsens the time complexity tb(N3 : n5), but by eliminating storage

of thetemp items, it improves the space complexity(fx(N . n3). The paydt
is that now we can refold this rule féierently—either as in section 4.3, or
alternatively as follows (Eisner and Satta, 1999, whichsedsthe chance to

eliminate common subexpressions):

10This ensures that does not sum over any variables that must remain visibledmetised
rule.

11For instance, in the very first example of section 4.3, tér@p item was defined using
and therefore performed no summation. No distributivityswaeded.

12That is, all valuation functions over the space of items|uiding dummy itemsx andy,
when extended over expressions in the usual way.

131t may either help or hurt thactual runtime, and it certainly increases the space needed to
store items’ values.

50/ JasoN EisNer AND JoHN Brarz

temp4(X:H,Y:H,J,K) += rewrite(X:H,Y:H,Z:H2) * constit(Z:H2,J,K).
constit(X:H,1,K) += temp4(X:H,Y:H,J,K) * constit(Y:H,I,J).

Either way, the time complexity is no® (N2 - n + N2 - n)—better than the
original programmer’s version—while the space complekis increased
only back to the original programmei®(N? - n%).

Unfolding resembles inlining of a subroutine call. Sectib will show
how it can thus be used for program specialization—imprg\dfiiciency
by a constant factor and also enabling further transfoomatthat improve
asymptotic éiciency.

4.5 Speculation

We now generalize folding to handle recursive rules. Bpisculationtrans-
formation, which is novel as far as we know, is reminiscergay-passing in
categorial grammar. It has many uses; we limit ourselvesdosixamples.

Split head-automaton grammars. We consider a restricted kind of bilexi-
cal CFG in which a head word combines with all of its right dhéin before
any of its left children (Eisner and Satta, 1999). The “ies&gorithm” be-
low!* builds uprconstit items by starting with a word and successively adding
0 or more child constituents to the right, then buildsonstit items by adding
0 or more child constituents to the left of this.
rconstit(X:H,I,K) += word(H,I,K). % O right children so far
rconstit(X:H,l,K) += rewrite(X:H,Y:H,Z:H2) % add right child
* reonstit(Y:H,1,J) * constit(Z:H2,J,K).
constit(X:H,l,K) += rconstit(X:H,I,K). % O left children so far
constit(X:H,I,K) +=rewrite(X:H,Y:H2,Z:H) % add left child
* constit(Y:H2,1,J) * constit(Z:H,J,K).
goal += constit(s:H,0,N) * length(N).

This algorithm has runtim®(N? - n®) (dominated by line 4). We now
exploit the conditional independence of left children fraght children. In-
stead of building up aonstit from a particular, existingconstit (line 3) and
then adding left children (line 4), we transform the progamit builds up the
constit item speculativelywaiting until the end to fill in each of the various
rconstit items that could have spawned it. Replace lines 3—4 with

Iconstit(X0:H0,X0,J0,J0) +=1 needed_only_if rconstit(X0:H0,JO,KO0).

Iconstit(X:H0,X0,1,J0) += rewrite(X:HO,Y:H2,Z:H)

* constit(Y:H2,1,J) * Iconstit(Z:H0,X0,J,JO).
needed_only_if rconstit(X0:H0,J0,KO0).
constit(X:HO,1,K0) += Iconstit(X:HO0,X0,1,J0) * rconstit(X0:H0,J0,K0).

14For simplicity, this code ignores the cost of starting, ‘{flipg,” or stopping in diferent non-
terminal states.

TRANSFORMATIONS ON WEIGHTED Locic ProgrAMS / 51

The new temp itemconstit(X:H0,X0,1,J0) represents théeft half of a con-
stituent. We can regard it in the categorial terms of secdfiéh as the last
line illustrates, it is just a more compact notation fotamstit missing its
rconstit right half—namelyconstit(X:H0,1,K0)/rconstit(X0:H0,J0,K0), whereko

is always a free variable, so thatnstit need not specify any particular value
for Ko.

The firsticonstit rule introduces an empty left half, equivalent don-
stit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0). This is extended with its left children
by recursing through the secoldnstit rule, allowingx andi to diverge from
X0 andJo respectively. Finally, the last rule finally fills in the misg right
half rconstit.

The special filter clauseseeded_only_if rconstit(X0:H0,J0,K0) are added
solely for dficiency. They say that it is not necessary to build “useles” |
halves purely speculatively, but only when there is somiettiglf for them
to combine with. Their semantics are sketched below.

In this case, the filter clause on the second rule managestoesthat in
any Iconstit(X:H, X0,1,J0) that we need to buildjo will be the start position
of the head wordH. (Such a constraint is already true foonstits; an empty
Iconstit inherits it from therconstit filter, and passes it along to successively
wider Iconstit.) Since the temp item records only this redundant positiah a
notK (the right boundary of the unknowsonstit), runtime falls fromO (n°)
to O (n“).

As a bonus, we can now obtain tﬁ)a(n3) algorithm of Eisner and Satta
(1999). Simply unfold the instances ofnstit in the rconstit andtemp rules

(i.e., replacing them witleonstit * rconstit per our new definition). Then refold
those rules dferently!®

Filter clauses. Our approach to filtering is novel. Ouneeded_only._if clauses
may be regarded as “relaxed” versions of side condition®{&w@n, 1999).
In the denotational semantics (section 4.2.3), they rdiaxréstrictions on
the [-] function, allowing more possible semantics (all of whichwever,
preserve the semantics of the original program).
Specifically, when constructing(r) to determine whether a ground item
r is provable and what its value is, we maptionally omit an instantiated
ruler @,= E if it has a filter clauseneeded_only_if C such that no consistent
instantiation ofC has been proved. (The “consistent” instantiations aregthos
where variables of that are shared withor E are instantiated accordingly.
Other variables, such &® in the example above, may have any instantiation.)
How does this help operationally, in the forward chainingosithm?

15In each case, userawrite to combine aconstit with anlconstit to its right (first folding the
rewrite with whichever one does not contribute the head yvord

52/ JasoN EisNer AND JoHN Brarz

When a rule triggers an update to a groumchon-ground item, but carries
a (partly instantiated) filter clause that does not unifyhvény proved item,
then the update has infinitely low priority and need not begiaon the
forward-chaining agenda. The update must still be carrigdifothe filter
clause is proved latéf.

In the example above, forward chaining on the fitshstit rule produces
an “zero-width”lconstit(X0:H0,X0,J0,J0) in which all variables are fre¥. This
Iconstit can be used anywhere; in particular, it can combine withreamgstit,
so the filter clause says it is needed as soocangsconstit has been proved.
The real filtering power comes when the second rule tries thl thurther
from the zero-widthconstit using the second rule. Thew, Ho, andJo in-
directly become bound to values in thsvrite and constit items of that rule
(because of the internal unification in the zero-wildtistit(X0:H0,X0,J0,J0)).
Thus, the filter clause is now better instantiated, enxgeded_only_if rcon-
stit(vp:"flies”,1,K0). Only if such anrconstit has been derived (for sonk@) are
we required to consider updating the clause head,leogstit(s:"flies”,vp,0,1).

Unary rule closure. Before formalizing speculation, we informally show
another instructive application: precomputing unary rlesure in a CFG.
We start with a version of the inside algorithm that allowsteominal unary
rules:

program fragment Py:

constit(X,l,K) += rewrite(X,W) * word(W,1,K).

constit(X,l,K) += rewrite(X,Y) * constit(Y,I,K).

constit(X,l,K) += rewrite(X,Y,2) * constit(Y,I,J) * constit(Z,J,K).

Suppose that the grammar rules include, among others,

program fragment Py (continued)
rewrite(npl,np3) =0.1.
rewrite(np3,np2) =0.2.
rewrite(np2,np3) =0.3.
rewrite(np3,det,n)=0.4. ...
We canunfoldthe grammar into the program to get rules such as
program fragment P:
constit(npl,l,K) += 0.1 * constit(np3, I, K).
constit(np3,1,K) += 0.2 * constit(np2, I, K).
constit(np2,1,K) += 0.3 * constit(np3, I, K).

16sometimes a filter is true, causing the update, but latermesdalse. For instanceson-
stit(vp:"flies”,1,K0) may no longer be provable after sentence-speuificd(. . .) axioms are re-
tracted. Because the update is now optional, the algorithnoi required to retract the update
(at least not on that basis), although it is free to do so imotl reclaim memory. This optional-
ity is useful in some of our examples below: entries will bedilinto the unary-rule-closure and
left-corner tables only as needed, but need not be retraftedeach sentence and then rederived.
17As well as adding 1 to any other items that specialize andrioeethis one.

TRANSFORMATIONS ON WEIGHTED Locic PRoGrRAMS / 53

constit(np3,1,K) += 0.4 * constit(det, I, J) * constit(n, J, K). ...

This amounts to program specialization. If we have unfol(edeast)
the unary rewrite rules into the program, we can now applyesiadon to
eliminate them “dine”™

program fragment P

temp(X0,X0) +=1 needed_only_if constit(X0,l0,KO0).
temp(np1,X0) +=0.1*temp(np3,X0).

temp(np3,X0) +=0.2 * temp(np2,X0).

temp(np2,X0) +=0.3 * temp(np3,X0).

constit(X,10,K0) += temp(X,X0) * other(constit(X0,10,K0)).
other(constit(np3,1,K)) += 0.4 * constit(det,l,J) * constit(n,J,K). ...

For any nonterminalX andY, our temporary itememp(X,X0) is just com-
pact notation foronstit(X,10,K0)/constit(X0,10,K0): the inside probability of de-
riving a constit(X,10,K0) by a sequence of 0 or more unary rules froroa-
stit(X0,10,K0) that covers the same sp&aKo. In other words, it is the total
probability of all (possibly empty) unary-rewrite chairns-* Xo.

The final two rules recover unslasheshstit items. other(constit(X,1,K)) is
any constit(X0,1,K) whose derivation doesot begin with a unary rule. The
next-to-last rule builds this inteonstit(X,1,J) through a sequence of 0 or more
unary rules.

Crucially, thetemp(X,X0) items have values that amedependent of and
K. So they need not be computed separately for every span iy ssetence.
For each nontermin&lo, all temp(X,X0) values will be computed once and for
all (the very first time &onstit(X0,1,K) constituent is built) by iterating the first
three rules below to convergence. These values will themirestatic while
the grammar does, even if the sentence changes (see fot6)ote

Definition of speculation. In general, the value of a slashed item ifBac-
tion, just like the semantics of a slashed constituent in caigiggrammar.
Also as in categorial grammar, gaps are introduced withdaetity function,
passed with function composition, and eliminated with tiorcapplication.
Fortunately, in commutative semiring-weighted prograikesthe ones above,
all functions have the form “multiply bx” for some weightx. We can rep-
resent such a function simply asusing semiring 1 for the identity function,
semiring multiplication for both composition and applioat and semiring
addition for pointwise addition.

Algorithm 4.5.1 (Speculation transformation)

54/ JasoN EisNErR AND JoHN Brarz

Let a be an item to slash out, where any variables in a do natioelse-
where inP. Let slash and other be functors that do not already appear
P.LetR,...,R, be distinct rules inP, where each Rs r; &= Fi[tj], and
e Fori <k, t does not unify with a.

e Fori > Kk, t unifies with a; more strongly, it matches a non-empty subset
of the ground terms that a doé%.

e Certain conditions on distributivity (satisfied by semgriprograms).
Then the speculation transformation constructs the fahgwnew pro-
gram, in which the values afash items are functionsp; is extended tp
sum functions pointwise,denotes function composition, an{if denoteg
function application.

e slash(a,a) &z (Ax. X) needed_only_if a.

e (Y1 <i < n)slash(ri,a) &= F; o slash(t;, a) needed_only._if a.
o (V1 <i < K) other(r;) @= F;[other(t;)].

o (Y rulesp @= gnot among the R other(p) &= q.'°

e X ®x= other(X) unless X is an instance of a.

o X @x= (slash(X,a))[other(a)].>°

n

Intuitively, other(X) accumulates ways of building other than instantia-
tions of F; [Fi,[- - - Fi;[a]]] for j > O.slash(X,a) aggregates all instantiations of
the functionax.Fi, [Fi,[- - - Fi;[X]]] for j > 0. This pointwise sum of functions
is only applied toother(...) items, to prevent double-counting (analogous to
spurious ambiguity in a categorial grammar).

To apply this formal transformation in the unary-rule elyation exam-
ple, takea=constit(X0,10,K0), and theR to be the “unary’constit rules, where
eacht; is the last item in the body d®. Herek = 0. The resulting slashed
items have the formlash(constit(X,1,K), constit(X0,10,K0)), but the rules would
only derive instances whetelo and K=k0. All such rules are filtered by
needed_only_if constit(XO,IO,KO).21

To apply the transformation in the split head-automatomexe, take
a=constit(X0:H0,J0,K0), the R, to be the two rules definingpnstit, eacht; to
be the last item in the body &, andk = 1.2

18y adding side conditions, any rule can be split intoi ank rule, ani > k rule, and a rule
not among thex;.

19Typically, many of theother(. . .) items can be unfolded and then their defining rules re-
moved. This is why few or none remained in the informal exasplbove.

201 the final two rulesX ranges over the entire universe of terms. Recall @hatis the
aggregation operator fof. One could construct separate rules for items aggregatediifierent
operators.

21In this example, thefBiciency filters are redundant on rules after the first. Runamalysis
or (perhaps) static analysis would show that they have nmhfittering dfect, allowing us to
eliminate them.

22| this programall constits are built fromrconstits usingR; andRy, soother(constit(. ..))
has no derivations. Concretely, the single rule that thasfoamation generates to define

TRANSFORMATIONS ON WEIGHTED Locic ProGgraMS / 55

4.6 Converting bottom-up to top-down
4.6.1 Magic Templates

Finally, we give an important transformation that explansl generalizes the
way that speculation introducededed_only_if filters.

The bottom-up “forward-chaining” execution strategy memé¢d in sec-
tion 4.2.4 will compute the values for all provable items.iyi@f these items
may, however, be irrelevant in the sense that they do notibaie directly
or indirectly to the value ofjoal. (In parsing, they are legal constituents that
do not lead to a complete parse.) We can avoid generationestthrele-
vant items by employing the magic templates transformg®amakrishnan,
1991), which prevents an item from being built unless it \willp lead to a
“desired” item.

We need the value of a theoreno if it occurs in in the body of a rule
where (1) we need the value of the rule’s head and (2) we hesadl derived
the items precedinigo in the rule’s body?> For example, in the CKY parsing
rule

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).

we neectonstit(Y,1,J) (for a particulary,l,J) if we needconstit(X,1,K) (for some
X,K) and we already know thagwrite(X,Y,Z) is provable (for som&), which
we denoterrewrite(X,Y,2).2* Hence

magic(constit(Y,1,J)) | = magic(constit(X,l,K)) & ?rewrite(X,Y,Z).

For example, the above rule may deriviagic(constit(vp,1,J)) as true. That
means it is worthwhile to look forp objectsstartingat position 1. Theend-
ing positionJ is unspecified—a free variable. Ramakrishnan (1991)'Sraig
presentation drops such superfluous variables to obtaimandi program-
ming version:

magic_constit(Y,l)) | = magic(constit(X,l,K)) & ?rewrite(X,Y,Z).

Ramakrishnan’s move is not necessary for the present sebtibit improves
efficiency, and will simplify section 4.6.2.
Here are all the magic rules for CKY parsing (section 4.2.2):
magic_goal | = true.
magic_constit(s,0) | = magic_goal.

other(constit(. . .) depends omther(constit(. . .)) itself, so it can never be derived from the ax-
ioms (and may be trimmed away as useless).

23This left-to-right order within a rule is traditional, butyorder would do.

241t would not be appropriate to writeeeded_only_if rewrite(X,Y,Z). Therewrite item is part
of the definition of whether the magic item should be true 8&a-not simply a condition on
whether a more lenient definition of magic (which would sease less féective filter) is worth
deriving. As a concrete consequence, usiagded_only_if rewrite(X,Y,Z) below would derive a
magic item in whichy remained a free variable, a lenient definition that wouldrie the main
program to derive many uselessnstit items.

56/ JasoN EisNer AND JoHN Brarz

magic_constit(Y,) | = magic_constit(X,l,K)) & ?rewrite(X,Y,Z).
magic_constit(Z,J) | = magic_constit(X,])
& ?rewrite(X,Y,Z) & ?constit(Y,l1,J).

Then, we modify the rules of the original program, addiingyic_foo as a
filter on the derivation ofoo:
constit(X,l,K) + = rewrite(X,W) * word(W,I,K)
needed_only_if magic_constit(X,I).
constit(X,1,K) + = rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K)
needed_only_if magic_constit(X,I).
goal + = constit(s,0,N) * length(N) needed_only_if magic_goal.

This transformed program uses forward chaining to simudat&ward chain-
ing (though perhaps a breadth-first version of backwardnihgj. Since we
ultimately want the value afoal (or derivations ofjoal), we seimagic_goal=true.
That causes us to deriveagic_constit facts at the start of the sentence, which
license the building of actuabnstit items with values, which let us derive
magic_constit facts later in the sentence, and so on. Remarkably, as pidyio
noticed by Minnen (1996), the operation of this transformeagram is the
same as Earley’s algorithm (Earley, 1970): constitueng¢spaedicted top-
down, and built bottom-up only if they have a “customer” te immediate
left.

Shieber et al. (1995), specifying CKY and Earley’s algaritliemark that
“proofs of soundness and completeness [for the Earleys|@as somewhat
more complex ...and are directly related to the correspangroofs for
Earley’s original algorithm.” In our perspective, the aariness of Earley’s
emerges directly from the correctness of CKY and the semsptieserving
nature of the magic templates transformation.

Another application is “on-the-fly” intersection of weiglttfinite-state au-
tomata, which recalls the left-to-right nature of Earlegfgorithm. Intersec-

tion of arcsQ % Rin machinesM; and M, bearing the same symbX| is
accomplished by multiplying their weights:

arc(M1:M2,Q1:Q2,R1:R2,X) += arc(M1,Q1,R1,W) * arc(M2,Q2,R2,X).

But this pairs all compatible arcs in all known machinesl(iding the new
machineM1:M2, leading to infinite regress). A magic templates transferma
tion can restrict to arcs that actually need to be derivetérservice of some
larger goal (e.g., summing over selected paths from a spdqifaired start
stateQ1:Q2).

4.6.2 Second-order magic

Using magic templates to change to a top-down computatiderawill still
allow some irrelevant items to be derived. Not all items weé'd” to derive a
value forgoal, according to a top-down search fraoal, will actually turn out

TRANSFORMATIONS ON WEIGHTED Locic ProGrAMS / 57

to be provable bottom-up. This may lead to too much top-daxphcgation:
Earley’s algorithm may predict many categories suctpest position 1 (i.e.,
derivemagic(constit(vp,1,J))) when there is not even a possible verb at position
1.

We can therefore apply the magic templates transformatgmtand time,
to the rules that defined the first-order magic items. Thikigisecond-order
magic items of the fornmagic_magic_foo, meaning “we need to realize that
we need to buildoo™:

magic_magic_goal | = magic_magic_constit(s,0).

magic_magic_constit(X,l) | = magic_magic_constit(Y,l) & ?rewrite(X,Y,Z).

magic_magic_constit(X,l) | = magic_magic_constit(Z,J)

& ?rewrite(X,Y,Z) & ?constit(Y,l,J).
They can be added aseded_only.if filter clauses that limit Earley’s “predict”
rules (i.e., the rules that derive the first-ordetic items). As beforek re-
mains free. Consider in particular the second rule abovechwéays that if
Earley’s can wisely predict at positionl, it can also wisely predick and
(by recursion) any other nonterminal of whighs a left corner. (Using spec-
ulation to abstract away from the sentence positiove could build up a left
corner table @line.)

The base case of this left-corner computation comes frorhating one
of the rules thatisesrather thardefinesa first-order magic iter>

constit(X,l,K) + = rewrite(X,W) * word(W,I,K)

needed_only_if magic_constit(X,I).

to obtain
magic_magic_constit(X,l) | = ?rewrite(X,W) & ?word(W,1,K).

Thus, the second-order predicates will constrain top-dpvediction at
position| to predict only nonterminals that are left-corner comgatibith
the wordw atl. In short, we have derived the left-corner filter on Earleyj’s
gorithm, by repeating the same transformation that deiiaatey’s algorithm
in the first place!

4.7 Conclusions

We introduced a weighted logic programming formalism fosaéing a
wide range of useful algorithms. After sketching its detioteal and opera-
tional semantics, we outlined a number of fundamental tegfes—program
transformations—for rearranging a weighted logic progtarmake it more
efficient.

25We do not show the enchantments of the other such rules, psitheot add any further
power.

58/ JasoN EisNer AND JoHN Brarz

In addition to exploiting several known logic programmimgrisforma-
tions, we described a weighted extension of folding and ldirig, and pre-
sented the speculation transformation, a substantiargkregion of folding.

We showed that each technique was connected to ideas indgpthpro-
gramming and in parsing, and had multiple uses in NLP algaiit We re-
covered several known parsing optimizations by applyingaéle transfor-
mations: for example, Earley’s algorithm, the left-corfiker, parser special-
ization, diline unary rule cycle elimination, and the bilexical parstagh-
niques from (Eisner and Satta, 1999).

We noted throughout how program transformations couldgldied by
allowing the resulting programs to derive non-ground ite@se important
tool was our proposeateded_only_if filter.

The paradigm and techniques presented here may be diresgfyluo
algorithm designers as well as to those who are interestéaimalisms for
specifying and manipulating algorithms.

References

Aji, S. and R. McEliece. 2000. The generalized distributaxg. IEEE Transactions
on Information Theoryi6(2):325-343.

Earley, J. 1970. Anfé&cient context-free parsing algorithnComm. ACM13(2):94—
102.

Eisner, J., E. Goldlust, and N. A. Smith. 2005. Compiling eoing: Weighted dy-
namic programming and the Dyna languagePioc of HLTEMNLP.

Eisner, J. and G. Satta. 1999fiEient parsing for bilexical context-free grammars and
head-automaton grammars. Rroc. of ACL, pages 457-464.

Fitting, M. 2002. Fixpoint semantics for logic programmiagsurvey. TCS278(1-
2):25-51.

Goodman, J. 1999. Semiring parsir@omputational Linguistic25(4):573-605.

Huang, L., H. Zhang, and D. Gildea. 2005. Machine transtedi®lexicalized parsing
with hooks. InProc. of IWPT, pages 65-73.

McAllester, D. 1999. On the complexity analysis of statialgses. InProc of 6th
Internat. Static Analysis Symposium

Minnen, G. 1996. Magic for filter optimization in dynamic barh-up processing. In
Proc 34th ACL. pages 247-254.

Ramakrishnan, R. 1991. Magic templates: a spellbindingagmh to logic programs.
J. Log. Prog.11(3-4):189-216.

RerFERENCES / 59

Ross, K. A. and Y. Sagiv. 1992. Monotonic aggregation in dtde databases. In
PODS '92 pages 114-126.

Shieber, S. M., Y. Schabes, and F. Pereira. 1995. Princgsidsmplementation of
deductive parsingJ. Logic Prog.24(1-2):3-36.

Tamaki, H. and T. Sato. 1984. Unfgldld transformation of logic programs. Froc
2nd ICLP, pages 127-138.

Van Gelder, A. 1992. The well-founded semantics of aggregatin PODS '92
pages 127-138. New York, NY, USA: ACM Press. ISBN 0-8979%-81

Younger, D. H. 1967. Recognition and parsing of contex¢-fenguages in time®.
Info. and Control10(2):189-208.

Zhou, N.-F.. and T. Sato. 2003. Toward a high-performansgesy for symbolic and
statistical modeling. IProc of IJCAI Workshop on Learning Stat. Models from
Relational Data

5

On Theoretical and Practical Complexity
of TAG Parsers

CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALoNso, MANUEL VILARES

Abstract

We present a system allowing the automatic transformatfgpacsing schemata to
efficient executable implementations of their correspondiggrihms. This system can
be used to easily prototype, test and compafieidint parsing algorithms. In this work,
it has been used to generate severéledent parsers for Context Free Grammars and
Tree Adjoining Grammars. By comparing their performanceddterent sized, artifi-
cially generated grammars, we can measure their empirgrapatational complexity.
This allows us to evaluate the overhead caused by using Tdgenig Grammars to
parse context-free languages, and the influence of stridggeammar size on Tree Ad-
joining Grammars parsing.

Keywords ParsiNG ScHEMaTA, CoMPUTATIONAL COMPLEXITY, TREE ADJOINING GRAM-

MARS, CONTEXT FREE GRAMMARS

5.1 Introduction

The process of parsing, by which we obtain the structure @ndesice as a
result of the application of grammatical rules, is a higldiewvant step in the
automatic analysis of natural languages. In the last degad@ous parsing
algorithms have been developed to accomplish this taskoAth all of these
algorithms essentially share the common goal of generatitige structure
describing the input sentence by means of a grammar, theagpes used
to attain this result vary greatly between algorithms, st tfifferent parsing
algorithms are best suited tofféirent situations.
Parsing schemata, introduced in (Sikkel, 1997), providera&l, simple

and uniform way to describe, analyze and compafieint parsing algo-

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

61

62/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

rithms. The notion of a parsing schema comes from consigg@nsing as a
deduction process which generates intermediate resuiks d@ms An ini-
tial set of items is directly obtained from the input sentsrand the parsing
process consists of the application of inference rulesg@dieductive steps
which produce new items from existing ones. Each item costaipiece of
information about the sentence’s structure, and a suadgsasfsing process
will produce at least onfinal itemcontaining a full parse tree for the sentence
or guaranteeing its existence.

Almost all known parsing algorithms may be described by asipgr
schema (non-constructive parsers, such as those basedi@ networks,
are exceptions). This is done by identifying the kinds ofni¢ethat are used
by a given algorithm, defining a set of inference rules desugi the legal
ways of obtaining new items, and specifying the set of firehis.

As an example, we introduce a CYK-based algorithm (Vijays@ter and
Joshi 1985) for Tree Adjoining Grammars (TAG) (Joshi andgbes 1997).
Given a tree adjoining gramm& = (Vr,Vn,S,1,A)! and a sentence of
length n which we denote by a, ... a,%, we denote byP(G) the set of
productions{N” — NJI'N)...N/} such thatN” is an inner node of a tree
y € (IUA), andNJN; ... N/ is the ordered sequence of direct childremMaf

The parsing schema for the TAG CYK-based algorithm is a fondhat
maps such a grammar G to a deduction system whose domain settloé
items

{[N”.i.], p.q.ad]}

verifying thatN” is a tree node in an elementary tree= (1 U A), i and |
(0 <i <) are string positionsp andg may be undefined or instantiated to
positionsi < p < g < j (the latter only whery € A), andadj € {true, false
indicates whether an adjunction has been performed on Node

The positions and j indicate that a substring. ...a; of the string is
being recognized, and positiopsandq denote the substring dominated by
v's foot node. The final item set would be

{[R*,0,n,—,—,adj] | € I}
for the presence of such an item would indicate that ther®aivalid parse

tree with yielda; a, ... a, and rooted aR*, the root of an initial tree; and
therefore there exists a complete parse tree for the sentenc

IWhereVr denotes the set of terminal symboi4 the set of nonterminal symbolS, the
axiom, | the set of initial trees and the set of auxiliary trees.

2From now on, we will follow the usual conventions by which remminal symbols are rep-
resented by uppercase lettefs B. ..), and terminals by lowercase lettegs . ..). Greek letters
(a, B-..) will be used to represent treds! a node in the treg, andR the root node of the tree

Y-

ON THEORETICAL AND PrAcTICAL CoMPLEXITY OF TAG PARSERS / 63

A deductive ste|§1'éﬂ @ allows us to infer the item specified by its con-
sequent from those in its antecedenis. . . 7m. Side conditiong®) specify
the valid values for the variables appearing in the antets@dand consequent,
and may refer to grammar rules or specify other constrdigiisrhust be ver-
ified in order to infer the consequent. An example of one ofdtieema’s
deductive steps would be the following, where the opergpionp’ returnsp
if pis defined, ang’ otherwise:

[O}.1.1". p.q. ad 1]
O j.jp.q,adj2
CYK BmaAry: [- RN 2] M” — 0]0} € P(G)
[M”,i,j,pup.,qud, falsq

This deductive step represents the bottom-up parsing tipex@hich joins
two subtrees into one, and is analogous to one of the deéustidps of the
CYK parser for Context-Free Grammars (Kasami 1965, You§ér7). The
full TAG CYK parsing schema has six deductive steps (or seNeve work
with TAGs supporting the substitution operation) and cafolied at (Alonso
etal., 1999). However, this sample deductive step is an pkaai how pars-
ing schemata convey the fundamental semantics of pargog@ms in sim-
ple, high-level descriptions. A parsing schema defines afspossible in-
termediate results and allowed operations on them, butndcgsecify data
structures for storing the results or an order for the ojmmrato be executed.

5.2 Compilation of parsing schemata

Their simplicity and abstraction of low-level details makgarsing schemata
very useful, allowing us to define parsers in a simple andgsttiorward
way. Comparing parsers, or considering aspects such astredction and
completeness or their computational complexity, also bexoeasier if we
think in terms of schemata.

However, the problem with parsing schemata is that, althdligy are very
useful when designing and comparing parsers with pencil@aper, they
cannot be executed directly in a computer. In order to excthe parsers
and analyze their results and performance they must be imgited in a
programming language, making it necessary to abandon gfiredtistraction
level and focus on the implementation details in order taivba functional
and dficient implementation.

In order to bridge this gap between theory and practice, we luke-
signed and implemented a compiler able to automaticallysfam parsing
schemata into féicient Java implementations of their corresponding algo-
rithms. The input to this system is a simple and declaragpeasentation of
a parsing schema, which is practically equal to the form&htian that we
used previously. For example, this is the CYK deductive stefhave seen

64/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

as an example in a format readable by our compiler:
@step CYKBinary

[Nodel,i,j,p,q,adl]
[Node2,j,j,p,q,ad?2]

Node3 -¢, Nodel Node2
[Node3 , i, j, Union(p;p’) , Union(q;q’) , false]

The parsing schemata compilation technique behind ouesy#t based
on the following fundamental ideas:

= Each deductive step is compiled to a Java class containitg twomatch
and search for antecedent items and generate the corrésgamuhclu-
sions from the consequent.

= The generated implementation will create an instance sfdlaiss for each
possible set of values satisfying the side conditions #fatito production
rules. For example, a distinct instance of the CYKAy step will be cre-
ated for each grammar rule of the foiit — O]0) € P(G), as specified
in the step’s side condition.

= The step instances are coordinated by a deductive parsgigesras the
one described in (Shieber et al., 1995). This algorithm mssa sound
and complete deduction process, guaranteeing that alsiteat can be
generated from the initial items will be obtained. It is a gec, schema-
independent algorithm, so its implementation is the samaifig parsing
schema. The engine works with the set of all items that haee lgener-
ated and amgendaimplemented as a queue, holding the items we have
not yet tried to trigger new deductions with.

= In order to attain fficiency, an automatic analysis of the schema is per-
formed in order to create indexes allowing fast access tostdwo kinds
of index structures are generatedistence indexese used by the parsing
engine to check whether a given item exists in the item seilevglearch
indexesare used to search for all items conforming to a given speeific
tion. As each dierent parsing schema needs to perforffedént searches
for antecedent items, the index structures that we genaratschema-
specific. Each deductive step is analyzed in order to keeg tthwhich
variables will be instantiated to a concrete value when ackeaust be
performed. This information is known at schema compilatiore and al-
lows us to create indexes by the elements correspondingstantiated
variables. In this way, we guarantee constant-time acceissrhs so that
the computational complexity of our generated implemémtatis never
above the theoretical complexity of the parsing algorithms

= Deductive step index@se also generated to provid@eient access to the
set of deductive step instances which can be applicable feea gem.

ON THEORETICAL AND PrAcTICAL CoMPLEXITY OF TAG PARSERS / 65

Step instances that are known not to match the item are tlteu¢ by
these indexes, so less time is spent on unsuccessful itechimgt

= Since parsing schemata have an open notation, for any mativahob-
ject can potentially appear inside items, the system ireduh extensibil-
ity mechanism which can be used to define new kinds of objects¢
in schemata. The code generator can deal with these usaedeijects
as long as some simple and well-defined guidelines are feliow their
specification.

A more detailed description of this system, including a nthmrough ex-
planation of automatic index generation, can be found an{€&Z-Rodriguez
et al., 2006b).

5.3 Parsing natural language CFG's

Although our main focus in this paper is on performance of Tgegsing al-
gorithms, we will briefly outline the results of some expegims on Context-
Free Grammars (CFG), described in further detail in (G&Redriguez
et al., 2006b), in order to be able to contrast TAG and CFGipars

Our compilation technique was used to generate parsershéIClYK
(Kasami 1965, Younger 1967), Earley (Earley 1970) and Geftner (Rosenkrantz
and Lewis Il 1970) algorithms for context-free grammars] #rese parsers
were tested on automatically-generated sentences fraem tliferent natu-
ral language grammars: Susanne (Sampson 1994), AlveydlCB983) and
Deltra (Schoorl and Belder 1990). The runtimes for all thgoathms and
grammars showed an empirical computational complexitpé&ow the the-
oretical worst-case bound @i(n®), wheren denotes the length of the input
string. In the case of the Susanne grammar, the measurememrgslose to
being linear with string size. In the other grammars, theinues grew faster,
approximatelyO(n?), still far below the cubic worst-case bound.

Another interesting result was that the CYK algorithm perfed better
than the Earley-type algorithms in all cases, despite bgérgerally consid-
ered slower. The reason is that these considerations agel bastime com-
plexity relative to string length, and do not take into agudime complexity
relative to grammar size, which @(|P|) for CYK andO(|P])? for the Earley-
type algorithms. This factor is not very important when wogkwith small
grammars, such as the ones used for programming languagéshécomes
fundamental when we work with natural language grammarsgravtve use
thousands of rules (more than 17,000 in the case of Susammayse rel-
atively small sentences. When comparing the results franitttee context-
free grammars, we observed that the performance gap beWé¢mand Ear-
ley was bigger when working with larger grammars.

66/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

5.4 Parsing artificial TAG's

In this section, we make a comparison of fouffelient TAG parsing al-
gorithms: the CYK-based algorithm used as an example irncsebtl, an
Earley-based algorithm without the valid prefix propertggcribed in Alonso
et al. 1999, inspired in the one in Schabes 1994), an Eadegdalgorithm
with the valid prefix property (Alonso et al. 1999) and Ned#thalgorithm
(Nederhof 1999). These parsers are compared on artifigjatigrated gram-
mars, by using our schema compiler to generate implementatind mea-
suring their execution times with several grammars anceseets.

Note that the advantage of using artificially generated gnars is that we
can easily see the influence of grammar size on performahee. test the
algorithms on grammars from real-life natural languageooa, as we did
with the CFG parsers, we don't get a very precise idea of hevsite of the
grammar #&ects performance. Since our experience with CFG’s showied th
to be an important factor, and existing TAG parser perforcearomparisons
(e.g. Diaz and Alonso 2000) work with a fixed (and small) grzan we de-
cided to use artificial grammars in order to be able to adjast btring size
and grammar size in our experiments and see the influencelofdudors.

For this purpose, given an integkr> 0, we define the tree-adjoining
grammarGy to be the grammaBy, = (Vr,Vn, S, I, A) whereVr = {aj|0 <
j <k}, Vn =1{S, B}, and

| = {S(B(a0))}°,

A={B(B(B* a)))l1<j <k

Therefore, for a giverk, G is a grammar with one initial tree and
auxiliary trees, which parses a language over an alphalibtkw 1 ter-
minal symbols. The actual language definedGyyis the regular language
Ly = ag(a)ayl..lay)*. * We shall note that although the languadigsare triv-
ial, the grammar&y are built in such a way that any of the auxiliary trees
may adjoin into any other. Therefore these grammars aratsgaitf we want
to make an empyrical analysis of worst-case complexity.

Table 1 shows the execution time in millisecohd$ four TAG parsers
with the grammarsy, for different values of string lengtimand grammar
size K).

From this results, we can observe that both factors (steingth and gram-

SWhere trees are written in bracketed notation, and * is usefhote the foot node.

4Also, it is easy to prove that the gramn@ is one of the minimal tree adjoining grammars
(in terms of number of trees) whose associated languabg Note that we need at least a tree
containingag as its only terminal in order to parse the senteageand for each XK i < k, we
need at least a tree containiagand no otheia; (j > 0) in order to parse the sentenags;.
Therefore, any TAG for the languad® must have at least+ 1 elementary trees.

5The machine used for all the tests was an Intel Pentium 4 3Hg Gith 1 GB RAM and
Sun Java Hotspot virtual machine (version 1.812b06) running on Windows XP.

ON THEORETICAL AND PrAcTICAL CoMPLEXITY OF TAG PARSERS / 67

Runtimes in ms: Earley-based without the VPP

)) Grammar Size (k)
Stiing Size () 1 8 64 512 4096
2 ~0 16 15 1,156 109,843
4 ~0 31 63 2,578 256,094
8 16 31 172 6,891 589,578
16 31 172 625 18,735 1,508,609
32 110 609 3,219 69,406
64 485 2,953 22,453 289,984
128 2,031 13,875 234,594
256 10,000 101,219
512 61,266
Runtimes in ms: CYK-based
) . Grammar Size (k)
Stiing Size (n) 1 8 64 512 4096
2 ~0 ~0 16 1,344 125,750
4 ~0 ~0 63 4,109 290,187
8 16 31 234 15,891 777,968
16 15 62 782 44,188 2,247,156
32 94 312 3,781 170,609
64 266 2,063 25,094 550,016
128 1,187 14,516 269,047
256 6,781 108,297
512 52,000
Runtimes in ms: Nederhof’s Algorithm
) . Grammar Size (k)
String Size () 1 8 64 512 4096
2 ~0 ~0 47 1,875 151,532
4 ~0 15 187 4,563 390,468
8 15 31 469 12,531 998,594
16 46 188 1,500 40,093 2,579,578
32 219 953 6,235 157,063
64 1,078 4,735 35,860 620,047
128 5,703 25,703 302,766
256 37,125 159,609
512 291,141
Runtimes in ms: Earley-based with the VPP
)) Grammar Size (k)
Stiing Size () 1 8 64 512 4096
2 ~0 ~0 31 1,937 194,047
4 ~0 16 78 4,078 453,203
8 15 31 234 10,922 781,141
16 31 188 875 27,125 1,787,140
32 125 750 4,141 98,829
64 578 3,547 28,640 350,218
128 2,453 20,766 264,500
256 12,187 122,797
512 74,046

TABLE 1 Execution times of four dierent TAG parsers for artificially-generated
grammars$sy. Best results are shown in boldface.

68/ CarLos GOMEZ-RopRriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

mar size) have an influence on runtime, and they interactdeithemselves:
the growth rates with respect to one factor are influencedéyther factor,
so itis hard to give precise estimates of empirical comjmriat complexity.
However, we can get rough estimates by focusing on caseswinerof the
factors takes high values and the other one takes low vatiese(in these
cases the constant factotfsexting complexity will be smaller) and test them
by checking whether the sequenté, k)/ f(n) seems to converge to a pos-
itive constant for each fixell (if f(n) is an estimation of complexity with
respect to string length) or wheth&(n, k)/ f (k) seems to converge to a pos-
itive constant for each fixed (if f(k) is an estimation of complexity with
respect to grammar size).

By applying these principles, we find that the empirical tiooenplexity
with respect to string length is in the range betwe¥n?€) andO(n°) for the
CYK-based and Nederhof algorithms, and betwe¢n’®) andO(n®) for the
Earley-based algorithms with and without the valid prefingarty (VPP).
Therefore, the practical time complexity we obtain is falobethe theoreti-
cal worst-case bounds for these algorithms, whichQ(ré) (except for the
Earley-based algorithm with the VPP, whichOgn’)).

Although for space reasons we don't include tables with thelmer of
items generated in each case, our results show that theieahgpace com-
plexity with respect to string length is approximat&yn?) for all the algo-
rithms, also far below the worst-case boun@gt®) andO(n®)).

With respect to the size of the grammar, we obtain a time cerilyl of
approximatelyO(|l U Aj?) for all the algorithms. This matches the theoreti-
cal worst-case bound, which@(]l U A?) due to the adjunction steps, which
work with pairs of trees. In the case of our artificially gesterd grammar,
any auxiliary tree can adjoin into any other, so it's logittedt our times grow
quadratically. Note, however, that real-life grammarshsas the XTAG En-
glish grammar (XTAG Research Group 2001) have relatively d&ferent
nonterminals in relation to their amount of trees, so manyspa trees are
susceptible of adjunction and we can’t expect their belragibe much better
than this.

Space complexity with respect to grammar size is approxdyax(|l U A))
for all the algorithms. This is an expected result, sincéhapmerated item is
associated to a given tree node.

Practical applications of TAG in natural language procegsisually fall
in the range of values farandk covered in our experiments (grammars with
hundreds or a few thousands of trees are used to parse sentereeveral
dozens of words). Within these ranges, both string lengthgaammar size
take significant values and have an important influence onugian times,
as we can see from the results in the tables. This leads ugedhet tradi-
tional complexity analysis based on a single factor (stiémgth or grammar

ON THEORETICAL AND PrAcTICAL CoMPLEXITY OF TAG PARSERS / 69

size) can be misleading for practical applications, sin@an lead us to an
incomplete idea of real complexity. For example, if we arekireg with a
grammar with thousands of trees, the size of the grammaeisnibst influ-
ential factor, and the use of filtering techniques (SchabesJashi 1991) to
reduce the amount of trees used in parsing is essential &r dodachieve
good performance. The influence of string length in theses;am the other
hand, is mitigated by the huge constant factors relateddmgrar size. For
instance, in the times shown in the tables for the gram®ads, We can see
that parsing times are multiplied by a factor less than 3 wherength of the
input string is duplicated, although the rest of the resudige lead us to con-
clude that the practical asymptotic complexity with redpiestring length is
at leastO(n?®). These interactions between both factors must be taken int
account when analyzing performance in terms of computatioomplexity.

Earley-based algorithms achieve better execution timas the CYK-
based algorithm for large grammars, although they are worsamall gram-
mars. This contrasts with the results for context-free gnams, where CYK
works better for large grammars: when working with CFG’s KClYas a bet-
ter computational complexity than Earley (linear with respto grammar
size, see section 5.3), but the TAG variant of the CYK altponiis quadratic
with respect to grammar size and does not have this advantage

CYK generates fewer items than the Earley-based algoritiines work-
ing with large grammars and short strings, and the opposippéns when
working with small grammars and long strings.

The Earley-based algorithm with the VPP generates the saméer of
items than the one without this property, and has worse é¢xectimes. The
reason is that no partial parses violating this propertygameerated by any
of both algorithms in the particular case of this grammagsaranteeing the
valid prefix property does not prevent any items from beingggated. There-
fore, the fact that the variant without the VPP works bettethis particular
case cannot be extrapolated to other grammars. Howevedijfteeences in
times between these two algorithms illustrates the overbaased by the ex-
tra checks needed to guarantee the valid prefix property artécplarly bad
case.

Nederhof’s algorithm has slower execution times than theeoEarley
variants. Despite the fact that Nederhof’s algorithm israpriovement over
the other Earley-based algorithm with the VPP in terms of potational
complexity, the extra deductive steps it contains makdswter in practice.

5.5 Parsing the XTAG English grammar

In order to complement our performance comparison of the dtgorithms
on artificial grammars, we have also studied the behaviohefgarsers

70/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

when working with a real-life, large-scale TAG: the XTAG Hish gram-
mar (XTAG Research Group 2001).

The obtained execution times are in the ranges that we capletegiven
the artificial grammar results, i.e. they approximatelychahe times in the
tables for the corresponding grammar sizes and input deirgghs. The most
noticeable dierence is that the Earley-like algorithm verifying the dglre-
fix property generates fewer items that the variant withbet VPP in the
XTAG grammar, and this causes its runtimes to be faster. iBsidifference
is not surprising, as explained in the previous section.

Note that, as the XTAG English grammar has over a thousamaegitary
trees, execution times are very large (over 100 seconds) wieking with
the full grammar, even with short sentences. However, wheeeaselection
filter is applied in order to work with only a subset of the graar in function
of the input string, the grammar size is reduced to one or twadhed trees
and our parsers process short sentences in less than 5 seBSarkhr's XTAG
distribution parser written in Capplies further filtering techniques and has
specific optimizations for this grammar, obtaining betiets for the XTAG
than our generic parsers.

Table 2 contains a summary of the execution times obtainedibgarsers
for some sample sentences from the XTAG distribution. Nb&t the gen-
erated implementations used for these executions applyntdrgioned tree
filtering technique, so that theffective grammar size is fiierent for each
sentence, hence the high variability in execution timesréMitetailed infor-
mation on these experiments with the XTAG English grammartmafound
at (Gbmez-Rodriguez et al., 2006a).

5.6 Overhead of TAG parsing over CFG parsing

The languageky that we parsed in section 5.4 were regular languages, so in
practice we don’t need tree adjoining grammars to parse,takhough it was
convenient to use them in our comparison. This can lead uotaer how
large is the overhead caused by using the TAG formalism teggaontext-free
languages.

Given the regular languade = ap(ai]azl..|lax)*, a context-free grammar
that parses itis, = (N, X, P, S) with N = {S} and

P={S—>aju{S—>Sall<i<k}

This grammar minimizes the number of rules needed to pargé + 1
rules), but has left recursion. If we want to eliminate l&ftursion, we can
use the grammdg; = (N, X, P,S) with N = {S, A} and

6Downloadable at: ftpftp.cis.upenn.edpubyxtagleny

ON THEORETICAL AND PrAcTICAL CoMPLEXITY OF TAG PARSERS / 71

Runtimes in milliseconds

Sentence Ear. no| Ear

CYK VPP VPP Neder.
He was a cow 2985 750 750 2719
He loved himself 3109 1562 1219 6421
Go to your room 4078 1547 1406 6828
He is a real man 4266 1563 1407 4703
He was a real man 4234 1921 1421 4766
Who was at the door 4485 1813 1562 7782
He loved all cows 5469 2359 2344 11469
He called up her 7828 4906 3563 15532
He wanted to go to the city 10047 4422 4016 18969
That woman in the city contributed tq
this article 13641 6515 7172 31828

(=3

That people are not really amateurs [a
intelectual duelling 16500 7781 15235 56265

The index is intended to measure futufie
economic performance 16875 17109 9985 39132

They expect him to cut costs through
out the organization 25859 12000 20828 63641

=

He will continue to place a huge burde
on the city workers 54578 35829 57422 | 178875

He could have been simply being a jerk 62157 | 113532 | 109062 | 133515

A few fast food outlets are giving it 3
try 269187 | 3122860 | 3315359

TABLE 2 Runtimes obtained by applyingftBrent XTAG parsers to several sentences.
Best results for each sentence are shown in boldface.

72/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

P={S—>aAlU{A-> agAl<i<KlU{A— ¢
which hask + 2 production rules.

The number of items generated by the Earley algorithm foteodsfree
grammars when parsing a sentence of lemgtiom the languagéy by using
the grammag, is (k+2)n. In the case of the gramm@y/, the same algorithm
generatesi(+4)n+”(“T‘1)+1 items. In both cases the amount of items generated
is linear with respect to grammar size, as in TAG parsersh\i\dspect to
string size, the amount of items @(n) for G; andO(n?) for G/, and it was
approximatelyO(n?) for the TAGGy. Note, however, that the constant factors
behind complexity are much greater when working w&hthan withG?/,
and this reflects on the actual number of items generateceff@mple, the
Earley algorithm generates 16,833 items when working @{fhand a string
of lengthn = 128, while the TAG variant of Earley without the valid prefix
property generated 1,152,834 items).

The execution times for both algorithms appear in table 8nfthe ob-
tained times, we can deduce that the empirical time comiglexiinear with
respect to string length and quadratic with respect to gransime in the case
of G}; and quadratic with respect to string length and linear wétpect to
grammar size in the case Gf/. So this example shows that, when parsing
a context-free language using a tree-adjoining grammagete@n overhead
both in constant factors (more complex items, more dedestieps, etc.) and
in asymptotic behavior, so actual execution times can berakwrders of
magnitude larger. Note that the way grammars are desigisedhals an in-
fluence, but our tree adjoining gramma&g are the simplest TAGs able to
parse the languagés by using adjunction (an alternative would be to write
a grammar using the substitution operation to combine)rees

5.7 Conclusions

In this paper, we have presented a system that compilesngasshemata
to executable implementations of parsers, and used it toaeathe perfor-
mance of several TAG parsing algorithms, establishing @mmpns both be-
tween themselves and with CFG parsers.

The results show that both string length and grammar sizéoeampor-
tant factors in performance, and the interactions betwhemtsometimes
make their influence hard to quantify. The influence of stterggth in prac-
tical cases is usually below the theoretical worst-casendsbetweer®(n)
andO(n?) in our tests for CFG’s, and slightly belo@(n®) for TAG’s). Gram-
mar size becomes the dominating factor in large TAG’s, makiee filtering
techniques advisable in order to achieve faster execuitioast

Using TAG’s to parse context-free languages causes an eaérhoth in

REFERENCES / 73

n Grammar Size (k), gramm&;
1 8 64 512 4096
2 ~0 ~0 ~0 31 2,062
4 ~0 ~0 ~0 62 4,110
8 ~0 ~0 ~0 125 8,265
16 ~0 ~0 ~0 217 15,390
32 ~0 ~0 15 563 29,344
64 ~0 ~0 31 1,062 61,875
128 ~0 ~0 109 2,083 | 122,875
256 ~0 15 188 4,266 | 236,688
512 15 31 328 8,406 484,859
Grammar Size (k), gramm&;/
n
1 8 64 512 4096
2 ~0 ~0 ~0 ~0 a7
4 ~0 ~0 ~0 15 94
8 ~0 ~0 ~0 16 203
16 ~0 ~0 ~0 46 688
32 ~0 ~0 15 203 1,735
64 31 31 93 516 4,812
128 156 156 328 1,500 13,406
256 484 547 984 5,078 45,172
512 1,765 2,047 3,734 18,078

TABLE 3 Runtimes obtained by applying the Earley parser for corfted grammars
to sentences ihy.

constant factors and in practical computational compjexiitus increasing
execution times by several orders of magnitude with reqpe€EG parsing.

Acknowledgements

The work reported in this article has been supported in patimisterio

de Educacion y Ciencia and FEDER (TIN2004-07246-C03-0M2004-
07246-C03-02), Xunta de Galicia (PGIDITO5PXIC30501PNIPIE05PXIC10501PN,
PGIDITO5SINO44E and PGIDITO5SINO59E), and Programa debédU
(Ministerio de Educacion y Ciencia).

References

Alonso, Miguel A., David Cabrero, Eric de la Clergerie, an@Mel Vilares. 1999.
Tabular algorithms for TAG parsing. Froc. of EACL'99, Ninth Conference of the
European Chapter of the Association for Computational Listics pages 150—
157. ACL, Bergen, Norway.

Carroll, J. 1993. Practical unification-based parsing dfirzd language. PhD thesis.
Tech. Rep. 314, Computer Laboratory, University of Cang@idCambridge, UK.

Diaz, Victor J. and Miguel A. Alonso. 2000. Comparing tloparsers for tree ad-
joining grammars. In D. S. Warren, M. Vilares, L. Rodrigueares, and M. A.

74/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

Alonso, eds.Proc. of Tabulation in Parsing and Deduction (TAPD 2000xges
91-100. Vigo, Spain.

Earley, J. 1970. Anfécient context-free parsing algorithn€Communications of the
ACM 13(2):94-102.

Gbmez-Rodriguez, Carlos, Miguel A. Alonso, and Manudahdis. 2006a. Generating
XTAG parsers from algebraic specifications.Rroc. of TAG-8, the Eighth Inter-
national Workshop on Tree Adjoining Grammar and Relatedrfalisms Sydney,
Australia.

Gbmez-Rodriguez, Carlos, JesUs Vilares, and Miguel Aongo. 2006b. Au-
tomatic generation of natural language parsers from dalar specifications.
In Proc. of STAIRS 2006Riva del Garda, Italy. Long version available at
httpy/www.grupocole.orfisomVilAlo2006along.pdf.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoiniagngnars. In G. Rozen-
berg and A. Salomaa, edslandbook of Formal Languages. Vol 3: Beyond Words
chap. 2, pages 69-123. BeyliteidelbergNew York: Springer-Verlag.

Kasami, T. 1965. Anféicient recognition and syntax algorithm for context-free-la
guages. Scientific Report AFCRL-65-758, Air Force Camtei®Research Lab.,
Bedford, Massachussetts.

Nederhof, Mark-Jan. 1999. The computational complexitthefcorrect-prefix prop-
erty for TAGs. Computational Linguistic25(3):345—-360.

Rosenkrantz, D. J. and P. M. Lewis Il. 1970. Deterministiét IGorner parsing. In
Conference Record of 1970 Eleventh Annual Meeting on Sngi@nd Automata
Theory pages 139-152. IEEE, Santa Monica, CA, USA.

Sampson, G. 1994. The Susanne corpus, release 3.

Schabes, Yves. 1994. Left to right parsing of lexicalizezb{adjoining grammars.
Computational Intelligenc&0(4):506-515.

Schabes, Yves and Aravind K. Joshi. 1991. Parsing with #&izied tree adjoining
grammar. In M. Tomita, edCurrent Issues in Parsing Technologiebap. 3, pages
25-47. Norwell, MA, USA: Kluwer Academic Publishers. ISBN/923-9131-4.

Schoorl, J. J. and S. Belder. 1990. Computational lingessit Delft: A status report,
Report WTMTT 90-09.

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Pet&®a. Principles and
implementation of deductive parsingournal of Logic Programmin@4(1-2):3—
36.

Sikkel, Klaas. 1997 Parsing Schemata — A Framework for Specification and Anal-
ysis of Parsing AlgorithmsTexts in Theoretical Computer Science — An EATCS
Series. BerlifHeidelbergNew York: Springer-Verlag. ISBN 3-540-61650-0.

REFERENCES / 75

Vijay-Shanker, K. and Aravind K. Joshi. 1985. Some compoaitatl properties of tree
adjoining grammars. 183rd Annual Meeting of the Association for Computational
Linguistics pages 82-93. ACL, Chicago, IL, USA.

XTAG Research Group. 2001. A lexicalized tree adjoiningngrear for English.
Tech. Rep. IRCS-01-03, IRCS, University of Pennsylvania.

Younger, D. H. 1967. Recognition and parsing of contex¢-fenguages in time®.
Information and ControlL0(2):189—-208.

6

Properties of Binary Transitive Closure
Logic over Trees

SrepHAN KEPSER

Abstract

Binary transitive closure logic (FGfor short) is the extension of first-order predicate
logic by a transitive closure operator of binary relationss known that this logic
is more powerful than FO on arbitrary structures and on fimitered trees. It is also
known that it is at most as powerful as monadic second-oatdge (MSO) on arbitrary
structures and on finite trees. We will study the expressoweep of FO on trees to
show that several MSO properties can be expressed in FO
The following results will be shown.
= Alinear order can be defined on trees.
= The class EVEN of trees with an even number of nodes can beedefin
= On arbitrary structures with a tree signature, the clastses and finite trees can
be defined.
= FO' is strictly more powerful than tree walking automata.

These results imply that FQs neither compact nor does it have the Lowenheim-
Skolem-Upward property.

6.1 Introduction

The question about the best suited logic for describingdreperties or defin-
ing tree languages is an important one for model theoretitagyas well
as for querying treebanks. Model theoretic syntax is a rebgarogram in
mathematical linguistics concerned with studying the dptee complex-
ity of grammar formalisms for natural languages by definimgjrtderivation
trees in suitable logical formalisms. Since the very inflisdook by Rogers

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

7

78/ StepHAN KEPSER

(1998) it is monadic second-order logic (MSO) or even monggrful logics
that are used to describe linguistic structures.

With the advent of XML and query languages for XML documeimtgar-
ticular XPath, the interest in logics for querying treebanbse dramatically.
There is now a large interest in this topic in computer s@ehtwdependent of
that, but temporarily parallel, large syntactically aratet! treebanks became
available in linguistics. They provide nowadays a rich amgartant source
for the study of language. But in order to access this sosuéable query
languages for treebanks are required.

One of the simplest properties that are known to be inexjieds first-
order predicate logic (FO henceforth) is the transitivesale of a binary rela-
tion. It is therefore a natural move to extend FO by a binaaggitive closure
operator. And this move has been done before in the definifiquery lan-
guages for relational databases, in particular for the S§h8dard. But it
seems that the expressive power of FO plus binary transitogures (FO
for short) to define tree properties is not much studied yleis 1| somewhat
surprising, because there is reason to believe thati&@ore user friendly
than MSO. Most users of query languages, in particular istguunderstand
the concept of a transitive closure very well and know howdeitt It is a lot
more dfficult to use set variables to describe tree properties. Ampiafor
this claim is the fact MSO is capable of defining binary trémsiclosures,
as shown by Moschovakis (1974). His formula is given at treb@rthe next
section. It is questionable that ordinary users (withoofgund knowledge
of MSO) would be able to find this formula.

We propose to seriously consider F&s a language for defining tree prop-
erties. We do so by showing that several important MSO deléradoperties
can be defined in FOOne such example is the ability to define a linear order
on the nodes of a tree. The order resembles depth-firsoleftht traversal
of a tree. A linear order is a powerful concept that can be wefithing ad-
ditional properties. For example, it is used to count the neinof nodes in a
tree modulo a given natural number. An instance is the defind@f the class
EVEN of all trees with an even number of nodes in‘FO

Arguably an important reason for Rogers’ choice of MSO isaitslity
to axiomatise trees. l.e., there exists a set of axioms shethan arbitrary
structure (of a suitable signature) is a tree — finite or itdiriiff it is a model
of the axioms. It is known that this characterisation of $reannot be done
using FO. But the full expressive power of MSO may not reallyrieeded
for the axiomatisation, because we show that arbitrarysteswl finite trees
can be axiomatised in FOThis capability of axiomatising finite and infinite
trees implies that FO's neither compact nor does it possess the Lowenheim-
Skolem-Upward property.

There exists a tree automaton concept that defines seriehthsf paral-

ProperTIES OF BINARY TRANSITIVE CLOSURE LOGIC OVER TREES / 79

lel processing of trees, namely tree walking automata (TV#&)the name
implies, a tree is processed by walking up and down in theanekinspect-
ing nodes serially. One may therefore believe that thesenzath could be
the automaton-theoretic correspondant of FBut we show here that FO

is more powerful. Every tree language that is recognised BWA can be
defined in FO. But there are FOdefinable tree languages that cannot be
recognised by any TWA.

6.2 Preliminaries

Let M be a set. We writep(M) for the power set oM. LetRC M x M be a
binary relation oveM. Thetransitive closure T (R) of R is the smallest set
containingRand for allx,y,ze M such thatx,y) e TC(R)and ,2) € TC(R)
we have k,2) € TC(R). l.e.,

TC(R) := m{WI RCWCMxM,Vxy,zeM:
(X%y), .2 eW = (x,2) € W}

We consider labelled ordered unranked trees. A tree is eddéthe set
of child nodes of every node is linearly ordered. A tree isamied if there
is no relationship between the label of a node and the nunfherchildren.
In Sections 6.3 and 6.5 we only consider finite trees, in 8ed@i4 we also
consider infinite trees.

Definition 1 A tree domainis a non-empty subs@t C N* such that for all
uveN*:uve T = ueT (closure under prefixes) and for alke N* and
ieN:uieT = ujeTforall j <i(closure under left sisters).

Let £ be a set of labels. Aeeis a pair [, Lab) whereT is a tree domain
andLab: T — Lis a node labelling function.

A tree isfiniteiff its tree domain is finite.

We remark that a tree domain is at most countable, since suibaet of a
countable union of countable sets.

The language to talk about trees will be an extension of dirder logic.
Its syntax is as follows. LeX = {X,y,Z W, U, X1, X2, X3, ... } be a denumerable
infinite set of variables. The atomic formulae &) for each labeL € £,

X — y, andx | y. Complex formulae are constructed from simpler ones
by means of the boolean connectives, existential and wsavgquantification,
and transitive closure. l.e.,¢f andy are formulae, themg, ¢ Ay, ¢ V ¢, AX

¢, ¥x¢, and [TG, x, ¢](x,y) are formulae.

The semantics of the first-order part of the language is stahd et
(T, Lab) be a tree. A variable assignmemt: X — T assigns variables to
nodes in the tree. The root node has the empty addrédésw [L(X)]2 =T
iff Lab(a(x)) = L. [x | y]? = T iff a(y) = a(x)i for somei € N, i.e., | is
the parent relation.)] — y]? = T iff there is au € T andi € N such that

80/ SrepHAN KEPSER

a(x) = ui anda(y) = ui + 1, i.e.,— is the immediate sister relation.
Boolean connectives and quantification have their standéetpretation.
Now, [[TCy,.x, #1(x.Y)]* = T iff

(a(¥), a(y)) € TC({(b,d) | [¢] ™% = T))

whereab/x;d/x; is the variable assignment that is identicabtexcept that
X1 is assigned td andx, to d. If ¢ is a formula with free variables,, x,, it
can be regarded as a binary relatigr, x2). Then [TG, x, ¢] is the transitive
closure of this binary relation. This language is abbredd&C.

FO* is amongst the smallest extension of first-order logic. kinewn that
the transitive closure of a binary relationnist first-order definable (Fagin,
1975). But when talking about trees, people frequently wartalk about
paths in a tree. And a path is the transitive closure of aetiase steps. FO
has at most the expressive power of monadic second-ordier (RHO). It
is an old result, which goes back at least to Moschovakis41p720), that
the transitive closure of every MSO-definable binary relatis also MSO-
definable. LeR be an MSO-definable binary relation. Then

VX (Vzw(ze XAR@zwW) = we X)AVZR(X,2) = ze€ X))
= yeX

is a formula with free variablesandy that defines the transitive closureff
It follows that every tree language definable in*F&an be defined in MSO.

6.3 Definability of Order

One of the abstract insights from descriptive complexigotly is that or-
der is a very important property of structures. The relatiop between cer-
tain logics and classical complexity classes is frequestiricted toordered
structures, i.e., structures where the carrier is lineantiered. The reason for
this restriction is to be found in the fact that computatismn ordered pro-
cess. Definability and non-definability results for certaigics over ordered
structures frequently do not extend to unordered strustuirés therefore an
important property of a logic, if the logic itself is capaloieexpressing order
without recourse to an extended signature. The probablyKkresvn logic
with this property i?, the extension of first-order logic by arbitrary relation
variables that are existentially quantified. It is obvigugbssible to define
order inZ}, because we can say there is a binary relation that has gfdipe
erties of a linear order. These properties are known to kedicker properties.
Itis hence the ability to say “there is a binary relation"ttisathe key.

There is no way that FOcould define order on arbitrary finite structures.
But if we only consider trees as models, F€an define order. Indeed it is
possible to give a definition of the depth-first left-to-riginder of nodes in a
tree (and some variants).

ProperTIES OF BINARY TRANSITIVE CLOSURE LoGIC OVER TREES / 81

Proposition 9 There is an explicit definition of a linear order of the nodes i
atreein FO.

Proof. Define the proper dominance relation of tré&sm(x,y) as [TG,y X |
yl(x, y). Similarly, define the sister relatiod®igx, y) as [TGy X — y[(x,).
Now definex < y as

Domx,y) v (Aw,v: Sigw,V) A

(w=xv Domw, X)) A (Vv=yV Domv,Yy))).

The first disjunct expresses the “depth-first” part of theeor@ihe more com-
plicated second disjunct formalises the “left-to-righ#rp It expresses that
there is a common ancestor of nodeandy and nodex is to be found on a
left branch whiley is to be found on a right branch. Care is taken that mu-
tual domination is excluded. Hence the two disjuncts areuallyt exclusive.
Since the dominance and the sisterhood steps are bothxjivefléhe whole
relation< is irreflexive. Furthermore for each pair of distinct nodes itree,
either one dominates the other, or there is a common ancastbrthat one
node is on a left branch while the other is on a right brancinddehe rela-
tion is total. Transitivity can easily be checked by consitigthe four cases
involved in expanding < y andy < z O

Note that the root node is the smallest element of the orfihreltree is
finite, the largest element is the leaf of the rightmost bhaoicthe tree. The
root node is FO-definable viady : y | x. The largest elemer¥ax of the
order is FO-definable bydx=3y : x < y. The successor of a nodex in the
linear order S ucgx, y)) is also FO-definablex < yA=3z: x<zAz<Yy.
Using a linear order it is possible to do modulo counting eesr That is for
n,k € N we can define the class of finite trees such that each tree cidke
hasd x n + k nodes (for somel € N). As an example, we define the class
EVEN of trees with an even number of nodes (ne; 2,k = 0).

Proposition 10 The class of finite trees with an even number of nodes is FO
definable.

Proof. We only consider the case where a tree has more than two .ntues
formula

Iw : SucgRootw) A [TCyydz: Sucgx, 2) A Sucgz y)l(w, Max)

expresses that we go in one step from the root to its succesgerom w
we can reach the last element of the order by an arbitrary eumbtwo
successor steps. If we take the two-successors-step patigththe linear
order from the root to the maximum, we have an odd number oéssince
a path ofn double-successor-steps s 1 nodes. O

Corollary 11 FO* hasnonormal form of the typ€TCy.y ¢(X, Y)I(r, r) where
¢(x,y) is an FO formula and r the root.

82/ SrepHAN KEPSER

Proof. With a single application of a TC-operator we can definestngith a
linear order. If FO with a single TC-operator is interprete@r finite succes-
sor structures, then it is equivalent to FO with order. Budrdinite orderings,
EVEN is not definable in FO. O

6.4 Definability of Tree Structures

In previous and all following sections we assume that we eolysider tree
models as defined in the preliminaries section. But in thisice we take a
more general view, a view that has its origin in model théorgtntax. The
aim is to find whether it is possible to give an axiomatisatbthose struc-
tures linguists are interested in. This task has two subp@hie first consists
of defining trees, or more precisely finite trees, as the aedmmodels. The
second part consists of axiomatising linguistic princssach as the Binding
theory in the given logic. We will only be concerned with thestfipart here.
This section is inspired by the book by Rogers (1998). Moezijzally we
show that the main results of Chapter 3 carry over t6.R@e will frequently
cite this chapter in the current section.

The language of this section is binary transitive closugédaith equality
over the following base relations:

< parentrelation

< dominance relation

<t proper dominance relation

< left-of relation
We also assume there to be a £edf unary predicate symbols representing
linguistic labels. We write FG: for this language to indicate that the base
relations dffer from the ones in the other sections of this paper.

A model for FO«is a tuple U, P, D, L, Lab) whereU is a non-empty do-
main, P,D andL are binary relations oved interpreting<, <* and <. And
Lab: £ — p(U) interpretes each label as a subsetof

Since the intended models of this language are trees, wethaestrict
the class of models by giving axioms of trees. Many propeitietrees can
be defined by first-order axioms. The following 12 axioms atedcfrom
(Rogers, 1998, p. 15f.).

Al IxVy: x<y
(Connectivity wrt dominance)
A2 VX, y: (X<"YAYy < X) > X=Y
(Antisymmetry of dominance)
A3 VXY, Z: (X<"YAY< 2 - X<z
(Transitivity of dominance)
Ad VXY X<y o (XTFYAXEY)
(Definition of proper dominance)

ProperTIES OF BINARY TRANSITIVE CLOSURE LoGIC OVER TREES / 83

A5 VX, y:X<ay o (X<"YAVZ (X<*ZAZ<*Y) > (2<" XV Y < 2)
(Definition of immediate dominance)

A6 VX, z: X<t z—> ((Ay: X<yAy<" 2 AAy:y<2)
(Discreteness of dominance)

A7 VX Y: (X< YAY < X) o (XELYAY£X)
(Exhaustiveness and exclusiveness)

A8 YW, X, Y,Z: (X<YAX<TWAY<" 2 5>W<Z
(Inheritance of Left-of wrt dominance)

A9 VX, V,Z: (X<YAY<2) > X<Z
(Transitivity of left-of)

AlO VX, y:X<y—->Yy£X
(Asymmetry of left-of)

All ¥x(Ay: X<y) - (AY: X<y AVZ: X<Z—> ZLY)
(Existence of a minimum child)

Al2 VX, 2: X<Z2—> (AY: X<YAYWIX<W-oWLY)A

Ay:y<zZAVW:W<Z-o Y £W)

(Discreteness of left-of)

A discussion of these axioms can be found in (Rogers, 199%fp. Ev-
ery tree (finite or infinite) obeys to these axioms. But theeereon-standard
models, i.e., structures that are models of theses axiotweduld not be con-
sidered as trees. Actually, itiotpossible to give a first-order axiomatisation
of trees, as was shown by Backofen et al. (1995). A look at drestandard
model given by Backofen et al. (1995) helps to understandsviine problem
is located. Consider the mod#l of Figure 1. It consists of two components:
an infinite sequence of nodes, each with a single child, elxtgrup from the
root; and, infinitely far out, a second component in whichrgvede has ex-
actly two children, every node has a parent in that compoaextevery node
is dominated by every node in the first component. The arravike figure
are intended to suggest that there is no maximal point (wrtidance) among
the set of points with single children and no minimal pointt(dominance)
among the set of points with two children.

It is easy to see that the proper dominance relation doesnipttontain
the immediate dominance relation but also the transitiosuie of the imme-
diate dominance. In the nonstandard models, proper domértamy extends
the transitive closure of immediate dominance. In the exangl nodes of
the first component properly dominate all nodes of the secammiponent.
But this part of the dominance relation is not contained attlansitive clo-
sure of immediate dominance. In a proper tree model, thegordpminance
is always identical to the transitive closure of immediatenéhance. This
insight can be expressed in FCas an axiom.

84/ SrepHAN KEPSER

/N
VN
VANAN

FIGURE1 A nonstandard model of the first-order tree axioms.

ATL VX y:x<ty— [TCruwz <W](XY)
(Proper dominance is the transitive closure of immediataidance)

Another way of reading this axiom is to say that the path fronaibitrary
node back to the root is finite. AT1 together with the firsterdxioms does
still not sufice to axiomatise proper trees. Consider the sisters of a.node
They are ordered by, and there is a left-most sister. Now, in a proper tree, the
number of sisters to the left is finite for every node. Thislsamxiomatised as
follows. We can easily define that one node is the immediatersof another
node. The relatiohS(x,y) is defined aslz: z<« XA Z<yAX<YyA—=Iw: X<
w < y. Now we can spell out an axiom analogue to AT1.

AT2 VXV, Z: (X<YAX<ZAY<2Z) — [TCuwlS(V,W](Y, 2
(Finitely many left sisters)

Theorem 12 Axioms A1-A12, AT1, and AT2 define the class of tree models.

Proof. The proof is analogous to the proof of Theorem 3.9 in (Rqgk398).
Consider in particular Footnote 8 on page 23.

Rogers showed that every tree (in the sense of Definition &)risodel
of axioms A1-A12 and for each nodee U the setsA; = {(y,X) € D} of
ancestors ok andLyx = {y | 3z : (z X),(zy) € Dand §, x) € L} of left
sisters ofx are finite (Lemma 3.5). And every tree obviously satisfiesians

ProperTIES OF BINARY TRANSITIVE CLOSURE LoGIC OVER TREES / 85

AT1 and AT2. Furthermore, each model of axioms A1-A12 wh&reand
Ly are finite for each node € U is isomorphic to a tree (Lemma 3.6). Now
suppose a model of A1-A12 satisfies AT1. Then for each nodeU the
setAy is finite, because it contains the root (A1) and is constdiofgarent-
child steps (AT1), and a transitive closure of single stepmot reach a limit
ordinal. An analogous argument can be made with respect telmof A1—
A12 and AT2. Hence for every model of of A1-A12, AT1, and AT 2aall
nodesx € U we see that the sets, andLy are finite. By the above quoted
Lemma 3.6, these models are isomorphic to trees. O

The tree models of Axioms A1-A2, AT1, and AT2 can be finite adl we
as infinite. But since they are all tree models, they are att magntable.
This is because every tree domain is at most countable (sewkafter Def-
inition 1). And every tree model is isomorphic to a tree. Asimmediate
consequence we get that F@oesnot have the Lowenheim-Skolem-Upward
property. This property states that if a theory (i.e., pt&dly infinite set of
sentences) has a model of sizét has models of arbitrary infinite cardinali-
ties.

Linguists are mostly (if not exclusively) concerned withtértrees. Hence
it would be nice if we could restrict the class of models ferttown to finite
trees. This can indeed be done. Rogers (1998) defines a tindar on the
nodes of a tree as follows. Node< y iff X <* y Vv x < y. By Axiom A7,
each pair of nodes is either a member of the dominance relatia member
of the left-of relation. Hence this defines indeed a lineaearActually, the
order is the same as the one in the previous section: depthefit-to-right
tree traversal. As in the previous section we &3gc€x,y) for y being the
immediate successor afin the order. Finiteness can now be defined in two
steps. Firstly we demand the linear order to be the traesttiosure of the
immediate successor relation. The consequence of this riemahat for
every element in the order there is only a finite number of sdtlat are
smaller than this element. Secondly we demand the ordenv®daaximal
element. If the maximal element has only a finite number ahelats smaller
than it, the tree is obviously finite.

AF VX, y:x<y = [TCyy Sucgx,y)I(x,y) A
AXVYy:y< XVvVy=xX
(Finiteness of the order)

Theorem 13 Axioms Al1-A12, AT1, AT2, and AF define the clasfirfe
tree models.

Proof. By Theorem 12, every model of the Axioms A1-A12, AT1, and AT2
is isomorphic to a tree model. If a model is finite, then AF ig@ialy true.
For the converse, assume tRaty : x <y = [TCyy Sucgx, y)l(x.y). By

86/ SrepHAN KEPSER

definition of the TC-operator, the st | y < x} of elements smaller thax
is finite for every node. If the order has additionally a maximal elememt
then it is finite. O

As a simple consequence of the above theorem we get thaid—abt
compact.

6.5 FO*and Tree Walking Automata

Tree walking automata were introduced by Aho and Ullman)%& se-
quential automata on trees. At every moment of its run, a T8 ia single
node of the tree and in one of a finite number of states. It walksind the
tree choosing a neighboring node based on the current gtatigbel of the
current node, and the child number of the current node.

More formally, we consider trees of maximal branching degré he fol-
lowing definition is mainly cited from (Bojanczyk and Colcbst, 2005). Ev-
ery nodev has a type. The possible values are Types, 1,2,...,k} x {I,i}
wherer stands for the rootj € {1,...,k} states thav is the j-th child, |
states thav is a leaf,i thatv is an internal node. A direction is an element of
Dir = {7, l1, ..., L stay} where? stands for ‘move to the parent; ‘move
to the j-th child, andstayto ‘stay at the current node’. A TWA is a quintuple
(S,%, 6, 50, F) whereS is a finite set of stateg is the alphabet of node labels,
S € Sis the initial state andF C S is the set of final states. The transition
relations is of the form

6 C Sx Typesx X x S x Dir.

A configuration is a pair of a node and a state. A run is a sequehconfig-
urations where every two consecutive configurations arsistent with the
transition relation. A run is accepting it starts and ends at the root of the
tree, the first state i) and the last state is a memberrafThe TWA accepts
atree ff there is an accepting run. The setbfrees recognised by a TWA is
the set of trees for which there is an accepting run.

Bojanczyk and Colcombet (2005) showed that TWA cannot rersegall
regular tree languages. This means that MSO and tree awt@arastrictly
more powerful than TWA. In an extension of their proof we vgitiow that
even FO is more powerful than TWA.

Theorem 14 The classes of tree languages definable irf B@ictly extend
the classes of tree languages recognisable by TWA.

Proof. The proof consists of two parts. We will first show that evEkyA-
recognisable tree language is F@efinable. Secondly we will show that there
is an FO-definable tree language that cannot be recognised by any. TWA
The first part of the proof is based on recent results by Nemdrsahwentick
(2003). They showed that a tree language is recognisableTW/Aaif and

ProperTIES OF BINARY TRANSITIVE CLOSURE LOGIC OVER TREES / 87

only if it is definable by a formula of the following type: [KG ¢(X, y)I(r, r)
wherer is a constant for the root of a tregjs an FO formula with additional
unarydepthy, predicates. Apart from thdepth;, predicates, these formulae
are obviously in FO. Now, depthy(X) is true if x is a multiple ofm steps
away from the root. For eveny, the predicateepth, can be defined by an
FO'-formula: [TC x, IX1,...Xm-1 : Xo L Xt A=+ A Xme1 | Xm](r,X) is &
predicate that is true on a nodgust in case there iskae N such thaix is at
depthk x m. Thus every TWA-recognisable tree language is{e@finable.

To show the second half of the theorem, we will indicate thatseparating
languagé. given by Bojanczyk and Colcombet (2005) can be defined inh FO
The authors consider binary trees. They show (in Fact 1) tlah be defined
in first-order logic with the following three basic relatgneft and right child,
and ancestor relation. Now, left and right child are obvip&O*-definable
relations. And the ancestor relation is easily*F@finable: [TGy x | y]. O

The relationship between TWA and transitive closure logies recently
also studied by Engelfriet and Hoogeboom (2006). They st if one
extends deterministic TWA by finite sets of pebbles, theyehténe same ex-
pressive power as deterministic transitive closure lagics

6.6 Conclusion

We showed a number of properties of HO indicate that it should seriously
be considered as a logic for defining tree languages. Althdbg addition
of binary transitive closure to first-order logic can be sesrma small one,
FO" is capable of expressing important second-order propgeotier trees.
It is possible to define a linear order over the nodes in a #eel using
this order one can count modulo any natural number. On aristructures
with appropriate signature one can axiomatise the cladsieses and finite
trees. These axiomatisations showed that FOneither compact nor does
it have the Lowenheim-Skolem-Upward property. Furtheradthough tree
walking automata look like they might serve as an automatodehfor FO,

it turns out that FOis more powerful than TWA.

A word about complexity issues may be in placefF@s quite a good data
complexity. By translating FOformulae into MSO formulae and using the
equivalence between MSO and tree automata one can see thaa&8®linear
time data complexity. And since F@s a sublogic of F@TC (see below), it
also has NLOGSPACE data complexity. A straight-forward lenpentation
of transitive closure yields a PTIME query complexity. Ituaclear to the
author whether this result can be improved upon.

The main open question is of course whethet Gstrictly less powerful
than MSO. Itis also interesting to study the relationship©f to modal lan-
guages for trees like PQOkee (Kracht, 1995). Marx (2004) basically showed

88/ SrepHAN KEPSER

that PDlLy e is at most as powerful as F& where FO? is the restriction of
FO* where every formula has at most 3fdrent variables. ten Cate (2006)
recently showed that queries in XPath with Kleene star ang loredicate
have the same expressive power as¥0

One may also ask what happens if we introduce the transitosuie
of arbitrary relations, not just binary ones. This logiclfedviated F@TC)
was introduced by Immerman (see Immerman, 1999) to logickcribe
the complexity class NLOGSPACE. Tiede and Kepser (2006¢ magently
shown that F@TC is more expressive than MSO over trees. The statement
remains true even if one only consideleterministictransitive closures.

Acknowledgements

The author wishes to thank four anonymous referees whosmeaois helped
improving the quality of the paper.

This research was funded by a grant of the German Researaid&ion
(DFG SFB-441).

Stephan Kepser

Collaborative Research Centre 441
University of TUbingen

Germany

References

Aho, Alfred V. and Jérey D. Ullman. 1971. Translations on a context-free grammar
Information and Controll9:439-475.

Backofen, Rolf, James Rogers, and Krishnamurti Vijay-&earl995. A first-order
axiomatization of the theory of finite tree3ournal of Logic, Language, and Infor-
mation4:5-39.

Bojanczyk, Mikolaj and Thomas Colcombet. 2005. Tree-wajkautomata do not
recognize all regular languages. In H. N. Gabow and R. Fagis.,The 37th ACM
Symposium on Theory of Computing (STOC 20p&yes 234-243. ACM.

Engelfriet, Joost and Hendrik Jan Hoogeboom. 2006. Nestbtlps and transitive
closure. In B. Durand and W. Thomas, ed®&TACS 2006vol. LNCS 3884, pages
477-488. Springer.

Fagin, Ronald. 1975. Monadic generalized specaitschrift fir Mathematische
Logik und Grundlagen der Mathemai@d:89-96.

Immerman, Neil. 1999Descriptive ComplexitySpringer.

RerFeRENCES / 89

Kracht, Marcus. 1995. Syntactic codes and grammar refinendeurnal of Logic,
Language, and Informatiof(1):41-60.

Marx, Maarten. 2004. XPath with conditional axis relationsn E. Bertino,
S. Christodoulakis, D. Plexousakis, V. Christophides, MuBarakis, K. Bohm,
and E. Ferrari, edsAdvances in Database Technology — EDBT 20@1. LNCS
2992, pages 477-494. Springer.

Moschovakis, Yiannis. 1974Elementary Induction on Abstract Structureslorth-
Holland Publishing Company.

Neven, Frank and Thomas Schwentick. 2003. On the powerafiegking automata.
Information and Computatioh83(1):86—103.

Rogers, James. 1998A Descriptive Approach to Language-Theoretic Complexity
CSLI Publications.

ten Cate, Balder. 2006. Expressivity of XPath with tramsittlosure. In J. van den
Bussche, edRroceedings of PODS 200fages 328-337.

Tiede, Hans-Jorg and Stephan Kepser. 2006. Monadic semoled logic over trees
and transitive closure logics. In G. Mints, ed@th Workshop on Logic, Language,
Information, and Computation

7

Pregroups with modalities

ALEKSANDRA KISLAK-M ALINOWSKA

Abstract

In this paper we concentrate mainly on the notiog-giregroups, which are pregroups
(first introduced by Lambek Lambek (1999) in 1999) enricheith wodality operators.
B-pregroups were first proposed by Fadda Fadda (2002) in 2ZB@lmotivation to intro-
duce them was to limit (locally) the associativity in theazaiis considered. In this paper
we present this new calculus in the form of a rewriting systerave the very important
feature of this system - that in a given derivation the nopaexling rules must always
proceed non-contracting ones in order the derivation to inénmal (normalization theo-
rem). We also propose a sequent system for this calculus rane the cut elimination
theorem for it.

Keywords PREGROUP, 3-PREGROUP, NORMALIZATION THEOREM, CUT ELIMINATION.

7.1 Introduction

Definition 2 A pregroup is a structurés, <, -, 1, r, 1) such that
(G, g,+,1) is a partially ordered monoid, athdr are unary operations da,
fulfilling the following conditions:

da<l<adandad<l<ada (7.1)

for all a € G. Elementa (a" respectively) is called the left (right) adjoint of
a.

The notion of a pregroup, introduced by Lambek Lambek (1989%on-
nected to the notion of a residuated monoid, known from teer of par-
tially ordered algebraic systems.

Theorem 15 Lambek (1999) In each pregroup the following equalities and
inequalities are valid:

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

91

92/ ALEKSANDRA KISLAK-MALINOWSKA

1=1=1 d =a=4a", (7.2)
(ab) =bld, (ab) =ba, (7.3)
a<b iff b<d if b<a. (7.4)

For any arbitrary elemeutof a pregroup we define an elemeffi, forn e Z,
in a following way:

a = a,
a(n+1) - (a(n))r’
a(n—l) — (a(n))l_

As a consequence of (2) and (7.4) we get:
aMa™ < 1 < g™V (7.5)
if a<bthen &" < b@ and 2D < am1) (7.6)

forallne Z.

Let (P, <) be a poset. Elements of the $eaire treated as constanigrmsare
expressions of the forp®™, for p e P, n € Z; p© is equalp. Typesare finite
strings of terms, denoted B, Y, Z, V, U etc.

The basic rewriting rules are as follows:

(CON) - contraction:
X, p™, p™h Y - X Y;

(EXP) - expansion:
XY = X, p™h), p®,y;

(IND) - induced step:
X, p@, Y — X, q@,Y,
X, q@™D Y — X, p@™Y, forp < qw (P,<).

Further, we consider derivatiois= Y in F(P) (free pregroup generated by
(P, <)). After Lambek Lambek (2001), we distinguish two specades:

(GCON) - generalized contraction:
X, p(2n)’ q(2n+l)’ Y — X, Y,
X, gD p@) Yy - X Y; wherep < qin (P,<).

(GEXP - generalized expansion:

PrREGROUPS WITH MODALITIES / 93

X, Y - X, p(2n+l)’ q(2n), Y;
XY = X, g, p-1y; wherep < qin (P, <).

Relation= is a reflexive and transitive closure of the relatien

Theorem 16 (Lambek switching lemma), Lambek (1999)

If X = Y in F(P), then there exist types,M such that we can go from type
X to U (X = U) only using generalized contractions, from type U to V
(U = V) using only induced steps, and from type V to Y=6\W) using only
generalized expansions.

From the above mentioned lemma we get:

Corollary 17 Buszkowski (2003) If X> Y in F(P), and Y is a simple type or
an empty string, then X can be transformed into Y only by me&@GON)
and(IND).

If X = Y in F(P), and X is a simple type or an empty string, then X can be
transformed into Y only by means(&XP) and(IND).

7.2 Pregroups with modalities

In this section we generalize some definitions and result€eming pre-
groups introduced in Lambek (1999). The definition of a poegrwith 3-
operator was proposed by Fadda in Fadda (2002). The motiMatintroduce
modality operators was given by the fact there was a neednit (locally)
associativity in the calculus considered.

Definition 3 A pregroup with3-operator is a pregroup enriched addition-
ally with a monotone mapping: G — G.

Definition 4 g-pregroup is a pregroup with-operator such that-operator
has the right adjoing (8- operator), ie. there exists a monotone mapping
B+ P — P with the property that for alh andb in P, 5(a) < bif and only if

a < B(b).

Itis easy to show that-operators, if they exist, are uniquely defined and con-
nected t3 - operators with the following rules of expansion and cocttom,
forallae P.

a<pBpB@) and BB@@)<a (7.7)

The basic rewriting rules are as follows:
1. Contracting rules

(CON) - contraction:

94 / ALEKSANDRA KISLAK-MALINOWSKA
X, p®, p™ Y - XY;

(B—CON) - B-contraction: .
X, [BINIM™, [B(V)]™D,Z - X,Z; whereB € {8,5).

(8 — CON) - 8 - contraction:
X [BBOYNIEY, Z — X, Ye, Z,
X BB, Z — X, YD, 7;

(B—IND) - Bc induced step:
X [B(YD)]@,Z — X, [B(Y2)]®, Z;
whereB € {8,5}, andY1 — Yz is a contracting rule.

X, [B(Y2)] @D, Z — X, [B(Y1)]@™D), Z:
whereB € {8,5}, aY1 — Y is an expanding rule.

2. Expanding rules

(EXP) - expansion:
XY — X, p™h), p,y;

(B - EXP) - B-expansion: .
X, Z = X, [B(Y)]™D, [B(Y)]™,Z; whereB € {8,5).

(8 — EXP) - g - expansion:
X, Y@V 7 — X [BB(Y))], Z;
X, Y(2n+1)’ Z- X [ﬂ(ﬁ(Y))](szrl), 7.

(B—INDg) - Be induced step:
X, [B(YDI®, Z — X, [B(Y2)]®, Z;
whereB € {8,8}, aY1 — Y is an expanding rule.

X [B(Y2)]®, Z — X, [B(Y1)] @™, Z;
whereB € {8,8}, aY1 — Y, is a contracting rule.

3. P-rules (neither expanding nor contracting)

(IND) - induced step:
X, p@. Y — X, q@,Y,
X, q(2n+l), Y — X’ p(2n+1), Y, f0r p S q w (P7 S)

(B—INDy) - By induced step:

PrREGROUPS WITH MODALITIES / 95

X, [B(Y1)]®, Z — X, [B(Y2)]®", Z;
whereB € {8,5}, andY1 — Yz is a P-rule.

X, [B(Y2)] @D, Z — X, [B(Y1)]@™D), Z:
whereB € {8, 8}, andY1 — Yz is a P-rule.

In above mentioned rules we assume thaq are elements oP, whereas
X, Y,Z, Y1, Y, are elements o?’.

Relation= is a reflexive and transitive closure of the relatien

In his work Fadda (2002) Fadda gives some examples illisgyétte usage
of B - pregroups for natural language. Among others, he shows#sagning
atype B(X)]"X[B(X)]' to the conjunctiorand (whereX is an arbitrary type),
will let us see the structure of a sentence more clearly.

Consider the sentencdohn and Mary leftApplying the calculus of pre-
groups without modalities we can show that the string of syassigned to
given words can be reduced to the type of a sentence. Howbeeavyder of
consecutive contraction is important here:

(npmeans a noun phrase).

(*) John and Mary left.

np ngnpng np ngs —
npnp np ngs —
np ngs — s
(**) John and Mary left.
np ngnpng np ngs —
np ng np ngs —
np ng s -» s

In the second case (**) we do not get a typeApplying the calculus of-
pregroups, we could handle the above mentioned sentenbe ifoltowing
way:
(**) John and Mary left.
Bp) [BnPIMp[BMP)] AP np's - s

In that case the structure of types 'induces’ the order ofreations.

Normalization theorem for g - pregroups
Further we consider derivations of a tyle= Y.

Definition 5 A derivation is called non-expanding, if there are no expagd
rules present.

96/ ALEKSANDRA KISLAK-MALINOWSKA

Definition 6 A derivation is called non-contracting, if there are no caot-
ing rules present.

Definition 7 Composition of derivationg)(X = U) anddx(U = Y) is a
derivationY from X, which transforms firsX into U according tod;, and
thenU into Y according tads.

Definition 8 A derivationd(X = Y) is called normal, if it is a composition
of some non-expanding derivatiah(X = U) and some non-contracting
derivationd,(U =).

On elements oP” we introduce a measure in the following way:
ue) =0,
u(p™) =1,

u(B(Y)) = u(Y) +1, forBe (8.5}
,u(Yl, ey Yk) = ﬂ(Yl) + .. +ﬂ(Yk).

Measure on the rewriting rules is defined as follows:

u(CON) = 2,
WEXP) =2,
u(B—-CON) =2,
u(B—EXP) =2,

u(B—CON) = 2+ 2u(Y),
u(B—EXP) =2+ 2u(Y),
u(IND) =1

p(Bec = IND) = 1+ p(d(Y1 — Y2))
p(Be — IND) = 1+ p(d(Y1 — Y2))
#(Bp = IND) = 1+ p(d(Y1 — Y2)),

u(d(Xo = X)) = u(d(Xo — X1)) + ... + u(d(Xy-1 — X)),
whereXy, = Xg meansXg — X1 — ... = Xk.

Definition 9 A derivationd(X = Y) is called minimal, if it has the least pos-
sible measure of all derivationsfrom X, and the least possible complexity
(which is understood as a sum of measures of all rules usée iddrivation).

Definition 10 The position of a given rule in the derivatiofy — X; —
.. — Xq is numbeiti, such thafX;_; — X is the occurrence of this rule in the
derivation.

Definition 11 A degree of non-normal derivatia(X = Y) is the minimal
position of a contracting rule which occurs (not necesgadliilectly) after an
expanding rule.

A degree of normal derivation is number O.

PRrREGROUPS WITH MODALITIES / 97

Theorem 18 (Normalization theorem for 3 - pregroups).
Every minimal derivation is normal.

Proof. Let Xg — X3 — ... = X, be a minimal derivation. Ldatbe a degree of
this derivation. We will show théat= 0, and as a consequence our derivation
is normal.
Assume that > 0. Of course Xk i < nfrom the definition of a degree.
Let j be the greatest number less thasuch thai;_; — X; is the occurrence
of an expanding rule.
Let R, denote the rule used on the positipnandR; the rule used in the
positioni.
There are following cases to be considered:

1.1. Ri=(EXP R;=(CON),

1.2. R =(EXP) R;=(B-CON),

1.3. R =(EXP) R;=(8-CON),

14. R =(EXP R,=(B-INDy),

21. Ri=(B-EXP R;=(CON),

22. Ri=(B-EXP) R,=(B-CON),

23. Ri=(B-EXP) R;=(8-CON),

24. Ri=(B-EXP) R,=(B-IND),

31. Ri=(B-EXP) R,=(CON),

32. Ri=(B-EXP Ry=(B-CON),

33. Ri=(B-EXP) Ry;=(B-CON),

34. Ri=(B-EXP) Ry;=(B-INDy),

41. Ri=(B-INDg) R;=(CON),

42. Ri=(B-INDg) R;=(B-CON),

43. Ry =(B-INDg) R;=(8-CON),

44. R =(B-INDe) R,=(B-INDy),

In the proof of this theorem the above mentioned cases argdened. In all
cases we assume that the r&dgoccurs on the positiofj, and the ruleR;

on the position. All stepsX; — Xj,1 — ... = Xi_1 consist of application
of non-expanding and non-contracting rules. These must bieecform of
either (ND) or (B, — IND). None of this steps cannot be independent from
Xi_1 — X, as otherwise we could do the last of independent stepsRfter
getting the derivation with the same measure but the lowgrede We can
also assume that none of this steps is not independentfjom— X;; oth-
erwise it would transform our derivation performing thetfstep befordry,
increasing the numbgr and changing neithemor u(d(X = Y)).

If the rulesR; andR; are adjacent (without intermediate P-rules), we change
the order in case they are independent from each otherr{géité derivation

of smaller complexity); in case they are dependent from egiclr we show

98/ ALEKSANDRA KISLAK-MALINOWSKA

that this part of derivation can be transformed using rufesnealler com-
plexity - thus showing that the initial derivation was notrmal.

Considering the above mentioned sixteen cases we showmdhaxpanding
rules must always precede the non-contracting ones. Oibeur deriva-
tion would be not minimal, which would be a contradiction to- assumption.
Thus every minimal derivation must be normal.

As the proof is long and technical, we show as an example ardyod above
mentioned sixteen cases:

Case 1.1. R =(EXP) R;=(CON),
Xj_1 — X; is of the formS, T — S, p™1), p® T;
Xi_1 — X; is of the formU, g™, g™,V — U, V.
The derivationXj_; — X; — ... = Xi_1 — X; could be as follows:

S, p§)2n), T > S, p§)2n), pﬁ2n+l), pﬁZn)’ T > S, p(()Zn)’ p(k2_n1+1), pﬁZn), T .
— S, p@", pZmD o T 5 p® T, (assumingpo < p1 < ... < P, its

measure ig(d(Xj-1 = X)) =2+ k+2=k+ 4.
The above mentioned derivation can be changed by the derivat

ST - S, pP T — .8, p?T — S, pP, T, (assumingp < p1 <
... < px). The measure of a new derivationi@(X;-1 = X)) = k (ktimes
the rule (ND) was used).

We get contradiction, as the measure of the second denvigtiemaller. We

showed that the initial derivation was not normal.

O

Corollary 19 If X = Y in a freep-pregroup, and Y is a simple type or an
empty string, then Y can be derived from X only by means oerpanding
rules.

If X = Y in afrees-pregroup, and X is a simple type or an empty string, then
Y can be derived from X only by means of non-contracting rules

7.3 Axiom system for pregroups with modalities

The rewriting system given in the previous section can atsptiesented as
the calculus of sequents in a Gentzen style. IRk] be fixed. Atoms and
types are defined as befofequentare of the formX = Y, whereX,Y are
types. Axiom and inference rules are as follows:

PRrREGROUPS WITH MODALITIES / 99

(Id) X = X,

XY=>Z X=YVY.Z
(LA) X, p(n)’ p(n+l)’ V= 7 (RA) X =Y, p(n+1)’ p(n)’ 7

Xg® Y=z X =Y, p,Z
unp) 24 r=2 (RIND) 2= 0P w2
X, pP Y = 7 X = Y.q,Z
X, p(2n+1)’Y =7 X = Y, q(2n+l)’z
X, q(2n+l)’ Y = Z X = Y, p(2n+l)’ Z

In rules (LIND) and (RIND) we assume that < qin P. X,Y,Z are any
arbitrary typesp, q are arbitrary elements &f, forn € Z.

XT=7Z
B BV BVITIT S 2

X=>T,Z
BRA) ST BV ™. BV ™. 2

XY T =27 X=T.Y® 7
LA LA RA A
G etz RN XST Ree.2
X YD) T = 7 X = T,y 7
X BN, T = Z X = T, [BBY)) D, Z

X[BY)®,Z=T X = T.[B(Y)]®, z

BLIND BRIND

() X[BYDI®,Z=T () X = T,[B(Y,)]®,z
X[BYD)]® Y.z T X = T.[B(Y)]®, Z
X[B(Y)]® D, z=T X = T,[B(Y)]®Y,Z

In rules (BLA), (BRA), (BLIND) and (BRIND),B € {3, 3}. Additionally, in
rules (BLIND) we assume that, — Y, arises as a result of a non-expanding
rule in an even case, and a non-contracting rules in an odyl icea rewriting
system from a former section. In rules (BRIND) we assume Yhat> Y,

100/ ALEKSANDRA KISLAK-MALINOWSKA

arises as a result of non-contracting rule in an even casen@m-expanding
rule in an odd case, in a rewriting system form a former sactio

The cut rule is of the form:

X=Y,Y=Z

(CuT) XS 7

Let MS denote the system axiomatized by (Id), (LA), (RA), (LIND),
(RIND), (BLA), (BRA), (8- LA), (8- RA), (BLIND) and (BRIND). LetMS’
denote the systelS enriched additionally with a cut rule (CUT).

7.3.1 Cut elimination for the systems with modalities

We show that for above mentioned systems the following #vegrhold:

Theorem 20 For all types XY, X = Y holds in the sense of a rewriting
system if and only if X% Y is provable in M3

Proof. AssumeX = Y holds in the sense of the rewriting system.Then, there
exist typesZy, ...,Z,, n > 0, such thaZy = X, Z, = Y, andz_; — Z,

1 <i < n. We show thaZ_; = Z; is provable in MS’, for 1<i < n.

(Here we show it only for a few chosen cases)

1.1f Z_1 — Z is the case of (CON), so it is of the form

X, p™, p™D Y — XY, we apply (LA) to axiomX,Y = X Y. We get
XY=XY
X, p™, p™MD Y = X ¥

7.1f Z_1 — Z is the case of (IND), so it is of the form:

7.1.%X, p@Y — X, g@,Y,for p < g, we apply (LIND) to axiom
X, q®. Y = X, g,y

X, g2 Y = X g@ Y. We get X g@”),v =X 3(2”),Y'

(RIND) to axiomX, p@V,Y = X, p@®, Y. We get then

X, p® Y = X, p@ Y

X, p2,Y = X, g, Y’

We can also apply

7.2. X,9C"D Y — X p@D)Y, for p < gwe apply (LIND) to axiom
X, pPhY = X, p@D Y. We get:

X, p(2n+1), Y = X, p(2n+1)’ Y
X, q(2n+1)’ Y = X, p(2n+1), Y
X, @Y = X, gD, Y. We get then:
X, q(2n+1)’ Y = X, q(2n+1)’ Y

X, q(2n+l), Y = X, p(2n+l), Y '

. We can also apply (RIND) to axiom

PrEGROUPS WiTH MODALITIES / 101

So, ifn = 0, thenX = Y is an axiom (Id), ifn > 0, thenX = Y is provable
in MS’, using cut rule (CUT).

Assume, thaK = Y is provable MS. We show that = Y holds in the sense
of the rewriting system.

If X = Y jest (Id), then the claim is true.

For inference rules we show, that if the premise (premisekjsh(hold) in
the rewriting system, then the conclusion holds in thiseyst(Again, only a
few chosen cases.)

1. For (LA), the antecedent of the conclusion can be transédrinto the
antecedent of the premise by (CON).

7. For BLA)the antecedent of the conclusion can be transformed timo
antecedent of the premise 8+CON).

11. For (CUT),if the premises hold in the rewriting systehert the conclu-
sion also holds in this system, sinegis transitive. O

Theorem 21 (Cut elimination theorem)

For all types XY, X= Y is provable in MS if and only if % Y is provable
in MS’.

Proof. The 'only if’ part is obvious. If for all typesX, Y, X = Y is provable
in MS (without CUT), it is also provable in MS’.

Assume thaX = Y is provable in MS’.

By the theorem 20X = Y holds in the rewriting system. From the theorem
18 there exists such typg, thatX = U holds only by using non-expanding
rules, whereabl = Y holds only by using non-contracting rules.

Thus, there exist type, ..., Zm, (M > 0), such tha¥?, = X, Z,, = U and for
alll <i<mZ_; — Zis aresult of non-expanding rules. We show that
Z = U is provable in MS, forall6< i < m.

Zm = U is an axiom (Id). Assume th& = U is provable in MSj > 0. If
Zi_1 — Z;is (CON), thenz,_; = U is a result of applying (LA) t& = U.

If Z_1 — Z is (B— CON), thenz_; = U is a result of applying (BLA) to

Zi = U.

If Zi_; — Zis (8- CON), thenz_; = U is a result of applying4LA) to

Zi = U.

If Z_1 — Z is (IND), thenz_; = U is a result of application (LIND) to
Zi > U.

If Zi_1 — Z is (B— IND¢), thenz;_; = U is a result of applying (BLIND) to

Zi = U.

If Z_1 — Z is (B— INDp), thenZ_; = U is a result of applying (BLIND)
toZ; = U.

102/ ALEKSANDRA KISLAK-M ALINOWSKA

Now, there exist type¥y, ..., Vn, N = 0, such thavp = U, V, = Y, an for all
1<i=<n V1 — Visaresult of applying a non-contracting rule.

We show thaiX = V; is provable in MS, forall i < n.

X = Vg is provable in MS from the first part of the proof.

Assume thaX = V;_; is provable in MS, < i.

If Vi.1 — V,is (EXP), thenX = V; is a result of applying (RA) tX = V,_;.
If Vi.p — Viis (B- EXP), thenX = V; is a result of applying (BRA) to
X = Vi—l-

If Vi.p = Viis (8- EXP), thenX = V, is a result of applying4RA) to
X= Vi—l-

If Vi1 — V,is (IND), thenX =V, is a result of applying (RIND) dX =
Vi_1.

If Vi.y — Viis (B - INDg), thenX = V, is a result of applying (BRIND) to
X = Vi—l-

If Vi.y — Viis (B—IND)p), thenX = V; is a result of applying (BRIND) to
X= Vi—l-

Thus, we showed tha€ = Y is provable in MS. O

7.4 Conclusion

In this paper we presented pregroups with modalities. ,Rivst presented
them in the form of a rewriting system, then we proposed tlgeset system
for them and finally showed the connections between thos@tesentations.
Using those connections we were able to prove the cut elimiméeorem.

References

Buszkowski, Wojciech. 2003. Sequent systems for compénehi logic. Mathemat-
ical Logic Quarterly49:467—-474.

Fadda, Mario. 2002. Towards flexible pregroup grammarsNeéw Perspectives in
Logic and Formal Linguisticgpages 95-112. Roma: Bulzoni Editore.

Lambek, Joachim. 1999. Type grammars revisitedLdgical Aspects of Computa-
tional Linguistics pages 1-27. Berlin: LNAI 1582, Springer.

Lambek, Joachim. 2001. Type grammars as pregroBpammars4:21-39.

Simpler TAG Semantics through
Synchronization

ReBECccA NESSON AND STUART SHIEBER

Keywords SYNCHRONOUS TREE-ADJOINING GRAMMAR, STAG SEMANTICS, QUANTI-
FIER SCOPE, LONG-DISTANCE \WWH-MOVEMENT, RAISING VERBS, ATTITUDE VERBS, ADVERBS,

RELATIVE CLAUSES, PREPOSITIONAL PHRASES.

Abstract

In recent years Laura Kallmeyer, Maribel Romero, and thellaborators have led
research on TAG semantics through a series of papers refirsygtem of TAG seman-
tics computation. Kallmeyer and Romero bring together #ssdns of these attempts
with a set of desirable properties that such a system shavle. lirirst, computation of
the semantics of a sentence should rely only on the reldtipsexpressed in the TAG
derivation tree. Second, the generated semantics showlgazily represent all valid in-
terpretations of the input sentence, in particular wittpees to quantifier scope. Third,
the formalism should not, if possible, increase the expriaggf the TAG formalism.
We revive the proposal of using synchronous TAG (STAG) toudiameously generate
syntactic and semantic representations for an input seatéithough STAG meets the
three requirements above, no serious attempt had preyikesin made to determine
whether it can model the semantic constructions that haweegrdificult for other ap-
proaches. In this paper we begin exploration of this quediioproposing STAG analy-
ses of many of the hard cases that have spurred the resedhit amea. We reframe the
TAG semantics problem in the context of the STAG formalisr Erthe process present
a simple, intuitive base for further exploration of TAG serties. We provide analyses
that demonstrate how STAG can handle quantifier scope, distgnce WH-movement,
interaction of raising verbs and adverbs, attitude verlisqarantifiers, relative clauses,
and quantifiers within prepositional phrases.

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

103

104/ ReBecca NESSON AND STUART SHIEBER

8.1 Introduction

In recent years Laura Kallmeyer, Maribel Romero, and theltaborators
have led research on TAG semantics through a series of pegfergg a
system of TAG semantics computation using evolving teaiesqgncluding
enriched derivation tree structure (Kallmeyer, 2002dlé)jble composition
of feature-based TAG with a semantic representation assutiwith each
elementary tree (Kallmeyer and Joshi, 2003, Joshi et aQ32Rallmeyer,
2003), semantic features in a more expressive extensi@anfre-based TAG
(Gardent and Kallmeyer, 2003), and, most recently, semésdiures on the
derivation tree itself (Kallmeyer and Romero, 2004, Rometr@al., 2004).
Kallmeyer and Romero (2004) bring together the lessons edefattempts
with a set of desirable properties that such a system shawiel. lirirst, com-
putation of the semantics of a sentence should rely only emélationships
expressed in the TAG derivation tree. Because TAG elemgrtitaes rep-
resent minimal semantic units, the only information neagsfor semantic
computation should be the information encoded in the deoindree: which
elementary trees have combined and the address at whicbrthgring op-
eration took place. Second, the generated semantics sbomldactly repre-
sent all valid interpretations of the input sentence, irtipalar with respect
to quantifier scope. Third, the formalism should not, if ploles increase the
expressivity of the TAG formalism.

We revive the proposal of using synchronous TAG (STAG) tousiame-
ously generate syntactic and semantic representatiorefaorput sentence
(Shieber and Schabes, 1990). Although STAG meets the thrperements
above, no serious attempt had previously been made to datemether
it can model the semantic constructions that have provétuli for other
approaches. In this paper we begin exploration of this dguresly proposing
STAG analyses of many of the hard cases that have spurregéskarch in
this area. We reframe the TAG semantics problem in the cooféke STAG
formalism and in the process present a simple, intuitive fasfurther ex-
ploration of TAG semantics.

After reviewing STAG in Section 8.2, we provide analyses &ct®ns
8.3.1 through 8.3.4 for sentences that exemplify sevenal bases for TAG
semantics that have been raised by Kallmeyer and othercénteapers:
quantifier scope (as exemplified by sentences (12) and (1€3epted be-
low along with the desired semantic interpretations), ldigjance WH-
movement (13), interaction of raising verbs and adverhgudé verbs and
quantifiers (14,15,16), relative clauses (17), and quandifivithin preposi-
tional phrases (18) (Kallmeyer and Romero, 2004, Romerb,&t@04, Joshi
et al., 2003, Kallmeyer, 2003, Kallmeyer and Joshi, 2003).

1We notate curried two-place relatio®$x)(y) asP(y, x) for readability.

SimpLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 105

(12) Everyone likes someone.
every(x, persor{x), soméz, persor{z), like(x, 2)))
somdz, persor{z), everyx, persorfx), like(x, 2)))

(13) Who does Bill think Paul said John likes?
wha(y, think(bill, say(paul, like(john, y))))

(14) Bill thinks John apparently likes Mary.
think(bill, ap parentlylike(john, mary)))

(15) John sometimes likes everyone.
every(x, persorfx), sometime@ike(john, x)))
sometimef@very(x, persor{x), like(john, x)))

(16) Bill thinks everyone likes someone.
think(bill, every(x, persor{x), soméz, persorfz), likeqx, 2))))
think(bill, soméz, persor{z), everyx, persor{x), likeqx, 2))))

(17) A problem whose solution isflicult stumped Bill.
a(x, and(problen(x),

the(y, and(solution(y), posg$x, y)), isDifficult(y))),
stumpedill, X))

(18) Two politicians spy on someone from every city.
two(x, politician(x),
every(z, city(2),
somdy, persorfy) A from(zy),
spyOr{x,y))))
every(z, city(2),
somégy, persorty) A from(zy),
two(x, politcian(x), spyOr{x, y))))
two(x, politician(x),
somdy, everyz city(2), persorfy) A from(zy))
spyOrix. y)))
somdy, everyz city(2), persorfy) A from(zy))
two(x, politician(x), spyOr{x, y)))

8.2 Introduction to Synchronous TAG

A tree-adjoining grammar (TAG) consists of a set of elemstitae struc-
tures and two operations, substitution and adjunctiord tseombine these
structures. The elementary trees can be of arbitrary dEpith internal node
is labeled with a nonterminal symbol. Frontier nodes mayabeled with ei-
ther terminal symbols or nonterminal symbols and one of theriics | or
x. Use of the diacritic, on a frontier node indicates that it issabstitution
node Thesubstitutioroperation occurs when an elementary tree rooted in the

106/ ReBEccA NESSON AND STUART SHIEBER

g g

N

NP, VP — NP VP

/\\ 4
N‘/P -V NP John V. NP,
John likes likes

S S
VP\\NPl)‘VP\:> N_Pl VP

Adv VP~-_/ v NP, Adv V&
apparently likes apparently “/ NPy
likes

FIGURE1 Example TAG substitution and adjuction operations.

nonterminal symboA is substituted for a substitution node labeled with the
nonterminal symboA. Auxiliary trees are elementary trees in which the root
and a frontier node, called tHfeot nodeand distinguished by the diacritic

%, are labeled with the same nonterminal. Hugunctionoperation involves
splicing an auxiliary tree with root and designated foot et¢abeled with a
nonterminalA at a node in an elementary tree also labeled with nonterminal
A. Examples of the substitution and adjunction operatiorsaonple elemen-
tary trees are shown in Figure 1.

Synchronous TAG (STAG) extends TAG by taking the elemensamyc-
tures to be pairs of TAG trees with links between particulades in those
trees. An STAG is a set of tripleg , tr, ~) wheret_ andtg are elementary
TAG trees and~ is a linking relation between nodes tin and nodes irig
(Shieber, 1994, Shieber and Schabes, 1990). Derivatiaepds as in TAG
except that all operations must be paired. That is, a treeobnbe substi-
tuted or adjoined at a node if its pair is simultaneously stuied or adjoined
at a linked node. We notate the links by using boxed indicearking linked
nodes.

Figure 2 contains a sample English syrit@mmantics grammar fragment
that can be used to parse the sentence “John apparentlyMi&eg. The
node labels we use in the semantics correspond to the semygres of the
phrases they dominafevariables such ag in the semantic tree in Figure 3
are taken to be bound in the obvious way, so that in multipés ug the tree

2This representation is for the sake of readability. Thelkleuld be replaced using any
well-chosen finite set of nonterminal symbols.

SimpLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 107

PLL [B) L
John john ATM VP (tt) t. NP\ Vg (e, 1) e
N‘p @‘ apparently apparently “/ NPy likes €@
Mary mary, likes

(b) /S\ /t\) likes
NP VP (t, % 1 !

/\ john | mary
Adv VP apparently (e, t) E‘i =) ,
apparently
VNP Zik{\T john
John apparently likes Mary mary

FIGURE 2 An English syntajsemantics STAG fragment (a), derived tree pair (b), and
derivation tree (c) for the sentence “John apparently IMesy.”

they can be presumed to be renamed apart.

Figure 2(c) shows the derivation tree for the sentence. tButisns are
notated with a solid line and adjunctions are notated withshdd line. Note
that each link in the derivation tree specifies a link numbehée elementary
tree pair. The links provide the location of the operationthie syntax tree
and in the semantics tree. These operations must occukatlimdes in the
target elementary tree pair. In this case, the noun phtag@sandMary sub-
stitute intolikes at linksz andm@ respectively. The wordp parentlyadjoins
at link @. The resulting semantic representation can be reéhathe derived
tree by treating the leftmost child of a node as a functor &diblings as its
arguments. Our sample sentence thus results in the semept&sentation
apparentlylikeq john, mary)).

8.3 STAG Analyses of the Phenomena

8.3.1 Quantifier Scope and Wh-Words

For sentence (12), we would like to generate a scope-nesgnahntic rep-
resentation that allows both the reading wheoenetakes scope ovesvery
and the reading whereverytakes scope ovesome We propose a solution
in which a derivation tree with multiple adjunction nondetéistically de-
termines multiple derived trees each manifesting exgimitpe (Schabes and
Shieber, 1993); the derivation tréeelf is therefore the scope neutral repre-
sentation.

The multi-component quantifier approach followed by Joslaile(2003)

108/ ReBEccA NESSON AND STUART SHIEBER

/T\
NP every x ¢ ¢,

N

t N (et)\ (a)

NP some Y ¢ ¢, one person

D‘et Nig (et)mz T Det Ny (e,t)ym ¥ e‘
every x sor‘ne Yy
2 1A likes (b)
NPV (e.t) em every some
/}P I o
“/ \@m likes €@ person person
likes
/S\ /’N m “
NP /VP\ every% /t/\ some y/t] /,N
Det NV NP ety x some% /t\ (e,t) v everg% /t\
Det N person (e, t) ¥ (e, t) e‘pcrson (e,t) x (e,t) T
every one likes sor‘ne or‘le person likée\e T per‘son liké\e T
Yy Y

FIGURE 3 The elementary tree pairs (a), derivation tree (b), andrddrsyntactic and
semantic trees (c) for the sentence “Everyone likes soniebia¢e that the
derivation tree is a scope neutral representation: depgradi whetheeveryor some

adjoins higher, dferent semantic derived trees and scope orderings are ethtain

suggests a natural implementation of quantifiers in SPAGthis approach
the syntactic tree for quantifiers has two parts, one thaesponds to the
scope of the quantifier and attaches at the point where thetifjaatakes
scope, and the other that contains the quantifier itself snekstriction and
attaches where syntactically expected at a noun phragesihwiork, a single-
node auxiliary tree is used for the scope part of the syntaxder to get the
desired relationship between the quantifier and the quedhtéfkpression in
features threaded through the derivation tree and henée isemantics. Us-
ing STAG, we do not need the single-node auxiliary tree irsihax because
we can pair the usual syntactic representation for quaafifiés with a multi-
component semantic representation that expresses theidaan@-igure 3).
In order to use these quantifiers, we change the links in graehtary trees
for verbs to allow a single link to indicate two positions imetsemantics

3The multi-component approach to quantifiers in STAG was §ingjgested by Shieber and
Schabes (1990) under the rewriting definition of STAG dé¢iovawhere the order of rewrit-
ing produced the scope ambiguity. Williford (1993) expbtbtée use of multiple adjunction to
achieve scope ambiguity.

SimpLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 109

S’ ¢ 2 ¢
2N \ NP VP () am
Wihm_Sm i ;
VS thinks t,
NPE VEB (et) eim thJ .
11
1 N|P likesyy €)@
likes € likesyn
SN
L who john say
WH who y t, \
au INMKS
| paul think
who ‘T l
y bill

FIGURE4 Selection of elementary trees and full derivation treeliergentence “Who
does Bill think Paul said John likes?”.

where a tree pair can adjoin, as shown in Figufe 3.

Given this representation of quantifiers we get the dedvatiee shown
in Figure 3 for sentence (12)Note that the resulting derivation tree neces-
sarily incorporatesnultiple adjunction(Schabes and Shieber, 1993), that is,
multiple auxiliary trees are adjoined at the same node inuailiary tree. In
particular, the scope parts of botiveryand someattach at the root of the
semantic tree olikes Such cases of multiple adjunction induce ambiguity;
the derivation tree represents multiple derived treeshéncase at hand, the
derivation is ambiguous as to which quantifier scopes higfrean the other.
This ambiguity in the derivation tree thus models the setadidvscopings
for the sentence. In essence, this method uses multiplecdjn to model
scope-neutrality.

This same method can be used to obtain the correct scop@mmnsldior
sentences with long-distance WH-movement such as sen{gByasing the
multi-component elementary tree pair fshoand the elementary tree pairs
for thinks(the tree pair fosaysis similar) andikesin the WH context given
in Figure 4. Kallmeyer and Romero (2004) highlight this caselificult be-
cause in the usual syntactic analysis there is no link in #wvaltion tree

4We have chosen here to add the three-way links in additiohe@xisting links in the tree
for unquantified noun phrases such as proper nouns (thouglupgress the two-way NP links
in the figures for readability). Another possibility woulé kb remove the two-way links. In this
case, all noun phrases would be “lifted” a la Montague. Thatven unquantified noun phrases
would have a scope part, which could be a single-node anxifiae.

SWe notate multi-component insertions that involve both bssitution and an adjunction
with a combination dashed and dotted line.

110/ ReBEccA NESSON AND STUART SHIEBER

(a) likes (b) likes (©) likes
=S ~ @ @~
T B BN : bl el S
thinks john apparently mary john sometimes every thinks every soine
‘\II
bill person bill person person

FIGURE5 Derivation trees for (a) “Bill thinks John apparently likekry”, (b) “John
sometimes likes everyone”, and (c) “Bill thinks everyorief someone.”

betweenwho andthinksor betweerthinksandlikes but in the desired se-
manticswhotakes scope over ttibinksproposition and théke s proposition
is an argument tthinks

In our analysis, by contrast, the semantics follows quitanadly from the
standard syntactic analysis of the structure oflikees elementary tree in the
WH context and the elementary tree pair tbmksgiven in Figure 4. The
derivation of this sentence is also given in Figure 4. No#&t iths required by
the structure of the trees thahotake scope ovehinks

8.3.2 The Interaction Between Attitude Verbs, Raising Verls, Adverbs
and Quantifiers

The interaction between attitude verbs and raising verbadeerbs as in
sentences (14), (15), and (16) has been problematic for T&@Gastics
(Kallmeyer and Romero, 2004). A successful analysis muiekible enough
to produce the correct semantics for sentence (14) eveglitbere is no link
betweerthinksandap parentlyin the derivation tree. It must also be flexible
enough to allow all scope orderings between VP modifiers aiadhtifiers as
in sentence (15). In fact, given the elementary trees we &la@ady presented
and the ones for attitude verbs demonstrated by Figure 4ralysis already
allows for scope interactions among all these elementgdddbecause the
semantic components of attitude verbs, VP modifiers, andtigas all ad-
join at the same node in the semantic tree of the verb, ouysisalllows all
scope orderings among them. This is clearly too permisbaeguse it allows
quantifiers to scope out of the finite clause in which they app&d would
allow a reading of sentence (14) in whialp parentlyscopes ovethinks To
prevent quantifiers from scoping out of the finite clause imnciithey appear,
as in sentences (14) and (16), we can add an additional ddjorsite to the
semantic trees for verbs above the current root node. ThEsdwn in Fig-
ure 6 in thelikes, tree pair. The link configuration ensures that attitude serb
(adjoining at linkm) will now scope higher than all VP modifiers (adjoining
at) and quantifiers (adjoining at linksandaz). VP modifiers and quantifiers
will still be able to take all scope orderings relative to leather. Using the
modified verb trees, STAG produces the correct semanticsefaences (14),

SimpLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 111

S
NPE VPm

ﬁ
L @E

/N

V. NP@m (et) ¢

B g

likes likesy €)@

FIGURE6 Modified tree forlikesthat enforces a restriction on quantifiers scoping
outside of the finite clause.

<67 t) N <67 t>

No N’ and (e, t). (e,t) @ N’ S/NPyg st {(e,t)m e, t) =

who Njm se Njm
NP t S/NP (e, t) stumped
AN S 2
D‘et Nm d y t i, 2 AE L C‘L bill
a (e t>/3’/ e NP VP <€’,t> z problem
> U7 1lE
?J € is difficult isDifficult :h
who
Nm (e, t)m ‘e
‘

problem/ problem/
solution solution solution tsDifficult

FIGURE7 Key elementary trees and derivation for “A problem whosetonh is
difficult stumped Bill.”

(15), and (16) with the derivations given in Figure 5.

8.3.3 Relative Clauses

Relative clauses provide another putativelffidult case for TAG seman-
tics because both the main verb and the relative clause reegsato the
variable introduced by the determiner as in sentence (1a)rti€yer, 2003).
We overcome this diiculty and compute the desired semantics by intro-
ducing higher-order functions into the semantic treesguEmbda-calculus
notation. This modification allows us to maintain tree-ldggaThe syntac-
tic analysis we use is similar to that of Kallmeyer (2003) fiattit main-
tains theCondition on Elementary Tree MinimalifFrank, 1992) and uses
the relative pronoun to introduce the relative clause. H@redt treats the
relative pronoun as a noun modifier rather than a noun phraxiifiar.

112/ ReBEccA NESSON AND STUART SHIEBER

t

)
N T

a% A
(e,t) Yy (e, t) T
and (e, t) (e, t) stumpc/d\e Y
problem Smt> bill
\
solution X Zz i

PN

e X

isDifficult

FIGURES8 Derived tree for “A problem whose solution isf@cult stumped Bill.”

We also posit the existence of “lifted” versions of the eletaey trees for
verbs in which their argument positions have been absttamter. We use a
higher-order conjunctioandthat relates two propertieaPQxP(x) A Q(X),

and a higher-ordese function that relates two properties and makes use
of the higher-order conjunctiomPQxthe(y, and(P, 1z posgx, 2))(y), Q(Y)).

The elementary tree pairs and resulting derivation treeséartence (17)
are given in Figure 7. The derived tree is given in Figure 8.ewhe-
duced, the resulting semanticséag, Ax.(problen(x) A the(y, solution(y) A
posgx, Y),isDifficult(y))), stumpedbill, 2)).

8.3.4 Nested Quantifiers and Inverse Linking

Quantifiers in prepositional phrases such as in sentengep@ds® another
challenge for TAG semantics (Joshi et al., 2003). Althougtested quanti-
fier may take scope over the quantifier within which it is né¢s®-called “in-
verse linking”) not all permutations of scope orderingstef tjuantifiers are
available (Joshi et al., 2003). In particular, readings ol a quantifier in-
tervenes between a nesting quantifier and its nested qeaatié not valid. In
our example sentence (18), this predicts that the readimige> two > every
andevery> two > someshould not be valid. Joshi et al. (2003) introduce a
special device allowing nesting and nested quantifiers tm fan indivisi-
ble quantifier set during the derivation, which prevent&otjuantifiers from
intervening between them. In our solution, because theedesantifier is
introduced through the prepositional phrase, which in tootifies the noun
phrase containing the nesting quantifier, the two quargifiready naturally

SimpLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 113

NPy ¢ /N\ t ”_Q\Qf
D’@t Nim two/ Y 1@ t« N*EI\D le.t) u‘jo STnf\\/
oo/ Jomne ey KNPl (). [plicions perem fm
Zcx)/rerllr;/ (e, t)im E from from ejm eTTy

city

FIGUREQ Key elementary trees and derivations for “Two politiciapg &n someone
from every city.”

form a set that operates as a unit with respect to the res¢ afativatior® The
elementary tree pairs and derivation trees for our anabfg(&8) are shown
in Figure 9.

One notable feature of this analysis is that the fotiiedént scope read-
ings that result are not the product of a single derivatiee.tiThe alternate
scope orderings for the nested and nesting quantifier exésiuse there are
two available adjunction sites for the scope of quantifiethe prepositional
phrase to attach. This results in two distinct derivatiares: The alternate
scope orderings for this quantifier set and the remainingtifier are ob-
tained by multiple adjunction at the root of the verb treee Bet of valid
derivation trees for a sentence thus constitutes the soaipteah representa-
tion. This set of trees may be compactly represented, ftamee as a shared
forest!

8.4 Comparison to the Kallmeyer and Romero Approach

As mentioned above, research on TAG semantics has been lédun
Kallmeyer, Maribel Romero, and their collaborators thriowagseries of pa-
pers refining a system of TAG semantics computation usinifeainifica-
tion and other formal devices (Kallmeyer and Romero, 20@m&ro et al.,
2004, Kallmeyer, 2003, Kallmeyer and Joshi, 2003, Joshl.e2@03, Gar-
dent and Kallmeyer, 2003). Although their approach haswedbver time,

5We make use of tree-set-local TAG in the semantics whera¢keset foreveryadjoins into
the tree set fofrom. Although tree-set-local TAG is more powerful than TAG stipiarticular
use is benign because it cannot be iterated. More concretelgould conventionally make the
grammar tree-local by including all combinations of praposs with quantifiers as elementary
trees in the grammar.

"This analysis, like that of Joshi et al. (2003), makes sépeeglictions about quantifier scope
that might be disputed. First, some argue that more thansfmpe orderings should be available
for sentences like sentence (18) (VanLehn, 1978, Hobbs hieth&, 1987). This analysis cannot
generate additional scope orderings without breakingseee®cality. Second, the scope readings
in which the nesting quantifier takes scope over the nestauqitiier result in the nested quantifier
having scope over the restriction of the nesting quantifienbt over its scope. Donkey sentence
constructions such as “Every man with two books loves theali"this prediction into question.

114/ ReBEccA NESSON AND STUART SHIEBER

the underlying principles of using the relationships espeal in the derivation
tree as the basis for the computation and generating urelsfigol semantic
representations have been constant. In its current fotranlahey perform
semantic computation by attaching semantic feature stresdirectly to the
nodes in the derivation tree. When carefully chosen, theatifes unify to
produce an underspecified representation of the semam#csamtence that,
when further disambiguated, generates the set of validgregations. In one
or another of their recent papers they have provided suitdeswlyses of
each of the hard cases that we have addressed here, thougho$daheir
analyses might have to be restated to bring them up to daltetiagtnewest
formulation of their method.

Our work owes much to theirs both for the clear formulationhaf prob-
lems and the progress in formulating analyses for some ohénd cases.
The primary advantage of our approach is its conceptuallgityp The clear
separation of syntax and semantics, the directness ofrtkenierface, and
the familiarity of the TAG operations used in our approactkeniavery sim-
ple. The semantic-feature-unification-based approachéasme cleaner and
easier to understand as Kallmeyer and others have refine@itloe years.
Nonetheless, it is safe to say that the amount of formal nm&eci#—including
propositional labels, separate individual and propaséi@ariables, semantic
representations consisting of a set of formulas and a seoplesconstraints,
features on the derived tree and the derivation tree, eaclarge feature
structure containing a nested feature structure for eagdiead in the elemen-
tary syntax tree, each of these feature structures contgieatures to handle
binding of propositional and individual variables, feawmification, flexible
composition, and quantifier sets—necessary to solve thgerahproblems
that we have addressed here, is qualitatively more compidact, we use
no formal machinery that had not been introduced by 1994aT&G litera-
ture.

An additional advantage of our approach is that it does nese the
expressivity of the TAG formalism. One might think that threelusion of
multiple adjunction would lead to an increase in expressi{Dras, 1999).
However, because links can only be used once in an STAG deriyanly
a finite number of multiple adjunctions may occur at a singlgiaction
site. This rules out problematic uses of multiple adjunctigalimeyer and
Romero maintain the semantic features on the derivatienrather than in
the feature structures already used in the feature-baséd {RTAG) of their
syntax in part because the set of semantic feature strgdtret finite, po-
tentially increasing the expressivity of the FTAG formaiigKallmeyer and
Romero, 2004). Although moving the features to the delvetiiee avoids in-
creasing the expressivity of the formalism used for synthrmtaken alone,
the additional expressivity in the features of the semarntauld be used to

RErFERENCES / 115

block operations in the syntax thereby filtering the synt@yptoduce non-
tree-adjoining languages. It remains to be seen whetheratiiitional ex-
pressivity will be required for TAG semantics.

Advantages and disadvantages of th@edent methods aside, in this still
nascent area of research it is desirable to have severa difierent ap-
proaches at our disposal as we explore the hard problemsreesby gen-
erating natural language semantics in the TAG framework.approach re-
vives an old idea with the aim of opening a new avenue for rekeato
semantics in the TAG framework.

8.5 Conclusion

We have presented the synchronous TAG formalism as a medhadput-
ing semantics in the TAG framework, and have shown that iblrsasimple,
natural analyses for all of the cases that have exercisedtratempts at for-
mulating formal semantics for TAG. It satisfies each of theidierata laid out
at the beginning of this paper. First, it does not requireaaddjitional informa-
tion other than that available in the derivation tree to gateethe semantics.
Because the syntax and semantic representations are fpsiytnehronously,
the derivation tree set is a complete specification of theticiship between
them. Nothing other than the set of elementary tree pairstanslynchronous
TAG operations are required to generate a semantic repetigen Second,
the derivation tree set provides a compact representaticallfvalid seman-
tic interpretations of the given sentence. Using multiptijeined quantifiers
we take advantage of the ambiguity in the interpretatiomefderivation tree
that is introduced by multiple adjunction. We take each iids®rdering of
multiply-adjoined trees to be valid. We leave open the pmlisi of using an
additional method to prefer certain scope orders and dmspog eliminate
others. Third, the STAG system, as used, does not increagxphessivity of
the TAG formalism (Shieber, 1994). Finally, our analysia straightforward
expression of a simple idea: we use TAG for both syntax anche&os and
use the derivation tree and the links between trees in eliEmeinee pairs as
the interface between them.

8.6 Acknowledgements

This work was supported in part by grant 11S-0329089 from Kegional
Science Foundation. We wish to thank Rani Nelken and the timenymous
reviewers for valuable comments on earlier drafts.

References

Dras, Mark. 1999. A meta-level grammar: Redefining syncbusnTAG for transla-
tion and paraphrase. Rroceedings of the Thirty-Seventh Annual Meeting of the

116/ ReBecca NESSON AND STUART SHIEBER

Association for Computational Linguistigsages 80-87. Maryland, USA.

Frank, Robert. 1992. Syntactic locality and Tree AdjoinBiammar: Grammatical,
acquisition and processing perspectives. Ph.D. Thesisetity of Pennsylvania.

Gardent, Claire and Laura Kallmeyer. 2003. Semantic coastn in feature-based
TAG. In Proceedings of the 10th Meeting of the European ChaptereoAdsocia-
tion for Computational LinguisticsBudapest, Hungary.

Hobbs, Jerry and Stuart M. Shieber. 1987. An algorithm faregating quantifier
scopings.Computational Linguisticd3(1-2):47-63.

Joshi, Aravind K., Laura Kallmeyer, and Maribel Romero. 20@lexible composi-
tion in LTAG: Quantifier scope and inverse linking. In I. v. 8. Harry Bunt and
R. Morante, eds.Proceedings of the Fifth International Workshop on Computa
tional Semantics IWCS;pages 179-194. Tilburg.

Kallmeyer, Laura. 2002a. Enriching the TAG derivation ti@esemantics. In S. Buse-
mann, ed. KONVENS 2002. 6. Konferenz zur Verarbeitung naturlichera&he,
pages 67—74. Saarbrucken.

Kallmeyer, Laura. 2002b. Using an enriched tag derivationcture as basis for se-
mantics. InProceedings of the Sixth International Workshop on TreeiAd)jg
Grammar and Related Frameworks (TA&, pages 127-136. Venice.

Kallmeyer, Laura. 2003. LTAG semantics for relative clauda I. v. d. S. Harry Bunt
and R. Morante, edsProceedings of the Fifth International Workshop on Compu-
tational Semantics IWCS-pages 195-210. Tilburg.

Kallmeyer, Laura and Aravind K. Joshi. 2003. Factoring pratgk argument and scope
semantics: Underspecified semantics with LTAR&search on Language and Com-
putation1:3-58.

Kallmeyer, Laura and Maribel Romero. 2004. LTAG semantid wemantic unifi-
cation. InProceedings of TA&7, pages 155-162. Vancouver.

Romero, Maribel, Laura Kallmeyer, and Olga Babko-Malay@04£2 LTAG semantics
for questions. IrProceedings of TA&7, pages 186—-193. Vancouver.

Schabes, Yves and Stuart M. Shieber. 1993. An alternativeegtion of tree-
adjoining derivationComputational Linguistic20(1):91-124.

Shieber, Stuart M. 1994. Restricting the weak-generata@acity of synchronous
tree-adjoining grammarComputational Intelligenc&0(4):371-385.

Shieber, Stuart M. and Yves Schabes. 1990. Synchronouadieming grammars.
In Proceedings of the 13th International Conference on Coatprtal Linguistics
vol. 3, pages 253-258. Helsinki.

REFERENCES / 117

VanLehn, Kurt. 1978. Determining the scope of English gifi@ns. Tech. Rep. 483,
MIT Artificial Intelligence Laboratory, Cambridge, MA.

Williford, Sean. 1993. Application of synchronous tregeaing grammar to quanti-
fier scoping phenomena in English. Undergraduate ThesisarthCollege.

9

Encoding second order string ACG with
Deterministic Tree Walking Transducers.

SYLVAIN SALVATI

9.1 Introduction

Abstract Categorial Grammars (ACGs) (de Groote (2001)pased on the
linear logic (Girard (1987)) and on the linearcalculus. They describe the
surface structures by using for syntax the ideas Montag@ig4(ldevoted to
semantics. ACGs describe parse structures with higherdirtear A-terms
and syntax as a higher-order linear homomorphism (lexiocomarse struc-
tures. Intuitively, the higher the order of the parse stites is, the richer
should the languages of analysis be and the higher the ofdlee ¢exicons
is, the richer should the class of languages be. On the ond danGroote
and Pogodalla (2004) have shown how to encode of severadxidnee for-
malisms by using second order parse structuresregular sets of trees).
They have encoded Context Free Grammars using second exdaemis, Lin-
ear Context Free Tree Grammars using third order lexicodd arear Con-
text Free Rewriting Systems (Weir (1988)) with fourth ortésicons. On the
other hand Yoshinaka and Kanazawa (2005) have explorednessivity of
lexicalized ACGs. They have exhibited a non-semilineamgtianguage with
third order parse structures and an NP-complete stringukzgg with fourth
order parse structures. (Salvati (2005) gave an exampla dfRxcomplete
language with third order parse structures and a first oedézadn).

The present work addresses the problem of the expressivACGs in
a particular case. We show that the class of languages ddfinseicond or-
der string ACGs is the same as the class of languages defirmdmss of

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

119

120/ SYLVAIN SALVATI

Deterministic Tree Walking Transducers (DTWT) (Aho andrdin (1971)).
Together with the results of de Groote and Pogodalla (200d)/geir (1992),
this result proves that the generative power of second stdag ACGs is ex-
actly the same as the generative power of Linear Contextieegiting Sys-
tems. This furthermore shows that second order string AGBsatways be
described with fourth order lexicons. We may neverthelesgscture that the
use of lexicons of order greater than four may give more catg@mmars.

The paper is organized as follows: we first briefly define thedr A-
calculus and ACGs in section 9.2. In section 9.3, we use thesgpondence
between proofs of linear logic and lineaterms to relate subformulae of a
type a with subterms of terms of type. Section 9.4 introducdsreduction,
the reduction used by the DTWTs which encode second ordeg #CGs.
Section 9.5 presents the encoding of second order stringsAGHR DTWTS.
Finally we conclude and outline future work in section 9.6.

9.2 Definitions

Given a finite set of atomic typed, we defineJ 4, the set of linear applica-
tive types built onA with the following grammatr:

Ta:i=A(Ta—oTa)

If a1, ...,a, are elements of 4 anda € A we will write (a1,...,an) — «
the type (1 — (- - (an — @) ---)). The order of the type, ord(), is 1 if @
is atomic {.e.a € A), and ordf — B) = max(orde) + 1, ord(B)).

Higher-order signatures are triplas, (A,) whereC is a finite set of con-
stants,A is a finite set of atomic types ands a function fromC to 74. The
order of a signatured, A, 7) is maxXord(r(a))la € C}. Given a higher-order
signatureZ = (C, A,) we will denoteA by As, C by Cs, 7 by 7z and7 4 by
Ts; if (@) = (a1, ..., an) — @, then the arity of € Cy is n, it will be noted
p% or pa (WhenX is clear from the context).

A higher-order signatur® is said to be astring signatureif Az = {x},

€ Cy, tx(#) = = and for alla € Cs\{#}, 7=(8) = (* —o *).

We are now going to define the set of linelaterms built on a signature
¥. We assume that the notions of free variablespture-avoiding substitu-
tions, @-conversiong-reduction-reduction. .. are familiar to the reader. If
necessary, one may consult Barendregt (1984).

Given a higher-order signatukeanda € 75, we assume that we are given
an infinite enumerable set of variables§ y*, z*..., A{ the set of linean-
terms of typer built onX is the smallest set verifying:

1. ifae Cy andrs(a) = a thena € A§
2. X7 € AL

1Given al-termt, we will write FV(t) to denote the set of its free variables.

ENCODING SECOND ORDER STRING ACG wiTH DETERMINISTIC TREE WALKING TRANSDUCERS. / 121

3. ifti € A"t e A andFV(t) N FV(ty) = 0 then tity) € AL
4. ifte A%, x* e FV(t) thenax”.t € AL™

The setAs denoted J ., A§. Linear A-terms arelinear because variables
may occur free at most once in them and that whengxet is a lineara-
term,x* has exactly one free occurrence.iMoreover, whenevere AgmAé
thena = B, i.e. every lineari-term has a unique type in a given signatkire

We may, when it is not relevant, strip the typing annotatiamf the vari-
ables. We will writedx; . .. X,.t for the termAx;. ... Ax,.t andtot; . . . t, for
(... (tot) .. .t). Given a list of indicesS = [iy,...,I,], we will write X2t
the termax;, ... X .t, tot_s) the termitot;, ... 4, andcsit the termci, (...c (t)...)
when for allj € [1,n], ¢, has typer — =. In particular,Axq.t, tol, andcit
may be used whe8 =[1,...,n].

Given a string signaturk, strings will be represented by the closed terms
of typex. For example, the termy(. .. (c#)...) represents the string . . . ¢y;
givenw, a string built onCs, /w/ will denote the term ofAS which is in
normal form and represenis

To define the subterms d¢fe Ay, we follow Huet (1997) and consider
them as pairs@[],t") (whereCJ] is a context,i.e. a term with a hole) such
thatt = C[t’']. The set of subterms dfis denoted bysS;. In particular, we
defineSy to be{(C[],v) € Silv € AJ}. If xis free int, we noteCy,[] the
context such thaf; x[X] = t andx is not free inC; «[]. Remark that sincéis
linearC; 4[] is uniquely defined.

We say that a termis in long from if for all (C[].t') € S eithert’ =
Axt” or C[] = C’[[]t”]- Every term can be put in long form byexpansion,
therefore ift is the long form ot’, thent —*>,, t’. When a term is in long form,
all its possible arguments are abstracted Ryabstraction. For example, the
term x*=*, which is not in long form, can be applied to an argument oétyp
#; in long form, this term becomey/".x**y*, the possibility of applying it
to a term of typex is syntactically represented by theabstraction. A term is
in long normal form (Inf for short) if it is both iB-normal form and in long
form. The set Irf (resp.cInfg) represents the set of termsAf in Inf (resp.
the closed terms oA{ in Inf). In the sequel of the paper we only deal with

terms in long form; thus each time we will writg.t, xt—é or at—s), we will
implicitly make the assumption thitxis or ats has an atomic type.

We define homomorphisms between the higher-order sigreiumndx,
to be pairs {, g) such thatf is a mapping fron¥y, to 7x,, andg is a mapping
from Az, to As,, and verifying:

1. if @ € Ay, thenf(a) € Ty,, otherwisef(a — B) = f(a) — f(B)

2. forallae Cy, such thatry, (a) = a, g(a) € cinf{”

3. g(x*) = xf@

122/ SYLVAIN SALVATI

4. g(tatz) = 9(t)g(t2)
5. g(Ax.t) = axf@ g(t)

One can easily check that whenever A , g(t) € Af(") In general, given a
homomorphisn¥. = (f, g), we will write |nd|st|nctly.£(a) for f(a) and £L(t)
for g(t). Theorderof £ is maXord(L(e))le € As, }.

An ACG (de Groote (2001)) is a 4-tupl&y, =,, £, S) such that:

1. X, is a higher-order signaturthe abstract vocabulary
2. X, is a higher-order signaturthe object vocabulary
3. Lis a homomorphism frorl; to X,, the lexicon

4, Se 7(21

An abstract constanfresp. object constapts an element o€y, (resp.Cs,),
anabstract typgresp. object typeis an element of s, (resp.7y,). Given an
abstract constara, £(a) is called therealizationof a.

An ACG G = (%1, 2, L, S) defines two languages:

1. the abstract languaged(G) = clnfg1
2. the object languaged(G) = {v € clnfg, |3t € A(G).v =5, L(1)}

An ACG G = (%1,%2, L, S) is said to be &tring ACGIf %, is a string signa-
ture andZ(S) = . Theorder of an ACGs the order of its abstract signature.

9.3 Path in types, active substerms and active variables

We assume that we are given a signaiend that all the types and all the
terms used in this section are built on that signature.

A linear A-termt € Infg represents, via the Curry-Howard isomorphism, a
cut-free proof ofe in the Intuitionnistic Implicative and Exponential Linear
Logic. This correspondence leads to a natural relation betwdsforsoulae
of @ and subterms of. This section presents this relation which will play a
central role in our encoding.

The subformulae of a type will be designated by means of patipath
m=i1-ip---in-1-in IS @ possibly empty sequence of strictly positive integers;
n is the length ofr and whem = 0, = will be denoted bys. Given a set of
pathsP, i - P denotes the sét - 7|7 € P}. The set of paths in the typg P, is
defined as follows:

n
Plar,..an)—ao = 10} U Ui - P,, (recall thatag is atomic)
i=1
The setP, is split within two parts: the positive paths, denotedfjyand the
negative paths denoted 8. Positive (esp.negative) paths are the path of
P, which have an evendsp.odd) length.
eifr=oe

leenapathr,wedefmep+7ras:p+n={ (p+K) -7 ifr=k

ENCODING SECOND ORDER STRING ACG wiTH DETERMINISTIC TREE WALKING TRANSDUCERS. / 123

Givent e Infg, we define two particular subsets &f, the set ofactive
subtermsAT ¢, and the set adictive variablesAV;. The setsAT ; andAV;
are defined as the smallest sets satisfying:

1. ([I.t) € AT
2. if (C[], A%a.t') € AT then for alli € [1,n],
(CL%.Cr x [, x) € AV,
3. if (C[[]t1...ts], X) € AV, then for alli € [1,n],
(CIXty...tia[] .. .ta]. 1) € AT

If atermt can be applied ta arguments, then, given, .. .,t, termsin Inf,
during theg-reduction oftt; . . . t, the active variables dfwill eventually sub-
stituted by a term during-reduction and the residuals of the active subterms
of t will eventually become the argument of a redex. On the othedhthe
variables oft which are not active will never be substituted and the satger
of t which are not active will never be the argument of a redex.

We can now define two mutually recursive functidXls andAV respec-
tively from AT onto®; and fromAV; ontoP;:

1. AT(([].t)=e
2. if AT((C[], A%a.t") = & then for alli € [1, 1],
AV (C[A%.Cr [l %) = 7 -1
3. if AV¢(C[[]t1...tn], X) = m then for alli € [1,n],
AT(C[Xty...t-1] ... ta, ti)) =7 -1
One can easily check thaT (C[], v) = & (resp.AV(C[], X) = =) implies that

the type ofv (resp. } is the type designated (in the obvious way)din .
The functionsAT; andAV; are bijections whose converseHs

1. Pi(e) = ([I.1)
2. Py(m-i) ={ (CL%.Cu x[1. %) if Pi(x) = (C[I, %t
' (CIxty...tafl ...t 1) if Pe(x) = (CI[t1.. . tn], X)

For all C[],t") € AT (resp.(C[],X) € AVy) it is straightforward that
P(AT(C[I, 1)) = (CII.t') (resp.Py(AV+(C[], X)) = (C[].X)); and that for all
e Pt (resp.r € P), AT(Pi(n)) = (resp.AV (Pi(n)) = n).

9.4 h-reduction

The DTWTs which encode second order string ACGs perform trenal-
ization of the realization of abstract terms. They use ai@adér reduction
strategy,h-reduction which is related tchead linear reductio{Danos and
Regnier (2004)).

124/ SYLVAIN SALVATI

This reduction strategy is only defined for a particular €lagA-terms.
Firstly, thesel-terms have to be built on a string signati;esecondly, they
have a particular form. To describe this form, we need firfindeVy C AJ
(N = Uger; Ny) as:

NE 2= Infe | (NSO NE)

Then, the set of terms we are interested in areHfeterms defined by the
following grammar:

HT == Ny | CHT | (X X HT)N .. Ng"
wherec € Cy. EveryHT-term is inA5 and is of the form:
(AR5, BT (. (A%, CT (T, -)V,
so thatS; N S # 0 implies thati = j, v (with k € Uiz, Si) andtq (with

g € Q) are elements oNs.
Given aHT-term,

t= (1%, Cr.(. .. (A%, ST, (4TQ)Vs, - . Vs,
we say that h-contracts td’ (notedt —, t') if

v = (56, T (... (A%, En, (V) -) Vs,
whereS; = Si\{j}. It is a routine to check that =5 t’, thatt’ is also a
HT-term and that the normal form oftan be obtained in a finite number of
h-contractions. The reflexive and transitive closure-gf, h-reduction will
be written—p,.

GivenGg = (X1,%,, S, £) a second order string ACG, ande cInfS, we
are going to see holcontraction normalize£(u). The determinism of>,
allows one to predict statically.€. without performing the reduction) which
subterm of£(u) will be substituted to a given bound variablefifu) during
h-reduction. This prediction is based on the notiongeplaceable variables
and unsafe termsntroduced by Bohm and Dezani-Ciancaglini (1975). Re-
placeable variables and unsafe terms belong toS £, and will be respec-
tively denoted byRV, andUT .

If(C[l.a) € Syand C'[]. X) € AV g, then (L(C)[C'[]], X) € RVy; UT
is the smallest set verifying:

1. if (C[],av,,) € Sy andC[] # [] then (L(C)[], L(aV,.)) € UT
2. if (C[],a) € Sy and C'[],V) € AT 1@ then L(C)[C'[1],V) € UT

The prediction will be given by,, a bijection betwee®RV, and U7 .
The definition ofg, relies on few more technical definitions.
Given (C4[], &) € Sy such thaCy[] = C[[Jvi...V,,], then

(Clavi...Vica[] - .. Vp,]. vi)

ENCODING SECOND ORDER STRING ACG wiTH DETERMINISTIC TREE WALKING TRANSDUCERS. / 125

is thei'™ argumentof (Cy[], a). Given Ca[], a), (Co[],b) € S,, we say that
(C4ll, @) is thehead of the'f argumenif (Cy[], b) if

Coll = Cl[[JVa...Viia(@W,.)...V,,] andCq[] = Clbvi ... Vi_1(IW,.) ... V,,]

Given C[],x) € RV, we now definep,(C[], x). As (C[],x) € RV,
we have Cj[],a) € Sy andCy[] such that Cy[],X) € AV andC[] =
L(C)[C]]. Let m = AV £ (Cx[], X), sincer € P res @y is of odd length,
andr = i.n’. Then we have three cases:

1. ifi < pgandn’ = e, thenpy(C[], X) = (L(C)[], L(t)) where C'[],t) is

thei argument of C,[], @)

2. ifi < pgandn’ £ e, thengy(C[], X) = (L(Cp)[C’[1],t) where Cyl[], b)

is the head of thé" argument of C,[], a) and C'[],t) = Pz)(ob + ')

3. if i > pa thengy(C[], X) = (L(CL)[C'[]]. 1) where C4[], @) is the head

of thek" argument of Cy[], b) and C'[], t) = Py (K- (i — pa) -).

Computing¢y(C[], X) only requires to know about the immediate sur-
rounding ofa. This is the reason why the normalization6fu) can be per-
formed by a DTWT. To prove the correctness of the predictiof,ave need

the notion ofstrict residual givent andt’ such that —p, t', (C[],V) € S
and C'[],v) € Sy, we say thatC'[], v) is the strict residuabf (C[], v) when-

everC[xy1 ... ¥nl Sh C'[xy1...yn] With FV(V) = {y1,...,¥n} andxis a fresh
variable.

Givent such that£(u) S t, we say that is predicted byg, if the two
following properties hold:

1. for all (C[], (AXadYq.V)Va) € St andi € [1, n], the fact that
(CI(AXaYe-Cux) Vil %)
is the strict residual ofGy[], X)) € RV r) implies that
(C[(/l?n/l%.V)Vl .. .Vi_1|:| .. .Vn], Vi)
is the strict residual ap,(Cx [], Xi).
2. for all C[IVel,X) € S, (C[0Vql,) is the strict residual of some
(C'[0Vgl, ¥ € RV
We are now going to show thitreduction preserves the predictionggf
This will be achieved by using the following technical lemma

Lemma 22 Given(C[[]Vg], X) € RV, if we haveg,(C[[1Vg],X) = (C'[],t)
then t = (AXpyq.W)W, and we have
¢U(C/[(/17;7C)]‘CW,Yk[|)V7’;]7yk) = (Clxvi...Viea[l - .. Vg, Vi)

Proof. This proof only consists in unfolding the definitions. SC[[] V(}], X) €
RV, we must have@,[], a) € Sy, andCy[] such that:

126/ SYLVAIN SALVATI

1. Cl0Ve] = L(Ca)[COVall

2. C0Val. x) € AV e

3. AV 1@ (CxI[1Vel, X) = i - « for somei andx
There are three fierent cases depending bandr.

Case 1:i < p, andr = e: this case is very similar to the following one and is
thus left to the reader. It is the only case whpmaay be diferent from 0.

Case 2:i < pa andrm # e: by definition if (Cy[],b) is the head of the
i argument of C,[], @), and if Py (op + 71) = (C”[],/l%.w) thenC’[] =
L(Cp)[C”[l] and t’ = A¥g.w. Let's now suppose that= m- 7', then we have
that AV 1) (AYg-Cuyll- V) = (ob + 71) - k = (op + M) - 7’ - k. Therefore, as
b+ M > pp and as Cy[], b) is the head of thé&" argument of C4[], a), we
have thaty((1¥g.Cuy[) Vi) = (L(Ca)[Ckll], uk) where

(Cull, u) = Pra(i - (oo + M= pp) -7 - K) = Pray(i - 7 - K)
But we have thaAVL(a)(CX[[]V(}], X) = i - 7 which implies that
(Cull, u)) = Pry(i - - K) = (Cu[xvi ... Vieal] - . - e], Wio).
Finally asC[] = L(Cy)[C«[]] we get the result.
Case 3:i > p,: this case is similar to the previous one. O

Proposition 23 If £(u) Snt, thentis predicted by,.
Proof. This proof is done by induction on the numbertefontraction steps
of the reduction. The case where this is zero is a simple egpn of the

definitions. Now let's suppose tha(u) —n t —p t/, then, by induction
hypothesist is predicted byp,; furthermoret is aHT-term, thus

t = (A%s,.Cr(. .. (1%, C1, () Vs, ..) Vs,
and

v = (156, (.. (A%, Cr, (ViTQ))V&, - .))Vs,
with S! = Sj\{j}.

Within the two conditions required to obtain thais predicted byp,, only
the first one requires more than a straightforward appécatf the induction
hypothesis. There is actually only one subternt’ofvhich is problematic:
v,—t_Q). From the induction hypothesis we know that the subtermesponding
to x; in t is the strict residual ofC([[]t_Q)], Xj) € RV, and that the subterm
corresponding t;j in t is the strict residual o@u(C[[]t_Q)],xj). Finally the
previous lemma allows us to conclude thpt_b) fullfills the first condition.

ENCODING SECOND ORDER STRING ACG wiTH DETERMINISTIC TREE WALKING TRANSDUCERS. / 127

9.5 Encoding second order string ACGs with DTWT

We are now going to show how to encode second order string AGBSs
DTWT. We do not follow the standard definition of DTWT as givienAho
and Ullman (1971). Indeed, instead of walking on the paksestof a context
free grammar, the transducers we use walk on lingarms built on a second
order signature. But, as these setd-@€rms are isomorphic to regular sets of
trees, the string languages outputed by our transducetb@same as those
of usual DTWT. By abuse, we call our transducers DTWT.

A DTWT is defined as a 6-tuple

A =(Z,D,QT,5,do.dr)

whereX is a second order signatui®;e As; Q is a finite set of stateq; is
a finite set of terminalsj , the transition function, is a partial function from
Cxx(Q\{d+}) to (fup; stayu(downxN*))xQxT* whereN* denotes the set of
strictly positive natural numbers affd denotes the monoid freely generated
by T; qo € Qs the initial state; and; € Q is the final state. Aonfiguration
of A is given by C[], & q,) whereC[a] € cInf2, ae Cs, q € Qandse T,
initial configurationsare of the form ([fo:, a, qo, €) (e being the empty string)
whereay,, € cInf2. The automator defines a move relationa (-} is the
reflexive transitive closure afa), between configurationsC{],a,q, S) ra
(C'Ml.b,q’, swif 6(a,) = (9", m, w) and one of the following holds:

1. m=upand C[], a) is the head of one of the arguments Gf[{, b)

2. m= stayand C’[],b) = (C[],a)

3. m=(downi) and C’[], b) is the head of thé" argument of C[], a)
Givenay,, € cInf2, av,, generateswith A if

(022 0o. €) Fa (C.b.qr. S).

The language oA, La, is {33 € cInfD.v generates).

Given a second order string AC& = (X1, X, £, S) we are going to build
an automatog = (X,D,Q, T, 6, 0o, q¢) such thald(G) = {/w/w € La,}.
Letkg = maxXpala € Csx,}, we then defin& as:

1. Ay = Ay, x[1,kg]
2. Cy =Cy, x[1,kg]
3. ifry,(8) = (a1,...,an) — athen

72((@ K)) = (a1, 1), . . ., (@n, N)) — (a, K).

Remark that ifv € cInf™", then for all C[], (&, j)) € Sv, C[l # [V, implies
that C[], (a, j)) is the head of thg" argument of C'[], (b, 1)) € S,. Further-

more, giverv = (a,k)V,, € cinf we noteV the term of cInf, such that
—)
V=av,.

128/ SYLVAIN SALVATI

ThenD = (S,1), Q = ([0, kg] x P) U {qs} whereP = Uuec, P (), o =
(O, @); building 6 requires some more definitions.

Given @@ k) and {, n), theselection pattof (a, k) and {, x) is:

, _Ji-mifi>0
g ‘{ pa+mifi=0
If the selection path ofg, k) and {,) is in P}_(Txl(a)) then we say thata(k)
and {, 7) arecoherent ¢ will be only defined on coherent pairs o, k) and
(i, 7). A configurationK = (C[], (a, k), (i,), w) is said to becoherenif (a, k)
and (,) are coherent.

If (a,k) and {,n) are coherent and if’ is their selection path, then
we define thefocused termof (a, k) and {,) asP @ (7). Furthermore, if
(C[l,t) is the focused term ofa(k) and {,) and ift = AXp.Cn(XVq), then
(ClA%pCr([IV)], X)) is called thefocused variablef (a, k) and , 7).

If (a,k) and {, r) are coherent thef((a, k), (i, 7)) = (g, movew) depends
on the focused term o&(k) and {,), (hoted C[], t)):

1. if t = Ch# thenq = gy, move= stayandw = ¢; ...,

2. ift = BGC(VG), AV 1) (CAGE(0Va)]. ¥) = | - = andl > p, then
g=(k (I-pa)-7"), move=upandw=c;...Cp
3. if t = 1. Cr(Ng), AV £ (C[A%Cr([IV)], X) = | - 7”7 andl < p, then

g = (0,7”"), move= (downl) andw =c; .. .c,

We now relate the walk okg onv e cInfo with theh-reduction of£ (V).
To establish this relation we need to show that the transcdraraputespy.
Given a coherent configuratidf = (C[], (a,K), (i, 7), w), the activated term
of K is (£(C)[]. £(@7,)) if (i.7) = (0,) andC[] = C'[[] 7,1, otherwise it is
(LO[C].t) if (C'[], 1) is the focused term o&(k) and {, r); theactivated
variable of K is (L(C)[C'[]], X) if the focused variable ofa(k) and {, 7) is
(C'[l, x). We will show that giverK; andK; such thakK; +a, Kz, if (C[], X)
is the activated variable d¢f; thengy(C[], X) is the activated term df,. This
property shows thafg performs theh-reduction of L(v) and that if £(V)
normalizes to/w/ then, walking ornv, Ag ends in the final state and outputs
w.

Lemma 24 Given v= (a, 1)@: € clnf(zs'l) and two coherent configurations
K; and K> such that([|\7,?a, (8,1),(0,0),¢) I—j\g K1 kag Ko, if (C[], X) is the
activated variable of Kthengy(C[], X) is the activated term of K

Proof. As for the proof of lemma 22, this proof is mainly based onuthéld-
ing of the definitions. We simply compugg(C[], X) and the activated term of
K, and then show that they are the same.

We assume that; = (C/[], (ar, k), (ir, 7rr), W) with r € [1, 2], thatz; is
the selection path oK. If Py, (r}) = (Cill, 3%p.Co(XVy)), then letr} =

ENCODING SECOND ORDER STRING ACG wiTH DETERMINISTIC TREE WALKING TRANSDUCERS. / 129

AV £(a)(Ci[A% Ta(([IVg), X); @S} € P, (o) We know thatr) =i - 7. We
1
then have three cases:

Case L:if i < pa, andn” = e, thengy(C[], X) = (L(C")[], L)) if (C'[],1) is
thei™ argument of C4[], a;). But in that case, we have th#{(ay, ki), (i1, 71)) =
((0, o), (down i), c;...cn); thus @y, ko) is the head of the!" argument of
(a1, k1) and as ip, m2) = (0, e), we obtain, by definition, that the activated
term ofK; is indeed £(C")[], L(t)).

Case 2:if i < ps, andn” # e, thengy(C[], X) = (L(Cp)[C[]], 1) if (Coll,b)
is thei™ argument of C4[], a;) and if (C'[],t) = P)(ob +). In that case,
we haved((ag, ki), (i1,71)) = ((0,7”), (downi),cs ... Cy,); therefore, &, k)
is the head o™ argument of &y, k1) which implies thatC,[], a2) = (Cp[], b);
finally by definition we have that the activated ternkgfis (L(Cp)[C'[]], 1) =
#(Cll. %).

Case 3if i > pa, thengw(C[], X) = (L(Cp)[C'[]], t) if (C4,[1, &a1) is the head of
thek,"" argument of Cy[], b) and C’[], t) = Prwy(Ki-(i—pa)-7”). Inthat case,
we haves((aa, ki), (i, 7)) = ((Ki, (i —pa,) - 7”), Up, C1.. . . Cy), and the definition
leads to the fact that the activated termkofis (L(Cp)[C'[]],t) = ¢w(C[], X).
O

—

Proposition 25 Given ue clnf;, there is a unique = (a, 1)v,, € clnfés'l)

such thaW/ = u, and([]V,.. (a.1). (0. »). €) 4 (CIl. b.qr. w) iff L(U) =5, /w/.
Proof. The existence and the uniqueness afe obvious from the definition

of X. To prove the proposition it sfices to study the walk oAg onv and
the h-reduction of £(u) in parallel: assume that; = ([]\E;, (8,1),(0,9),¢),

K
t1 = £(u), Ky r',ig Ky andt; —n t (Wherer,'ig corresponds td steps of

k . .
Ag and—p to k steps ofh-reduction). The use of the previous lemma and an
induction onk prove thaty is of the form

te = (1%6,.C(. .. (1Ks, Er(X[TQ))Vs, . .))Vs,
if and only if Ky = (Ck[]. (@, I), ik, 7). Wi) SO thatwy = Cr,...Cr,,, if
(CLD,/IX_’SK.ET?(X]E))) € S, (with the obviousC([]) is the strict residual of
(€11, %s,.Er(xta)) € Sy, then €/'[1, A%,.Cr,(x;T0)) is the activated term of
Kk and C/'[1%s,.cr,(IT)], X;) is the activated variable d¢x. This allows us

to conclude that the walk ends in the configuratiGfi (b, gr, w) iff L(u) =g,
/w/. O

This finally shows thaD(G) is indeed equal t¢/w/|w € La,}.

130/ SyLVAIN SALVATI

9.6 Conclusions and future work

In this paper, we have proved that the languages defined lmndearder
string ACGs were the same as the output languages of DTWT Ere re-
sults of Weir (1992) and de Groote and Pogodalla (2004), weinlas a
corolarry that the languages defined by second order stri@@sfare exactly
the languages defined by LCFRS. Furthermore as, accordide@oote and
Pogodalla (2004), LCFRS can be encoded by second ordey st@iGs with
a fourth order lexicons, we obtain that every second ordiergsACG can be
encoded by another one whose lexicon has at most fourth.order

In our next work, we would like to exhibit a direct translatiof a second
order string ACG into another one with a fourth order lexic@his would
help understanding how relevant the order of the lexicol\s.conjecture
that using lexicons of order greater than four may lead toesompact gram-
mars. The problem is to know how compact those grammars cand# the
compaction is important whether it can be used do desige lgrgmmars for
natural languages.

As the tools we used are general, we think it is possible tweptbat
any second order ACG can be represented as a second order AGS: w
lexicon is at most fourth order. Indeed, the notion of pathd the relations
they establish with active subterms and active variablesadaepend on the
problem. The only definition which is dependant of the factdeal with
strings is the definition ofi-reduction. We nevertheless think that, provided
we define a generalized notion of DTWT which would outputdinéterms
instead of strings, we can show that second order ACGs candmeled with
these generalized DTWTSs. It would remain to encode those DIWith
second order ACGs with a fourth order lexicon to generalizeresult. But
this last part does not seem todfatiult.

The first part seems also feasible since it should be podsilgeneralize
h-reduction. Indeed, instead of having a unique variable bitlkvwe could
make the substitution, the fact that the constants in thm etroduce some
branching may lead to have several such variables. Thisdvoadrespond
on the generalized DTWTSs to the fact that when it would ougpbitanching
constant the transducer should duplicate its head in oodeate one head to
generate each argument of that constant.

Finally this work may lead to the definition of an abstract hiae for sec-
ond order ACGs. Such a machine would be valuable to studyrtitelgm of
parsing second order ACGs and give insights on the strat#uae can be im-
plemented for those grammars. Furthermore, as such a neaghind have a
language made of linedrterms, it would be a first step towards the definition
of an abstract machine whose language is a sgttefms. In Montague style
semantics, the problem of generation mainly consists isipgranguages

RerFerENCES / 131

of A-terms. We would then obtain a valuable tool to study the lembof
generation in that setting.

References

Aho, A. V. and J. D. Ullman. 1971. Translations on a conteséfgrammarinforma-
tion and Control19(5):439-475.

Barendregt, Henk P. 198Zhe Lambda Calculus: Its Syntax and Semantios 103.
Studies in Logic and the Foundations of Mathematics, Nbloliand Amsterdam.
revised edition.

Bohm, Corrado and Mariangiola Dezani-Ciancaglini. 197&mbda-terms as total or
partial functions on normal forms. In C. Bohm, edagmbda-Calculus and Com-
puter Science Theoryol. 37 ofLecture Notes in Computer Scienpages 96-121.
Springer. ISBN 3-540-07416-3.

Danos, Vincent and Laurent Regnier. 2004. How abstract meshimplement head
linear reduction. Preprint of the Institut de Mathémagsae Luminy.

de Groote, Philippe. 2001. Towards abstract categoriaghgrars. In A. for Compu-
tational Linguistic, ed.Proceedings 39th Annual Meeting and 10th Conference of
the European Chaptepages 148-155. Morgan Kaufmann Publishers.

de Groote, Philippe and Sylvain Pogodalla. 2004. On thessgive power of abstract
categorial grammars: Representing context-free forrmalidournal of Logic, Lan-
guage and Informatiod3(4):421-438.

Girard, Jean-Yves. 1987. Linear logitheoretical Computer Scien&@:1-102.
Huet, Gérard. 1997. The zippeiournal of Functional Programming(5):549-554.

Montague, Richard. 1974ormal Philosophy: Selected Papers of Richard Montague
Yale University Press, New Haven, CT.

Salvati, Sylvain. 2005Problemes de filtrage et problemes d’analyse pour les gram
maires catégorielles abstraitesPh.D. thesis, Institut National Polytechnique de
Lorraine.

Weir, David Jeremy. 1988.Characterizing mildly context-sensitive grammar for-
malisms Ph.D. thesis, University of Pennsylvania, Philadeph#, Bupervisor-
Aravind K. Joshi.

Weir, David J. 1992. Linear context-free rewriting systeamsl deterministic tree-
walking transducers. IACL, pages 136-143.

Yoshinaka, Ryo and Makoto Kanazawa. 2005. The complexitygmmerative capac-
ity of lexicalized abstract categorial grammarsLICL, pages 330—-346.

10

Sidewards without copying

EpwaArD P. STABLER

A traditional movement step relates a single source pasttioa single c-
commanding target position, and never moves an argumemiciher argu-
ment position. But head movement involves non-c-commaladioes, and
control relates two argument positions that are not always ¢-command
relation. Special mechanisms could be invoked for theseythibut a dier-
ent strategy slightly generalizes movement and enforaggindundamental
symmetries observed by all movements to block overgemeraftihis paper
defines a class of ‘sideward movement grammasauGs) with such symme-
tries, with example applications to adjunct control andh@avement. These
grammars allow copying, but the question of whether to cepgompletely
independent of the question of whether to allow sideward enent. Fur-
thermore, since these grammars distinguish complemeatthattents from
others, a simple CED-like constraint can block extractifsosn specifiers
and adjuncts except in the exceptional circumstance ohatlgontrol.smvac
definable languages are alicr definable, and hence aréieiently recog-
nizable.

10.1 Introduction

One of the most basic properties of human language is itslsjmgrursive,
layered character in which similar structure is iteratenestimes with spe-
cial variations at the top, matrix level and at the deepest$e

Does Alice know thatBob thinks that Carol says you like her?
3 2 1 0

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

133

134/ Epwarp P. SIABLER

Certain kinds of recursive symmetry in languages allow fheriping lem-
mas’ which have been valuable diagnostics of the avaitgluficertain kinds
of grammars. A regular grammar for a language is only possiliien the
language has a simple symmetry of this kind; context freengrars have a
weaker requirement, and so on through the hierarchy of pleltiontext free
languages (Seki et al., 1991), etc.

Many descriptions of human languages involve rearrangamgstituents.
In grammars with movements, how is the structure of eacleffagffected?
This fundamental question is a topic of active study. Inyeméansformational
grammars, a set of base structures is generated and thesfotraed into
surface structures, as in the following example (veitmdt unpronounced):

[I'[know [e[l [e[saw [who]]]llIl — [I [know [who [I [t [saw []]]]]]-

The sequences of positions related by movement in theseauaiscare not
random. Among other things, landing sites of movement dalisotipt layer
structure too much (‘structure preservation’, ‘shape eovegion’), and when
an element moves through several clauses, it never movesdrhigh po-
sition in a lower clause to a lower position in a higher cla(fethe ‘ban
on improper movement’ ‘chain uniformity’, ‘level embeddi). So in dfect,
the hierarchy of each layer of phrase structure is respéstedquences of
movements too, another reflection of the basic invariantstimeed at the
outset.

Some recent grammars compose generation and transformségjos’, so
transformations are, infiect, executed as soon as requisite structure is built,
reducing the need for revising completed structure:

merge

1. [sawl[who] — [saw [who]]
2. [saw [wholk[l] =5 [I [saw [whol]]
3. [I [saw [who]]] s [who [I [saw fwhd]]

merge

4. [know]+[who [I [saw [whe]] — [know [who [I [saw fwhd]]]

5. [know [who [l [saw pwhd]]] +[I] ik [I [know [who [I [saw [whe]]]]]

But step 3 showsvho being copied and deleted, revising the structure built
by step 2. One response is to say that the syntax simply ctipgesarlier
structure (perhaps only adding a link, a pointer to the erdbdd/ho), and
then a post-syntax “spellout” process determines whiclesoje pronounce.
This pushes the changes to completed structure out of thaxsyay invoking
a “spellout” process that is sensitive to much of the samectre that syn-
tactic operations are sensitive to. When two processes seém sensitive
to the same structure it is a natural hunch that they areyrdadlsamepro-
cess. Adopting this perspective instead, we could thentssttiie depiction

1Tree transducer composition, ‘deforestation’, is a comistep for reducing program com-
plexity (Kihnemann, 1999, Reuther, 2003, Maneth, 2004).

SIDEWARDS WITHOUT COPYING / 135

of the derivation 1-5 is slightly misleading: wherhois introduced in step 1,
it satisfies a requirement of the verb but is not actually gdio complement
position. Rather, it is held out to be placed at the left edgth® embedded
clause. This strategy for (not postponing but) eliminatirignd of structural
revision is formalized inigs (Stabler and Keenan, 2003, Frey and Gartner,
2002, Michaelis, 2001, Harkema, 2001, Lecomte and Rel®@@9), butvcs
do not ban improper movements.

Now consider the coindexed elements in sentences like:these

He tries [g to succeed]
He laughs [beforey eating]

These ‘obligatory control’ (OC) relations have enough immoaon with
movement to suggest a uniform treatment (Hornstein, 2006121999,
Polinsky and Potsdam, 2002, Bowers, 1973). If we generataditional
movement so that a subject can move to another subject g@ogtien out
of an adjunct as in the latter example, the rest of the phremastruction
can remain completely standard. But such movements betussonnected
structures must be restricted to avoid unwanted movemkkesthese for
example:

*John likest;

*The cook theylike tried [t to make them]
*John persuaded Maryt[to make them]
*John’s friends prefer{j to behave himself]

One critique of movement analyses of control wonders, iéwiys move-
ment is allowed, what rules out sideward movement from cemgits gener-
ally (Landau, 2003, p.477). In the present account, thesthd restrictions
on sideward movement will be clear: sideward movement fromglements
is impossible.

Another kind of problem is posed by head movements like this:

[-an]+[ustedes [habl- [espafiol]}} [[habl-an] [ustedesfhablespariol]]]]

If we sayx c-commandgy in a tree {f a sister ok dominatey, thenhabl-does
not c-command its original position. Adapting a proposaifrNunes (2001)
and Hornstein (2001), in analogy to phrasal movement, wecoarpute this
result without surgery by keeping the hd@abl-out of its projection so that is
available for attachment to the appropriateaBut the indicated assembly of
the head andffix with the rest of the projection is more complicated than any
of the other (merge,move) rules, looking suspiciowslyhoc An alternative
is to, in dfect, allow the head to move before it projects its structiifés
yields essentially the same result, but by allowing the heaimply move to
another projection, allows the construction of the phraskthe selection of
that phrase to be completely standard. But obviously tleis seeds to bring

136/ EpwarD P. StABLER

some analog of the traditional head movement constraint@iM
*be -s he have-been making tortillas

Conventional movements relate source constituents witiets: that c-
command them. Imcs, the samefeect is achieved by keeping the sources
separate from the target while they wait for their final lised positions. In
this setting, the needed generalization simply allows raéiagconnected’ el-
ements to bénsertedinto an expression. With this generalization of expres-
sions, we need only one feature-checking operatizarge We define ‘side-
ward movement grammarsiMmacs) in this way. To avoid overgeneralization,
we impose a specifier island constraint (SplC) and also impageneralized
ban on improper movements. Since all phrases other than dltwéxrolause
are either complements or specifiers, SplC allows extrgutedses to enter
a derivation only through complements, though as explai@ow this con-
straint is weaker than usual because a complement can ban¢mmuoved to
a specifier without freezing any of its moving elements.

Formal antecedents include tree adjoining grammar (JoshiSthabes,
1997) and especially the variants proposed for scrambRambow et al.,
2001, Rambow, 1994, Kallmeyer, 1999), certain elaboratiohpregroup
grammars (Stabler, 2004a, Casadio and Lambek, 2002, Buskk@001),
and the minimalist grammarsi¢s) already mentioned. The derivations in
these formalisms all extend and simplify complexes of gagsdiscontinu-
ous constituents. But none of them enforces the ban on inepropvements,
and none of them defines the same class of languagesvas. smmc lan-
guages are not allcr definable, but they are allicrg-definable (Seki et al.,
1991) and hence are polynomially parsable. We conjectateathemcre lan-
guages aremma definable too.

10.2 Sideward movement grammars

LetX be a finite vocabulary, associated with phonetic and sempraperties.
The empty sequence ésHead movement will be triggered by a morpholog-
ical property that we indicate with hyphens: a precedingheyp-s indicates
that a lexical head is a fiix; a following hyphen s- indicates a prefix; and the
affix s can be empty.

A set of syntactic featureé®is partitioned into 2 basic kinds: propertiés -
and requirementsF. PropertiesF are either persistent -f or ndt Require-
ments+F: some simply require agreemexdt others trigger overt movement
+f, and others trigger overt movement and also leave a ebpis in mas,
we use the type¥ = {:;,:} to indicate lexical and derived expressions, re-
spectively. TheprojectionsP = ¥* x T x F*. Theexpression& = P x p(P).
Consider, e.g., the expression

SIDEWARDS WITHOUT COPYING / 137

(loves:-v{Mary:-focus, who:€ase -wh).

To reduce clutter, we often omit some braces and parentheses

loves:-v, Mary:focus, who:€ase -wh.

With this simpler notation, remember that the head of anesgion comes
first, and the order of remaining elements (if any) is irralav

A lexiconis a finite subset oE* x {::} x (+F* x -F*) x {0} with a des-
ignated ‘start’ category f. A lexical item hastegoryf iff its first property
is -f or -f. f comp-selecty iff there as a lexical item with category f whose
first requirement is-g or +g or +g. A cycleis a sequencef. .f, such that

fo is the start category;_f, comp-selects;f(all 0 < i < n), and no feature
appears twice. €ycle-selectg iff f precedes g in a cycle. A lexiconsoper
iff whenever -f precedes -g in any lexical item, some lexicahit®ntaining
-f has category ¢ and some lexical item containing -g hagoayed, where d
cycle-selects c. With this constraint on lexicons, (Prppee can remain neu-
tral about whether human languages have a universal, fieedal structure.
A grammar is given by a proper lexicon, generating the stinestin the clo-
sure of lexicon with respect to the fixed structure buildinigs. A completed
structure is one containing only one syntactic featurestag category f. The

string language is the set of yields of those completed &tres.

There are two structure building relations, ins and merdpe fartial bi-
nary functionins applies to pairs of expression(S), (g, T)) only if (i) ei-
ther @, T) is lexical orS = 0, and (ii) matchp, q) is defined. Its value is given
by ins((p, S), (g, T)) = (p, S U {q} U T). Condition (i) is our version of SpIC,
mentioned above.

The relation merge- E x E applies to f,S) only if there is a unique
g € S such that matchy, q) is defined. Then it takes as value meg& U
{q) = (r,(S—q)uT) for each matchg, q) = (r, T). The uniqueness condition
on application of this function is our version of the shortesve constraint
(SMC).

The relation matclke P x P x E is given as follows, wherg t € * are not
marked with an initial or final hyphen to trigger head moveters, y € F*,
6 e Fr,and- € T,

138/ EpwarD P. SIABLER

Overt movement:

P q | matchp,q)
siwfa | t-F | sta,0 saturated complement 0]
s#fa | t-f | ts0 saturated specifier (ii)
s+fa | t-f6 | sa,{t:6} moving,unsaturated projection (i)
siHfa | t-f | ste,0 final use of -f (iv)
s+fa | t-f | tsio,0 final use of -f (v)
s+fa | t-f6 | sa,{t:6} moving,unsaturated projection (Vi)
s+fa | t-f8 | sa,{t-fB} moving with -f (vii)
covert movement: _
s+fa | t-f6 | sa,{t:6} check non-persistent - (viii)
s+fa | t-f6 | sa,ft:6) final use of -f (ix)
s+fa | t-f3 | sa{t-fB) moving with -f (x)
copy movement:
siHfa | t-f | ste,0 saturated complement (xi)
s+a | t-F | tsa,0 saturated specifier (xii)
siwfa | t-6 | sta,{t:6) moving (xiii)
sufa | t-f6 | tsa,(t:5) moving (xiv)
sitfa | t-f sti,0 final move to complement (xv)
sHfa | t-f tsi,0 final move to specifier (xvi)
sita | t-f sta,{t:-f3} moving with -f (xvii)
s+fa | t-f tsi,{t:-f3} moving with -f (xviii)

We present some examples to illustrate these mechanismseatite stage
for introducing sideward movement.

Example 1: Basics.In the derivation tree on the left, the leaves are lexical
items; The binary branches represent applications of inaed the unary
branches, applications of merge.

he laughs:-C CP
e:+T -C,he Taughs:-T é
e:+T-C helaughs:-T C/\TP
laughsi+k -T,he:k | DPﬁ\T’
e:+v +k -T,lau | hs:-v,hek D‘ TAVP
€14V +_-l(iaug%v,heﬁ Ig | DP/\V
laughs+D -v‘,he::-D k h‘e t(é) v/\\/P
laughs:D v he:-D k laughs \‘/
laughs:+V +‘D -v,e:-V Vv

laughs:3V +D-v €:-V

SIDEWARDS WITHOUT COPYING / 139

Note that since insert applies to introduce a projection tha be merged,
and the derivation greedily checks features at the eapiessible moment,
there is a merge immediately above each insert step. Théi@udiunary
branches represent ‘external merge’ steps: these aredpse #iat are tra-
ditionally called ‘movements’. The tree on the right shols torrespond-
ing conventional X-bar structure. It is notfidcult to translate the derivations
shown here into more traditional depictions like this.

Example 2: Obligatory control into a complement.One idea about oblig-
atory control is that there is a special unpronounced prorf@RO which,

unlike other pronouns, either does not need case or elses 1seate special
kind of case that infinitival tense can assign. But Hornsggues that the
PRO positions can be the empty positions left by movemeri, as

he tries to succeed:-C

e:+T -C,he tries to succeed:-T

e:+T -C he tries to succeed:-T

tries to succeedk -T,he:k

e +V +Kk -T,tries to sdcceed:-v,h&-
€:+V+K-T tries to succeed:-v,hé-
tries to succeedb -v,he:-D k
tries:#V +D -v,to succeed:-V,he:-Dk-
tries:#V+D-v to succeed:-V,he:-Dk-
e:+T -V to succe‘ed:-T,he:-D?—
e:+T-V tosucceed:-T,he:-Ck-
to:+v -T,succeed:-v,he:-Ck-
to:+v -T succeed:-v,he:-Dk-
succeed:D -‘v,he::-D k
succeedD -v he:D k
e:+V +D -v,s‘ucceed::-v
e:+V +D-v succeed::-V
This derivation is checking the categorial D feature of [tveice (and then
checking its case feature in a higher clausal position, imfamnity with
Proper). Hornstein suggests that really ibigeatures getting checked twice
in constructions like this. (And there have been suggesttbat categorial

2This translation can be done automatically. See the impiatiens at
http://www.linguistics.ucla.edu/people/stabler/epssw.htm.

140/ Epwarp P. SIABLER

features generally should be replaced by appropriate camaplof more ba-
sic featuresd-features etc.) For present purposes, the simple analysigea
provides a suitable starting point.

Example 3: Obligatory control into an adjunct. There are many interest-
ing questions about adjunction, but for present purpossdiites to adopt
a treatment that allows it to be category-preserving, litleraoptional, and
opaque to extraction. These properties can be obtainedtlydircing an
empty category to host the adjunct; for clausal adjuncts mfnnphrases
we usee:+N+C+N-N, and for prepositional modifiers of v we can use:
€:+V+P+v-v, as in:

he laughs before he eats:-C
e:+T -C,he laughs before he eats:-T
+T-C he laughs before he eats:-T
laughs before he eatsk -T,he:k
e::+V +k -T,laughs before he eats:-v,he:-
e:+vik-T laughs before | e eats:-v,He:-

before he eatsv -v,Iaughs:-v,heE

|-
€:+P+v -v,laughs:-v,hek,before he eats:-P

e+P+Vv -v,laughs:-v,hek before hie eats:-P
€4V +P +v -v,Ia‘ughs:-v,heR before:+C -Ig,he eats:-C
e+v+P+v-v laughsi-v,hek beforemats:-c
laughs3D -‘v,he::-D k €:+T -C,h‘e eats:-T
laughs3D -v he: =D & e:+T-C heeats:-T
laughs:+V +D -v,e::-V eats+k -‘T,he:R
laughs:#V +D -v €=V e:+v +k -T,eats:-v,hek

e+v+k-T eatsi-v,hek
eatsyD -v,he::-D k
eatsiD-v he: "D k
eats:+V +D -v,e::-V
eatsi3V+D-v e:-V
The fact that [before he eats] is a specifier is indicated bynthin-lexical sta-
tus of the selectoref+P +v -v,laughs:-v,hek,before he eats:-P]. Since SpIC
blocks any extraction from specifiers, we do not need to seplgrstipulate
that adjuncts are islands. So if we introduce right and le&idjuncts of Y
with lexical items of the forne::+X+Y+X-X, or e::+X+Y-X, respectively (or

with any processes that yields similar structure), we getissired properties

SIDEWARDS WITHOUT COPYING / 141

for adjuncts: optionality, iterability, and opacity to exttion. This sets the
stage for the special treatment of adjunct control.

Since the proposed treatment of adjuncts makes them opagugaction,
while the proposed treatment of control makes it an exwaatélation, we
should not get control into adjuncts, but we do:

he laughs before, eating

Hornstein notices that a slight tweak on our mechanismsetahis kind of
case through without allowing other kinds of adjunct exicats. Roughly, if
we derive the modifier [before eating{he}] which wants to attach to a v,
and then we derive a v that is looking for a D, we can allow [feejniove
sideways’ onto the v before inserting it into the derivati®his step can be
presented in logicians’ style, as the inference from theesgions above the
line to the one below:

before eating : -Rhe : -Dk} € +V+P+v-v, 0 laughs +D-v, 0
laughs before eating : ;the : -Dk}

We express this step more generally as follows. In a gramhadrcontains
left X-adjuncts of Y, that is, it has some

r=e+X+Y+X-X

we extend the (ins) relation so that it also applies @ {@}), (g, S)) in the
exceptional case whene and q can be chained together by usinga as
follows:

match@, a) = (b, T),

match¢, b) = (c, U),

match¢, p) = (e, V), and
matchg, f) = (g, W) for f € U.

Notice that the adjoining elementis introduced in the second step to have
its 3 initial features checked in sequence. In this specis¢clet

ins((p,S), (g, T))=(g,SUTUU —{f))UVUW,).

Control into right X-adjuncts of Y can be defined similarlging the lexical
item ¢ = e::+X+Y-X, checking its 2 initial features in sequence. With this
extension, we obtain:

142/ EpwARrD P. StABLER

he laughs before eating:-C

e:+T -C,he Iaugh‘s before eating:-T

e:+T -C he laughs before eating:-T

laughs before e‘atingk -T,he:k

e:+v +k -T,laughs be‘fore eating:-v,h:-

e:+v +k-T laughs before eating:-v,he:-R -

laughs:D -v before eatlnf:-P,heQ -k
laughs:+V +D -v,e:-V before:+v -P,eating:-v,he:D -k
laughs:#V +D -v €=V beforez#v -P eating:-v,hetD -k

eatingsD -\‘/,he::-D k

eatingsD -v he:"D k
eating:+V +D -v,e::-V
eating:#V +D -v e:-V

Example 4: Head movementis similar to adjunct control in relating con-
stituents that do not c-command each other, but, unlikerobrte want just
the phonetic parts of the heads to move while their projestare developed
in their original positions. Nevertheless, there is an igagibn of the side-
ward movement idea that avoids splitting all phrases kepttiiples so that
the head can be separate when the phrase is complete, asveds &iabler
(2001).

We extend match so that, when the category ofr-&:comp-selected by
t:;8 and t-s is morphologically well-formed,

p | g | matchp,q)

g8
t:B

-Sia
S-la

e a,{t-s:B8} sufix left adjoins lower head
e a,{s-t:B8} prefix right adjoins lower head

And then, when matcly(p) is defined by one of (i-xviii) we bring the adjunc-
tion up:

p | g | matchp,q)
p ‘ q | aip higher head promoted

With these extensions, we get derivations like the follayvin

SIDEWARDS WITHOUT COPYING / 143

habl- € -an <€ ustedes espanol::-C
habl- € -an €::+T -C,ustedes espanol::-T
ustedes espanol::-T,habk-an €::+T -C
espanol:k -T,ustedes:k,habl- € -an <:+T -C
e+v +k -T,espanol::-v,ustedésﬁ;habl- <-an €:+7 -C
-e+T -C habl- € -an:#v +k -T,espanol::-v,ustedesk:-

\ _
espanol::-v,habl-e-an:+v +k -T,ustedes:k

espanol#D -v,habl- € -an:‘:+v +k -T,ustedes::-Dk
espanol#D -v,habl- € -an:+v +k -T ustedes::-Dk
e::+V +D -v,habl- € -an:#+v +k -T,espanol:-V

-an:+Vv+k -T habl- €:+V +D -v,espanol:-V

espanol:-V,habl-e:+V +D -v
€+k -V,espanol::R,tLabl- €:+V +D -v
e:+D +k -V,espanol::-D k,habl- €:+V +D -v
e:+D +k -V,habl-<:+V +D-v espanol::-Dk
-e::+¥@/-vm9 +k -V

No revisions of completed structure are needed, and there ieed to treat
every phrase as a triple of strings.

10.3 Expressive power and recognition complexity

Previous studies have shown that head movement, thoughyise®n like
a small thing in informal presentations, allows the defamitof non-context
free patterns even when there is no phrasal movement in éinengar. But the
translation frommas to mcras defined by Michaelis (2001) is easily adapted
to show thatmma grammars without copying all definecrg definable lan-
guages. There are various theory-internal arguments foyicg in grammar,
and various ways to implement them (Stabler, 2004b). Seex@mple Nunes
(2001) and Kobele (2006) for some empirical arguments ipscpf rather
powerful copy operations. The addition of copy features @saik easy to
define non-semilinear languages li&#, but a straightforward extension of
Michaelis’s translation to these cases shows that theysare-definable, and
hence polynomially recognizable.

10.4 Conclusions

This paper does not attempt to resolve the controversy ofiether move-
ment analyses of obligatory control are empirically welhtivated (Landau,
2003, Boeckx and Hornstein, 2004), but provides a formttinaof some
parts of these ideas that can be rigorously studied.

144/ EpwarD P. StABLER

Althoughsmmas can be regarded as extendings, notice that they dier
in a number of significant respects: (ymas extend the domain of move-
ment just slightly to &er tightly constrained treatments of obligatory control
and head movement. Future work may find ways to make thesérars
more general and natural. And there are regularities in ¢ffi@ition of match
that should allow a more elegant statementM@ are bound by SMC, while
sMMGS also are required to respect SplC and Proper, and fututemay pro-
vide further additions. (3) To handle head movemans require either extra
rules for head movement (Michaelis, 2001) or else one of graaches
mentioned in the introductionmmcs allow head movement with a simple
mechanism analogous to the sideward mechanisms used foolcda) mcs
have no copy operation, and while none of the analyses abepend on
it, smmas allow copying. That is, we have presented a treatment efigicd
movement that does not rely in any way on the copy theory ofenmmant for
its appeal. In the present setting, sideward movement iguaalaption not
because we already have operations on copies, but becalsecady have
operations on moving phrases (the original phonetic metgmot copies).
sMMGS are naturally extended to allow copying though, settirggsfage for
studying proposals about overt copying (Boeckx et al., 20@5example) —
unfortunately beyond the scope of this short report. Allrechanisms pro-
posed here are obtained in the well-understood and feasilalee ofmcrc-
definable languages.

References

Boeckx, Cedric and Norbert Hornstein. 2004. Movement umdatrol. Linguistic
Inquiry 35(3):431-452.

Boeckx, Cedric, Norbert Hornstein, and Jairo Nunes. 200&rCxopies in reflexive
and control structures: A movement analysisWarkshop on New Horizons in the
Grammar of Raising and Control, Harvard University

Bowers, John S. 1973.Grammatical Relations Ph.D. thesis, Cambridge, Mas-
sachusetts, Massachusetts Institute of Technology.

Buszkowski, Wojciech. 2001. Lambek grammars based on uegt In P. de Groote,
G. Morrill, and C. Retoré, edd.pgical Aspects of Computational Linguistit®c-
ture Notes in Artificial Intelligence, No. 2099. NY: Springe

Casadio, Claudia and Joachim Lambek. 2002. A tale of foungrars.Studia Logica
71(3):315-329.

Frey, Werner and Hans-Martin Gartner. 2002. On the treatroBscrambling and
adjunction in minimalist grammars. Proceedings, Formal Grammar'0Zrento.

Harkema, Henk. 2001 Parsing Minimalist LanguagesPh.D. thesis, University of
California, Los Angeles.

REFERENCES / 145

Hornstein, Norbert. 1999. Movement and contildhguistic Inquiry30:69-96.

Hornstein, Norbert. 2001Move! A Minimalist Theory of ConstruaOxford: Black-
well.

Hornstein, Norbert. 2006. On control. In R. Hendriks, &bntemporary Grammati-
cal Theory Oxford: Blackwell. Forthcoming.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoiniagngnars. In G. Rozen-
berg and A. Salomaa, ed$dandbook of Formal Languages, Volume 3: Beyond
Words pages 69-124. NY: Springer.

Kallmeyer, Laura. 1999Tree Description Grammars and Underspecified Represen-
tations Ph.D. thesis, Universitat Tubingen.

Kobele, Gregory M. 2006. Deconstructing copying: Yorubaedor
icate clefts and universal grammar. Presented at the LSA.
httpy//www.linguistics.ucla.edipeoplégradgkobelgpapers.htm.

Kuhnemann, Armin. 1999. Comparison of deforestation negples for functional
programs and for tree transducers Fiiji International Symposium on Functional
and Logic Programmingpages 114-130.

Landau, Ido. 2003. Movement out of contrainguistic Inquiry34(3):471-498.

Lecomte, Alain and Christian Retoré. 1999. Towards a mailegic for minimalist
grammars. IrProceedings, Formal Grammar'9®trecht.

Maneth, Sebastian. 200Models of Tree TranslationPh.D. thesis, Universiteit Lei-
den.

Michaelis, Jens. 20010n Formal Properties of Minimalist Grammar®h.D. thesis,
Universitat PotsdamLinguistics in Potsdam 13Jniversitatshibliothek, Potsdam,
Germany.

Nunes, Jairo. 2001. Sideward movemdrihguistic Inquiry32:303-344.

Polinsky, Maria and Eric Potsdam. 2002. Backward contrainguistic Inquiry
33:245-282.

Rambow, Owen. 1994Formal and computational aspects of natural language syn-
tax. Ph.D. thesis, University of Pennsylvania. Computer arfidrination Science
Technical report MS-CIS-94-52 (LINC LAB 278).

Rambow, Owen, K. Vijay-Shanker, and David Weir. 2001. Detsebstitution gram-
mars.Computational Linguistic7(1):87-121.

Reuther, Stefan. 2003. Implementing tree transducer csitiqo for the Glasgow
Haskell compiler. Diplomarbeit, Technische Universiéesden.

146/ EpwarD P. SIABLER

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadémsami. 1991. On
multiple context-free grammar3heoretical Computer Scien&8:191-229.

Stabler, Edward P. 2001. Recognizing head movement. In Brdete, G. Morrill,
and C. Retoré, eds.ogical Aspects of Computational Linguistidscture Notes
in Artificial Intelligence, No. 2099, pages 254—-260. NY: Bger.

Stabler, Edward P. 2004a. Tupled pregroup grammars. UCLvil#ble at
httpy/www.linguistics.ucla.edipeopléstablefepspub.htm.

Stabler, Edward P. 2004b. Varieties of crossing dependsn8itructure dependence
and mild context sensitivityCognitive Scienc83(5):699-720.

Stabler, Edward P. and Edward L. Keenan. 2003. Structunglasity. Theoretical
Computer Scienc293:345-363.

11

English prepositional passives in HPSG

JESSE TSENG

Abstract

This paper discusses the treatment of English prepositjmassives (also known as
“pseudopassives”) in HPSG. The empirical overview includeliscussion of the famil-
iar (but unformalizable) notion of semantic cohesivenesswell as new observations
about the possibility of intervening elements between V Bndwo formal approaches
to the syntactic aspects of the problem are then outlineccantpared—one relying on
lexical rules, the other taking advantage of HPSG's capdoitexpress constraints on
constructions.

Keywords PSEUDOPASSIVES, PREPOSITIONS, ADJUNCTS, HPSG,LEXICAL RULES, CON-

STRUCTIONS

11.1 Empirical observations
English has an exceptionally rich variety of prepositioasting phenomena,

the most striking of which is the prepositional passive—lessibility of
passivizing the object of a preposition instead of the diobgect of a verb.

(19) a. You can rely [on David] to do get the job done.

b. David can be relied oty to get the job done.
Here the NPDavid, initially the complement obn, is realized as the subject
of the passive vertelied, leaving the preposition behirid.

It is often suggested that the underlined verb and prepaositi this con-
struction form a kind of “compound”, an intuitive notion ttisa open to many

11 will occasionally use the symbot™to mark the “deep” position of the passive subject, in
cases where there might be ambiguity. This is obviously m&soént of NP-trace in transforma-
tional analyses, but here it should be understood only apasé@rry device with no theoretical
strings attached.

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

147

148/ Jesse TSENG

formal interpretations. | will begin by presenting somesatpts to character-
ize the phenomenon in semantic terms, before turning to/thtastic aspects,
which will be the main focus of the rest of the paper.

11.1.1 Semantic cohesion

One semantic approach that dates back at least to the otkessidptions of
Poutsma and Jespersen is the idea that the prepositiosale@spossible if
there is a high degree of “cohesion” between V and P. Varigitss position
can be found in modern grammars (e.g., Quirk et al., 1985)iratiteoreti-
cal work on preposition stranding phenomena (see HornatainWeinberg
(1981), who propose that V and P must form a “natural prediaata “pos-
sible semantic word”). The most accessible indicator ofasi cohesion is
the possibility of replacing the ¥P sequence by a single-word synonym:

(20) David can be relied on- trustedto get the job done.

But this criterion can easily be shown to be unreliable, tangg neither a
necessary nor a fiicient condition for passivizability.

It has also been observed that R sequences with abstract, transferred, or
metaphorical meaning are more cohesive (i.e., they are liketg to allow
the prepositional passive) than concrete, literal usele$ame sequence:

(21) a. An acceptable compromise was finally arrived at.
b. ??A picturesque mountain village was finally arrived at.

Similarly, semantically non-compositional combinaticared idiomatic ex-
pressions can be said to be more cohesive. In these casesvheid be no
motivation for postulating a flierence in terms of syntactic structure or func-
tion.

Other authors have attempted to analyze the prepositiasalye by look-
ing at the semantic properties of the targeted oblique NFin&er (1977,
1978) proposes that this NP can become the passive subjectfiérs to a
strongly “dfected” patient. As Riddle and Sheintuch (1983) note, nafseti
tory definition is provided for this “dangerously wide” noi, and it is easy
to find examples of grammatical prepositional passives @/H®ectedness is
not involved. Their own functional account (relying on thetion of “role
prominence”) is equally vaglre.

Cohesion andféectedness are of course gradient properties, and they can
no doubt be decomposed into more primitive, interactingofiac For exam-
ple, modality, tense, and negation have all been found tednfte the accept-
ability of the prepositional passive. Furthermore, exasjthat are dubious
in isolation can usually be improved with an enlarged comntex

2They themselves note that it is “impossible fieo an algorithm for determining what causes
some entity or concept to be viewed as role prominent.”

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 149

In this paper I make the (oversimplifying) assumption #ragVV +PP com-
bination can give rise to a syntactically well-formed prejional passive.
The grammaticality of the resulting structure, howeverpisditioned by non-
syntactic restrictions that are not well enough understodzk incorporated
into a formal analysis. Existing semantic accounts may hatively appeal-
ing but they lack a precise, empirical basis. Ultimately,mey simply have
to conclude that more or less unpredictable lexical prigedre the predom-
inant factor.

11.1.2 Adjacency

A directly observable sign that V and P form a kind of “compdtim prepo-
sitional passive constructions is the fact that the ingetif adverbs and other
material between V and P is generally disallowed, wheredsuwskinds of
intervening elements are possible between V and PP in threspwnding
active structure:

(22) We rely increasingljon David]~» *David is relied increasinglyn.

This evidence suggests a constraint on syntactic struatfer surface word
order? | will assume in this paper that intervening adverbs and RRsl{fy-
ing the verb or the VP) cannot appear in the prepositionaipasThis could
be formalized by introducing a word order constraint reiggiV and P to be
adjacent, but for various reasons this approach would lzkemzate.

The specifierright, for instance, is (perhaps marginally) possible with
some spatial and temporal Ps:

(23) Mr. Cellophane may be looked rightrough, walked righby and never
acknowledged by those who have the audacity to supposehesat t
cannot be looked righhrough.

These cases can be distinguished from (22) either striigtiiacreas-
ingly is adjoined to V whileright is adjoined to P) or in terms of syntactic
function (ncreasinglyis a modifier whileright is a specifier). Alternatively,
we could consider the facts in (23) to result from a lexicasgncrasy of the
word right. But in fact other specifierstraight clear, etc.) can be found in
similar examples, so a more general solution is called for.

Nominal elements can also separate V and P. It is well knoahgtepo-
sitional passives can be formed from some fixed expressiuhdight verb

3Note that preposition stranding by extraction is much fie¢his respect (although there are
restrictions, perhaps of a prosodic nature):

i We rely increasinglyjjon David]~» David is someone that we rely increasingly.

4This example is from a letter to the editor of tBeadford Telegraphé- Argus(5 June 2003),
referring to lyrics from a song: “Mr. Cellophane shoulda ey name, 'cause you can look
right though me, walk right by me, and never know I'm there.”

150/ Jesse TSENG

constructions containing a bare N or full NP:

(24) a. We were opened firen, made foolof, paid attentionto, taken
unfair advantagef.
b. ?That product can’t be made a préfam.

The commonly accepted assumption is that ordinary NP abjeantnot ap-
pear between V and P, and the prepositional passive is irtd&gly ungram-
matical in most examples of this structifre:

(25) Samuel explained a complicated theoterbavid.~» *David was ex-
plained a complicated theoretim

But some passived examples of the same sequence [V NP Plrprssigly
good:

(26) ?[To be whispered such dirty innuendoes about] woulérmmigh to
drive anyone crazy.

According to Bolinger (1977, 1978), the underlined direlofeat in this sen-
tence functions as part of the predicate, and the passijeculeft unex-
pressed here) is strongly ffacted” by being whispered-dirty-innuendoes-
about. Another proposal by Ziv and Sheintuch (1981) reguach inter-
vening direct objects to be “non-referential”. This is ase@able characteri-
zation of the idiomatic examples in (24), but in order to anowdate cases
like (26), the authors are forced to broaden the commonlyersidod notion
of non-referentiality considerably, and to admit that itrist a discrete prop-
erty”. In the end, the acceptability of this kind of prepasital passive (and
of all prepositional passives, for that matter) may depaidarily on usage
and frequencyféects associated with specific lexical items (or combination
of lexical itmes).

What is clear is that there can be no strict structural camgtagainst the
presence of a direct object in the prepositional passivstcaction (e.g., an
adjacency condition). We can also demonstrate that theanmgaticality of
the prepositional passive in cases like (25) is not due tditiegar position
of the direct object (between V and P). Even if the object &ized in a
different position, making V and P adjacent, the prepositioasspe is still
totally ungrammatical:

(27) a. Samuel explained to David [a fantastically compédatheorem
about the price of cheese]. (heavy NP shift)
b. *David; was explained td; [a fantastically complicated theorem
about the price of cheese].

5Again, the contrast with extraction constructions is stk
i Samuel explained acomplicated theorem David. ~» Who did Samuel explain
a complicated theoreno?

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 151

(28) a. the theorem that Samuel explained to Dgwdhich theorem did
Samuel explain to David? (extraction)
b. *the theorem that Davijdvas explained t¢ / *Which theorem was
David explained ta;?

Furthermore, in cases where a direct object is possibley é24), there
appears to be a sort of “anti-adjacency” condition on V andlthough the
direct object can be realized in various positions in thévactoice, in the
prepositional passive rhustappear between V and P:

(29) a. the unfair advantage that [they took of uslow much advantage
did they take of us? (extraction)
b. *the unfair advantage that [we were taken/ofHow much advan-
tage were we taken of?

(30) a. We could make from this product [the kinds of profi@ttho one
has ever dreamed of] (heavy NP shift)
b. *This product could be made fromy [the kinds of profits that no
one has ever dreamed of].

Based on these observations, | make the following assungfir the re-
mainder of this paper:

= The prepositional passive is syntactically compatiblénlite presence of
a direct object.

= The direct object must be realized in its canonical positietween V and
P.

= The acceptability of the prepositional passive is ultirhatietermined by
non-syntactic factors that (for now) resist formalization

To my knowledge, only one other kind of element can intervestaveen
V and P in the prepositional passive: when a phrasal vertvahiad in this
construction, its particle must appear in this position:

(31) a. This situation will simply have to be put wgth t.

b. The loss in speed can be madefaipt by an increase in volume.
This is unsurprising, given the strong restrictions on ipkrtplacement in
English. In the active voice, the particle must be realiZedest to the verb

(in the absence of a direct object); this constraint comtsnio apply in the
passive

6The rare examples of verbs selecting simultaneously acfmethd a direct objeandallow-
ing the prepositional passive suggest that the relativerastithe particle and the object remains
the same in the active and in the passive:
(i) a. They kept an eysutfor David.~» ?David was kept an eyaut for.
b. *They kept outan eyefor David.~» *David was kept ougn eyefor.

152/ Jesse TSENG

11.1.3 Further observations

Most of the examples given so far involve passive subjeaggtating in com-
plement PPs, but itis clear that prepositional passivealsarbe formed from
V + adjunct PP structures:

(32) a. This bed has not been slept in.

b. David always takes that seat in the corner because he lheites
sat next to.

The most common sources are temporal and locative modifietsye also

find other PPs, like instrumentalith-phrases. Again, | will not attempt to
identify or formalize the relevant semantic and lexical stoaints. For the
moment, | simply note that the possibility of passivizing ofiadjuncts con-
stitutes a crucial dierence between the prepositional passive and the ordinary
passive/

We might also wonder if there is anyftirence between the two passives
in terms of their morphologicalfects, given that they targetftirent (but
overlapping) sets of verbs. In particular, the preposdlgrassive applies to
intransitive verbs likesleepor go, and to prepositional verbs likely, which
never undergo ordinary passivization. For verbs that dtigigate in both
types of passivization, we might ask if two distinct morpsgital operations
can be identified. In fact, there is no evidence for this. lergcase, the same
participial form is used in both constructions:

(34) a. The pilot flew the airplane under the bridge.The airplane was
flown t under the bridge. (ordinary passive)

b. The pilot flew under the bridge- The bridge was flownindertx .
(prepositional passive)

It is not the case that (say) a strong particifi@@vnis used for the ordinary
passive, whicle a weak fornflied is used in the prepositional passive. Both
passives require a form of the verb identical to the pastqiale.®

Finally, | briefly discuss the formation of deverbal adjeesi from passive
V+P sequences:

NP adjuncts, for any number of reasons, cannot passivieallilect objects:
(33) The children slept three hours: *Three hours were slept (by the children).

80ne apparent counterexample is the following pair:
(i) a. They laid the sleeping child on the rug: The child was laid on the rug.
b. The child lay on the rugs» ?The rug was lajtaid ont by the child.

Here is looks as if a single verb can have a special particfptan lain in the prepositional
passive. But in fact two distinct verbs are involved in thegamples: transitivéay (with past
participlelaid) vs intransitivelie (past participle fain/aid). This pair causes confusion and hesi-
tation for most speakers in the past and perfect. It is saayphowever, that no speaker merges
the two into a single verb while maintaining distinct pasdiorms as in (34).

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 153

(35) a. our &ective, relied-upomarketing strategy
b. afirst novel from an as yet unheardanfthor

This is sometimes taken as an additional argument for “dohésetween
V and P in the prepositional passive. For example, HorngtedhWeinberg
(1981) use it to motivate the semantic notion of “possibledtdt is unclear,
however, what these adjectives can tell us about the passivetures they
derive from, since they are evidently subject to additiammalstraints. Not all
prepositional passives can be used to derive prenominadtads:

(36) a. *asailed-under bridge, *a sat-beside grouch

b. *a taken unfair advantage of partner, *an opened fire up@msy
camp

C. *a put-up-with situation, *a made-up-for loss

Some of these examples could be improved with more contekthiey all
clearly have a degraded status with respect to their fulseptable verbal
counterparts. This is particularly true for the examplethvain NP or parti-
cle intervening between V and P. The data suggest stronglyattjectival
derivation is not a truly productive process, but is moresssllexicalized on
a case by case basis. This could perhaps be accounted fa usihge-based
model, but | will not pursue the idea any further here.

11.2 Implications for an HPSG analysis
11.2.1 Modularity

The normal passive construction (with the direct object lRofmoted” to
subject) is standardly handled as a lexical phenomenon 8GHRither using
a lexical rule deriving the passive participle from an ezthase verb (Pollard
and Sag, 1987), or by assuming an underspecified verbal Ekeah can be
resolved to either an active or a passive form with the apmtplinking
constraints (Davis and Koenig, 2000).

A number of other approaches can be imagined and technicafiie-
mented within the framework, although they have never begiossly ex-
plored. For example, new syntactic combination schemakiaxception-
ally realize acomps element in subject position and tkess element as a
coindexedby-phrase. This analysis establishes fiedent division of labor
between lexical information and syntactic operations,tdibes not seem to
present any advantages in return for the additional contglgxntroduces.

A more radical solution would be to approximate the old tfamaational
analysis within HPSG. A recent trend in the framework (maodiyfdevel-
oped in Ginzburg and Sag (2001)) is the use of constructicoradtraints, a
departure from the original emphasis (perhaps over-enighaslexical de-
scriptions as the driving force behind syntactic derivatione characteristic

154/ Jesse TSENG

of the constructional approach is a reliance on nonbragctitread-only”)
syntactic rules. Such rules can potentially be used to eneobitrarily ab-
stract syntactic operations, from a simple change of bai (evg., X to XP),

to a coercion of one syntactic category into another (e.tp,N#), or eveniin
our case, the transformation of an active clause into aymskuse.

This last proposal would be soundly rejected by the linguigbrking in
HPSG, for violating various well-motivated locality and ddarity princi-
ples. In particular, a syntactic rule should not be able terr® or arbitrarily
modify the phonological, morphological, or internal syetta structure of the
constituents it manipulates. The proposed non-branctasgipe transforma-
tion rule would have to do all of the above. The problem is thase locality
and modularity principles cannot be formally enforced inG@? they have
the status of conceptual guidelines that responsible ificars of the the-
ory agree to follow by convention. Of course, this is a fundatal issue
that is relevant for all grammatical frameworks, and raeglgressed. But the
“all-in-one” sign-based architecture that constitutes phincipal strength of
HPSG, also makes it particularly easy to fall afoul of theasi® principles.
In the case of the passive, a constraint requiring non-tiagaules to leave
theproNoLoGy andmorpPHOLOGY Values unchanged would be enough to inval-
idate the undesirable transformational analysis. Butighi®thing more than
an artifical stipulation, covering only a small subset ofesasand the more
general theoretical question remains.

11.2.2 Adjunct analyses

For the ordinary passive construction, a strictly lexiaahlgsis is available,
because it only needs to refer to the subject and direct pligeth of which
are present in the lexically defined “argument structurat@eed in thera-
st list). The PP adjunct data in (32), however, is problematicaf treatment
of the prepositional passive as a lexical phenomenon. Ehigtause infor-
mation about the identity of eventual adjuncts is not nolynavailable at
the lexical level, at least not according to the originabasgtions of HPSG.
A technical work-around to this problem is possible, in tbar of thepe-
pENDENTS list of Bouma et al. (2001). This list, whose value is definedre
lexical arg-sT extended by zero or more (underspecified) adjuncts, was intr
duced in order to allow a uniformly head-driven analysis xifaction from
complement and adjunct positions.

This result is made possible basically by treating somerad§uas com-
plements, from a syntactic point of view. This reverses tiection of se-
lection in adjunct structures: The head now selects thegmetd, in com-
plete contrast to the treatment of adjuncts in Pollard argl (8894). This
move potentially introduces significant problems for seticacomposition.
Levine (2003) discusses a problem involving adjuncts swppier coordi-

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 155

HEAD [VFORM basq
(i

pees (NP, [@ (Prtv NP[canor]), PP)& 2]

[HEAD [VFORM passiv%:

DEPS <ij, @, F[COMPS <NP;>]>@ o(PR[by])
FIGURE1 Prepositional Passive LR

nated structures, and argues for a return to the earlier Higfp®ach, with
adjuncts introduced at the appropriate places in the stjo@erivation (per-
haps as empty elements, if they are extracted). Sag (20&5$ @ response,
requiring modifications to the proposal by Bouma et al. buintaéning the
treatment of certain adjuncts as elements selected Igximalthe head (and
a traceless analysis of extraction).

11.2.3 Prepositional passive: lexical approach

In light of this active controversy, any phenomenon invadyadjuncts can be
approached in two very flerent ways in HPSG. At first sight, the adjuncts-
as-complements approach seems more appropriate for thegitienal pas-
sive, precisely because it targets complement and adjuPstifPthe same
way. The lexical rule in Figure 1 takes as input a base forriM@eoice) verb
with a PP on it®ees list and outputs a passive participle withes specifi-
cation custom-built to generate the prepositional passive first element on
pEPs i the subject, followed optionally by a particle or a direlject® The di-
rect object, if present, is constrained to be canonicaktoant for the data in
(29-30) above. (Extracted and extrapgshited phrases have non-canonical
synsentypes.) The crucial operation in this lexical rule is thelaggment of
a saturated PP (complement or adjunct) in the input byves-unsaturated
P in the output description. The unrealized complement®fiteposition is
coindexed with the passive subject NP, and the originalesuili§ optionally
realized in ay-phrase, as in the ordinary passive construction.

The complexity and ad hoc nature of this rule is perhapsvatije, given
the highly exceptional status of the phenomenon it modeigh® other hand,
the proposal fails to capture what is common to the preositipassive and
the ordinary passive. In fact, most aspects of the prepositipassive could
be handled by the existing rule for the ordinary passivectvialready pro-
vides a mechanism for: promoting a non-subject NP to sulpjesition, de-

9This simplified formulation does not accommodate strusteantaining both a particle and
an object (recall fn. 6).

156/ Jesse TSENG

moting the subejct NP to an optiorta}-phrase, and ensuring the appropriate
morphological &ects (identical for both kinds of passive, as confirmed in
§11.1.3). For this to work, the NP complement of P must be mad#éadle
directly on theoeps list of the base verb (by applying argument raising, famil-
iar from HPSG analyses of French and German non-finite aoct&ing®) so

it can be input to the general passive rule. But this meamgdaoting a sys-
tematic ambiguity between PP and P, NP inthes value of the active form
of the verb, potentially giving rise to two structures:

(37) a. VP b, VP
/\ /\
v PP v P NP
| | | | |
rely on David rely on David
[pEPS (NP, PP] [pEPs (NP, P, NB]

The unwanted analysis (37b) should be blocked, although eeel this
version of the verbrely in order to generate the prepositional passies
relied on One straightforward way to achieve this would be to add feeis
ficationnon-canonicato the second NP element on the venss list. This
would make it impossible for it to be realized as a complemasin (37b),
but we would still have spurious ambiguity in extraction swuactions (where
the NP is in fact non-canonical). A more adequate solutionld/be to en-
rich the hierarchy ofynsensubtypes to encode the syntactic function of the
corresponding phrase. This would then allow us to state peogriate con-
straint (e.g., “~comps-synsen

This analysis of the prepositional passive is still incoatg) because the
insertion of intervening modifiers between V and P must béackecall the
discussion of example (22). The lexical operations proggesdar manipulate
the peps list, a rather abstract level of representation that cabeaised to
express constraints on surface word order. The requiresti@int therefore
has to be formulated separately.

11.2.4 Prepositional passive: syntactic approach

A more radical treatment can be developed for the prepaositipassive by
combining the earlier HPSG approach to adjuncts (as urtseledements
introduced in the syntax) and the more recent trend of coctmal analysis.
Figure 2 sketches a special head-adjunct rule that can lbe@senstruct
the adjunct-based examples in (32). As in an ordinary hehat phrase,
semantic composition is handled wap selection. But this rule is extraor-

10E g., Hinrichs and Nakazawa (1994) and Abeillé et al. ()998
11This can be thought of as a very weak kind of inside-out cairgti(as used in LFG, and
reinterpreted for HPSG by Koenig (1999)).

REFERENCES / 157

{HEAD | VFORM paSSiVT

SUBJ <NP,>
HEAD-DTR ADJUNCT-DTR
core-vp prep
. HEAD
comps list(= Prt A = NP) MOD
SLASH {} COMPS <NP,->

FIGURE 2 Constructional rule for adjunct prepositional passives

dinary in that it requires the adjunct to bevies-unsaturated, and it specifies
the coindexation of the unrealized complement of P and theasnrealized
subject of the resulting VP. The rule also imposes speciastraints on the
head daughter. The sign typere-vpis defined to be compatible with a bare
V, or a combination of V with a particle ajmt a direct object. In other words,
as soon as a verb combines with a non-nominal complementyokiad of
modifier, the resulting phrase is no longecare-vp This determines what
can and cannot intervene between V and P in the prepositpasslive, as
discussed ig11.1.2 The negative constraint on the head daughteviss list
and the emptyrasu specification ensure that the particle and object (if any)
are actually realized within theore-vp!?

A number of additional details need to be worked out; in patér, some
aspects of passivization (e.g., morphologidéets) must still be dealt with
at the lexical level. It should also be noted that a similagcéal version of
the head-complement rule is needed for prepositional yesgivolving PP
complements, although it is possible to factor out the shaspects of the
two constructional rules; this is precisely the advantafghe hierarchical
approach to constructions in HPSG. These preliminary easens suggest
that the constructional treatment provides a more sat@faaccount of the
phenomenon than the lexical approach. Additional questionfurther work
include a comparison with the prepositional passive in 8ievian, and a
search for similar phenomena anywhere outside of the Gecfamily.

References

Abeille, Anne, Daniele Godard, and Ivan A. Sag. 1998. Twal& of composition
in French complex predicates. In E. Hinrichs, A. Kathol, andNakazawa, eds.,

12This presupposes a return to syntasiisss amalgamation, as in the original HPSG Non-
local Feature Principle.

158/ Jesse TSENG

Complex Predicates in Nonderivational Syntagl. 30 of Syntax and Semantics
pages 1-41. New York: Academic Press.

Baltin, Mark and Paul M. Postal. 1996. More on reanalysisatlypses.Linguistic
Inquiry 27:127-145.

Bolinger, Dwight. 1977. Transitivity and spatiality: Thagsive of prepositional verbs.
In A. Makkai, V. B. Makkai, and L. Heilmann, edd.inguistics at the Crossroags
pages 57-78. Lake Bffj IL: Jupiter Press.

Bolinger, Dwight. 1978. Passive and transitivity agdtorum Linguisticun8:25-28.

Bouma, Gosse, Rob Malouf, and Ivan A. Sag. 2001. Satisfyimgtraints on extrac-
tion and adjunctionNatural Language and Linguistic Theot@:1-65.

Davis, Anthony and Jean-Pierre Koenig. 2000. Linking astraimts on word classes
in a hierarchical lexiconLanguage76:56-91.

Ginzburg, Jonathan and Ivan A. Sag. 200daterrogative Investigations: The Form,
Meaning and Use of English InterrogativeStanford, CA: CSLI Publications.

Hinrichs, Erhard and Tsuneko Nakazawa. 1994. Linearizibg#éin German verbal
complexes. In J. Nerbonne, K. Netter, and C. Pollard, &krman in Head-Driven
Phrase Structure Grammavol. 46 of CSLI Lecture Notegpages 11-37. Stanford,
CA: CSLI Publications.

Hornstein, Norbert and Amy Weinberg. 1981. Case theory aepgsition stranding.
Linguistic Inquiry12:55-91.

Koenig, Jean-Pierre. 1999. Inside-out constraints andriggi®n languages for
HPSG. In G. Webelhuth, J.-P. Koenig, and A. Kathol, etiexical and Con-
structional Aspects of Linguistic Explanatigmages 265-279. Stanford, CA: CSLI
Publications.

Levine, Robert D. 2003. Adjunct valents: cumulative scgpadverbial constructions
and impossible descriptions. In J.-B. Kim and S. Wechsts,,roceedings of the
9th International HPSG Conferencpages 209-232. Stanford, CA: CSLI Publica-
tions.

Pollard, Carl and Ivan A. Sag. 198Thformation-Based Syntax and Semantics, Vol-
ume 1: FundamentalsStanford, CA: CSLI Publications.

Pollard, Carl and Ivan A. Sag. 1994lead-Driven Phrase Structure GramméBtan-
ford, CA: CSLI Publications. Distributed by University ohi¢ago Press.

Quirk, Randolph, Sidney Greenbaum, @&eey Leech, and Jan Svartik. 1985 Com-
prehensive Grammar of the English Languagendon: Longman.

Riddle, Elizabeth and Gloria Sheintuch. 1983. A functioaahlysis of pseudo-
passivesLinguistics and Philosoph§:527-563.

RerFERENCES / 159

Sag, Ivan A. 2005. Adverb extraction and coordination: &replLevine. In S. Muller,
ed.,Proceedings of the 12th International Conference on HP$#ges 322-342.
Stanford, CA: CSLI Publications.

Ziv, Yael and Gloria Sheintuch. 1981. Passives of obliques direct objectsLingua
54:1-17.

12

Linearization of A fline Abstract
Categorial Grammars

Ryo Y osHINAKA

Abstract
The abstract categorial grammar (ACG) is a grammar formalimsed on linear
lambda calculus. It is natural to ask how the expressive pofvACGs increases when
we relax the linearity constraint on the formalism. This grajtroduces the notion of
affine ACGs by extending the definition of original ACGs, and prés a procedure for
converting a given fine ACG into a linear ACG whose language is exactly the set of
linear A-terms generated by the origindliae ACG.

Keywords Agstract CATEGORIAL GRAMMARS, GENERATIVE CAPACITY, LAMBDA CAL-

cuLus, CoNTEXT-FREE TREE GRAMMARS, LINEAR CONTEXT-FREE REWRITING SYSTEMS,
MurripLE CONTEXT-FREE GRAMMARS

12.1 Introduction

De Groote (2001) has introducedbstract categorial grammars (ACGsh
which bothlexical entriesof the grammar as well agrammatical combi-
nationsof them are represented by simply typed lingaerms. While the
linearity constraint on grammatical combinations is thioitg be reasonable,
admitting non-linean-terms as lexical entries may allow ACGs to describe
linguistic phenomenain a more natural and concise fashion.

On the other hand, de Groote and Pogodalla (2003, 2004) havenghat
a variety of context-free formalisms, namely, contexefggammars, linear

1This paper lets the term “linearity” mean non-duplicatiomdanon-deletion. Thus “lin-
ear CFTGs” means non-duplicating non-deleting CFTGs hborigh usually “linear CFTGs”
means non-duplicating CFTGs.

FG-2006

Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright© 2006, CSLI Publications.

161

162/ Ryo Y OSHINAKA

context-free tree grammars (linear CFT&apd linear context-free rewrit-
ing systems (LCFRSSs), is encoded by ACGs in straightforwaags. In this
sense, ACGs can be thought of as a generalization of thosenuga for-
malisms. The linearity constraint in those formalisms rhagcthat of the
ACG formalism.

Concerning those grammar formalisms, it is known that theressive
power does not change when the linearity constraint is eeld® just non-
duplication, allowing deleting operations. Seki et al.41Phave shown the
equivalence between LCFRSs and multiple context-free grars (MCFGS),
which correspond to the relaxed version of LCFRSs that mag laleting
operations. Fujiyoshi (2005) has established the equicaldetween lin-
ear monadic CFTGs and non-duplicating monadic CFTGs. Fishesult
(Fisher, 1968a,b) is rather general. He has shown thatring $D-languages
generated by general CFTGs coincide with the string 104aggs generated
by non-deleting CFTGs.

Along this line, extending the definition of usual linear AEGhis paper
introducesffine ACGswhich have BCK--terms as their lexical entries, and
compares the generative power of linear ACGs afid@aACGs. We present
a procedure for converting a giveffiae ACG into a linear ACG whose lan-
guage is exactly the set of the linekterms generated by the original ACG.
Therefore, fine ACGs are not essentially more expressive than linear ACGs
since strings and trees are usually represented with lingams.

As linear ACGs encode linear CFTGs and LCFRSBna ACGs encode
non-duplicating CFTGs and MCFGs in straightforward ways.stich #ine
ACGs, our linearization method constructs linear ACGs Wwiiiave the form
corresponding to linear CFTGs or LCFRSs. Thus, our res@tgeneraliza-
tion of the results we have mentioned above with the excepmtfd-isher’s,
which covers CFTGs involving duplication.

12.2 Preliminaries
12.2.1 Lambda-Terms

Let o7 be a finite non-empty set atomic typesThe set7 (=) of typesbuilt
on.«/ is defined as the smallest supersetdtuch that

v if @,8e T (&), then @ — B) € T ().

Theorder of a type is given by the function ordr (<) — N,
= ord(p) = 1forallpe «,

= ord((@ — B)) = maxord(@) + 1, ord(B)}.

2See also Kanazawa and Yoshinaka (2005) for complete proehoddability of linear
CFTGs by ACGs.

LINEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 163

A higher-order signatureX is a triple (<7, ¢,) where.s/ is a finite non-
empty set of atomic type¥ is a finite set of constants, andis a func-
tion from ¥ to 7 (<7). Theorder of the higher-order signature is defined as
ord®) = maxX ord(r(a)) |a€ ¢ }.

Let 2" be a countably infinite set ofariables The setA(X) of A-terms
(termsfor short) built uponz and the typer(M) of a termM € A(X) are
defined inductively as follows:

* Foreverya e ¥, a e A(X) andr(a) = 7(a).

* Foreveryxe 2 anda € 7 (), x* € A(X) and7r(x?) = .

= ForM,N € A(®), if (M) = (@ — B), T(N) = a, then MN) € A(Z) and
7((MN)) = 8.

* Forxe 2, a € 7(&/) andM € A(Z), (Ax*.M) € A(Z) and7{(Ax*.M)) =
(@ = T(M)).

For convenience, we simply writeinstead ofr"and often omit the superscript
on avariable if its type is clear from the context. The nodiohfree variables,
closed terms3-normal form Bn-normal form, are defined as usual (see Hind-
ley (1997) for instance). A terrl is acombinatoiiff M is closed andv con-
tains no constants. A terivl is said to begffineif any variable occurs free at
most once in every subterm M. An affine term is said to bénear if every
A-abstraction binds exactly one occurrence of a variable. §¢is of &ine
and linear terms are respectively denoted\3y(X) andA'™ (X). As usual, let
-, =g, =p,, = denotgs-reduction g-equality,Sy-equality, andv-equivalence
respectively|M|; and Mg, respectively represent thg&normal form and
Bn-normal form. We use upper case italic lettddsN, P, ... for terms, late
lower case italic letters,y, z . .. for variables, middle lower case italic letters
o, p, ... foratomic types, Greek lettess 3, . . . for types, sanserd, A, ... for
constants. We write — 8 — y — § for (@ — (8 — (y — 6))), a® — ¢ for
a— a—a— 3§ MNPQfor ((MN)P)Q), AxyzM for (Ax.(1y.(4zM))), and
SO0 on.

12.2.2 Abstract Categorial Grammars

Definition 12 For two sets of atomic types; and.«#;, atype substitutiomr
is a mapping fromx7 to 7 (2#1), which can be extended homomorphically as

o(@ = p) = o(a) = o(B).
For two higher-order signatur&g andX,, aterm substitutio is a mapping
from %, to A(X1) such tha®(a) is closed for alla € %5. A term substitution
0 is linear iff 6(a) is linear for alla € %p. For two higher-order signatures
¥y andX;, we say that a type substitutian : o4 — 7 (#) and a term
substitutiord : 4o — A(Z1) arecompatibleff o-(ro(a)) = 71(6(a)) holds for
all a € 6p. A lexiconfrom X to X5 is a compatible pair of a type substitution

164/ Ryo Y OSHINAKA

and a term substitution. A lexica® = (o, 0) is linear iff 6 is linear. For a
lexicon.Z = (o, 6), we defing) as the homomorphic extension@®$uch that
6(x*) = x*@ Indeedf(M) is always a well-typed-term if so isM; if M has
typea, thend(M) has typer(a).

Hereafter we identify a lexicoZ = (o, 6) with the functionso andé. A
lexicon.Z is n-th orderif ord(.¥’) = max ord(c(p)) | p€ %} < n.

Definition 13 An abstract categorial grammar (ACG$ a quadruples =
(Z0,%1, .7, 9), where

= Y, is a higher-order signature, called thiestract vocabulary
= Y, is a higher-order signature, called thigject vocabulary
= Zisalinear lexicon frontg to X4,

» se @ is called thedistinguished type

We sometimes call the tripl@, 7o(a), -Z(a)) for a € %o alexical entry and
specify an ACG by giving the set of lexical entries and théidggiished type.

Definition 14 An ACG ¥ = (X0, X1, %, S) generates two languages, thie-
stract languageA(%¢) and theobject languag€(¥), defined as

A(G) = (M| M e A'"(0) is a closegBp-normal term of types},
O@G) ={1ZM)gy | M € A(Y) }.

The abstract language can be thought of as a set of abstaoihatical
structures, and the object language is regarded as the senhoffete forms
obtained from these abstract structures and the lexicoms, e simply say
the language generated by an ACG for its object languageterheabstract
categorial languages (ACLsheans the object languages of ACGs.

Though de Groote’s original definition of an ACG requires taeicon
to be linear, this paper allows the lexicon to be non-liné&.call an ACG
whose lexicon is fine affine ACG and denote the class offime ACGs by
GaT. We then distinguishfine ACGs whose lexicons are linear, i.e., original
ACGs, by calling thenlinear ACGsand letG'™ denote the class of linear
ACGs. Note that the abstract language always considitsaazir terms, though
an ACG is not necessarily linear. For eg@he {G'", G}, G*(m, n) denotes
the subclass of ACGs belonging @&* such that the order of the abstract
vocabulary is at mosh and the order of the lexicon is at mastAn ACG is
m-th orderif it belongs toG*(m, n) for somen.

Example 1 Letsr = 0 —» oandM + N be an abbreviation of>. M(N2) if the
types ofM andN aredr. Let us consider thefine ACGY = (Xo,X1,.Z, S

LINEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 165

with the following lexical entries:

Xe %0 To(X) X(X)
C n Av.v/cat//cats/
M n Av.v/mouse//mice/
J np Ay.y/John/P
R np—s AXX(Auv.u + v/runs//run/)
E N’ — s | Ax1X2.X2(AUV.U + v/eats//eat/) + Xy (Auv.u)
A n— np Azyy(/a/ + zP)Py
L n— np Azyy(/all/ + zP,)P,

where eachyxxx/ is a constant of typar, P; denotesiui'uy.u;, .£(n) =

(I > o) - o, Z2(Np) = (F - (F? > o) - &) - o, Z(9 = .
The object languag@(¥) consists of terms representing some English sen-
tences such a¥®hn runsall mice run all cats eat a mousend so on.

12.3 Linearization of Affine ACGs

While linear ACGs can generate languages consisting oétiterms only,
affine ACGs can generate languages containing non-linear t@mesefore,
affine ACGs define a strictly richer class of languages thantliA€4s. How-
ever, since terms representing strings or trees are firafiéme terms in the
object languages are not very interesting. This paper shiloatsfor every
¢ e G¥(m, n), we can construc¥’ € G'(m, max2, n}) such that

O@)={PeO(¥)|Pislinear} (12.8)

Moreover, in case ah = 2, we can find/’ € G'"(2, n) satisfying the equation
(12.8). Therefore extending the definition of an ACG to allewical entries
affine does not enrich the expressive power of ACGs in an esbesatjaBe-
fore proceeding with our construction, we mention a paytistronger result
on the special case of this problem on string-generatingreatorder ACGs,
obtained from Salvati’'s work (Salvati, 2006). He presemtsfgorithm that
converts a linear AC& e G'"(2,n) generating a string language into an
equivalent LCFRS (via a deterministic tree-walking tramset). Even if an
input is an #ine ACG¥ e G&(2,n), his algorithm still outputs an equiv-
alent LCFRS. Since every LCFRS is encodable by a linear AQGnigang
to G'"(2, 4) (de Groote and Pogodalla, 2003, 2004), therefore thaslerhe
following corollary.

3A stringas . ..an on an alphabe¥ is represented byz°.a1(...(an2)...) € A'M(Zy) where
v = ({0}, V,rv) with 7y (a) = or for all a € V as in Example 1. Trees are constructed on some
ranked alphabet. A ranked alphaliEtp), whereF is an alphabet andis a rank assignment on
F, can be identified with a higher-order signatdlg,,) = ({0}, F, 7,) such thatr,(a) = ok - oif
p(a) = kforalla € F, and a tree is identified with a variable-free (thus lineant of the atomic
typeoin the obvious way.

166/ Ryo Y oSHINAKA

Corollary 26 For every string-generatingfine ACGY € Ga(2,n), there is
alinear ACG¥’ € G'"(2,4) such thatD(¥4’) = O(¥9).

12.3.1 Basicldea

We explain our basic idea for the linearization method feiina ACGs
through a small example. Let us consider tligne ACG ¥ consisting of
the following lexical entries:

X € %0 To(X) X(X)
A p— S| AW °wa’he
B p AXCYP. X

where.Z(s) = o0 and.Z(p) = 0> — o. Corresponding té&\B € A(Y), we
havea € O(¥¢) by

ZL(AB) = (AW~ Wa’h%)(AX°Y°.X) —p (AX°Y°.X)a°h°»5 a°. (12.9)
The occurrences of vacuousabstractionly® causes the deletion df in
(12.9). Such deleting operation is what we want to eliminaterder to lin-

earize the fiine ACGY. Let us retypely® with 1y° and replacé® with 56 to
indicate that they should be eliminated. Then (12.9) is dated by bars as

(AWP~30. Wb) (XYP.X) =5 (1°YP.X)a%h” - @°, (12.10)

where we retyp&°—°~° with we=°-°, so that the whole term is well-typed.
In our setting, when a term has a barred type, it means thégtheshould be
erased during-reduction steps, and vice versa. By eliminating thosedgoharr
terms and types from (12.10), we get

(AWC.Wa®)(Ax°.X) —p (AX°.X)a° —p a°, (12.11)

which solely consists of linear terms. Hence, the linear AZGwith the
following lexical entries generates the same languagesasrtginal ACGY.

X € 6 7o(%) Z'(x)
A [p,o—>0— 0] = [s0] | AW °wa°
B’ [p,o—>0— Q] AX0.X

where p,0 —» 0 — 0] and [s, 0] are new atomic types that are mapped
to o — o0 ando, respectively, andq o] is the distinguished type. We have
Z(AB) = Z'(A'B’). The termawP~2~°.wa°h , which is led to.Z’(A"), is
just one possible bar-decoration f&#(A). For instanceaw®~°~°.wa’h° and
AWC~°~° walh® are also possible. Bars appearinglis®°°.wa’b° predict
that the subterna will be erased, andw®~°~°.wa®h° predicts that no sub-
term of it will disappear. Our linearization method also gwoes lexical en-
tries corresponding to those bar-decorations.

LINEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 167

12.3.2 Formal Definition

We first give a formal definition of the set of possible baratations on a
type and a term. Hereafter, we fix a givefire ACGY = (X0,%1,.Z, S).
Definex; = (&, 61, 71) by

h={(Plpear}, G1=(Clcet}), Ti={C>n(c) | ce%),
wherea — =@ — . LetY) = (o, €}, 7}) = (94 U 94,61 U 61,11 UTD).
Here, we have the simple lexiconfrom X7 to X; defined as
P=p=pforpe o, andc=C=cforce .

The set‘?(;zfl) of possible bar-decorations on types is defined by

‘7’(42%1)={ae7’(4z%l’)|ifﬁl—>---—>ﬁn—>ﬁisasubtypeoix
for somep € A, thenp, ..., B € T(Z1))

Actually, terms inA®T(Z;) that we are concerned with have typeﬁﬂg%l).
The reason why we ignore typesin(.«7,') — ‘7’(42%1) is that if a term is bound
to be erased,Athen so is every subterm of it. For instancevafiablex has
typeo — G ¢ 7 ({0}), then the termx°=% has typed, which, in our setting,
means that it should disappear. Buk?°y° disappears, so dog8, which,
therefore, should have ty@eto be consistent with our definition.

The setA¥(Z;) of possible bar-decorations on terms is the subset of
A (2)) such tha € A¥ (%) iff
= every variable appearing @ has a type ir'?(;z%l), and
» if Ax*.Q' is a subterm ofQ and x* does not occur free iQ’, thena €

T ().
We are not concerned with termsAf™ (2) - NS ().

The following properties are easily seen:
« If Qe A¥'(xy), thent(Q) € T (),
« If 74(Q) € T () for Q € A¥(%,), every subterm oQ is in A¥'(%;),
» If Qe AM(Z;) andQ 5 Q', thenQ € A (Zy).

For eache € 7 (<) andP € A% (%), T gives the set of possible bar-
decorations on them:

M(a) = (B T () | B = a),
M(P) = {Q e A™(Z1) | Q= P).

In other words]T and ™~ are inverse of each other, if we disregard types in
T (o)) - T (<4) and terms im@(27) — A¥(%,).

168/ Ryo Y oSHINAKA

Secondly, we eliminate barred subtypes frane {?:(szl) - 7 (%) and
barred subterms froi® € A% (Z;) — A¥(Z;). Let us define)” and Q) as
follows:

(p)'=p forpe.a,

R
()" = X,
(c)'=c force %,
(x.Q)f = {ﬂx@?*.(o)f g ()
Q' i e T ()
"(Q)f if 7
cor - {5 LHR5E

The following properties are easily seen ¢ :7:(&71) — T () andQ,Q’ €
AM(Z1) - AT(Zy)):

* (@) e T (@) and Q) € A"(Zy),
= 1((Q)) = (r(Q)",

» If Qisp-normal, then so isQ)",

» Q=3 Q implies Q' =5 (Q)".
Lemma 27 For every closed term @ A?'(2y), 7)(Q) € 7 () iff (Q)F =4
Q=5 Q.

Lemma 28 For every closed term R A (Z,), |P|s is linear jff there is Qe
I1(P) whose type is iff (2#).

Second-Order Case

We say that an abstract atomic type .« is uselessf there is noM € A(¥)
that has a subterm whose type contgmsAn abstract constarg € %y is
uselesdf there is noM e A(¥) containinga. If an ACG is second-order,
it is easy to check whether the abstract vocabulary contesetess atomic
types or constants, and if so, we can eliminate uselessaabstiomic types
and constants. This can be done in a way similar to the elitioimaf useless
nonterminal symbols and productions from a context-freggnar.

Definition 15 Let¥ = (Xo,21,.Z, S) be a second-order ACG that has no use-
less abstract atomic types or constants. We défine (X;, ~1, £, [s, Z(9)])

LINEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 169
as follows: define = (<, 63, 7,) by
g ={[p.Bl| p e, Be(L(P)-T (1)),
%5 =1[a,Q] lac %, Qe N(ZL(a)) - AM(Z)),
75 = {[a,Ql ~ ([70(a), 71(QD*),
where (p. 81)* = [p.],

o (@B - @) B ()
(le=rf=ab ‘{([7,61)* i e T(A),
and.Z’ by

Z'(pA) =@, 2 (aQ)=Q"
¢’ is linear, but it may contain useless abstract atomic typesistants. The
linearized ACG¥' for ¢ is the result of eliminating all the useless abstract
atomic types and constants fragi.

Lemma 29 Let¥ and¥’ be as in Definition 15.

For every variable-free Me A'M(Zo) of an atomic type and every @
(.Z(M)) — A¥(Z), there is Ne A" (0) such thatr((N) = [1o(M), 74(Q)]
and.Z’(N) = (Q)'.

Conversely, for every variable-free N A'"(() of an atomic type,
there are Me AM(Zo) and Q e TI(.Z(M)) — A% (Z;) such thatr{(N) =
[ro(M), 74(Q)] and.2”(N) = (Q)".

Theorem 30 For every gine ACGY e G&(2,n), there is a linear ACG
4" € G'"(2,n) such thaiO(¢') = {P € O(¥) | P is linear).
Proof. Use Lemmas 28, 29, and 27. O

De Groote and Pogodalla (2003, 2004) have presented emrodithods
for linear CFTGs and LCFRSs by linear ACGs. Their methodsalaa be
applied to non-duplicating CFTGs and MCFGs.

Example 2 Let a non-duplicating CFT& consist of the following produc-
tions#

S — P(a,b), P(x1,x2) = P(c(x1), c(S)) | d(x1, X2),
where the ranks db, P, a, b,c,dare 0, 2,0, 0, 1, 2, respectively. De Groote
and Pogodalla’s method transfor@snto the following dfine ACG¥:

X € 6o 70(X) Z(x)
A p— s Y% ~°.ypa°h®
B[s> p—p | 33 xyp(c®0x:)(c°%e)
C p Ax‘{xg.doz”oxlxz

4The notation adopted here follows de Groote and Pogodalla.

170/ Ryo Y OSHINAKA

When we apply the linearization method given in Definitiontd%’, we get
the following linear ACG4' whose distinguished type is,[o]:

X € 6, |
) <
—0—0

[A, 13 ° °ypa] -

[p,o— 0— 0] —[s0]

[A, 2y57°~C.ypab] o

(.05 050 - [s0] e ee

[B. 45~ yp(cxa)(cys)l 0

[5,0] N [p,_0p—>_0 _)101 _p) [p’lo 50— O] /ly(sjy?) Xflj'yP(CX1)(Cys)
s s HOHOXO . S, —0

D oad 2 [pb g ar| Y (x)

|[C, /lXng.de_Xz]l

[p,o— 0— 0]

/lXng.dX]_Xg

The linearized ACG¢' is actually the encoding of the linear CFT& con-
sisting of the following productions:
S— P(ab)|P'(a), P'(x)— Plc(x),c(S)) | P'(c(xa)),
P(X1, X2) — d(X1, X2),
where the ranks of nonterminals P, P’ are 0, 2, 1, respectivel®, ¢, ¢',
andG’ generate the same tree language.

The following corollary generalizes the result by Fujiyp§h005), which
covers thenonadiccase only.

Corollary 31 For every non-duplicating CFTG G, thereis alinear CFTG G
such that G and Ggenerate the same tree language.

Let¥ be the #fine ACG that encodes an MCR& The linearized AC®'
is indeed in the form that is the encoding of an LCPR&It%” is not). There-
fore, our result covers the following theorem shown by Sekile(1991).

Corollary 32 For every MCFG G, there is an LCFRS Guch that the lan-
guages generated by G and &incide.

Third or Higher-Order Case

Definition 15 itself does not depend on the order of the giviéme ACG
except that in the general case, we do not know how to find andneite
useless abstract atomic types and constants. For the §easeahowever, the
linearized ACG given in Definition 15 may generate a stritdhger language

5The LCFRS obtained from an MCFG through our linearizatiorthmé may have nonter-
minals of rank 0. The reason why usual definitions of an LCFRShet allow nonterminals
to have rank 0 is just to avoid redundancy. Mathematicallgakmg, allowing or disallowing
nonterminals of rank 0 does not matter at all.

LINEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 171

than the original iine ACG. In the remainder of this paper, we present a

linearization method for generaffane ACGs.

Example 3 Suppose that anfizne ACG¥ e G#(3,1) consists of the fol-

lowing lexical entries:

X e %0 To(X) g(X)
A q #
B p—>g—q AY°Z°. b0z
C g—s Az
D (p— 9 — s | AX°7°.2°7°(xe”)
n- tlmes n- tlmes
We see0(¥) = ((a(b(.(b#)...))...) | n > 0}. The linear ACG¥’

by Definition 15 consists of the following lexical entries:

X € 64 75(X) Z'(x)
[A#] [9. 0] i
[B, 1y°Z.bZ] [g.0] — [q,0] AZ2.bz
[C, 2.7 [g,0] = [s 0] 1.z
[D, Ax°~°.a(xe)] [s,0] = [s 0] Ax°.ax
[D, ax*~°.a(xe)] | ([p.o] — [s,0]) — [s,0] | AX°~°.a(xe)

The last lexical entry is useless. We have
m—tlmes n- tlmes

0(@") = (a(...(@(b(...(b#)...))...) Imn > 0} 2 O(#).

Though any term of type that is the first argument of an occurrencedas
bound to be erased in the original AG% we cannotignore the occurrence of
the typep, because that occurrencembalances the numbers of occurrences
of B andD in a term inA(%Y).

Our new linearization method gives the linear A@G consisting of the
following lexical entries (useless lexical entries areegsed):

X €6y 75 (X) 2" (x)
[A.#] [0, 0] 7
[B.y°Z.bz] | [p,0] — [q,0] — [q,0] AY°~°2.y(bz)
[C, A7 [g,0] = [s 0] APz
[D,xX°.a(@)] | ([p,0] — [s0]) — [s 0] | AX°~)~0.a(x(12°.2))

where [p, 0] is mapped t@® — 0. We haved(¥¢) = O(¢").

Now, we give the formal definition of our new linearization timed for
general &ine ACGs. For simplicity, we assume that = {0} here, but it is
possible to lift this assumption. The new linearized A@G has the form

172/ Ryo Y OSHINAKA

G = (X, 21, 2", [s Z(9]), whereX = (o, 6y, 1) is defined by
oy ={[p.Bl I pe a0, pI(Z(p))},
%y =1[a Q] lae %, Qell(L(a))},
70 = {[a, Q] ~ [7o(a). 71 (Q)] }
where r —» v, — 6] = [e, f] — [7.4].

Here we have two simple lexicot%, : X — X and.#7 : X — XI;
Z(p.p) =p, “([a.Ql) =a ZA(p.p) =8 -“A(aQ])=Q
We haveZ(N) = 2o %(N) for N € A™ (). ForanyM e A™™(5) andQ e
[1(-Z(M)), one can find a tern(M, Q) € A"™ () such thatZ(x(M, Q) =

M and % (y(M, Q) = Q.
Lemma 33 For every Qe Kaﬁ(zl) anda € 7 (<), the following statements
are equivalent:
1. There is Me A" (%) of typea such thatZ (M) = Q.
2. There is Ne A'"(2y) of type[e, 75 (Q)] such that#;(N) = Q.
Lemmas 28 and 33 imply
{MeA) | |Z(M)lgis linear} = { Zp(N) | N € A(¥")).

Since (Z(N))" =5 Z(N) = £ 0. %(N) for everyN € A(%”) by Lemma 27,
it is enough to define a new lexicayf” so that
ZL"(N) =g, (Z2(N))" (12.12)

for everyN € A(Y").
We define the type substitutien: «7;" — 7 ({o}) of £ = (0, 0) as

f if 8¢ 7({0)),

oppy={P AT
o—o0 IifgeT({0}).

Here we identifyo- with its homomorphic extension. As a preparation for
defining the term substitutiohof .2, we give three kinds of linear combi-
nators. For ., 5] € 7 («7’) such thag € 7({0}), leto([a.B]) =y1 — - —
Ym — 0 —» oandy; = yi1 — --- = ik — 0 — 0. Z2°0¢A) s a linear
combinator of typer([«, 8]) defined as

270 = a2ty Ri(Re(. .. (Rmd) ..)

whereR = y"'Zs . Z%k,

For each,] € 7(<7") such thap € 7 ({0}) — 7 ({o}), we define two linear

combinators<? of typeo([e., A]) — (B) andY? of type B)" — ([, B]) by
mutual induction. Letd, 8] = [e1,B1] — --- — [am Bm] — [p.Bo] with
[p.Bo] € 75" and the setl, ..., m} be partitioned into two subsetsandJ so

LINEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 173
thats; ¢ 7({0}) iffi e I. Letl = {iy,...,i} (i; < ij1) andd = {j1,..., ji}.
Let

. \T)T
X = ayr o)) oo, p,
CYEEY e,
where P; = {Z(r([mﬁd) fica.
and
Y = X0 lens) | yranfn) 5
M, .. (M 'L, . L) .. .)
whereZis short forz" ...z for (80)" = y1 — --- = yn — 0, and
L = Xy ek foriel,
M = Zo—([ai,ﬁi])—m—»oyif"([ﬂiﬁi]) forie J.
Note that if kv, 5] = [p. o] € =, t_henxfg0 = Yoo =y A2 2
Now, we give a new linearization method as follows.
Definition 16 For a given #ine ACG ¥, we define a new linear ACG as
G = (X0, %, 2", [s Z(9]), whereZ” = (o, 6) for o as above and
T’l(Q) + . , —
G(I[a, Q]I) = |YTO(§) (Q) |ﬁ |f Tl(Q) ¢ T({S})y
zot QD) if 74 (Q) € T({T).
If 4 € G¥(m, n), then¥” e G'"(m, max2, n}).
Lemma 34 Given N € A(Zj) of type[a,p] such thats ¢ 7({0}) and
Z1(N) € AT(2,), we have
(LN =5, XL (N)gn
wheregy is the substitution on the free variables.@f’(N) such that
ol g YEx®' if x has the typée, 8] in N andg ¢ 7 ({o}),
zo0@F) otherwise.

Theorem 35 For every dfine ACGY € Ga(m, n), there is a linear ACG
4" e G'"(m, max2, n}) such thaiD(¥4”) = { P € O(¥) | P is linear}.

Proof. Lemma 34 entails the equation (12.12). O

12.4 Concluding Remarks

We have shown that the generative capacity of linear ACGsligh as that of
affine ACGs, that s, the non-deletion constraint on linear AGGsiperficial.
Our linearization method, however, increases the sizeefjthen grammar

174/ Ryo Y OSHINAKA

exponentially due to the definition @f, so there may still exist an advan-
tage of allowing deleting operations in the ACG formalisrar Fastance, the
atomic typenp of the abstract vocabulary of the ACG in Example 1 will be
divided up into three new atomic types which correspond tonnghrases as
third person singular subjects, plural subjects, and tdjeespectively.

One attractive feature of ACGs is that they can be thoughsat gener-
alization of several well-established grammar formaligde Groote, 2002,
de Groote and Pogodalla, 2003, 2004). This paper demossttet the ACG
formalism also generalizes some “operation” on those grarapmamely,
conversion from non-duplicating grammars into non-dwgilitg and non-
deleting ones. Recall that Fisher (1968a,b) showed thay &VETG has a
corresponding non-deleting CFTG whose string 10-languag=juivalent.
One may wonder if Fisher's result can be generalized to asfoamation
from AK-ACGs where duplicating operations are allowed as well as dwjeti
ones, into equivalentl-ACGs where duplicating operations are allowed but
deleting ones are not. That is future work. The author canjes that one
can eliminate vacuous-abstraction fronsemi-gfine ACGswhere a term is
semi-gfineif for every free variable of any subterm, eithex occurs at most
once, orx has an atomic type. Actually, every CFTG has a corresponding
semi-dfine ACG such that the tree 10-language of the CFTG coincidés wi
the object language of the ACG, and the seiffina ACG encoding a non-
deleting CFTG has no vacuousabstraction. If the conjecture is correct, this
implies that every CFTG has a corresponding non-deletinf@&whose tree
IO-language is equivalent. This also entails Fisher'sltesu

References

de Groote, Philippe. 2001. Towards abstract categoriahgrars. InAssociation
for Computational Linguistics, 39th Annual Meeting andhL@onference of the
European Chapter, Proceedings of the Conferepeges 148—155.

de Groote, Philippe. 2002. Tree-adjoining grammars asatistategorial grammars.
In TAG+6, Proceedings of the 6th International Workshop on Tre®ifitjg Gram-
mars and Related Frameworksages 145-150. Universita di Venezia.

de Groote, Philippe and Sylvain Pogodalla. 2008inear context-free rewriting sys-
tems as abstract categorial grammars. In R. T. Oehrle arnoh&rR, edsProceed-
ings of Mathematics of Language - MOL-8, Bloomington, IndiaU. S, pages
71-80.

de Groote, Philippe and Sylvain Pogodalla. 2004. On thessgive power of abstract
categorial grammars: Representing context-free forrmalidournal of Logic, Lan-
guage and Informatiod3(4):421-438.

Fisher, Michael J. 1968aGrammars with Macro-Like ProductionsPh.D. thesis,
Harvard University.

REFERENCES / 175

Fisher, Michael J. 1968b. Grammars with macro-like produst InProceedings of
the 9th IEEE Conference on Switching and Automata Themages 131-142.

Fujiyoshi, Akio. 2005. Linearity and nondeletion on moradontext-free tree gram-
mars. Information Processing Lette@3(3):103-107.

Hindley, J. Roger. 1997Basic Simple Type ThearZambridge University Press.

Kanazawa, Makoto and Ryo Yoshinaka. 2005. Lexicalizatiosecond-order ACGs.
Tech. Rep. NII-2005-012E, National Institute of Inforneati

Salvati, Sylvain. 2006. Encoding second order string AC@&k deterministic tree
walking transducers. IRroceedings of the 11th conference on Formal Grammar

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadéasami. 1991. On
multiple context-free grammar3heoretical Computer Scien&8(2):191-229.

