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Preface

Welcome to FG-2006, the 11th conference on Formal Grammar. This year’s
conference includes 12 contributed papers covering, as usual, a wide range of
areas of formal grammar. In addition to the papers included in this volume,
the conference features also two invited talks by

. Josef van Genabith, Dublin City University. Laura Kallmeyer, Universität Tübingen

We are grateful to the members of the Program Committee for their help
in reviewing and ranking the twenty four submissions: Anne Abeille (Paris
7, FR), Pierre Boullier (INRIA, FR), Gosse Bouma (Groningen, NL), Chris
Brew (Ohio State, US), Wojciech Buszkowski (Poznan, PL), Miriam Butt
(Universitaet Konstanz, DE), Alexander Clark (Royal Holloway University,
UK), Berthold Crysmann (DFKI, DE), Philippe de Groote (LORIA, FR),
Denys Duchier (LORIA, FR), Tim Fernando (Trinity College, IE), Annie
Foret (IRISA - IFSIC, FR), Nissim Francez (Technion, IL), Gerhard Jaeger
(University of Bielefeld, DE), Aravind Joshi (UPenn, US), Makoto Kanazawa
(National Institute of Informatics), Stephan Kepser (Tuebingen, DE), Alexan-
dra Kinyon (University of Pennsylvania, US), Geert-Jan Kruijff (DFKI, DE),
Shalom Lappin (King’s College, UK), Larry Moss (Indiana, US), Stefan
Mueller (Universitaet Bremen, DE), Mark-Jan Nederhof (MaxPlanck Insti-
tute for Psycholinguistics, NL), James Rogers (Earlham College, US), Ed
Stabler (UCLA, US), Hans Joerg Tiede (Illinois Wesleyan, US), Jesse Tseng
(LORIA, FR), Willemijn Vermaat (Utrecht, NL), Anssi Yli-Jyrae (Helsinki,
FI).

We are indebted to all the authors who submitted papers to themeeting,
and to all participants of the Confernece.

Paola Monachesi, Gerald Penn, Giorgio Satta and Shuly Wintner, July 2006

iii





Contents

1 Treating clitics with Minimalist Grammars 1
M A

2 Logical Grammars with Emptiness 15
H A & A  L

3 P-TIME Decidability of NL1 with Assumptions 29
M B́

4 Program Transformations for Optimization of Parsing
Algorithms and Other Weighted Logic Programs 39

J E  J B

5 On Theoretical and Practical Complexity of TAG Parsers 61
C G́-Rı́, M A. A, M V

6 Properties of Binary Transitive Closure Logic over Trees 77
S K

7 Pregroups with modalities 91
A K-M

8 Simpler TAG Semantics through Synchronization 103
R N  S S

9 Encoding second order string ACG with Deterministic Tree
Walking Transducers. 119

S S

v



vi / FG-2006

10 Sidewards without copying 133
E P. S

11 English prepositional passives in HPSG 147
J T

12 Linearization of Affine Abstract Categorial Grammars 161
R Y



1

Treating clitics with Minimalist
Grammars
M A

Abstract

We propose an extension of Stabler’s version of clitics treatment for a wider coverage
of the french language. For this, we will present the lexicalentries needed in the lexicon.
Then, we will show the recognition of complex syntactic phenomena as (left and right)
dislocation, clitic climbing over modal and extraction from determiner phrase. The main
goal of this presentation is the syntax-semantic interfacefor clitics analyses in which we
will stress on clitic climbing over verb and raising verb.

Keywords M G, - , λ-, -
.

Minimalist Grammars (MG) is a formalism which was introduced in Sta-
bler (1997), based on the Minimalist Program, Chomsky (1995). The main
idea which is kept from the Minimalist Program is the introduction of con-
stituent move in the formal calculus. Such a “move” operation introduces
flexibility in a system which seems to be like Categorial Grammars (CG). We
try to recover the correspondance in CG, between syntactic structures and
logical forms (interpretative level of the sentence).

This formalisation introduces constraints on the use of move rules, and by
this way makes the syntactic calculus decidable. These grammars are lexi-
calised and all steps of the analysis are triggered by the information extracted
from the lexicon: from a sentence, it selects a subset of words. To each word
corresponds a sequence of features, and it is the first element of the sequence
in the derivation which triggers the next rules.
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An advantage of this system is that the structure of the calculus is con-
stant. The coverage of the grammar is extended by adding new elements to
the lexicon, never by adding new structural rules. The structural system of
these grammars contains only two kinds of rules: move and merge (but ex-
tensions exist for both). We refer the reader to Stabler’s articles and others for
presentation of the use of MG, Stabler (1997), Vermaat (1999).

Clitics are the normal form for pronoun in romance language.The syn-
tactic and semantic behavior of clitics in these languages are complex. For
French, clitics often climb over auxiliary verb. Ed Stablerproposes in Stabler
(2001) a partial lexicon for french clitics recognition andanalysis.

We propose here to extend this lexicon to several well-knownlinguis-
tic problems. These problems interfere at different levels of analysis. Sub-
ject raising is typically a semantic question whereas the clitic climbing over
modals is a syntactic question. We propose a new lexicon for its syntactic
analysis and then we will show how our semantic interface solves semantic
questions.

We will use the description of clitics proposed by Perlmutter in Perlmutter
(1971). He proposes a filter to recognize the right order of clitics for romance
languages, from where we extract the subfilter:

[{ je/tu/ · · · }|ne|{me/te/se/ · · · }|{le/la/les/ · · · }|{lui/leur}|y|en].
[nominative| negative| reflexive| accusative| dative| locative| genitive].

In the first part, we propose an extension of Stabler’s version of clitics
treatment for a wider coverage of the french language. For this, we will
present the lexical entries needed in the lexicon. Then, we will show the
recognition of complex syntactic phenomena as (left and right) dislocation,
clitic climbing and extraction from determiner phrase. Themain goal of this
presentation is the last part: the syntax-semantic interface for clitics analyses
in which we will stress on clitic climbing over verb and raising verb.

1.1 Lexicon for french clitics
1.1.1 Stabler analysis

Stabler’s works on clitics are inspired by Sportiche Sportiche (1992), who
proposes the following treatment:

Clitics are not elements moved from position XP∗, but are coreferent to
this position. The clitics appearing in the structure bear all the features their
co-refering XP∗ would bear. Furthermore, clitics do not form an autonomous
syntactic object, but they are built into a unit with some host.

In this work, two parts in the cliticization are distinguished. The first one
is an empty element which takes an argumental position from the verb. The
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second is the phonological treatment of the unit - the cliticin the surface
structure.

We introduce lexical entries which are phonologically empty but carry spe-
cial features which need to be unified with features of the phonological part
of the clitic. The two different parts are connected by a move operation. If just
one of these items occurs in the sentence, derivation fails.

We sum up this treatment in the derivation as follows - the annotation
recall the main feature of the word and the annotation on theǫ recall the word
which ǫisthetrace:

(1) donneǫ−F

Jean−k la+F donneǫ−F ⇒ Jean−k la donneǫla
tǫ Jean−k la donneǫla
Jean tǫ tJean la donneǫla.
John tǫ tJean it givesǫit .
John give it.

In more details, the derivation is the following:

Derivation 1 Derivation of Jean la donne.
Lexicon:

Jean D -k ǫ =T C ǫ D -k -G
donne V ǫ =>V =D +k=D v
ǫ =Acc3+k T la =v +G Acc3

Derivation step by step:

1. selection of lexical entry : [ donne :: V]
2. selection of lexical entry : [ǫ :: =>V =D +k =D v] (which adds the

syntactic component to the verb).
3. head movement. This is a merge between the two previous element

where The phonological part of the argument moves to the phonologi-
cal part of the head.

4. selection of lexical entry : [ǫ :: D -k -G]. This is the empty argumental
verb position.

5. merge.
6. There is a licensee “k” in first position, a move operation is triggered.

After this step, the derivation tree is :

>

ǫ :: -G <

ǫ :: = D v
/ donne/
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7. selection of lexical entry : [Jean :: D -k].

8. merge.

9. selection of lexical entry : [la ::=v +G Acc3], the clitic takes part in
the derivation.

10. merge.

11. move : the feature in the empty argument of the verb and thefeature in
the clitic are cancelled.

12. selection of lexical entry : [ǫ :: =Acc3+K T] - to the end of the deriva-
tion.

13. merge.

14. move : resolution of nominative case :

>

Jean ::
/Jean/

<

ǫ:: T

<

la ::
/la/

>

>

ǫ ::
/ donne/

<

ǫ ::

ǫ

15. selection of lexical entry : [ǫ:: =T C] - empty “complement” position.

16. merge ; end of the derivation with feature ’c’ : acceptance.

In his presentation, Stabler proposes a lexicon for accusative, dative and
reflexive clitics recognition. He ensures the right order with several verbal
types. The analysis is driven by the head and the next cliticsto introduce
will have to be assigned verbal type as they occur in the Perlmutter filter’s
order.Stabler uses the SMC - shortest move condition - to exclude the use of
a reflexive and an accusative clitics in the same sentence.

1.1.2 Extension: genitive, oblique and nominative clitics

We can extend this first approach of french clitics treatmentto other cases,
in particular genitive, oblique and nominative. This section will present the
lexical entries and the process of acceptance of derivations.

We call “state of a verb” the basic type of the head currently handled. For
example, if a verb has a accusative clitic its type will be “Acc”.
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For genitive and oblique clitics, we just add in the lexicon two new empty
argumental positions and a list of possible types for each clitic.

In a first time, we introduce a new verbal type for beginning the cliticiza-
tion and another where the cliticization is finished. We callthem “clitic” and
“endclitic”.

Following the Perlmutter filter Perlmutter (1971), the firstclitic we have
to treat for keeping the right order is the genitive one. We add a genitive state
which is connected to the “clitic” state. The verbal state passes to the genitive
state by means of a lexical entry the phonological form of which is “en” and
carries a licensee feature“en”:

[en] :: [clitic <=,+EN, geniti f].

From this state we pass to all the other states of the cliticization, for exam-
ple :

[le] :: [geniti f <=,+G, acc].

and if there is only a genitive clitic, we use phonologicallyempty entry to
go to the end of the cliticization.

[] :: [ geniti f <=, f inclitic].

The “oblique” clitics are treated the same way, except that from “oblique”
it is impossible to go back to “genitive”. All lexical entries of this type have
a “y” phonological form.

[y] :: [clitic <=,+Y, oblique].

[y] :: [genitive<=,+Y, oblique].

In the same way, from oblique we can pass to other possible clitic states,
as for example :

[le] :: [oblique<=,+G, acc].

[leur] :: [oblique<=,+F, dat].

[] :: [ oblique<=, f inclitic].

The nominative case is treated the same way. But the use of this procedure
to add new clitic treatment is quadratic in the number of lexical entries. For
the nominative pronoun, a discussion could be opened aroundits clitic state.
We consider here that they are clitics.

Another discussion about negative form could rise around the status of the
negation marker whose position is after the pronoun.

For the moment, we do not treat the negative form in a right wayso we
will not include it in this presentation, but we assume that the treatment of
nominative clitics is outside the clitic cluster. All the phonological pronoun
entries take a verbal form in “endclitic” state and give a newverbal form in
“Nom”(inative) state.
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We add an empty verb argument which must be included in the derivation
before the clitic treatment:

[] :: [ d,−S ub j,−case].

The sketch of the analysis is:

. la donneǫ−Nom ǫ. Je+S ub j la donneǫ−Nom ǫ. JetJe la donneǫ
I tI it give ǫ
I give it

We add in the lexicon a basic feature “Nom” and the lexical entries of the
nominative pronouns, for example:

[ je] :: [= f inclitic,+S ub j,Nom].

[nous] :: [= f inclitic,+S ub j,Nom].

The derivation continues with a phonologically empty entryat the end of
the derivation.

[] :: [= nom,+case, t].

1.2 Recognition of complex phenomena
This treatment of french clitics is simple and can be integrated easily into a
larger analysis.

climbing over modal
We treat the clitic climbing over the whole verbal cluster inparticular over
modal.

The modal is combine with the verb in the inflexion step. The inflexion
is treated with head movement and all clitics take their own place after this
treatment.

If there are words which must be inserted between the verb andthe modal
- for sentences with adverbs - we first build the verbal constituent after which
we treat the clitics. In this situation, the clitics could climb over the verb
constituent or stand after.

For example, in french we can analyse a sentence as:

(2) Je l’ai vu.
I him have seen.
I have see him.

by building the constituentai vu. We can extend to sentences with inserted

word: “Je l’ai souvent vu”/ “I have often see him” with a derivation as :

(3) ai souvent vuǫ−Nom ǫ−F
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l’ +F ai souvent vuǫ−Nom ǫ−F → l’ ai souvent vuǫ−Nom ǫ

Je+Nom l’ ai souvent vuǫ−Nom ǫ−F → Je l’ai souvent vuǫ ǫ

I it often sawn
I often sawn him.

dislocation
Clitic can be a direct recovery of a not-“empty verbal argument”, for example
in case of nominal dislocation.

There is a non empty verbal argument which must be extracted from the
main sentence and become an indirect argument of the verb.

We build a verb with an “argument which must be extracted” - a determiner
phrase - DP - must be outside the main sentence. This state is introduced by
a pause or comma. It modifies the determiner phrase in two different ways
which depend on the side of the extraction:. it adds a licensee for the left dislocation and cliticization.. it adds a licensee for cliticization (and nothing for right dislocation)

The main problem is to include in the sentence the right part which will be
replaced by the clitic.

Left dislocation: the DP is extracted from the sentence, placed in first po-
sition and recovered by a clitic.

(4) Marie lei voit tropce typei,→ Ce typei , Marie lei voit trop.

That guy, Marie him sees too much.

Lexical entry of modifier of DP.

[, ] :: [=> d, d,−H,−disloc].

The comma will be placed after the DP by a head movement. The first
licensee will be cancelled with the licensor of the clitic and the second with
another entry that we must add in the classical “comp” entry (This last entry
is used to finish the derivation).

[] :: [= t, c,+DIS LOC].

Right dislocation : In this case the determiner phrase is placed at the end
of the sentence. For the homogeneity of the mechanism, we adda licencee of
recovered by a clitic, and another for the extraction at the end of the sentence.

[, ] :: [d <=, d,−H,−disloc].

The “comp” phase uses a weak move which lets the phonologicalform of
the constituent in its place - here, at the end of the sentence.

(5) Marie lei voit trop , ce typei .→ Marie lei voit trop, ce typei.

Marie him sees too much, that guy.
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In fact, this extraction seems to be very similar to questions. In questions,
an argument of the verb is extracted to take another positionin the surface
level of the sentence.

Extraction from DP
With the same kind of mechanism, we can extract an argument ofany con-
stituent. The determiner phrase can be complex and we extract an argument
of the DP. For example:

(6) Pierre en voit la fin - (Pierre voit la fin du film).
Peter of-it sees the end - Peter sees the end of the movie.

We build “la fin ǫ−en” and the cliticization allowed the extraction of the
genitive. “Pierre en voit la fin.”

Raising verb
Raising verbs are verbs where one of the arguments is a verb and one of the
other arguments is shared by both verbs, like in the sentence:

(7) Il semble le lui donner.
He seems it him give.
He seems give it to him.

where the pronoun “Il” is subject of the two verbs “semble” and “donner”.
The second verb must be in infinitive form.

In this case, the sentence has the following structures:
[ subject raisingverb clitic infinitive verb ].
A raising verb takes as an argument a verb in infinitive form - with a special

inflexion “infinitive” - and without subject. The infinitive inflexion has the
lexical entry:

[-inf]::[ =>v, verbe].

“verbe” is the feature needed before starting the clitic treatment. A verbal
form gets a “verbe” type after the verb receives its inflexion.

The raising verb selects such a “verb”, then a DP subject and then becomes
a VP of type “raisingv” which means a VP which has not yet received the in-
flexion feature and will be able to receive new clitics (in particular pronoun).

For example:

[semble]::[=verbe,=d, raisingv].

This verb should receive its inflexion and its subject. It follows this mech-
anism until the end of the derivation:.semblela répare-inf

.semble -ǫ la répare-inf

.Je semble -ǫ la répare-inf
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I seem -ǫ it repare-inf

I seem repare it

1.3 Semantic interface
1.3.1 How to use the syntax/semantic interface

From a sentence, we build a formula of higher order logic which represents
its propositional structure. We associate to each lexical entry aλ-term and to
each syntactic rule an equivalent semantic rule. We assume that the syntactic
analysis drives the semantic calculus.
λ-terms application occurs only when an element has no features. We as-

sume the following functions:

feat(x) =

{
1 if the number of feature of x= 0
0 else

sem(x, y) =

{
1 if feat(x)= 1 or feat(y)= 1
0 else

Syntactic and semantic synchronisation: after any operation in the syn-
tactic calculus, the semantic counter part computes thesemfunction and if
sem(x, y) = 1, we perform the functionnal application of the twoλ-terms.
To known which application to perform, we look at the type of the semantic
terms.

A semantic tree represents the semantic counter part of the sentence. It is a
tree where the leaves are the semantic part of the lexical entries and the inner
nodes contain theλ-term built and the direction of the head (of the syntactic
part). We use the following notation:

. breaker between direction head andλ-term :⊢.. application: @

Applications are carried out when syntax allows it, therefore when the
function sem= 1 for one of the two terms. The following applications are
possible:

if sem (λ-term 1,λ-term 2)= 1 else
>⊢ λ-term 1@λ-term 2

λ-term 1 λ-term 2

>⊢ λ-term 1,λ-term 2

λ-term 1 λ-term 2

If a move operation cancelled the last feature, we representit by a unary
branch in the tree.

Remark. There are two different possibilities for the semantic calculus: ei-
ther to wait for elements to be completely discharged or to immediately per-
form the application. But both fail in different cases: immediate application
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fails in case of “late adjunction” and the other possibilityfails in questions
treatment. The right solution seems to be intermediate: it consists in deter-
mining a subset of features which must be consumed before applications will
be performed. For the moment, we choose the first possibility. Later on, we
shall do differently but this only involve changes in thefeat function.

1.3.2 Example of semantic treatment

Clitic semantics

We present a syntactic treatment of clitics in two different parts. One is phono-
logically empty and is the non empty argument of the verb, theother is syntac-
tically empty but it is a phonological recovery of the first one. The semantical
part of the clitic is in the argumental position and this is a free variable which
must be bound in the context. The phonological recovery is anidentity.

lexical entries syntactic form semantic form
la dat<= +G acc Id
t(la) p − case−G x∗

* Free variable, bound in the context - we could use the Bonatoalgorithm
to determinated how this variables are bounded, Bonato (2006)

We briefly present a semantic tree for a clitic treatment:

(8) Jean la répare.
John it repairs.
John repairs it.

In the semantic tree of the part of the clitisization above, we do not repre-
sent the identity operator (except for the clitic one).

<⊢ t(la) @ Infl @ donne, je

<⊢ Infl @ donne, je, t(la)

la :: Id <⊢ Infl @ donne, je, t(la)

Infl <⊢ donne, je, t(la)

<⊢ donne, t(la)

donne t(la)

je

The last part of the tree is built by a move which creates a linkbetween the
phonological part of the clitic and the argumental part.
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Over raising verbs
For the semantic calculus, raising verbs are predicates which take a subject
and an action as argument. They apply a variable at this action.

We present the analysis of the sentence:

(9) Je semble la réparer.
I seem it repair.
I seem repair it.

Theλ-terms, semantic counter-part of lexical entries are:

sembler λSλv.(seem v, S(v))
Je I
ǫla Y∗

réparer λ x λ y . repair (y, x)
∗ this variable is bound in the context

The semantic counter part of the pronoun is a constant refering to the
speaker “I”. The clitic subject climbs over the raising verb. It can be the sub-
ject of both verbs in the sentence due to the semantic structure of the raising
verb. If the main verb of the sentence has a subject, the application will not
introduce a new variable in the formula, else the main verb needs a variable
which stands at the subject place. The raising verb involvesthis variable by
duplication of its subject.

The syntactic analysis builds the following structure:

(I@(in f lexion@(seem@(la(in f initive@repare)))))

which allows the computation of the formula: “la reparer”

λx.repair(x,Y)

and this term is applied to the raising verb:λSλv.(seem v, S(v))

λv.seem(v, repair(v,Y))

At the end of the calculus, we construct the formula:

pres(seem(I , repair(I ,Y)))

where Y is bound in the context.
This is the formula we want to construct for representing theproposition-

nal semantics of the sentence. The subject clitic syntactically climbs over the
main verb, and semantically climbs over the two verbs.

1.4 Conclusion and future work
In this paper, we presented an extension of Ed Stabler’s propositions on french
clitics in minimalist grammars. The new lexicon makes it possible to treat
several other syntactic phenomena, the same way as clitic climbing, e.g. ex-
traction from NP or right and left dislocation.
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Then, we proposed a syntax-semantic interface for Minimalist Grammars.
The aim of this calculus is to build a formula of higher order logic. The se-
mantic calculus -λ-calculus - is driven by the syntactic one. We emphasize on
the way to recognize clitics and semantic implication of climbing with raising
verbs.

For future work, we want to integrate the negation into the grammar. We
consider that the neg-marker “ne” is a clitic and must be incorporated in the
treatment of french clitics. There is another complex phenomenon to consider
concerning with clitics in the imperative mode (and negation).

Other cases of raising verbs exist which are more complex, allowing sev-
eral syntactic clitic climbings as in:

(10) Je la laisse le lui donner.
I her let it (to) him give.
I let her give it to him.

where clitics take place in different orders.
Moreover, we want to continue to modelize the semantic effect of clitics

in sentences, in particular for interaction between quantifier scope and clitics,
which can introduce ambiguities in sentences like:

(11) Je la laisse tous les lui donner.
I her let all them him give.
I let her gives all to him.
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Logical Grammars with Emptiness
H A & A  L

Abstract
The purpose of this paper is to show that we can work in the spirit of Minimalist Gram-

mars by means of an undirected deductive system calledLGE, enhanced with constraints
on the use of assumptions. Lexical entries can be linked to sequences of controlled hy-
potheses which represent intermediary sites. These assumptions must be introduced in
the derivation and then discharged in tandem by their properentry which will there-
fore manage to find its final position: this allows to logically simulatemoveoperation.
Relevance of this formalism will be stressed by showing its ability to analyze difficult
linguistic phenomena in a neat fashion.

Keywords L G, M P, / -
, - 

2.1 Introduction

Type Logical Grammars (Lambek (1958), Moortgat (1997)) andMinimalist
Grammars (Chomsky (1995), Stabler (1997)) are two thrivingtheories ded-
icated to natural language analysis. Each one has its intrinsic assets. In fact,
the first framework is computationally attractive as it works compositionally
and gives the semantics for free. While the second one is based upon a re-
duced number of rules guaranteeing processing efficiency (Harkema (2000)).
Despite their apparent differences, these theories share the same philosophy:
they are both lexicalized and present universal sets of rules that allow to ex-
plain various linguistic phenomena in multitude of naturallanguages.

Our goal is to bridge the gap between Categorial and Minimalist Gram-
mars by proposing a new logical formalismLGE (i.e. Logical Grammars
with Emptiness) which captures Minimalist operations (i.e. mergeandmove)
in a deductive setting. This match between logical framework and Minimalist
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Program proves to be fruitful as it gives a better understanding of the different
mechanisms involved in Minimalist derivations.
Lecomte, A. and Retoré, C. have already proposed a logical system that sim-
ulates Minimalist Grammars: Lecomte and Retore (2001). This latter system
is built upon elimination rules for both the slashes and the tensor. The absence
of any form of introduction rules leads to an efficient system. However, this
restriction is not beneficial insofar as it violates the correspondence between
syntactic types and semantic representations. In our new proposal, we want
to keep a tranparent interface between syntax and semanticsby reintroducing
abstraction rules which are applied in a controlled fashion.

Like Abstract Grammars and Lambda-Grammars (de Groote (2001) and
Muskens (2003)),LGE grammars are based upon an undirected logical sys-
tem which has two interfaces (syntactic-phonetic, syntactic-semantics) owing
to Curry-Howardcorrespondence. A syntactic derivation is then a deductive
proof of a given sequent built using appropriate inference rules. Both phonetic
form and semantic representation result fromλ-terms combination which is
carried out in parallel with the syntactic derivation, since each deductive rule
encapsulates a computational step within the simply typedλ-calculus.

The originality ofLGE stems from the refinement introduced in hypo-
thetical reasoning. Our model aims at preserving the advantages of this tech-
nique (e.g. dealing with unbounded dependencies) while constraining its use
in order to reduce the size of the search space. Thus, insteadof consider-
ing freely accessible logical axioms, our system is equipped with finite se-
quences of consumable controlled hypotheses which are attached to certain
lexical entries that are expected to move. Such linked hypotheses represent
original sites occupied by their associated entry in the D-structure (i.e. before
the displacement operation). They should be introduced during the derivation
and then abstracted at the same time by their proper entry which will conse-
quently reach its target. In the case of overt constituent movement, interme-
diary positions occupied by non-pronounced variables willbe systematically
replaced by phonetically-empty traces; this explains the choice of our formal-
ism’s name: Logical Grammar with Emptiness.
In this paper, we will prove thatmoveis a metaphoric notion which can be rig-
orously formalized using Logic. Moreover, we will show how to capture com-
plex linguistic phenomena (e.g. binding, discontinuity) withinLGE thanks to
the combination between Logic power and Minimalist Programideas.

2.2 Bases ofLGE

2.2.1 Types & Terms

In this section, we survey the relevant bases inherent toLGE.
Following earlier proposal by Curry, HB. in Curry (1961) andother more
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recent research work: de Groote (2001), Muskens (2003), oursystem dis-
tinguish between two fundamental levels of grammar. The first level is an
abstract language (tectogrammar) which encapsulates universalprinciples.
The second level is aconcreteone which may contain a range of components
(e.g. phenogrammar, semantics) used to encode cross-linguistic variation (e.g.
word order, lexical semantics).

Our core logic operates on abstract syntactic types which are inductively
defined as follows:

T (A) := A | T ⊸ T | !T

A is a finite set of atomic types that contains usual primitivesof minimalist
grammars (e.g.c (sentence),dacc (noun phrase with accusative case),dnom

(noun phrase with nominative case). Composite types are built using the lin-
ear implication⊸ and the exponential operator ! introduced in Girard (1987).

Our framework supports a two-dimensional concrete level dealing respec-
tively with phonetics and semantics. Therefore, we consider two kinds of
concrete types, namelyΦ-types (TΦ) andλ-types (Tλ) whose definitions are
the following:

TΦ := s | TΦ ⊸ TΦ
Tλ := e | t | Tλ → Tλ

The setTΦ is composed of only one atomic typeswhich represents phonetic
structures (structured trees), whereasTλ contains two primitivese (individu-
als) andt (truth values). Notice that compositeΦ-types are built upon linear
implication⊸, whereas compositeλ-types use intuitionistic implication→.
Both phonetic and semantic representation of expressions are easily defined
owing to λ-calculus, thus leading to two sets of terms, namelyΦ-termsΛΦ
andλ-termsΛλ. Let Σ be a finite set of phonetic constants andC a finite
set of semantic constants. LetVΦ (resp.Vλ) be an infinite countable set of
typed phonetic (resp. semantic) variables. The setΛΦ(Σ) of well-typed linear
Φ-terms is inductively defined as follows:

1. ǫ∈ΛΦ(Σ) andǫ is of types1

2. if φ∈Σ thenφ∈ΛΦ(Σ) andφ is of types
3. if (xΦ: tΦ)∈VΦ thenxΦ∈ΛΦ(Σ)
4. if s1 ands2 areΦ-terms of types thens1•s2∈ΛΦ(Σ) and it is of types (•

operator is used to combine phonetic structures, it is neither associative
nor commutative)

5. if φ1 andφ2 areΦ-terms of typest1 andt1 ⊸ t2 with no common free
variable then (φ1 φ2)∈ΛΦ(Σ) and is of typet2

6. if xΦ is a variable of typet1, φ1 aΦ-term of typet2 andxΦ occurs free
exactly once inφ1 then (λx. φ1)∈ΛΦ(Σ) and has typet1⊸t2

1ǫ represents a phonetically empty element used for traces
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ΛΦ(Σ) is provided with the usual relation ofβ-reduction
β
⇒ enhanced with

two additional rewriting rules:φ1•ǫ
β
⇒ φ1 andǫ•φ1

β
⇒ φ1.

On the other hand, the setΛλ(C) of λ-terms is defined using a simply typed
λ-calculus with two basic operations, namely intuitionistic application and
abstraction.

Finally, letτλat be a function which assigns aλ-type to each atomic abstract
type (we assume for instance that:τλat(c)=t, τλat(n)= e→t, τλat(dcase)= e).
Two homomorphismsτΦ andτλ are defined to link abstract types to concrete
types as follows:

τΦ τλ
∀ t∈ A, τΦ(t)=s ∀ t∈ A, τλ(t)= τλat(t)

τΦ(t1⊸t2)= τΦ(t1)⊸ τΦ(t2) τλ(t1⊸t2)= τλ(t1)→ τλ(t2)
τΦ(! t1)=τΦ(t1) τλ(! t1)= τλ(t1)

2.2.2 Lexical Entries & Controlled Hypotheses

We now introduce the notion of 2-dimensional signs which arethe basic units
managed by our system. Such signs are of the following form (lΦ, lλ) : ty,
where:

. ty ∈ T (A) (abstract type). lΦ ∈ ΛΦ(Σ) andlΦ is of concrete typeτΦ(ty). lλ ∈ Λλ(C) andlλ is of concrete typeτλ(ty)

We distinguish between three classes of signs, namelyvariablesigns (when
lΦ ∈ VΦ andlλ ∈ Vλ), constantsigns (whenlΦ ∈ Σ andlλ ∈ C) andcompound
signs (whenlΦ or lλ is a compound term).

These signs are used to define lexical entries. Lexical entries ofLGE are
proper axioms which can be coupled with prespecified sequences of con-
trolled hypotheses. Such hypotheses will occupy intermediary sites, they
should be introduced in the appropriate order and then discharged at the same
time by their associated entry.
Lexical entries obey the syntax below:

⊢ (aφ , aλ) : ty J lhyps

where:

. (aφ , aλ) : ty is a 2-dimensional sign.. lhyps= ([H1 : t ⊢ H′1 : t], ..., [Hk : t ⊢ H′k : t]) is a sequence of controlled
axioms of length|lhyps|=k, (∀ i∈{1..k}, Hi=(hφi , hλi) and H′i=(h′φi , hλi)
wherehφi ∈ VΦ (Φ-variable),hλi ∈ Vλ (λ-variable) andh′φi∈ ΛΦ(Σ)) .

Lexical entries are classified in two groups:linked entries(when k>0) and
free ones(when k=0). Linked entries are coupled with non-empty sequences
of controlled hypotheses. Each hypothesis is encapsulatedinside an axiom
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‘(hφi , hλi):t ⊢ (h′φi , hλi):t ’ which can be either logical (ifhφi= h′φi) or extra-
logical (if hφi, h′φi). Extra-logical axioms are extremely useful since they rep-
resent pronounced variables or phonetically non-empty traces stemming from
displacement (e.g. pronouns: he, her ...).
The abstract typety of the lexical entry should verify the following specifica-
tion:

1. if k=0 then ty is an arbitrary abstract type
2. if k=1 then ty=t1⊸ ...⊸ tn⊸ (t⊸ t’)⊸t”
3. otherwise ty=t1⊸...⊸ tn⊸ (!t⊸ t’)⊸t”

Intuitively, the second (resp. third) point above means that our lexical entry
represents a constituent that needs to merge with exactlyn (n≥0) expressions
of typest1 ... tn respectively, and then move once (resp. an unspecified num-
ber of times, e.g. cyclic move) to reach its final position.
Finally, a lexicon is nothing else but a finite set of lexical entries{e1, ...,en}.

Let us illustrate the previous definitions in a concrete example. If we as-
sume that (whom∈Σ) and (∧∈C) then the phonetic behavior and the seman-
tic representation of the relative pronoun ‘whom’ can be modelled using the
linked entry below:

⊢

(
λφ λm. m• (whom• φ(ǫ))
λP λQ λx. P(x) ∧ Q(x)

)
: (dacc⊸ c)⊸ n⊸ n J [X : dacc ⊢ X : dacc]

Our entry is linked to one hypothesis which will occupy the initial position
of ‘whom’, namely the object of its relative clause (e.g.(book) whom Noam
wrote ). This assumption will be discharged afterwards by its related entry,
thus guaranteeing the combination between the relative pronoun and its sub-
ordinate clause. Formal rules that manage this overt displacement will be set
forth in the next section.

2.3 Logical simulation of Minimalism
2.3.1 Inference rules

Let lex={e1, e2, ...,en} be a lexicon.LGE grammar with lexiconlex is based
upon a deductive logical system which deals simultaneouslywith two inter-
faces (syntactic-phonetic, syntactic-semantic).
Judgments of our calculus are sequents of the following form:

Γ ⊢ (lΦ , lλ) : ty ; E

where:

. Γ the context is a finite multiset of 2-dimensional variable signs. (lΦ , lλ) : ty is a 2-dimensional sign
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. E is a finite multiset containing identifiers of all linked lexical entries that
were used in the course of the derivation and whose associated assump-
tions are not yet discharged

Variable signs included in the contextΓ correspond to controlled hypotheses
that were introduced in the course of the derivation. Each hypothesis will be
marked using a superscript ‘↑i ’ which points at the lexical entry to which the
assumption is attached (e.g.x↑

i

Φ
: hypothesis linked toei entry).

The first group ofLGE inference rules are axioms which coincide with
derivations’ leaves. Figure 1 shows axioms that our system supports2.

ei = (⊢ aφ : tyJ l)

⊢ aφ : ty; i f l = () then∅ else{ei}
Lex

ei = (⊢ J lhyp) lhyp[ j] = (xφ : A ⊢ yφ : A)

x↑
i

φ : A ⊢ yφ : A; ∅
Ctrl

FIGURE 1 Axioms ofLGE(lex)

Our core logic includes extra-logical axioms which are extracted from lex-
ical entries owing to ruleLex. If the involved entry is linked, then its identifier
is added to the multisetE. On the other hand, our system excludes the freely
accessible identity axiom. Available axioms stem from controlled hypotheses
which are coupled with linked lexical entries. These axiomscan be introduced
in the derivations by means ofCtrl rule.

Linked entries inLGE can be attached to more than one controlled hy-
pothesis. This specification has a very strong linguistic motivation. In fact, it
can happen that a constituent occupies more than one intermediary site before
reaching its target. Such phenomenon is illustrated for instance in the inter-
rogative sentence ‘Which book did John file without reading it?’. In that
case, the wh-element ‘which book’ occupied two positions before displace-
ment (in the D-structure), namely the complement of the verbfile and that
of the infinitivewithout reading. After movement, the first position becomes
empty while the second is occupied by a pronounced variable ‘it’. At the se-
mantic level, both these sites of origin represent the same object.
To account for such non-linear phenomena withinLGE, we use the exponen-
tial ! whose behavior is described by the usual rules of linear logic (Girard
(1987)). Figure 2 presents the derived rules which are relevant to our study.

The generic process that handles the management of controlled hypothe-
ses can be summarized as follows. On the first hand, each assumption of type

2For the sake of readability, we focus on the syntactic-phonetic interface
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∆, x↑
i

φ : B ⊢ yφ : A; E1

∆, x↑
i

φ :!B ⊢ yφ : A; E1

!L
∆, x↑

i

φ :!B, y↑
i

φ :!B ⊢ uφ : A; E1

∆, b↑
i

φ :!B ⊢ uφ[xφ := bφ, yφ := bφ] : A; E1

!Lc

FIGURE 2 Relevant derived rules for !

ty will get the decorated type!ty if it is related to a linked entryei which is
attached to more than one controlled hypothesis. This transformation is car-
ried out by means of!L rule. Intuitively, this means that a hypothesis which
represents only one controlled assumption (i.e. of typety) is a particular case
of hypotheses that encapsulateat leastone controlled assumption (i.e. of type
!ty). On the second hand, contraction rule !Lc is applied to gather all the hy-
potheses linked to a specific entryei in one assumption. This will make it
possible to abstract these hypotheses in tandem.
Now, the ground is well prepared to present our logical simulation of Min-
imalism. It is not difficult to simulatemergeoperation of Minimalist Gram-
mars in a logical setting. In our case, it is nothing else but the direct⊸ elim-
ination (⊸E, cf. Fig.3) which merges twoΦ-terms (resp.λ-terms) by means
of application operation.

Γ ⊢ fφ : A⊸ B; E1 ∆ ⊢ aφ : A; E′1
Γ,∆ ⊢ ( fφ aφ) : B; E1 ∪ E′1

⊸ E

Γ ⊢ fφ : (C⊸ D)⊸ B; {ei} ∪ E1 ∆, c
↑i

φ : C ⊢ dφ : D; E′1
Γ,∆ ⊢ ( fφ (λcφ. dφ)) : B; E1 ∪ E′1

⊸ IE ‡

FIGURE 3 Behavior of⊸ connective

Moveoperation is logically captured thanks to the refined elimination rule
⊸IE. This rule allows a constituent to reach its final positionby simultane-
ously discharging its controlled hypotheses which occupied intermediary po-
sitions. Our logical formalization ofmoveoperation shares some ideas with
Vermaat’s one in Vermaat (1999). In fact, we both consider this operation as
the combination of two phases, namely amergestep and ahypothetical rea-
soning3 step (abstraction over sites of origin). Thus, the elementswhich are
expected to move are assigned a higher order type (C⊸ D)⊸ B4. Such ele-
ments wait to merge with a constituent of type C⊸ D, which results from the
abstraction of the intermediary positions in the initial structure (of type D).
However, Vermaat proposal is encoded in a directional calculus:moveopera-
tion is then captured using additional postulates which reintroduce structural

3The introduction rule of⊸ is not freely available, it is rather encapsulated inside⊸IE rule
4Vermaat considers only the case where D=B
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flexibility in a controlled fashion. Our proposal is simpleras it is based upon
a flexible undirected calculus. Moreover, it makes it possible to limit the op-
eration of hypothetical reasoning used in displacement which is constrained
to a specific amount of hypotheses explicitly given by the lexicon.
Rule⊸IE cannot be applied unless the pre-condition‡ is verified: all linked
axioms coupled with the lexical entryei must be introduced in an appropriate
order (from the right to the left oflhyps sequence) during the derivation of

(∆, c↑
i

φ : C ⊢ dφ : D; E′1). Once these assumptions are abstracted, entryei

regains its final position and is automatically withdrawn from the multiset of
unstable lexical entries involved in the derivation.
To formalize the pre-condition‡, we assume that each assumptionx↑

i
of the

context encapsulates a kind ofhistoryused to record some relevant data. This
additional parameter does not have any impact on our logicalsystem. It only
ensures the efficiency of parsing by making the constraint‡ easier to check.
The notationx↑

i
⌊σ⌋ is used when the historyσ of the assumptionx↑

i
is explic-

itly given. Otherwise, a functionhist() can be applied to a given hypothesis
x↑

i
to get its masked history.

Owing to the contraction rule !Lc, each hypothesisx↑
i

gathers a sub-set of
controlled hypotheses related to entryei . The history of an assumptionx↑

i

can then be encoded as a set of pairs of natural numbers. The first number
of each pair represents the index of an involved controlled hypothesis taken
from lhyps sequence, while the second one is nothing else but the depth5 of
this hypothesis in the current bottom-up derivation.
Each deduction step updates the history of all assumptions included in the
context. For instance,Ctrl rule enables the introduction of a specific con-
trolled hypothesis of indexj and initiates its history with the single pair (j, 0).
On the other hand, rules of Fig.2 and Fig.3 increment6 the depth of the pre-
viously introduced controlled hypotheses. We show below two logical rules
enhanced with their explicit management of histories:

ei = (⊢ J lhyp) lhyp[ j] = (xφ : A ⊢ yφ : A)

x↑
i

φ ⌊{( j, 0)}⌋ : A ⊢ yφ : A; ∅
Ctrl

∆, x↑
i

φ ⌊σ1⌋ :!B, y↑
i

φ ⌊σ2⌋ :!B ⊢ uφ : A; E1

∆, b↑
i

φ ⌊σ
++
1 ∪ σ

++
2 ⌋ :!B ⊢ uφ[xφ := bφ, yφ := bφ] : A; E1

!Lc

5The number of deduction steps between the introduction of the hypothesis and the current
state of the derivation

6Incrementing operation is denoted by ()++: {...;(ki ,di );...}++={...;(ki ,di+1);...}
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Therefore, the side condition‡ can be stated formally as follows:

‡ i f f


∀k, 1 ≤ k ≤ | lhyps | ⇒ ∃! d | (k, d) ∈ hist(c↑

i

φ )

∀(k, d) ∈ hist(c↑
i

φ ) ∀(k′, d′) ∈ hist(c↑
i

φ ), k < k′ ⇒ d < d′

Finally, it is worth noticing that the constraint‡ is significant only if the
considered derivations are in normal form. Therefore, the absence of both the
freely accessible identity axiom and the⊸I rule is necessary to the success
of our approach.

2.3.2 LGE grammars & generated language

LGE grammars have two parameters, namely a lexicon and an atomicdistin-
guished typec. LetG(lex, c) be aLGE grammar and ‘at’ an atomic syntactic
type. We say that a sequence of phonetic constants l=m1m2...mn has abstract
type ‘at’ within G (i.e. l∈ Lat(G)) iff:

∃ xφ, xλ |xφ ∈ struct(m1, ...,mn) ∧ (⊢ (xφ, xλ) : at; ∅)

wherestruct(m1, ...,mn) is the range of phonetic structures built using• oper-
ator and whose leaves arem1, m2, ...,mn in that order.
Notice that the convergence of derivations requires the introduction and the
simultaneous abstraction of all controlled assumptions related to involved lex-
ical entries.
Finally, checking whether a sequence of phonetic constantsl is recognized by
the grammarG (i.e. l∈ L(G)) amounts to verifying thatl has abstract typec.

2.3.3 Example ofLGE derivations

This section is devoted to the study of a hybrid example ‘More logicians met
Godel than physicists knew him’ which involves two complex linguistic phe-
nomena: binding and discontinuity. The analysis of these phenomena within
the directional approach constitutes a real challenge for researchers. All pro-
posed solutions are complex insofar as they led to the extension of the core
logic either by defining new syntactic connectives (discontinuity connectives:
Morrill (2000)) or by introducing additional packages of postulates as in Hen-
driks (1995). However, our proposal is able to capture such phenomena in an
elegant fashion without using any additional material.
Our treatment of binding follows the same ideas of Kayne. R inKayne (2002)
where he argues that the antecedent-pronoun relation (e.g.betweenGodeland
him) stems from the fact that both enter the derivation togetheras a doubling
constituent ([Godel, him]) and are subsequently separatedafter movement. In
our system, we account for this idea by defining a linked entrye1 (cf. Fig. 4)
associated with the proper nounGodel. This entry requires the introduction
of two hypotheses (where the first ‘him’ is a pronounced one) which must be
discharged at the same time. Therefore,e1 entry will reach its final position
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thus making it possible to semantically link the pronoun with its antecedent.

Id Φ-terms λ-terms Abstract types Hyps

e1 λ Pφ. Pφ(Godel) λ Pλ. Pλ(Godel) (!dacc⊸c)⊸c [X:dacc⊢X:dacc],
[X’: dacc⊢him:dacc]

e2 logicians Logician n ()
e3 physicists Physicist n ()
e4 λx. λy. (y•(met•x)) λx. λy. MeetPast(y,x) dacc⊸dnom⊸ c ()
e5 λx. λy. (y•(knew•x)) λx. λy. KnowPast(y,x) dacc⊸dnom⊸c ()

λx. λy. λ P.λ Q. λP1. λQ1. λP2. λQ2. n⊸n⊸

e6 ((more•y)•Q(ǫ))• More(λx. Q1(x)∧Q2(x), (dnom⊸c)⊸ ()
(than•(x•P(ǫ))) λx. P1(x)∧P2(x)) (dnom⊸c)⊸c

FIGURE 4 Example ofLGE lexicon

On the other hand, we capture discontinuity by gathering thedifferent
components of a discontinuous expression in the same lexical entry. For in-
stance, entrye6 defines the phonetic and semantic behavior of the discontin-
uous constituent (more... than).

We present, in the following, the main steps of our example’sanalysis. For
the sake of legibility, the bottom-up derivation tree is split into different key
parts which will be commented on progressively.

⊢

(
λx. λy. y • (knew• x)
λx. λy. KnowPast(y, x)

)
: dacc⊸ dnom⊸ c; ∅

Lex 
x↑

1

Φ

x↑
1

λ

 : dacc ⊢

(
him
xλ

)
: dacc; ∅

Ctrl


x↑

1

Φ

x↑
1

λ

 : dacc ⊢

(
λy. y • (knew• him)
λy. KnowPast(y, xλ)

)
: dnom⊸ c; ∅

⊸ E


x↑

1

Φ

x↑
1

λ

 : dacc ⊢

(
λQ. ((more• logicians) • Q(ǫ)) • (than• (physicists• (ǫ • (knew• him))))
λQ2. More(λx. Logician(x) ∧ Q2(x) , λx. Physicist(x) ∧ KnowPast(x, xλ))

)
:

(dnom⊸ c)
⊸ c; ∅


x↑

1

Φ

x↑
1

λ

 :!dacc ⊢

(
λQ. ((more• logicians) • Q(ǫ)) • (than• (physicists• (ǫ • (knew• him))))
λQ2. More(λx. Logician(x) ∧ Q2(x) , λx. Physicist(x) ∧ KnowPast(x, xλ))

)
:

(dnom⊸ c)
⊸ c; ∅

The derivation above starts by introducing the last controlled hypothesis
(i.e. the assumption representing the accusative pronounhim) of the sequence
attached toe1 entry. This hypothesis, then, merges with lexical entrye5 by
means of⊸E rule. On the other hand, a partial derivation is built by consec-
utively combining entrye6 with entriese3 ande2. The resulting sequent then
merges with the previous one. The last deduction step does nothing but deco-
rating the type of the introduced hypothesis by a ! marker in order to express
its ability to gather with the other controlled hypothesis linked to its proper
entry. At this stage of analysis, only the second controlledhypothesis ofe1 has
been used. Moreover, it was involved in exactly three deduction steps after its
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introduction, so we can deduce that its current history is: hist(x↑
1
)={(2,3)}.

⊢

(
λx. λy. y • (met• x)
λx. λy. MeetPast(y, x)

)
: dacc⊸ dnom⊸ c; ∅

Lex 
z↑

1

Φ

z↑
1

λ

 : dacc ⊢

(
zΦ
zλ

)
: dacc; ∅

Ctrl


z↑

1

Φ

z↑
1

λ

 : dacc ⊢

(
λy. y • (met• zΦ)
λy. MeetPast(y, zλ)

)
: dnom⊸ c; ∅

⊸ E


z↑

1

Φ

z↑
1

λ

 :!dacc ⊢

(
λy. y • (met• zΦ)
λy. MeetPast(y, zλ)

)
: dnom⊸ c; ∅

!L

In this second part of analysis, the first controlled assumption linked toe1 en-
try is introduced. Then, it merges withe4 entry which represents the past form
of the transitive verbmeet. This branch of the derivation ends by a !L step like
the previous one. We can easily check that, at this point of the derivation, the
history ofz↑

1
assumption is nothing else but hist(z↑

1
)={(1,2)}.

...
x↑

1

Φ

x↑
1

λ

 :!dacc,


z↑

1

Φ

z↑
1

λ

 :!dacc ⊢

(
((more• logicians) • (ǫ • (met• zΦ))) • (than• (physicists• (ǫ • (knew• him))))
More(λx. Logician(x) ∧MeetPast(x, zλ) , λx. Physicist(x) ∧ KnowPast(x, xλ))

)
: c; ∅


y↑

1

Φ

y↑
1

λ

 :!dacc ⊢

(
((more• logicians) • (ǫ • (met• yΦ))) • (than• (physicists• (ǫ • (knew• him))))
More(λx. Logician(x) ∧MeetPast(x, yλ) , λx. Physicist(x) ∧ KnowPast(x, yλ))

)
: c; ∅

The partial derivation above stems from merging the two previously presented
branches into one tree. Contraction rule is then applied to encapsulate both
controlled hypotheses linked toe1 in one assumptiony↑

1
. The current history

of this latter compound assumption is: hist(y↑
1
)={(1,4) ; (2,5)}.

⊢

(
λPΦ.PΦ(Godel)
λPλ.Pλ(Godel)

)
: (!dacc⊸ c)⊸ c; {e1}

Lex
...

y↑
1

Φ

y↑
1

λ

 :!dacc ⊢

(
(more• logicians) • ...

More(..., ...)

)
: c; ∅

⊢

(
((more• logicians) • (met•Godel)) • (than• (physicists• (knew• him)))

More(λx. Logician(x) ∧MeetPast(x,Godel) , λx. Physicist(x) ∧ KnowPast(x,Godel))

)
: c; ∅

⊸ IE

The whole derivation ends by simultaneously discharging controlled hypothe-
ses linked to entrye1 by means of⊸IE rule. In fact, the application of this
rule is allowed since the side-condition‡ is entirely verified: asy↑

1
’s his-

tory shows, the leftmost hypothesis linked toe1 was introduced in the deriva-
tion after the rightmost one. The semantic representation of our sentence is
computed in tandem. Indeed, the final semantics coincides with the intuitive
meaning of the sentence, namely that the set of logicians whomet Godel is
larger than the range of physicists that knew him.

2.4 EnhancingLGE
It is not difficult to notice that our logic is too flexible as the application of
movement is not constrained. For instance, if we assign the entry below7 to

7ddat represent noun phrases with dative case
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the wh-element ‘which’, we can analyze both sentences *which man do you
think the child of speaks?and ‘which man do you think John loves the child
of ?’, where the first is ungrammatical.

⊢

(
λmλφ (which•< m) •> φ(ǫ)
λP λQ λx.P(x) ∧ Q(x)

)
: n⊸ (ddat⊸ c)⊸ c J [X : ddat ⊢ X : ddat]

In fact, we need to control displacement operation to rule out extraction from
islands. For that purpose, we propose to enhanceLGE with some meta-rules
encoding locality constraints (e.g. SPIC: Specifier IslandCondition, SMC:
Shortest Move Condition). We focus in the following on theSPICdefined
in Koopman and Szabolcsi (2000) which stipulates that the moved element
should be a member of the extraction domain (i.e.comp+: transitive closure
of the complement relation, or a specifier of acomp+).
In order to locate the position of the head, the complement and the specifier
inside a phonetic expression, we decorate the building structure connective
• with a mode of composition taken from the set{<, >}. This mode points
towards the sub-tree where the head is located:•< (resp.•>) if the head is
located on the left (resp. right) sub-tree.
A linked lexical entry which is expected to undergo an overt constituent
movement has a phonetic-term that obeys the following syntax:

λ x1 ... λ xn λ PΦ λ y1 ... λ yk. g(y1, ... ,yk, f(x1, ... , xn) •>PΦ(ǫ))

In the expression above,x1, ... , xn, y1, ... ,yk (n≥ 0, k≥ 0) areΦ-variables of
arbitrary types, whereasPΦ is aΦ-variable of type s⊸s. Moreover,f (resp.g)
is a function that takesn (resp. k+1)Φ-terms and builds a phonetic structure
using these parameters together with constants ofΣ.
Intuitively, this syntax means that our entry will firstly combine with n struc-
tures x1, ... , xn by means of merge operation, thus leading to a maximal
projection f(x1, ... , xn). Then, the intermediary sites will be replaced by
traces in the initial structurePΦ and our maximal projection will be placed in
specifier position, hence making it possible to carry out theexpected move-
ment. Finally, our resulting constituent can merge with other structures, thus
yielding a complete expression (e.g.whomentry in section 2.2).
Notice that this syntax suits the type specification defined in section 2.2
(points 2 & 3) if we add additional conditions, namely that both types t (type
of intermediary sites) and t’ (type of the D-structure before movement) are
atomic. The first condition (i.e. t∈A) follows from constraints proposed by
Koopman and Szabolcsi Koopman and Szabolcsi (2000) which forces moved
elements to be maximal projections (i.e. complete expressions). However,
the latter condition (t’∈ A) is a logical formalization of themerge over move
principle Chomsky (1995) which stipulates that merge operation has priority
over movement because of its simplicity. Therefore, a structure that will un-
dergo move operation should be complete.



R / 27

According to the syntax of phonetic terms associated with moved elements,
SPIC condition can be encoded inLGE as a pre-condition of⊸IE rule (cf.
Fig 3) stipulating the inclusion of all occurrences ofΦ-variablecΦ within the
extraction domain of theΦ-termdΦ. Therefore, adding this meta-rule toLGE
prevents us from analyzing the previous ungrammatical sentence.

2.5 Conclusion & Future Work

LGE is a new logical formalism which proposes a deductive simulation of
Minimalist Program. Our proposal is powerful enough to describe several lin-
guistic phenomena such as medial extraction, binding, ellipsis and disconti-
nuity thanks to using linked lexical entries (related to controlled hypotheses).
Moreover, one can solve over-generation problems caused bythe freedom of
displacement by adding some meta-rules encoding locality constraints.
In addition, it is not difficult to show that these grammars are richer than
context free grammars as they are able to generate crossed-dependencies lan-
guages (e.g.{anbmcndm | n, m≥ 0}). In fact, this latter language is recognized
byLGE grammar containing the lexicon below8:

⊢ ǫ: pi (∀ i∈{1..4})

⊢ λx. λy. λz. λu. x•(y•(z•u)): ty

⊢ λ P.λx. λy. λz. λu. P(a•x, y, c•z, u): ty⊸ ty

⊢ λ P.λx. λy. λz. λu. P(x, b•y, z, d•u): ty⊸ ty

The next direction to explore concerns the study ofLGE formal proper-
ties: expressive power, decidability, and complexity. We also intend to build
bridges betweenLGE and other well-known grammatical frameworks (e.g.
Minimalist Grammar, TAGs).
Finally, we are developing a meta-linguistic toolkit usingCoq proof assistant
(Coq Team (2004)), in order to study logical properties ofLGE grammars be-
ing enhanced with packages of meta-constraints. This toolkit can help users
manage complex derivations by automatically handling sometechnical proofs
thanks to powerful computation tools (strategies).
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3

P-TIME Decidability of NL1 with
Assumptions
M B́

Abstract
Buszkowski (2005) showed that systems of Nonassociative Lambek Calculus with

finitely many nonlogical axioms are decidable in polynomialtime and generate context-
free languages. The same holds for systems with unary modalities, studied in Moortgat
(1997),n-ary operations, and the rule of permutation, studied in Jäger (2004). The poly-
nomial time decidability for Classical Nonassociative Lambek Calculus was established
by de Groote and Lamarche (2002). We study Nonassociative Lambek Calculus with
identity enriched with a finite set of assumptions. To prove that this system is decidable
in polynomial time we adapt the method used in Buszkowski (2005). The modification
is essential. The novelty is the lemma about the eliminationof cut rules with premisses
with empty antecedents for some auxiliary system. The context-freeness of the languages
generated of the systems of Nonassociative Lambek Calculusis also established.

Keywords L , P-TIME 

3.1 Introduction and preliminaries
Nonlogical axioms can be of interest for linguistics for several reason. We
can use them to describe subcategorization in natural language. For instance,
restrictive adjectives are a subcategory of adjectives. Further, by enriching
Nonassociative Lambek Calculus with finitely new axioms, wecan improve
its expressibility without lacking the nice computationalsimplicity.
First we describe the formalism of Nonassociative Lambek Calculus with
identity constant (NL1). Let At= {p, q, r, . . .} be the denumerable set of atoms
(primitive types).
The set of formulas (also called types) Tp1 is defined as the smallest set ful-
filling the following conditions:
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. 1 ∈ Tp1,. At ⊆ Tp1,. if A, B ∈ Tp1, then (A•B) ∈ Tp1, (A/B) ∈ Tp1, (A\B) ∈ Tp1, where binary
connectives \ , / , • , are calledleft residuation, right residuation, and
product, respectively.

The set of formula structures STR1 is defined recursively as follows:

. Λ ∈ STR1, whereΛ denotes an empty structure,. Tp1 ⊆ STR1; these formula structures are called atomic formula struc-
tures,. if X,Y ∈ STR1, then (X ◦ Y) ∈ STR1.

We set (X ◦ Λ) = (Λ ◦ X) = X.
Substructures of a formula structure are defined in the following way:

. Λ is only substructure ofΛ,. if X is an atomic formula structure, thenΛ andX are only substructures of
X,. if X = (X1◦X2), thenX and all substructures ofX1 andX2 are substructures
of X.

By X[Y] we denote a formula structureX with a distinguished substructure
Y, and byX[Z] - the substitution ofZ for Y in X.
Sequents are formal expressionsX→ A such thatA ∈ Tp1, X ∈ STR1.

The Gentzen-style axiomatization of the calculus NL1 employs the axiom
schemas:

(Id) A→ A (1R) Λ→ 1

and the following rules of inference:

(1L)
X[Λ] → A
X[1] → A

,

(•L)
X[A ◦ B] → C
X[A • B] → C

, (•R)
X→ A; Y→ B
X ◦ Y→ A • B

,

(\L)
Y→ A; X[B] → C
X[Y ◦ (A\B)] → C

, (\R)
A ◦ X→ B
X→ A\B

,

(/L)
X[A] → C; Y→ B
X[(B/A) ◦ Y] → C

, (/R)
X ◦ B→ A
X→ A/B

,

(CUT)
Y→ A; X[A] → B

X[Y] → B
.

For any system S we write S⊢ X → A if the sequentX → A is derivable
in S.
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The most general models of NL1 are residuated groupoid with identity.
A residuated groupoidwith identity is a structure

M = (M,≤, ·, \, /, 1)

such that

. (M, ·, 1) is a groupoid with identity in whicha · 1 = a, 1 · a = a for all
a ∈ M. (M,≤) is a poset ,. \, / are binary operations onM satisfying the equivalences :

(RES) ab≤ c iff b ≤ a\c iff a ≤ c/b

for all a, b, c ∈ M.

Every residuated groupoid fulfills the following monotonicity laws:

(MON) If a ≤ b then ca≤ cb and ac≤ bc

(MRE) If a ≤ b then c\a ≤ c\b, a/c ≤ b/c,

b\c ≤ a\c, c/b ≤ c/

for all a, b, c ∈ M.

A modelis a pair (M, µ) such thatM is a residuated groupoid with identity
andµ is an assignment of elements ofM for atoms. One extendsµ for all
formulas :

µ(1) = 1, µ(A • B) = µ(A) · µ(B),

µ(A\B) = µ(A)\µ(B), µ(A/B) = µ(A)/µ(B).

and formula structure:

µ(Λ) = µ(1) = 1, µ(X ◦ Y) = µ(X) · µ(Y).

A sequentX → A is said to be true in model (M, µ) if µ(X) ≤ µ(A). In
particular a sequentΛ→ A is said to be true in model (M, µ) if 1 ≤ µ(A).
One can prove the following property for formula structures:

(MON − STR) If µ(Y) ≤ µ(Z) then µ(X[Y]) ≤ µ(X[Z]).

3.2 NL1 with assumptions
Let Γ be a set of sequents of the formA→ B, whereA, B ∈ Tp1. By NL1(Γ
) we denote the calculus NL1 with additional setΓ of assumptions. NL1 is
strongly complete with respect to the residuated groupoidswith identity, i.e.
all sequents provable in NL1(Γ) are precisely those which are true in all mod-
els (M, µ) in which all sequents fromΓ are true. Soundness is easily proved
by induction on derivation in NL1(Γ). Completeness follows from the fact
that the Lindenbaum algebra of NL1 is a residuated groupoid with identity.
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In general, the calculus NL1(Γ) has not the standard subformula property,
since (CUT) is legal rule in this system . Thus we take into consideration the
subformula property in some extended form.
LetT be a set of formulas closed under subformulas and such that all formulas
appearing inΓ belong toT. By aT-sequent we mean a sequentX → A such
thatA and all formulas appearing inX belong toT. Now, we can reformulate
the subformula property as follows:

EveryT-sequent provable in a system S has a proof in S such that all sequents
appearing in this proof areT-sequents.

To prove the subformula property for NL1(Γ) we will use special models,
namely a residuated groupoids with identity of cones over given preordered
groupoids with identity.
Let (M,≤, ·) be a preordered groupoid, that means, it is a groupoid with a
preordering (i.e. a reflexive and transitive relation), satisfying (MON).
A setP ⊆ M is called aconeon M if a ≤ b andb ∈ P entailsa ∈ P. LetC(M)
denotes the set of cones onM.
The operations·, \, / onC(M) are defined as follows:

(M1) I = {a ∈ M : a ≤ 1}

(M2) P1P2 = {c ∈ M : (∃a ∈ P1, b ∈ P2) c ≤ ab}

(M3) P1\P2 = {c ∈ M : (∀a ∈ P1) ac ∈ P2}

(M4) P1/P2 = {c ∈ M : (∀b ∈ P2) cb∈ P1}.

A structure (C(M),⊆, ·, \, /, I ) is a residuated groupoid with identity. It is
called the residuated groupoid with identity of cones over the given pre-
ordered groupoid with identity.

Let M be the set of all formula structures all of whose atomic substructures
belong toT andΛ ∈ M. If a sequentX→ A has a proof in NL1(Γ) consisting
of T-sequents only, we write:X→T A.
First, we define onM a relation≤b. X ≤b Y denotesX directly reduces toY.
The definition of this relation is as follows:

Y[Z] ≤b Y[Λ] if Z→T 1,

Y[Z] ≤b Y[A] if Z→T A,

Y[A • B] ≤b Y[A ◦ B] if A • B ∈ T.

A preordering≤ on M is defined as a reflexive and transitive closure of
the relation≤b. Then X ≤ Y iff there existY0, . . . ,Yn, n ≥ 0 such that
X = Y0,Y = Yn andYi−1 ≤b Yi , for eachi = 1, . . . , n.
Clearly, (M,≤, ◦,Λ) is a preordered groupoid with identityΛ fulfilling (MON).

Next, we take into consideration the residuated groupoid ofcones with iden-
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tity C(M) = (C(M),⊆, ·, \, /, I ) over (M,≤, ◦,Λ) defined above. An assign-
mentµ onC(M) is defined by setting:

µ(p) = {X ∈ M : X→T p},

for all atomsp. One can easily prove that

µ(A) = {X ∈ M : X→T A},

for all A ∈ T.

Fact 1 Every sequent provable inNL1(Γ) is true in(C(M), µ).

Proof. It suffice to show, that each axiom fromΓ is true in (C(M), µ). Assume
thatA→ Bbelongs toΓ. It yieldsA→T B. We need to show thatµ(A) ⊆ µ(B).
Let X ∈ µ(A). Then,X →T A. By (CUT), we getX →T B, which yields
X ∈ µ(B). ⊔⊓

Lemma 2 The systemNL1(Γ) has the extended subformula property.

Proof. Let X → A be aT-sequent provable in NL1(Γ). By fact 1 it is true in
the model (C, µ), i.e.µ(X) ⊆ µ(A). SinceX ∈ µ(X), we haveX ∈ µ(A). But it
meansX→T A. ⊔⊓

A sequent is said to bebasicif it is a T-sequent of the formΛ→ A, A→ B,
A ◦ B→ C. LetΓ be finite, and letT be a finite set of formulas, closed under
subformulas and such thatT contains all formulas appearing inΓ. For such
T we shall describe an effective procedure which produces all basic sequents
derivable in NL1(Γ).

LetS0 consist of allT-sequent of the form (Id), all sequents fromΓ,Λ→ 1
and allT-sequents of the form:

1 ◦ A→ A, A ◦ 1→ A, A ◦ B→ A • B,
A ◦ (A\B)→ B, (A/B) ◦ B→ A.

AssumeSn has already been defined.Sn+1 is Sn enriched with sequents
resulting from the following rules:

(S1) if (A ◦ B→ C) ∈ Sn and (A • B) ∈ T, then (A • B→ C) ∈ Sn+1,
(S2) if (A ◦ X→ C) ∈ Sn and (A\C) ∈ T, then (X→ A\C) ∈ Sn+1,
(S3) if (X ◦ B→ C) ∈ Sn and (C/B) ∈ T, then (X→ C/B) ∈ Sn+1,
(S4) if (Λ→ A) ∈ Sn and (A ◦ X→ C) ∈ Sn, then (X→ C) ∈ Sn+1,
(S5) if (Λ→ A) ∈ Sn and (X ◦ A→ C) ∈ Sn, then (X→ C) ∈ Sn+1,
(S6) if (A→ B) ∈ Sn and (B ◦ X→ C) ∈ Sn, then (A ◦ X→ C) ∈ Sn+1,
(S7) if (A→ B) ∈ Sn and (X ◦ B→ C) ∈ Sn, then (X ◦ A→ C) ∈ Sn+1,
(S8) if (A ◦ B→ C) ∈ Sn and (C→ D) ∈ Sn, then (A ◦ B→ D) ∈ Sn+1.

Clearly,Sn ⊆ Sn+1 for all n ≥ 0. We defineST as the join of this chain.ST

is a set of basic sequents, hence it must be finite. It yieldsST = Sk+1, for the
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leastk such thatSk = Sk+1, and thisk is not greater then the number of basic
sequents.

Fact 3 The set ST can be constructed in polynomial time.

Proof. Let n be the cardinality ofT. There aren, n2 andn3 basic sequents
of the formΛ → A, A → B andA ◦ B → C, respectively. Hence, we have
m = n3 + n2 + n basic sequents. The setS0 can be constructed in time 0(n2).
To getSi+1 from Si we must closeSi under the rules (S1)-(S8) which can be
done in at mostm3 steps for each rule. For example, to closeSi under (S1)
we must check if (A ◦ B→ C) ∈ Si and (A • B) ∈ T which needs at mostm
andn steps, respectively. The sequentA • B→ C is added toSi+1 only if it
doesn’t belong to this set. To check this fact the nextm steps are needed. The
leastk such thatST = Sk is at mostm. Then finely, we can constructST from
T in time 0(m4) = 0(n12). ⊔⊓

By S(T) we denote the system whose axioms are all sequents fromST and
whose only inference rule is (CUT). Then, every proof inS(T) consist ofT-
sequents only.
The fact that every basic sequent provable inS(T) belongs toST , which is
used in a proof of an interpolation lemma forS(T), is not obvious in NL1(Γ),
because of sequents of the formΛ→ A.
By S(T)− we denote the system whose axioms are all sequents fromST and
whose only inference rule is (CUT) with premises without empty antecedents.

Lemma 4 For any sequent X→ A, S(T) ⊢ X→ A iff S(T)− ⊢ X→ A.

Proof. The ’if’ direction is evident. To prove the ’only if’ direction we show
thatS(T)− is closed under (CUT), i.e.

(*) If S(T)− ⊢ X→ B andS(T)− ⊢ Y[B] → A, thenS(T)− ⊢ Y[X] → A.

AssumeS(T)− ⊢ X→ B andS(T)− ⊢ Y[B] → A.
If X , Λ, thenS(T)− ⊢ Y[X] → A by definition ofS(T)−.
If X = Λ, then the sequentX→ B is of the formΛ→ B andS(T)− ⊢ Λ→ B,
which means thatΛ → B is an axiom ofS(T)−. To prove (*) we proceed by
induction on derivation of second premise:Y[B] → A.
If Y[B] → A is an axiom ofS(T)−, then (Y[B] → A) ∈ ST . ST is closed under
(CUT). Hence, (Y[Λ] → A) ∈ ST which yieldsS(T)− ⊢ Y[Λ] → A.
If Y[B] → A is a conclusion of (CUT) from premises without empty an-
tecedents, thenY[B] = Z[Y′] and for someC ∈ T, S(T)− ⊢ Y′ → C and
S(T)− ⊢ Z[C] → A. We consider the following cases.

I. B is contained inY′. ThenY′ = Y′[B].
(1) Y′[B] , B. By the induction hypothesis, (*) holds forΛ → B and

Y′[B] → C, soS(T)− ⊢ Y′[Λ] → C. SinceY′[B] , B, we haveY′[Λ] ,
Λ. Using (CUT), we getS(T)− ⊢ Z[Y′[Λ]] → A, which meansS(T)− ⊢
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Y[Λ] → A.
(2) Y′[B] = B. By the induction hypothesis, (*) holds forΛ → B and

B→ C, soS(T)− ⊢ Λ → C. Using inductive hypothesis toΛ → C and
Z[C] → A, we getS(T)− ⊢ Z[Λ] → A, which meansS(T)− ⊢ Y[Λ] →
A.

II. B andY′ do not overlap. ThenB is contained inZ and does not overlap
C in Z. We write Z[C] = Z[B,C]. From the assumption we haveY′ ,
Λ. By induction hypothesis, (*) holds forΛ → B andZ[B,C] → A, so
S(T)− ⊢ Z[Λ,C] → A. By (CUT), S(T)− ⊢ Z[Λ,Y′] → A, which means
S(T)− ⊢ Y[Λ] → A.

⊔⊓

Corollary 5 Every basic sequents provable in S(T) belongs to ST .

Proof. We proceed by induction on proofs inS(T). AssumeX→ A is a basic
sequent derivable inS(T). If X→ A is an axiom ofS(T), then (X→ A) ∈ ST .
If X→ A is a conclusion of (CUT), we consider three cases.

(1) X = Λ. By lemma 4,Λ → A has a proof inS(T)−. HenceΛ → A is an
axiom, which means (Λ→ A) ∈ ST .

(2) X = B. By lemma 4, there exists a proof such thatB→ A is a conclusion
from premisesB → C andC → A, whereC , Λ. Since proofs in S(T)
consist withT-sequents only,B → C andC → A are basic sequents. By
induction hypothesis, (B → C) ∈ ST and (C → A) ∈ ST . ST is closed
under (CUT), so (B→ A) ∈ ST.

(3) X = B ◦ C. By lemma 4, there exists a proof such thatB ◦ C → A is a
conclusion from premises without empty premises. Hence, they are of the
form: (B◦C→ D , D→ A) or (B→ D , D◦C→ A) or (C→ D , B◦D→
A). By the same argument as in (2), in each case, we get (B◦C→ A) ∈ ST .

⊔⊓

Now, we can state an interpolation lemma forS(T).

Lemma 6 If S(T) ⊢ X[Y] → A, then there exists D∈ T such that S(T) ⊢
Y→ D and S(T) ⊢ X[D] → A.

Proof. We proceed by induction on proofs inS(T).

I. AssumeX[Y] → A is an axiom ofS(T). We consider the following
cases.

(1) X[Y] = Y. ThenY = X (observe, that this case includes subcaseX =
Λ). We setD = A. We haveS(T) ⊢ X → A from assumption and
S(T) ⊢ A→ A, since (A→ A) ∈ ST .

(2) X[Y] = B, Y = Λ. ThenX[Y] = X[Λ] = B = B◦Λ or X[Y] = Λ◦B and
D = 1. We haveS(T) ⊢ Λ → 1 andS(T) ⊢ B→ A. (B ◦ 1→ B) ∈ ST ,
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so S(T) ⊢ B ◦ 1 → B. Using (CUT) we getS(T) ⊢ X[1] → A. For
X[Y] = Λ ◦ B the argument is dual.

(3) X[Y] = B ◦C, Y , Λ. ThenY = B or Y = C, henceD = B or D = C,
respectively.

(4) X[Y] = B ◦ C, Y = Λ. ThenX[Λ] has one of the form:Λ ◦ (B ◦ C),
(B◦C)◦Λ, (Λ◦B)◦C, (B◦Λ)◦C, B◦ (Λ◦C), B◦ (C◦Λ). For example,
if X[Λ] = Λ ◦ (B ◦ C), we haveS(T) ⊢ Λ → 1 and using (CUT) to
S(T) ⊢ B◦C→ A andS(T) ⊢ 1◦A→ A, we getS(T) ⊢ 1◦(B◦C)→ A.

II. AssumeX[Y] → A is the conclusion of (CUT). ThenX[Y] = Z[Y′] and
for someB ∈ T: S(T) ⊢ Y′ → B andS(T) ⊢ Z[B] → A.

In this part the proof is analogous to the proof of lemma 2 in Buszkowski
(2005). The following cases are considered.
(1) Y is contained inY′. ThenY′ = Y′[Y]. By the induction hypothesis,

there existsD ∈ T such thatS(T) ⊢ Y → D andS(T) ⊢ Y′[D] → B.
Using (CUT) with the premisesZ[B] → A and Y′[D] → B we get
S(T) ⊢ Z[Y′[D]] → A, which meansS(T) ⊢ X[D] → A.

(2) Y′ is contained inY. Then X[Y] = X[Y[Y′]] = Z[Y′] and Z[B] =
X[Y[B]]. By the induction hypothesis, there existsD ∈ T such that
S(T) ⊢ Y[B] → D and S(T) ⊢ X[D] → A. Using (CUT) with the
premisesY′ → B andY[B] → D we getS(T) ⊢ Y[Y′]] → D.

(3) Y andY′ do not overlap. ThenY is contained inZ and does not overlap
B in Z. We write Z[B] = Z[B,Y]. By the induction hypothesis, there
existsD ∈ T such thatS(T) ⊢ Y → D and S(T) ⊢ Z[B,D] → A.
Using (CUT) with the premisesY′ → B and Z[B,D] → B we get
S(T) ⊢ Z[Y′,D] → A, which meansS(T) ⊢ X[D] → A.

⊔⊓

Lemma 7 For any T-sequent X→ A, X→T A iff S(T) ⊢ X→ A.

Proof. Recall, thatX →T A means that the sequentX → A has the proof in
NL1(Γ) consisting withT-sequents only.
To prove ’if’ direction observe thatX→T A, for all sequentsX→ A in ST .
The T-sequents which are axioms of NL1(Γ) belong toS0. Thus, to prove
the ’only if’ direction it suffices to show that all inference rules of NL1(Γ),
restricted toT-sequents, are admissible inS(T). For example, let us consider
(1L). AssumeX[Λ] → A. By lemma 6, there existD ∈ T such thatS(T) ⊢
Λ→ D andS(T) ⊢ X[D] → A. Since (D◦1→ D) ∈ ST , thenS(T) ⊢ D◦1→
D. By two applications of (CUT), we getS(T) ⊢ X[Λ◦1] → A, which means
S(T) ⊢ X[1] → A. ⊔⊓

Theorem 8 If Γ is finite, thenNL1(Γ) is decidable in polynomial time.

Proof. LetΓ be a finite set of sequents of the formB→ C and letX→ A be a
sequent. Letn be the number of logical constants and atoms inX→ A andΓ.
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As T we choose the set of all subformulas of formulas appearing inX → A
and formulas appearing inΓ. Since the number of subformulas of any formula
B is equal to the number of logical constants and atoms inB, T hasn elements
and we can construct it in time 0(n2). By lemma 2, NL1(Γ) ⊢ X → A iff
X→T A. By lemma 7,X→T A iff S(T) ⊢ X→ A. Proofs inS(T) are actually
derivation trees of a context-free grammar whose production rules are the
reversed sequents fromST . Checking derivability in context-free grammars
is P-TIME decidable. For example, by known CYK algorithm, itcan be done
in time not exceedk · n3, wherek is the size ofST . By the proof of fact 3, the
size ofST is at most 0(n3) andST can be constructed in 0(n12). Hence, the
total time is 0(n12), i.e. NL1(Γ) is P-TIME decidable. ⊔⊓

By theorem 8, we have immediately that languages generated by the cate-
gorial grammar based on the system NL1(Γ) are context-free. In Buszkowski
(2005) the analogous result was established for NL(Γ), NL(Γ) with permuta-
tion rule and Generalized Lambek Calculus (GLC(Γ)). The context-freeness
of the languages generated by Nonassociative Lambek Calculus were studied
by Buszkowski (1986), Kandulski (1988) and Jäger (2004). Bulińska (2005)
obtained the weak equivalence of context-free grammars andgrammars based
on the associative Lambek calculus with finite set of simple nonlogical ax-
ioms of the formp→ q, wherep, q are primitive types.
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4

Program Transformations for
Optimization of Parsing Algorithms and
Other Weighted Logic Programs
J E  J B

Abstract
Dynamic programming algorithms in statistical natural language processing can be

easily described as weighted logic programs. We give a notation and semantics for such
programs. We then describe several source-to-source transformations that affect a pro-
gram’s efficiency, primarily by rearranging computations for better reuse or by changing
the search strategy.

Keywords   ,  ,  -
,  

4.1 Introduction
In this paper, we show how some efficiency tricks used in the natural lan-
guage processing (NLP) community, particularly for parsing, can be regarded
as specific instances of transformations on weighted logic programming al-
gorithms.

We define weighted logic programs and sketch the general formof the
transformations, enabling their application to new programs in NLP and other
domains. Several of the transformations (folding, unfolding, magic templates)
have been known in the logic programming community, but are generalized
here to our weighted framework and applied to NLP algorithms. We also
present a powerful generalization of folding—speculation—which appears
new and is able to derive some important parsing algorithms.Finally, our
formalization of these transformations has been simplifiedby our use of “gap

39

FG-2006.
Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright c© 2006, CSLI Publications.



40 / J E  J B

passing” ideas from categorial grammar and non-ground terms from logic
programming.

The framework that we use for specifying the weighted logic programs is
roughly based on that of Dyna (Eisner et al., 2005), an implemented system
that can compile such specifications into efficient C++. Some of the programs
could also be handled by PRISM (Zhou and Sato, 2003), an implemented
probabilistic Prolog.

It is especially useful to have general optimization techniques for dy-
namic programming algorithms (a special case in our framework), because
NLP researchers regularly propose new such algorithms. Dynamic program-
ming is used to parse many different grammar formalisms. It is also used in
stack decoding, grammar induction, finite-state methods, and syntax-based
approaches to machine translation and language modeling.

One might select program transformations either manually or automati-
cally. Our goal here is simply to illustrate the search spaceof semantically
equivalent programs. We do not address the practical question of searching
this space—that is, the question of where and when to apply the transfor-
mations. For some programs and their typical inputs, a transformation will
speed a program up; in other cases, it will slow it down. The actual effect can
of course be determined empirically by running the transformed program (or
in some cases, predicted more quickly by profiling theuntransformedpro-
gram as it runs on typical inputs). Thus, at least in principle, one could apply
automatic local search methods.

4.2 Our Formalism

4.2.1 Logical Specification of Dynamic Programs

We will use context-free parsing as a simple running example. Recall that one
can write a logic program for CKY recognition (Younger, 1967) as follows,
whereconstit(X,I,K) is provable iff the grammar, starting at nonterminalX, can
generate the input substring from positionI to positionK.

constit(X,I,K) :- rewrite(X,W), word(W,I,K).
constit(X,I,K) :- rewrite(X,Y,Z), constit(Y,I,J), constit(Z,J,K).
goal :- constit(s,0,N), length(N).

rewrite(s,np,vp). % tiny grammar
rewrite(np,”Dumbo”).
rewrite(np,”flies”).
rewrite(vp,”flies”).

word(”Dumbo”,0,1). % tiny input sentence
word(”flies”,1,2).
length(2).
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We say that this logic program is adynamic program because it satis-
fies a simple restriction: allvariables (capitalized) in a rule’s left-hand side
(rule head) also appear on its right-hand side (rulebody). Logic programs
restricted in this way correspond to the “grammatical deduction systems” dis-
cussed by Shieber et al. (1995). They can be evaluated by a simple agenda-
based, bottom-up dynamic programming algorithm.1

This paper, however, deals with general logic programs without this re-
striction. For example, one may wish to assert the availability of an “epsilon”
word ateverypositionK in the sentence:word(epsilon,K,K). We emphasize this
because it is convenient for some of our transformations to introduce new
non-dynamic rules. One can often eliminate non-dynamic rules (in particular,
the ones we introduce) to obtain a semantically equivalent dynamic program,
but we do not here explore transformations for doing so systematically.

4.2.2 Weighted Logic Programs

We now define our notion ofweightedlogic programs, of which the most use-
ful in NLP are the semiring-weighted dynamic programs discussed by Good-
man (1999) and Eisner et al. (2005). See the latter paper for adiscussion of
relevant work on deductive databases with aggregation (e.g., Fitting, 2002,
Van Gelder, 1992, Ross and Sagiv, 1992).

Our running example is the inside algorithm for context-free parsing:

constit(X,I,K) += rewrite(X,W) * word(W,I,K).
constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).
goal += constit(s,0,N) * length(N).

rewrite(s,np,vp) = 1. % p(s→ np vp | s)
rewrite(np,”Dumbo”) = 0.6. % p(np→ ”Dumbo” | np)
rewrite(np,”flies”) = 0.4. % p(vp→ ”flies” | vp)
rewrite(vp,”flies”) = 1. % p(vp→ ”flies” | vp)

word(”Dumbo”,0,1) = 1. % 1 for all words in the sentence
word(”flies”,1,2) = 1.
length(2) = 1.

This looks just like the unweighted logic program in section4.2.1, except
that now the body of each rule is an arbitraryexpression, and the:- operator
is replaced by an “aggregation operator” such as+= or max=. Since line 2 can
be instantiated for example asconstit(s,0,2) += rewrite(s,np,vp) * constit(np,0,1)
* constit(vp,1,2), the value ofrewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2) (if
any) is used as a summand (i.e., an operand of+=) in the value ofconstit(s,0,2).

1This is superior to a Prolog-style backtracking algorithm.It runs in polynomial time, rather
than wasting exponential time re-deriving the same constituents in different contexts, or failing
to terminate if the grammar is left-recursive.
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We will formalize this in section 4.2.3 below.
The result—for this program—is that the computed value ofconstit(s,0,2)

will be the inside probabilityβs(0, 2) for a particular input sentence and gram-
mar.2 In practice one might wait until runtime to provide the description of
the sentence (the rules forword andlength) and perhaps even of the grammar
(therewrite axioms). In this case our transformations would typically be used
only on the part of the program specified at compile time. But for simplicity,
we suppose in this paper that the whole program is specified atcompile time.

If the left-hand sides of two rules unify, then the rules mustuse the same
aggregation operator, to guarantee that each item is aggregated in a consistent
way. Eachconstit(. . . ) item above is aggregated with+=.

4.2.3 Semantics of Weighted Logic Programs

In an unweighted logic program, the semantics is the set of provable items.
For weightedlogic programs, the semantics is a partial function that maps
each provable itemr to a valueJrK. All items in our example take values in
R. However, one could use values of any type or types.

The domain of theJ·K function is the set of items for which there exist
finite proofs under theunweightedversion of the program. We extendJ·K in
the obvious way to expressions on provable items: for example, Jx * yK

def
=

JxK * JyK.
For each provable ground itemr, letP(r) be the non-empty multiset of all

ground expressionsE on provable items such thatr ⊕r= E instantiates some
rule ofP. Here⊕r= denotes the single aggregation operator shared by all those
rules.

We now interpret the weighted rules as a set of simultaneous equations
that constrain theJ·K function. If ⊕r = is +=, then we require that

JrK =
∑

E∈P(r)

JEK

(puttingJrK = ∞ if the sum diverges). More generally, we require that

JrK = JE1K ⊕r JE2K ⊕r . . .

whereP(r) = {E1,E2, . . .}. For this to be well-defined,⊕r must be associative
and commutative. If⊕r = is the special operator=, as in the final rules of our
example, then we setJrK = JE1K if P(r) is a singleton set{E1}, and generate
an error otherwise.

In the terminology of the logic programming community, thisdefinition
is equivalent to saying that the valuation functionJ·K is a fixed point of the
monotone consequence operator.3

2However, unlike probabilistic programming languages (Zhou and Sato, 2003), we do not
enforce that values be reals in [0, 1] or have probabilistic interpretations.

3Such a fixed point need not be unique, and there is a rich line ofresearch into attempting
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Example. In the example of section 4.2.2, this means that for any particular
X, I ,K for which constit(X,I ,K) is provable,Jconstit(X, I ,K)K equals

∑
J,Y,ZJrewrite(X,Y,Z)K ∗ Jconstit(Y,I ,J)K ∗ Jconstit(Z,J,K)K

+
∑

WJrewrite(X,W)K ∗ Jword(W,I ,J)K

where, for example, the first summation ranges over term triples J,Y,Z such
that the summand has a value. We sum overJ,Y,Z because they do not appear
in the rule’s headconstit(X,I,J), which is being defined.

Notation. We will henceforth adopt a convention of underlining any vari-
ables that appear only in a rule’s body, to more clearly indicate the range of
the summation. We will also underline variables that appearonly in the rule’s
head; these indicate that the rule is not a dynamic programming rule.

Discussion. Substitutingmax= for += throughout the program would find
Viterbi probabilities (best derivation) rather than inside probabilities (sum
over derivations). Similarly, we can obtain the unweightedrecognizer of sec-
tion 4.2.1 by writing expressions over boolean values:4

constit(X,I,K) |= rewrite(X,Y,Z) & constit(Y,I,J) & constit(Z,J,K).

In general, this framework subsumes the practically usefulcase of Good-
man (1999), which requires all values to fall in a single semiring and all rules
to use only the semiring operations.5

Definition. A program transformationT : P → P′ is defined to be
semantics-preservingif for every item r which is provable byP, r is also
provable byP′ and

JrKP = JrKP′

4.2.4 Computing Semantics by Forward-Chaining

A basic strategy for computing the semantics is “forward chaining.” The idea
is to maintain current values for all proved items, and to propagate updates to
these values, from the right-hand side of a rule to its left-hand side, until all
the equations are satisfied. (This might not halt: even an unweighted dynamic
program can encode an arbitrary Turing machine.)

to more precisely characterize the intuitive semantics of logic programs with negation or ag-
gregation. The interested reader should refer to Fitting (2002), or to, for example, Van Gelder
(1992) or Ross and Sagiv (1992) for a discussion of the semantics of aggregate logic programs.
In practice, one may obtain some single fixpoint by running the forward-chaining algorithm of
the section 4.2.4 below and hoping that it converges.

4Using | for “or” and & for “and.” The aggregation operators|= and&= can be regarded as
implementing existential and universal quantification.

5Dropping these requirements allows our framework to handleneural networks, game trees,
and other interesting systems of equations. Note that Goodman’s “side conditions” can be easily
handled in our framework (see Eisner et al., 2005).
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As already noted in section 4.2.1, Shieber et al. (1995) gavea forward
chaining algorithm (elsewhere called “semi-naive bottom-up evaluation”) for
unweighteddynamicprograms. Eisner et al. (2005) extended this to handle
the semiring-weighted case. Goodman (1999) gave a mixed algorithm.

Dealing with our full class of weighted logic programs—not just semiring-
weighted dynamic programs—is a substantial generalization. The algorithm
must propagate arbitrary updates, derive values for non-ground items, and
obtain the value offoo(3,3), if not explicitly derived, from (e.g.) the derived
value of foo(X,X) or foo(X,3) in preference to the less specificfoo(X,Y). Fur-
thermore, certain aggregation operators, but not all, permit optimizations that
are important for efficiency. We defer these algorithmic details to a separate
paper.

4.3 Folding

Weighted dynamic programs are schemata that define systems of simultane-
ous equations. Such systems can often be rearranged withoutaffecting their
solutions. In the same way, weighted dynamic programs can betransformed
to obtain new programs with better runtime.

For a first example, consider our previous rule from section 4.2.2,

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

If the grammar hasN nonterminals, and the input is ann-word sentence
or ann-state lattice, then the above rule can be instantiated in only O(N3 · n3)
different ways. For this—and the other parsing programs we consider here—
it turns out the runtime of forward chaining can be kept down to O(1) time
per instantiation.6 Thus the runtime isO(N3 · n3).

However, the following pair of rules is equivalent:

temp(X,Y,Z,I,J) = rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += temp(X,Y,Z,I,J) * constit(Z,J,K).

We have just performed a weighted version of the classicalfolding trans-
formation for logic programs (Tamaki and Sato, 1984). The original body
expression would be explicitly parenthesized as(rewrite(X,Y,Z) * constit(Y,I,J))
* constit(Z,J,K); we have simply introduced a “temporary item” (like a tem-
porary variable in a traditional language) to hold the result of the parenthe-
sized subexpression, then “folded” that temporary item into the computation

6Assuming that the grammar is acyclic (in that it has no unary rule cycles) and so is the in-
put lattice. Even without such assumptions, a meta-theoremof McAllester (1999) allows one to
derive asymptotic runtimes of appropriately-indexed forward chaining from the number of in-
stantiations. However, that meta-theorem applies only to unweighted dynamic programs. Similar
results in the weighted case require acyclicity. Then one can use the two-phase method of Good-
man (1999), which begins with a run of McAllester’s method onan unweighted version of the
program.
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of constit. The temporary item mentions all the capitalized variablesin the
expression.

Distributivity. A more important use appears when we combine folding
with the distributive law. In the example above, the second rule’s body sums
over the (underlined) free variables,J, Y, andZ. However,Y appears only
in the temp item. We could therefore have summed over values ofY before
multiplying by constit(Z,J,K), obtaining the following transformed program
instead:

temp2(X,Z,I,J) += rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += temp2(X,Z,I,J) * constit(Z,J,K).

This version of the transformation is permitted only because + distributes
over *.7 By “forgetting” Y as soon as possible, we have reduced the runtime
of CKY from O(N3 · n3) to O(N3 · n2 + N2 · n3).

Using the distributive law to improve runtime is a well-known technique.
Aji and McEliece (2000) present an algorithm inspired by thejunction-tree
algorithm for probabilistic inference in graphical modelswhich they call the
“generalized distributive law,” which is equivalent to repeated application of
the folding transformation, and which they demonstrate to be useful on a
broad class of weighted logic programs.
A categorial grammar view of folding. From a parsing viewpoint, notice
that the itemtemp2(X,Z,I,J) can be regarded as a categorial grammar con-
stituent: an incompleteX missing a subconstituentZ at its right (i.e., anX/Z)
that spans the substring fromI to J. This leads us to an interesting and appar-
ently novel way to write the transformed program:

constit(X,I,K)/constit(Z,J,K) += rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += constit(X,I,K)/constit(Z,J,K) * constit(Z,J,K).

HereA/B is syntactic sugar forslash(A,B). That is,/ is used as an infix functor
and does not denote division, However, it is meant tosuggestdivision: as the
second rule shows,A/B is an item which, if multiplied byB, yields a summand
of A. In effect, the first rule above is derived from the original rule at the
start of this section by dividing both sides byconstit(Z,J,K). The second rule
multiplies the missing factorconstit(Z,J,K) back in, now that the first rule has
summed overY.

Notice thatK appears free (and hence underlined) in the head of the first
rule. The only slashed items that are actuallyprovablein this program are
non-ground terms such asconstit(s,0,K)/constit(n,1,K). That is, they have the
form constit(X,I,K)/constit(Z,J,K) whereX,I,J are ground variables butK remains
free. The equality of the twoK arguments (by internal unification) indicates
that the missingZ is always at theright of theX, while their freeness means

7Since all semirings enforce a similar distributive property, the trick can be applied equally
well to Viterbi parsing and unweighted recognition (section 4.2.3).
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that the right edge of the fullX and missingZ are still unknown (and will
remain unknown until the second rule fills in a particularZ). Thus, the first
rule performs a computation once forall possibleK—the source of folding’s
efficiency. Our earlier program withtemp2 could have been obtained by a
further automatic transformation that replaced allconstit(X,I,K)/constit(Z,J,K)
having freeK with the more compactly storedtemp2(X,Z,I,J).

We emphasize that although our slashed items are inspired bycategorial
grammars, they can be used to describe folding inany weighted logic pro-
gram. Section 4.5 will further exploit the analogy to obtaina novel “specula-
tion” transformation.

Further applications. The folding transformation unifies various ideas that
have been disparate in the literature. Eisner and Satta (1999) speed up parsing
with bilexical context-free grammars fromO(n5) to O(n4), using precisely
the above trick (see section 4.4 below). Huang et al. (2005) employ the same
“hook trick” to improve the complexity of syntax-based MT with ann-gram
language model.

Another parsing application is the common “dotted rule” trick (Earley,
1970). If one’s CFG contains ternary rulesX → Y1 Y2 Y3, the naive CKY-
like algorithm takesO(N4 · n4) time:

constit(X,I,L) += ((rewrite(X,Y1,Y2,Y3) * constit(Y1,I,J))
* constit(Y2,J,K)) * constit(Y3,K,L).

Fortunately, folding allows one to sum first overY1 before summing sepa-
rately overY2 andJ, and then overY3 andK:

temp(X,Y2,Y3,I,J) += rewrite(X,Y1,Y2,Y3) * constit(Y1,I,J).
temp2(X,Y3,I,K) += temp(X,Y2,Y3,I,J) * constit(Y2,J,K).
constit(X,I,L) += temp2(X,Y3,I,K) * constit(Y3,K,L).

This restoresO(n3) runtime (more precisely,O(N4 ·n2+N3 ·n3+N2 ·n3))8 by
reducing the number of nested loops. Even if we had declined to sum overY1
andY2 in the first two rules, then the summation overJ would already have
obtainedO(n3) runtime, in effect by binarizing the ternary rule. For exam-
ple, temp2(X,Y1,Y2,Y3,I,K) would have corresponded to a partial constituent
matching thedottedrule X→ Y1 Y2 . Y3. The additional summations overY1
andY2 result in a more efficient dotted rule that “forgets” the names of the
nonterminals matched so far,X → ? ? . Y3. This takes further advantage of
distributivity by aggregating dotted-rule items (with+=) that will behave the
same in subsequent computation.

The variable elimination algorithm for undirected graphical models can be
viewed as repeated folding. An undirected graphical model expresses a joint

8For a dense grammar, which may have up toN4 ternary rules. Tighter bounds on grammar
size would yield tighter bounds on runtime.
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probability distribution overP,Q by marginalizing (summing) over a product
of clique potentials:

marginal(P,Q) += p1(. . . ) * p2(. . . ) * · · · * pn(. . . ).

where a function such asp5(Q,X,Y) represents a clique potential over graph
nodes corresponding to the random variablesQ,X,Y. Assume without loss of
generality that variableX appears as an argument only topk+1, pk+2, . . . , pn.
We mayeliminatevariableX by transforming to

temp(. . . ) += pk+1(. . . , X, . . . ) * · · · * pn(. . . , X, . . . ).
marginal(P,Q)+= p1(. . . ) * · · · * pk(. . . ) * temp(. . . ).

The first line no longer mentionsX because the second line sums over it. The
variable elimination algorithm applies this procedure repeatedly to the last
line to eliminate the remaining variables.9

Common subexpression elimination.Folding can also be used multiple
times to eliminate common subexpressions. Consider the following code for
bilexicalCKY parsing:

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,I,J) * constit(Z:H2,J,K).

constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)
* constit(Y:H2,I,J) * constit(Z:H,J,K).

HereX:H is syntactic sugar forntlex(X,H), meaning a nonterminalX lexicalized
at head wordH. The program effectively has two types of rewrite rule, which
pass the head word to the left or right child, respectively.

We could fold together the last two factors of the first rule toobtain

temp(Y:H,Z:H2,I,K) += constit(Y:H,I,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp(Y:H,Z:H2,I,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)

* constit(Y:H2,I,J) * constit(Z:H,J,K).

We canreusethis definition of thetemp rule to fold together the last two fac-
tors of line 3—which is the same subexpression, modulo variable renaming.
(Below, for clarity, we explicitly and harmlessly swap the names ofH2 andH
inthe temp rule.)

temp(Y:H2,Z:H,I,K) += constit(Y:H2,I,J) * constit(Z:H,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp(Y:H,Z:H2,I,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) * temp(Y:H2,Z:H,I,K).

Using the sametemp rule (modulo variable renaming) in both folding
transformations, rather than introducing a new temporary item for each fold,
gives us a constant-factor improvement in time and space.

9Determining the optimal elimination order is NP-complete.
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Definition of folding. Our definition allows an additional use of the distribu-
tive law. The original program may define the value of itemr by aggregating
values not only over free variables in the body of one rule, but also across
n rules. Thus, when defining the temp items, we also allow it to aggregate
acrossn rules. In ordinary mathematical notation, we are performing a gen-
eralized version of the following substitution:

Before After
r =

∑
i (Ei ∗ F) ⇒ r = s∗ F

s=
∑

i Ei ⇒ s=
∑

i Ei

given the distributive property
∑

i(Ei ∗F) =
(∑

i Ei
)
∗F. The common context

in the original rules is the function “multiply by expression F,” so the temp
item s plays the role ofr/F. We will generalize by allowing this common
context to be an arbitrary functionF.

We require that the rules defining the temp item,s =
∑

i Ei , be in the
programalreadybefore folding occurs. If necessary, their presence may be
arranged by a trivialdefinition introduction transformation that addsr/F =∑

i Ei . (Explicitly using the slashed itemr/F for s will ensure that the vari-
able occurrence requirement below is met.) We claim withoutproof that all
transformations in this paper are semantics-preserving inthe sense of sec-
tion 4.2.3.

Below and throughout the paper, we use the notationF[X] to denote the
literal substitution of expressionX for all instances ofµ in an expressionF
over items, even ifX contains variables that appear inF or elsewhere in the
rule containingF[X]. We assume thatµ is a distinguished item name, of the
same value type asX, and does not appear elsewhere.

Algorithm 4.3.1 (Folding transformation)

Given n distinct rules R1, . . . ,Rn in P, where each Ri has the form
r ⊕= F[Ei]. Given also a term s that unifies with the heads of exactly n
rules in the program, all of which are distinct from the Ri , and which re-
spectively take the form s⊙= Ei after this unification.
Then the folding transformation deletes the rules R1, . . . ,Rn, replacing
them with a new rule r⊕= F[s], provided that

.Any variable that occurs in any of the Ei which also occurs in either F
or r must also occur in s.10

.Either⊕= or ⊙= is simply=,11or else the distributive propertyJF[x ⊙ y]K =
JF[x]K ⊕ JF[y]K holds for all assignments of terms to variables and all val-
uation functionsJ·K.12
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As a tricky example, one can replacer += p(I,J) * log(q(J,K)) with r += p(I,J)
* log(s(J)) in the presence ofs(J) *= q(J,K). HereE1 is q(J,K), andF[x] is p(I,J)
* log(x).

4.4 Unfolding

In general, a folding transformation leaves the asymptoticruntime alone, or
may improve it when combined with the distributive law.13 Thus, the inverse
of the folding transformation, calledunfolding, makes the asymptotic time
complexity the same or worse. However, unfolding may be advantageous as
a precursor to some other transformation that improves runtime. It also saves
space. Sometimes we can improve both time and space complexity by unfold-
ing and then transforming the program further.

For example, recall the bilexical CKY parser given near the end of sec-
tion 4.3. The first rule originally shown there has runtimeO(N3 · n5), since
there areN possibilities for each ofX,Y,Z and n possibilities for each of
I,J,K,H,H2. Suppose that instead of that slow rule, the original programmer
had written the following folded version:

temp3(X:H,Z:H2,I,J) += rewrite(X:H,Y:H,Z:H2) * constit(Y:H,I,J).
constit(X:H,I,K) += temp3(X:H,Z:H2,I,J) * constit(Z:H2,J,K).

This partial program has asymptotic runtimeO
(
N3 · n4 + N2 · n5

)
and needs

O
(
N2 · n4

)
space to store the items (rule heads) it derives.

By unfolding thetemp3 item—that is, substituting its definition in place
each time it is used, which uses unification and relies on distributivity—and
then trimming away its now-unneeded definition, we recover the first rule of
the original program:

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,I,J) * constit(Z:H2,J,K).

This worsens the time complexity toO
(
N3 · n5

)
, but by eliminating storage

of the temp items, it improves the space complexity toO
(
N · n3

)
. The payoff

is that now we can refold this rule differently—either as in section 4.3, or
alternatively as follows (Eisner and Satta, 1999, which misses the chance to
eliminate common subexpressions):

10This ensures thats does not sum over any variables that must remain visible in the revisedr
rule.

11For instance, in the very first example of section 4.3, thetemp item was defined using=
and therefore performed no summation. No distributivity was needed.

12That is, all valuation functions over the space of items, including dummy itemsx andy,
when extended over expressions in the usual way.

13It may either help or hurt theactual runtime, and it certainly increases the space needed to
store items’ values.
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temp4(X:H,Y:H,J,K) += rewrite(X:H,Y:H,Z:H2) * constit(Z:H2,J,K).
constit(X:H,I,K) += temp4(X:H,Y:H,J,K) * constit(Y:H,I,J).

Either way, the time complexity is nowO
(
N3 · n4 + N2 · n4

)
—better than the

original programmer’s version—while the space complexityhas increased
only back to the original programmer’sO

(
N2 · n4

)
.

Unfolding resembles inlining of a subroutine call. Section4.5 will show
how it can thus be used for program specialization—improving efficiency
by a constant factor and also enabling further transformations that improve
asymptotic efficiency.

4.5 Speculation
We now generalize folding to handle recursive rules. Thisspeculationtrans-
formation, which is novel as far as we know, is reminiscent ofgap-passing in
categorial grammar. It has many uses; we limit ourselves to two examples.

Split head-automaton grammars. We consider a restricted kind of bilexi-
cal CFG in which a head word combines with all of its right children before
any of its left children (Eisner and Satta, 1999). The “inside algorithm” be-
low14 builds uprconstit items by starting with a word and successively adding
0 or more child constituents to the right, then builds upconstit items by adding
0 or more child constituents to the left of this.

rconstit(X:H,I,K) += word(H,I,K). % 0 right children so far
rconstit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) % add right child

* rconstit(Y:H,I,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rconstit(X:H,I,K). % 0 left children so far
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) % add left child

* constit(Y:H2,I,J) * constit(Z:H,J,K).
goal += constit(s:H,0,N) * length(N).

This algorithm has runtimeO(N3 · n5) (dominated by line 4). We now
exploit the conditional independence of left children fromright children. In-
stead of building up aconstit from a particular, existingrconstit (line 3) and
then adding left children (line 4), we transform the programso it builds up the
constit item speculatively, waiting until the end to fill in each of the various
rconstit items that could have spawned it. Replace lines 3–4 with

lconstit(X0:H0,X0,J0,J0) += 1 needed only if rconstit(X0:H0,J0,K0).
lconstit(X:H0,X0,I,J0) += rewrite(X:H0,Y:H2,Z:H)

* constit(Y:H2,I,J) * lconstit(Z:H0,X0,J,J0).
needed only if rconstit(X0:H0,J0,K0).

constit(X:H0,I,K0) += lconstit(X:H0,X0,I,J0) * rconstit(X0:H0,J0,K0).

14For simplicity, this code ignores the cost of starting, “flipping,” or stopping in different non-
terminal states.
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The new temp itemlconstit(X:H0,X0,I,J0) represents theleft half of a con-
stituent. We can regard it in the categorial terms of section4.3: as the last
line illustrates, it is just a more compact notation for aconstit missing its
rconstit right half—namelyconstit(X:H0,I,K0)/rconstit(X0:H0,J0,K0), whereK0
is always a free variable, so thatlconstit need not specify any particular value
for K0.

The first lconstit rule introduces an empty left half, equivalent tocon-
stit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0). This is extended with its left children
by recursing through the secondlconstit rule, allowingX andI to diverge from
X0 andJ0 respectively. Finally, the last rule finally fills in the missing right
half rconstit.

The special filter clausesneeded only if rconstit(X0:H0,J0,K0) are added
solely for efficiency. They say that it is not necessary to build “useless” left
halves purely speculatively, but only when there is some right half for them
to combine with. Their semantics are sketched below.

In this case, the filter clause on the second rule manages to ensure that in
any lconstit(X:H, X0,I,J0) that we need to build,J0 will be the start position
of the head wordH. (Such a constraint is already true forrconstits; an empty
lconstit inherits it from therconstit filter, and passes it along to successively
wider lconstit.) Since the temp item records only this redundant position and
not K (the right boundary of the unknownrconstit), runtime falls fromO

(
n5

)

to O
(
n4

)
.

As a bonus, we can now obtain theO
(
n3

)
algorithm of Eisner and Satta

(1999). Simply unfold the instances ofconstit in the rconstit and temp rules
(i.e., replacing them withlconstit * rconstit per our new definition). Then refold
those rules differently.15

Filter clauses. Our approach to filtering is novel. Ourneeded only if clauses
may be regarded as “relaxed” versions of side conditions (Goodman, 1999).
In the denotational semantics (section 4.2.3), they relax the restrictions on
the J·K function, allowing more possible semantics (all of which, however,
preserve the semantics of the original program).

Specifically, when constructingP(r) to determine whether a ground item
r is provable and what its value is, we mayoptionally omit an instantiated
rule r ⊕r= E if it has a filter clauseneeded only if C such that no consistent
instantiation ofC has been proved. (The “consistent” instantiations are those
where variables ofC that are shared withr or E are instantiated accordingly.
Other variables, such asK0 in the example above, may have any instantiation.)

How does this help operationally, in the forward chaining algorithm?

15In each case, use arewrite to combine arconstit with an lconstit to its right (first folding the
rewrite with whichever one does not contribute the head word).
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When a rule triggers an update to a groundor non-ground item, but carries
a (partly instantiated) filter clause that does not unify with any proved item,
then the update has infinitely low priority and need not be placed on the
forward-chaining agenda. The update must still be carried out if the filter
clause is proved later.16

In the example above, forward chaining on the firstlconstit rule produces
an “zero-width”lconstit(X0:H0,X0,J0,J0) in which all variables are free.17 This
lconstit can be used anywhere; in particular, it can combine with anyrconstit,
so the filter clause says it is needed as soon asany rconstit has been proved.
The real filtering power comes when the second rule tries to build further
from the zero-widthlconstit using the second rule. ThenX0, H0, andJ0 in-
directly become bound to values in therewrite andconstit items of that rule
(because of the internal unification in the zero-widthlconstit(X0:H0,X0,J0,J0)).
Thus, the filter clause is now better instantiated, e.g.,needed only if rcon-
stit(vp:”flies”,1,K0). Only if such anrconstit has been derived (for someK0) are
we required to consider updating the clause head, e.g.,lconstit(s:”flies”,vp,0,1).

Unary rule closure. Before formalizing speculation, we informally show
another instructive application: precomputing unary ruleclosure in a CFG.
We start with a version of the inside algorithm that allows nonterminal unary
rules:

program fragment P0:
constit(X,I,K) += rewrite(X,W) * word(W,I,K).
constit(X,I,K) += rewrite(X,Y) * constit(Y,I,K).
constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

Suppose that the grammar rules include, among others,

program fragment P0: (continued)
rewrite(np1,np3) = 0.1.
rewrite(np3,np2) = 0.2.
rewrite(np2,np3) = 0.3.
rewrite(np3,det,n)= 0.4. . . .

We canunfoldthe grammar into the program to get rules such as

program fragment P1:
constit(np1,I,K) += 0.1 * constit(np3, I, K).
constit(np3,I,K) += 0.2 * constit(np2, I, K).
constit(np2,I,K) += 0.3 * constit(np3, I, K).

16Sometimes a filter is true, causing the update, but later becomes false. For instance,rcon-
stit(vp:”flies”,1,K0) may no longer be provable after sentence-specificword(. . . ) axioms are re-
tracted. Because the update is now optional, the algorithm is not required to retract the update
(at least not on that basis), although it is free to do so in order to reclaim memory. This optional-
ity is useful in some of our examples below: entries will be filled into the unary-rule-closure and
left-corner tables only as needed, but need not be retractedafter each sentence and then rederived.

17As well as adding 1 to any other items that specialize and override this one.
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constit(np3,I,K) += 0.4 * constit(det, I, J) * constit(n, J, K). . . .

This amounts to program specialization. If we have unfolded(at least)
the unary rewrite rules into the program, we can now apply speculation to
eliminate them “offline”:

program fragment P2:
temp(X0,X0) += 1 needed only if constit(X0,I0,K0).
temp(np1,X0) += 0.1 * temp(np3,X0).
temp(np3,X0) += 0.2 * temp(np2,X0).
temp(np2,X0) += 0.3 * temp(np3,X0).
constit(X,I0,K0) += temp(X,X0) * other(constit(X0,I0,K0)).
other(constit(np3,I,K)) += 0.4 * constit(det,I,J) * constit(n,J,K). . . .

For any nonterminalsX andY, our temporary itemtemp(X,X0) is just com-
pact notation forconstit(X,I0,K0)/constit(X0,I0,K0): the inside probability of de-
riving a constit(X,I0,K0) by a sequence of 0 or more unary rules from acon-
stit(X0,I0,K0) that covers the same spanI0–K0. In other words, it is the total
probability of all (possibly empty) unary-rewrite chainsX→∗ X0.

The final two rules recover unslashedconstit items.other(constit(X,I,K)) is
any constit(X0,I,K) whose derivation doesnot begin with a unary rule. The
next-to-last rule builds this intoconstit(X,I,J) through a sequence of 0 or more
unary rules.

Crucially, thetemp(X,X0) items have values that areindependent ofI and
K. So they need not be computed separately for every span in every sentence.
For each nonterminalX0, all temp(X,X0) values will be computed once and for
all (the very first time aconstit(X0,I,K) constituent is built) by iterating the first
three rules below to convergence. These values will then remain static while
the grammar does, even if the sentence changes (see footnote16).

Definition of speculation. In general, the value of a slashed item is afunc-
tion, just like the semantics of a slashed constituent in categorial grammar.
Also as in categorial grammar, gaps are introduced with the identity function,
passed with function composition, and eliminated with function application.
Fortunately, in commutative semiring-weighted programs like the ones above,
all functions have the form “multiply byx” for some weightx. We can rep-
resent such a function simply asx, using semiring 1 for the identity function,
semiring multiplication for both composition and application, and semiring
addition for pointwise addition.

Algorithm 4.5.1 (Speculation transformation)
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Let a be an item to slash out, where any variables in a do not occur else-
where inP. Let slash andother be functors that do not already appear in
P. Let R1, . . . ,Rn be distinct rules inP, where each Ri is ri ⊕i= Fi [ti ], and
• For i ≤ k, ti does not unify with a.
• For i > k, ti unifies with a; more strongly, it matches a non-empty subset
of the ground terms that a does.18

• Certain conditions on distributivity (satisfied by semiring programs).
Then the speculation transformation constructs the following new pro-
gram, in which the values ofslash items are functions,⊕i is extended to
sum functions pointwise,◦ denotes function composition, and F[x] denotes
function application.
• slash(a,a) ⊕a= (λx. x) needed only if a.
• (∀1 ≤ i ≤ n) slash(r i ,a) ⊕i= Fi ◦ slash(ti ,a) needed only if a.
• (∀1 ≤ i ≤ k) other(r i) ⊕i= Fi [other(ti)].
• (∀ rulesp ⊕= q not among the Ri) other(p) ⊕= q.19

• X ⊕X= other(X) unless X is an instance of a.
• X ⊕X= (slash(X,a))[other(a)].20

Intuitively, other(X) accumulates ways of buildingX other than instantia-
tions ofFi1[Fi2[· · ·Fi j [a]]] for j > 0.slash(X,a) aggregates all instantiations of
the functionλx.Fi1[Fi2[· · · Fi j [x]]] for j ≥ 0. This pointwise sum of functions
is only applied toother(. . . ) items, to prevent double-counting (analogous to
spurious ambiguity in a categorial grammar).

To apply this formal transformation in the unary-rule elimination exam-
ple, takea=constit(X0,I0,K0), and theRi to be the “unary”constit rules, where
eachti is the last item in the body ofRi . Herek = 0. The resulting slashed
items have the formslash(constit(X,I,K), constit(X0,I0,K0)), but the rules would
only derive instances whereI=I0 and K=K0. All such rules are filtered by
needed only if constit(X0,I0,K0).21

To apply the transformation in the split head-automaton example, take
a=constit(X0:H0,J0,K0), theRi to be the two rules definingconstit, eachti to
be the last item in the body ofRi , andk = 1.22

18By adding side conditions, any rule can be split into ani ≤ k rule, ani > k rule, and a rule
not among theRi .

19Typically, many of theother(. . . ) items can be unfolded and then their defining rules re-
moved. This is why few or none remained in the informal examples above.

20In the final two rules,X ranges over the entire universe of terms. Recall that⊕X is the
aggregation operator forX. One could construct separate rules for items aggregated with different
operators.

21In this example, the efficiency filters are redundant on rules after the first. Runtimeanalysis
or (perhaps) static analysis would show that they have no actual filtering effect, allowing us to
eliminate them.

22In this program,all constits are built fromrconstits usingR1 andR2, soother(constit(. . . ))
has no derivations. Concretely, the single rule that the transformation generates to define
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4.6 Converting bottom-up to top-down
4.6.1 Magic Templates

Finally, we give an important transformation that explainsand generalizes the
way that speculation introducedneeded only if filters.

The bottom-up “forward-chaining” execution strategy mentioned in sec-
tion 4.2.4 will compute the values for all provable items. Many of these items
may, however, be irrelevant in the sense that they do not contribute directly
or indirectly to the value ofgoal. (In parsing, they are legal constituents that
do not lead to a complete parse.) We can avoid generation of these irrele-
vant items by employing the magic templates transformation(Ramakrishnan,
1991), which prevents an item from being built unless it willhelp lead to a
“desired” item.

We need the value of a theoremfoo if it occurs in in the body of a rule
where (1) we need the value of the rule’s head and (2) we have already derived
the items precedingfoo in the rule’s body.23 For example, in the CKY parsing
rule

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

we needconstit(Y,I,J) (for a particularY,I,J) if we needconstit(X,I,K) (for some
X,K) and we already know thatrewrite(X,Y,Z) is provable (for someZ), which
we denote?rewrite(X,Y,Z).24 Hence

magic(constit(Y,I,J)) | = magic(constit(X,I,K)) & ?rewrite(X,Y,Z).

For example, the above rule may derivemagic(constit(vp,1,J)) as true. That
means it is worthwhile to look forvp objectsstartingat position 1. Theend-
ing positionJ is unspecified—a free variable. Ramakrishnan (1991)’s original
presentation drops such superfluous variables to obtain a dynamic program-
ming version:

magic constit(Y,I)) | = magic(constit(X,I,K)) & ?rewrite(X,Y,Z).

Ramakrishnan’s move is not necessary for the present section, but it improves
efficiency, and will simplify section 4.6.2.

Here are all the magic rules for CKY parsing (section 4.2.2):

magic goal | = true.
magic constit(s,0) | = magic goal.

other(constit(. . . )) depends onother(constit(. . . )) itself, so it can never be derived from the ax-
ioms (and may be trimmed away as useless).

23This left-to-right order within a rule is traditional, but any order would do.
24It would not be appropriate to writeneeded only if rewrite(X,Y,Z). Therewrite item is part

of the definition of whether the magic item should be true or false—not simply a condition on
whether a more lenient definition of magic (which would serveas a less effective filter) is worth
deriving. As a concrete consequence, usingneeded only if rewrite(X,Y,Z) below would derive a
magic item in whichY remained a free variable, a lenient definition that would license the main
program to derive many uselessconstit items.
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magic constit(Y,I) | = magic constit(X,I,K)) & ?rewrite(X,Y,Z).
magic constit(Z,J) | = magic constit(X,I)

& ?rewrite(X,Y,Z) & ?constit(Y,I,J).

Then, we modify the rules of the original program, addingmagic foo as a
filter on the derivation offoo:

constit(X,I,K) + = rewrite(X,W) * word(W,I,K)
needed only if magic constit(X,I).

constit(X,I,K) + = rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K)
needed only if magic constit(X,I).

goal + = constit(s,0,N) * length(N) needed only if magic goal.

This transformed program uses forward chaining to simulatebackward chain-
ing (though perhaps a breadth-first version of backward chaining). Since we
ultimately want the value ofgoal (or derivations ofgoal), we setmagic goal=true.
That causes us to derivemagic constit facts at the start of the sentence, which
license the building of actualconstit items with values, which let us derive
magic constit facts later in the sentence, and so on. Remarkably, as previously
noticed by Minnen (1996), the operation of this transformedprogram is the
same as Earley’s algorithm (Earley, 1970): constituents are predicted top-
down, and built bottom-up only if they have a “customer” to the immediate
left.

Shieber et al. (1995), specifying CKY and Earley’s algorithm, remark that
“proofs of soundness and completeness [for the Earley’s case] are somewhat
more complex . . . and are directly related to the corresponding proofs for
Earley’s original algorithm.” In our perspective, the correctness of Earley’s
emerges directly from the correctness of CKY and the semantics-preserving
nature of the magic templates transformation.

Another application is “on-the-fly” intersection of weighted finite-state au-
tomata, which recalls the left-to-right nature of Earley’salgorithm. Intersec-

tion of arcsQ
X
→ R in machinesM1 andM2, bearing the same symbolX, is

accomplished by multiplying their weights:

arc(M1:M2,Q1:Q2,R1:R2,X) += arc(M1,Q1,R1,W) * arc(M2,Q2,R2,X).

But this pairs all compatible arcs in all known machines (including the new
machineM1:M2, leading to infinite regress). A magic templates transforma-
tion can restrict to arcs that actually need to be derived in the service of some
larger goal (e.g., summing over selected paths from a specified paired start
stateQ1:Q2).

4.6.2 Second-order magic

Using magic templates to change to a top-down computation order will still
allow some irrelevant items to be derived. Not all items we “need” to derive a
value forgoal, according to a top-down search fromgoal, will actually turn out
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to be provable bottom-up. This may lead to too much top-down exploration:
Earley’s algorithm may predict many categories such asvp at position 1 (i.e.,
derivemagic(constit(vp,1,J))) when there is not even a possible verb at position
1.

We can therefore apply the magic templates transformation asecond time,
to the rules that defined the first-order magic items. This yields second-order
magic items of the formmagic magic foo, meaning “we need to realize that
we need to buildfoo”:

magic magic goal | = magic magic constit(s,0).
magic magic constit(X,I) | = magic magic constit(Y,I) & ?rewrite(X,Y,Z).
magic magic constit(X,I) | = magic magic constit(Z,J)

& ?rewrite(X,Y,Z) & ?constit(Y,I,J).

They can be added asneeded only if filter clauses that limit Earley’s “predict”
rules (i.e., the rules that derive the first-ordermagic items). As before,K re-
mains free. Consider in particular the second rule above, which says that if
Earley’s can wisely predictY at positionI, it can also wisely predictX and
(by recursion) any other nonterminal of whichY is a left corner. (Using spec-
ulation to abstract away from the sentence positionI, we could build up a left
corner table offline.)

The base case of this left-corner computation comes from enchanting one
of the rules thatusesrather thandefinesa first-order magic item,25

constit(X,I,K) + = rewrite(X,W) * word(W,I,K)
needed only if magic constit(X,I).

to obtain

magic magic constit(X,I) | = ?rewrite(X,W) & ?word(W,I,K).

Thus, the second-order predicates will constrain top-downprediction at
position I to predict only nonterminals that are left-corner compatible with
the wordW at I. In short, we have derived the left-corner filter on Earley’sal-
gorithm, by repeating the same transformation that derivedEarley’s algorithm
in the first place!

4.7 Conclusions

We introduced a weighted logic programming formalism for describing a
wide range of useful algorithms. After sketching its denotational and opera-
tional semantics, we outlined a number of fundamental techniques—program
transformations—for rearranging a weighted logic programto make it more
efficient.

25We do not show the enchantments of the other such rules, as they do not add any further
power.
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In addition to exploiting several known logic programming transforma-
tions, we described a weighted extension of folding and unfolding, and pre-
sented the speculation transformation, a substantial generalization of folding.

We showed that each technique was connected to ideas in both logic pro-
gramming and in parsing, and had multiple uses in NLP algorithms. We re-
covered several known parsing optimizations by applying reusable transfor-
mations: for example, Earley’s algorithm, the left-cornerfilter, parser special-
ization, offline unary rule cycle elimination, and the bilexical parsingtech-
niques from (Eisner and Satta, 1999).

We noted throughout how program transformations could be simplified by
allowing the resulting programs to derive non-ground items. One important
tool was our proposedneeded only if filter.

The paradigm and techniques presented here may be directly useful to
algorithm designers as well as to those who are interested informalisms for
specifying and manipulating algorithms.
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On Theoretical and Practical Complexity
of TAG Parsers
C G́-Rı́, M A. A, M V

Abstract
We present a system allowing the automatic transformation of parsing schemata to

efficient executable implementations of their corresponding algorithms. This system can
be used to easily prototype, test and compare different parsing algorithms. In this work,
it has been used to generate several different parsers for Context Free Grammars and
Tree Adjoining Grammars. By comparing their performance ondifferent sized, artifi-
cially generated grammars, we can measure their empirical computational complexity.
This allows us to evaluate the overhead caused by using Tree Adjoining Grammars to
parse context-free languages, and the influence of string and grammar size on Tree Ad-
joining Grammars parsing.

Keywords PS, CC, TAG-
, C F G

5.1 Introduction

The process of parsing, by which we obtain the structure of a sentence as a
result of the application of grammatical rules, is a highly relevant step in the
automatic analysis of natural languages. In the last decades, various parsing
algorithms have been developed to accomplish this task. Although all of these
algorithms essentially share the common goal of generatinga tree structure
describing the input sentence by means of a grammar, the approaches used
to attain this result vary greatly between algorithms, so that different parsing
algorithms are best suited to different situations.

Parsing schemata, introduced in (Sikkel, 1997), provide a formal, simple
and uniform way to describe, analyze and compare different parsing algo-
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rithms. The notion of a parsing schema comes from considering parsing as a
deduction process which generates intermediate results called items. An ini-
tial set of items is directly obtained from the input sentence, and the parsing
process consists of the application of inference rules (called deductive steps)
which produce new items from existing ones. Each item contains a piece of
information about the sentence’s structure, and a successful parsing process
will produce at least onefinal itemcontaining a full parse tree for the sentence
or guaranteeing its existence.

Almost all known parsing algorithms may be described by a parsing
schema (non-constructive parsers, such as those based on neural networks,
are exceptions). This is done by identifying the kinds of items that are used
by a given algorithm, defining a set of inference rules describing the legal
ways of obtaining new items, and specifying the set of final items.

As an example, we introduce a CYK-based algorithm (Vijay-Shanker and
Joshi 1985) for Tree Adjoining Grammars (TAG) (Joshi and Schabes 1997).
Given a tree adjoining grammarG = (VT ,VN,S, I ,A)1 and a sentence of
length n which we denote bya1 a2 . . . an

2, we denote byP(G) the set of
productions{Nγ → Nγ

1 Nγ
2 . . .N

γ
r } such thatNγ is an inner node of a tree

γ ∈ (I ∪A), andNγ

1 Nγ

2 . . .N
γ
r is the ordered sequence of direct children ofNγ.

The parsing schema for the TAG CYK-based algorithm is a function that
maps such a grammar G to a deduction system whose domain is theset of
items

{[Nγ, i, j, p, q, ad j]}

verifying thatNγ is a tree node in an elementary treeγ ∈ (I ∪ A), i and j
(0 ≤ i ≤ j) are string positions,p andq may be undefined or instantiated to
positionsi ≤ p ≤ q ≤ j (the latter only whenγ ∈ A), andad j ∈ {true, f alse}
indicates whether an adjunction has been performed on nodeNγ.

The positionsi and j indicate that a substringai+1 . . .a j of the string is
being recognized, and positionsp andq denote the substring dominated by
γ’s foot node. The final item set would be

{[Rα, 0, n,−,−, ad j] | α ∈ I }

for the presence of such an item would indicate that there exists a valid parse
tree with yielda1 a2 . . . an and rooted atRα, the root of an initial tree; and
therefore there exists a complete parse tree for the sentence.

1WhereVT denotes the set of terminal symbols,VN the set of nonterminal symbols,S the
axiom, I the set of initial trees andA the set of auxiliary trees.

2From now on, we will follow the usual conventions by which nonterminal symbols are rep-
resented by uppercase letters (A, B . . .), and terminals by lowercase letters (a, b . . .). Greek letters
(α, β...) will be used to represent trees,Nγ a node in the treeγ, andRγ the root node of the tree
γ.
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A deductive stepη1...ηm

ξ
Φ allows us to infer the item specified by its con-

sequentξ from those in its antecedentsη1 . . . ηm. Side conditions(Φ) specify
the valid values for the variables appearing in the antecedents and consequent,
and may refer to grammar rules or specify other constraints that must be ver-
ified in order to infer the consequent. An example of one of theschema’s
deductive steps would be the following, where the operationp∪ p′ returnsp
if p is defined, andp′ otherwise:

CYK B:

[Oγ
1, i, j′, p, q, ad j1]

[Oγ
2, j′, j, p′, q′, ad j2]

[Mγ, i, j, p∪ p′, q∪ q′, f alse]
Mγ → Oγ

1Oγ

2 ∈ P(G)

This deductive step represents the bottom-up parsing operation which joins
two subtrees into one, and is analogous to one of the deductive steps of the
CYK parser for Context-Free Grammars (Kasami 1965, Younger1967). The
full TAG CYK parsing schema has six deductive steps (or seven, if we work
with TAGs supporting the substitution operation) and can befound at (Alonso
et al., 1999). However, this sample deductive step is an example of how pars-
ing schemata convey the fundamental semantics of parsing algorithms in sim-
ple, high-level descriptions. A parsing schema defines a setof possible in-
termediate results and allowed operations on them, but doesn’t specify data
structures for storing the results or an order for the operations to be executed.

5.2 Compilation of parsing schemata
Their simplicity and abstraction of low-level details makes parsing schemata
very useful, allowing us to define parsers in a simple and straightforward
way. Comparing parsers, or considering aspects such as their correction and
completeness or their computational complexity, also becomes easier if we
think in terms of schemata.

However, the problem with parsing schemata is that, although they are very
useful when designing and comparing parsers with pencil andpaper, they
cannot be executed directly in a computer. In order to execute the parsers
and analyze their results and performance they must be implemented in a
programming language, making it necessary to abandon the high abstraction
level and focus on the implementation details in order to obtain a functional
and efficient implementation.

In order to bridge this gap between theory and practice, we have de-
signed and implemented a compiler able to automatically transform parsing
schemata into efficient Java implementations of their corresponding algo-
rithms. The input to this system is a simple and declarative representation of
a parsing schema, which is practically equal to the formal notation that we
used previously. For example, this is the CYK deductive stepwe have seen
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as an example in a format readable by our compiler:

@step CYKBinary
[ Node1 , i , j’ , p , q , adj1 ]
[ Node2 , j’ , j , p’ , q’ , adj2 ]
----------------------------------------------------- Node3 -¿ Node1 Node2
[ Node3 , i , j , Union(p;p’) , Union(q;q’) , false ]

The parsing schemata compilation technique behind our system is based
on the following fundamental ideas:

. Each deductive step is compiled to a Java class containing code to match
and search for antecedent items and generate the corresponding conclu-
sions from the consequent.. The generated implementation will create an instance of this class for each
possible set of values satisfying the side conditions that refer to production
rules. For example, a distinct instance of the CYK B step will be cre-
ated for each grammar rule of the formMγ → Oγ

1Oγ

2 ∈ P(G), as specified
in the step’s side condition.. The step instances are coordinated by a deductive parsing engine, as the
one described in (Shieber et al., 1995). This algorithm ensures a sound
and complete deduction process, guaranteeing that all items that can be
generated from the initial items will be obtained. It is a generic, schema-
independent algorithm, so its implementation is the same for any parsing
schema. The engine works with the set of all items that have been gener-
ated and anagenda, implemented as a queue, holding the items we have
not yet tried to trigger new deductions with.. In order to attain efficiency, an automatic analysis of the schema is per-
formed in order to create indexes allowing fast access to items. Two kinds
of index structures are generated:existence indexesare used by the parsing
engine to check whether a given item exists in the item set, while search
indexesare used to search for all items conforming to a given specifica-
tion. As each different parsing schema needs to perform different searches
for antecedent items, the index structures that we generateare schema-
specific. Each deductive step is analyzed in order to keep track of which
variables will be instantiated to a concrete value when a search must be
performed. This information is known at schema compilationtime and al-
lows us to create indexes by the elements corresponding to instantiated
variables. In this way, we guarantee constant-time access to items so that
the computational complexity of our generated implementations is never
above the theoretical complexity of the parsing algorithms.. Deductive step indexesare also generated to provide efficient access to the
set of deductive step instances which can be applicable to a given item.
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Step instances that are known not to match the item are filtered out by
these indexes, so less time is spent on unsuccessful item matching.

. Since parsing schemata have an open notation, for any mathematical ob-
ject can potentially appear inside items, the system includes an extensibil-
ity mechanism which can be used to define new kinds of objects to use
in schemata. The code generator can deal with these user-defined objects
as long as some simple and well-defined guidelines are followed in their
specification.

A more detailed description of this system, including a morethorough ex-
planation of automatic index generation, can be found at (G´omez-Rodrı́guez
et al., 2006b).

5.3 Parsing natural language CFG’s

Although our main focus in this paper is on performance of TAGparsing al-
gorithms, we will briefly outline the results of some experiments on Context-
Free Grammars (CFG), described in further detail in (Gómez-Rodrı́guez
et al., 2006b), in order to be able to contrast TAG and CFG parsing.

Our compilation technique was used to generate parsers for the CYK
(Kasami 1965, Younger 1967), Earley (Earley 1970) and Left-Corner (Rosenkrantz
and Lewis II 1970) algorithms for context-free grammars, and these parsers
were tested on automatically-generated sentences from three different natu-
ral language grammars: Susanne (Sampson 1994), Alvey (Carroll 1993) and
Deltra (Schoorl and Belder 1990). The runtimes for all the algorithms and
grammars showed an empirical computational complexity farbelow the the-
oretical worst-case bound ofO(n3), wheren denotes the length of the input
string. In the case of the Susanne grammar, the measurementswere close to
being linear with string size. In the other grammars, the runtimes grew faster,
approximatelyO(n2), still far below the cubic worst-case bound.

Another interesting result was that the CYK algorithm performed better
than the Earley-type algorithms in all cases, despite beinggenerally consid-
ered slower. The reason is that these considerations are based on time com-
plexity relative to string length, and do not take into account time complexity
relative to grammar size, which isO(|P|) for CYK andO(|P|)2 for the Earley-
type algorithms. This factor is not very important when working with small
grammars, such as the ones used for programming languages, but it becomes
fundamental when we work with natural language grammars, where we use
thousands of rules (more than 17,000 in the case of Susanne) to parse rel-
atively small sentences. When comparing the results from the three context-
free grammars, we observed that the performance gap betweenCYK and Ear-
ley was bigger when working with larger grammars.
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5.4 Parsing artificial TAG’s

In this section, we make a comparison of four different TAG parsing al-
gorithms: the CYK-based algorithm used as an example in section 5.1, an
Earley-based algorithm without the valid prefix property (described in Alonso
et al. 1999, inspired in the one in Schabes 1994), an Earley-based algorithm
with the valid prefix property (Alonso et al. 1999) and Nederhof’s algorithm
(Nederhof 1999). These parsers are compared on artificiallygenerated gram-
mars, by using our schema compiler to generate implementations and mea-
suring their execution times with several grammars and sentences.

Note that the advantage of using artificially generated grammars is that we
can easily see the influence of grammar size on performance. If we test the
algorithms on grammars from real-life natural language corpora, as we did
with the CFG parsers, we don’t get a very precise idea of how the size of the
grammar affects performance. Since our experience with CFG’s showed this
to be an important factor, and existing TAG parser performance comparisons
(e.g. Dı́az and Alonso 2000) work with a fixed (and small) grammar, we de-
cided to use artificial grammars in order to be able to adjust both string size
and grammar size in our experiments and see the influence of both factors.

For this purpose, given an integerk > 0, we define the tree-adjoining
grammarGk to be the grammarGk = (VT ,VN,S, I ,A) whereVT = {a j |0 ≤
j ≤ k}, VN = {S, B}, and

I = {S(B(a0))}3,
A = {B(B(B∗ a j))|1 ≤ j ≤ k}.
Therefore, for a givenk, Gk is a grammar with one initial tree andk

auxiliary trees, which parses a language over an alphabet with k + 1 ter-
minal symbols. The actual language defined byGk is the regular language
Lk = a0(a1|a2|..|ak)∗. 4 We shall note that although the languagesLk are triv-
ial, the grammarsGk are built in such a way that any of the auxiliary trees
may adjoin into any other. Therefore these grammars are suitable if we want
to make an empyrical analysis of worst-case complexity.

Table 1 shows the execution time in milliseconds5 of four TAG parsers
with the grammarsGk, for different values of string length (n) and grammar
size (k).

From this results, we can observe that both factors (string length and gram-

3Where trees are written in bracketed notation, and * is used to denote the foot node.
4Also, it is easy to prove that the grammarGk is one of the minimal tree adjoining grammars

(in terms of number of trees) whose associated language isLk. Note that we need at least a tree
containinga0 as its only terminal in order to parse the sentencea0, and for each 1≤ i ≤ k, we
need at least a tree containingai and no otheraj ( j > 0) in order to parse the sentencea0ai .
Therefore, any TAG for the languageLk must have at leastk+ 1 elementary trees.

5The machine used for all the tests was an Intel Pentium 4 3.40 GHz, with 1 GB RAM and
Sun Java Hotspot virtual machine (version 1.4.201-b06) running on Windows XP.



O T  P C  TAG P / 67

Runtimes in ms: Earley-based without the VPP

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 16 15 1,156 109,843
4 ∼0 31 63 2,578 256,094
8 16 31 172 6,891 589,578

16 31 172 625 18,735 1,508,609
32 110 609 3,219 69,406
64 485 2,953 22,453 289,984

128 2,031 13,875 234,594
256 10,000 101,219
512 61,266

Runtimes in ms: CYK-based

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 16 1,344 125,750
4 ∼0 ∼0 63 4,109 290,187
8 16 31 234 15,891 777,968

16 15 62 782 44,188 2,247,156
32 94 312 3,781 170,609
64 266 2,063 25,094 550,016

128 1,187 14,516 269,047
256 6,781 108,297
512 52,000

Runtimes in ms: Nederhof’s Algorithm

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 47 1,875 151,532
4 ∼0 15 187 4,563 390,468
8 15 31 469 12,531 998,594

16 46 188 1,500 40,093 2,579,578
32 219 953 6,235 157,063
64 1,078 4,735 35,860 620,047

128 5,703 25,703 302,766
256 37,125 159,609
512 291,141

Runtimes in ms: Earley-based with the VPP

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 31 1,937 194,047
4 ∼0 16 78 4,078 453,203
8 15 31 234 10,922 781,141

16 31 188 875 27,125 1,787,140
32 125 750 4,141 98,829
64 578 3,547 28,640 350,218

128 2,453 20,766 264,500
256 12,187 122,797
512 74,046

TABLE 1 Execution times of four different TAG parsers for artificially-generated
grammarsGk. Best results are shown in boldface.
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mar size) have an influence on runtime, and they interact between themselves:
the growth rates with respect to one factor are influenced by the other factor,
so it is hard to give precise estimates of empirical computational complexity.
However, we can get rough estimates by focusing on cases where one of the
factors takes high values and the other one takes low values (since in these
cases the constant factors affecting complexity will be smaller) and test them
by checking whether the sequenceT(n, k)/ f (n) seems to converge to a pos-
itive constant for each fixedk (if f (n) is an estimation of complexity with
respect to string length) or whetherT(n, k)/ f (k) seems to converge to a pos-
itive constant for each fixedn (if f (k) is an estimation of complexity with
respect to grammar size).

By applying these principles, we find that the empirical timecomplexity
with respect to string length is in the range betweenO(n2.8) andO(n3) for the
CYK-based and Nederhof algorithms, and betweenO(n2.6) andO(n3) for the
Earley-based algorithms with and without the valid prefix property (VPP).
Therefore, the practical time complexity we obtain is far below the theoreti-
cal worst-case bounds for these algorithms, which areO(n6) (except for the
Earley-based algorithm with the VPP, which isO(n7)).

Although for space reasons we don’t include tables with the number of
items generated in each case, our results show that the empirical space com-
plexity with respect to string length is approximatelyO(n2) for all the algo-
rithms, also far below the worst-case bounds (O(n4) andO(n5)).

With respect to the size of the grammar, we obtain a time complexity of
approximatelyO(|I ∪ A|2) for all the algorithms. This matches the theoreti-
cal worst-case bound, which isO(|I ∪ A|2) due to the adjunction steps, which
work with pairs of trees. In the case of our artificially generated grammar,
any auxiliary tree can adjoin into any other, so it’s logicalthat our times grow
quadratically. Note, however, that real-life grammars such as the XTAG En-
glish grammar (XTAG Research Group 2001) have relatively few different
nonterminals in relation to their amount of trees, so many pairs of trees are
susceptible of adjunction and we can’t expect their behavior to be much better
than this.

Space complexity with respect to grammar size is approximatelyO(|I ∪A|)
for all the algorithms. This is an expected result, since each generated item is
associated to a given tree node.

Practical applications of TAG in natural language processing usually fall
in the range of values forn andk covered in our experiments (grammars with
hundreds or a few thousands of trees are used to parse sentences of several
dozens of words). Within these ranges, both string length and grammar size
take significant values and have an important influence on execution times,
as we can see from the results in the tables. This leads us to note that tradi-
tional complexity analysis based on a single factor (stringlength or grammar
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size) can be misleading for practical applications, since it can lead us to an
incomplete idea of real complexity. For example, if we are working with a
grammar with thousands of trees, the size of the grammar is the most influ-
ential factor, and the use of filtering techniques (Schabes and Joshi 1991) to
reduce the amount of trees used in parsing is essential in order to achieve
good performance. The influence of string length in these cases, on the other
hand, is mitigated by the huge constant factors related to grammar size. For
instance, in the times shown in the tables for the grammarG4096, we can see
that parsing times are multiplied by a factor less than 3 whenthe length of the
input string is duplicated, although the rest of the resultshave lead us to con-
clude that the practical asymptotic complexity with respect to string length is
at leastO(n2.6). These interactions between both factors must be taken into
account when analyzing performance in terms of computational complexity.

Earley-based algorithms achieve better execution times than the CYK-
based algorithm for large grammars, although they are worsefor small gram-
mars. This contrasts with the results for context-free grammars, where CYK
works better for large grammars: when working with CFG’s, CYK has a bet-
ter computational complexity than Earley (linear with respect to grammar
size, see section 5.3), but the TAG variant of the CYK algorithm is quadratic
with respect to grammar size and does not have this advantage.

CYK generates fewer items than the Earley-based algorithmswhen work-
ing with large grammars and short strings, and the opposite happens when
working with small grammars and long strings.

The Earley-based algorithm with the VPP generates the same number of
items than the one without this property, and has worse execution times. The
reason is that no partial parses violating this property aregenerated by any
of both algorithms in the particular case of this grammar, soguaranteeing the
valid prefix property does not prevent any items from being generated. There-
fore, the fact that the variant without the VPP works better in this particular
case cannot be extrapolated to other grammars. However, thedifferences in
times between these two algorithms illustrates the overhead caused by the ex-
tra checks needed to guarantee the valid prefix property in a particularly bad
case.

Nederhof’s algorithm has slower execution times than the other Earley
variants. Despite the fact that Nederhof’s algorithm is an improvement over
the other Earley-based algorithm with the VPP in terms of computational
complexity, the extra deductive steps it contains makes it slower in practice.

5.5 Parsing the XTAG English grammar

In order to complement our performance comparison of the four algorithms
on artificial grammars, we have also studied the behavior of the parsers
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when working with a real-life, large-scale TAG: the XTAG English gram-
mar (XTAG Research Group 2001).

The obtained execution times are in the ranges that we could expect given
the artificial grammar results, i.e. they approximately match the times in the
tables for the corresponding grammar sizes and input stringlengths. The most
noticeable difference is that the Earley-like algorithm verifying the valid pre-
fix property generates fewer items that the variant without the VPP in the
XTAG grammar, and this causes its runtimes to be faster. But this difference
is not surprising, as explained in the previous section.

Note that, as the XTAG English grammar has over a thousand elementary
trees, execution times are very large (over 100 seconds) when working with
the full grammar, even with short sentences. However, when atree selection
filter is applied in order to work with only a subset of the grammar in function
of the input string, the grammar size is reduced to one or two hundred trees
and our parsers process short sentences in less than 5 seconds. Sarkar’s XTAG
distribution parser written in C6 applies further filtering techniques and has
specific optimizations for this grammar, obtaining better times for the XTAG
than our generic parsers.

Table 2 contains a summary of the execution times obtained byour parsers
for some sample sentences from the XTAG distribution. Note that the gen-
erated implementations used for these executions apply thementioned tree
filtering technique, so that the effective grammar size is different for each
sentence, hence the high variability in execution times. More detailed infor-
mation on these experiments with the XTAG English grammar can be found
at (Gómez-Rodrı́guez et al., 2006a).

5.6 Overhead of TAG parsing over CFG parsing

The languagesLk that we parsed in section 5.4 were regular languages, so in
practice we don’t need tree adjoining grammars to parse them, although it was
convenient to use them in our comparison. This can lead us to wonder how
large is the overhead caused by using the TAG formalism to parse context-free
languages.

Given the regular languageLk = a0(a1|a2|..|ak)∗, a context-free grammar
that parses it isG′k = (N,Σ,P,S) with N = {S} and

P = {S→ a0} ∪ {S→ S ai |1 ≤ i ≤ k}

This grammar minimizes the number of rules needed to parseLk (k + 1
rules), but has left recursion. If we want to eliminate left recursion, we can
use the grammarG′′k = (N,Σ,P,S) with N = {S,A} and

6Downloadable at: ftp://ftp.cis.upenn.edu/pub/xtag/lem/
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Sentence
Runtimes in milliseconds

CYK
Ear. no
VPP

Ear.
VPP Neder.

He was a cow 2985 750 750 2719
He loved himself 3109 1562 1219 6421
Go to your room 4078 1547 1406 6828
He is a real man 4266 1563 1407 4703
He was a real man 4234 1921 1421 4766
Who was at the door 4485 1813 1562 7782
He loved all cows 5469 2359 2344 11469
He called up her 7828 4906 3563 15532
He wanted to go to the city 10047 4422 4016 18969

That woman in the city contributed to
this article 13641 6515 7172 31828

That people are not really amateurs at
intelectual duelling 16500 7781 15235 56265

The index is intended to measure future
economic performance 16875 17109 9985 39132

They expect him to cut costs through-
out the organization 25859 12000 20828 63641

He will continue to place a huge burden
on the city workers 54578 35829 57422 178875

He could have been simply being a jerk 62157 113532 109062 133515

A few fast food outlets are giving it a
try 269187 3122860 3315359

TABLE 2 Runtimes obtained by applying different XTAG parsers to several sentences.
Best results for each sentence are shown in boldface.
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P = {S→ a0A} ∪ {A→ aiA|1 ≤ i ≤ k} ∪ {A→ ǫ}

which hask+ 2 production rules.
The number of items generated by the Earley algorithm for context-free

grammars when parsing a sentence of lengthn from the languageLk by using
the grammarG′k is (k+2)n. In the case of the grammarG′′k , the same algorithm
generates (k+4)n+ n(n−1)

2 +1 items. In both cases the amount of items generated
is linear with respect to grammar size, as in TAG parsers. With respect to
string size, the amount of items isO(n) for G′k andO(n2) for G′′k , and it was
approximatelyO(n2) for the TAGGk. Note, however, that the constant factors
behind complexity are much greater when working withGk than withG′′k ,
and this reflects on the actual number of items generated (forexample, the
Earley algorithm generates 16,833 items when working withG′′64 and a string
of lengthn = 128, while the TAG variant of Earley without the valid prefix
property generated 1,152,834 items).

The execution times for both algorithms appear in table 3. From the ob-
tained times, we can deduce that the empirical time complexity is linear with
respect to string length and quadratic with respect to grammar size in the case
of G′k; and quadratic with respect to string length and linear withrespect to
grammar size in the case ofG′′k . So this example shows that, when parsing
a context-free language using a tree-adjoining grammar, weget an overhead
both in constant factors (more complex items, more deductive steps, etc.) and
in asymptotic behavior, so actual execution times can be several orders of
magnitude larger. Note that the way grammars are designed also has an in-
fluence, but our tree adjoining grammarsGk are the simplest TAGs able to
parse the languagesLk by using adjunction (an alternative would be to write
a grammar using the substitution operation to combine trees).

5.7 Conclusions

In this paper, we have presented a system that compiles parsing schemata
to executable implementations of parsers, and used it to evaluate the perfor-
mance of several TAG parsing algorithms, establishing comparisons both be-
tween themselves and with CFG parsers.

The results show that both string length and grammar size canbe impor-
tant factors in performance, and the interactions between them sometimes
make their influence hard to quantify. The influence of stringlength in prac-
tical cases is usually below the theoretical worst-case bounds (betweenO(n)
andO(n2) in our tests for CFG’s, and slightly belowO(n3) for TAG’s). Gram-
mar size becomes the dominating factor in large TAG’s, making tree filtering
techniques advisable in order to achieve faster execution times.

Using TAG’s to parse context-free languages causes an overhead both in
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n
Grammar Size (k), grammarG′k

1 8 64 512 4096
2 ∼0 ∼0 ∼0 31 2,062
4 ∼0 ∼0 ∼0 62 4,110
8 ∼0 ∼0 ∼0 125 8,265

16 ∼0 ∼0 ∼0 217 15,390
32 ∼0 ∼0 15 563 29,344
64 ∼0 ∼0 31 1,062 61,875

128 ∼0 ∼0 109 2,083 122,875
256 ∼0 15 188 4,266 236,688
512 15 31 328 8,406 484,859

n
Grammar Size (k), grammarG′′k

1 8 64 512 4096
2 ∼0 ∼0 ∼0 ∼0 47
4 ∼0 ∼0 ∼0 15 94
8 ∼0 ∼0 ∼0 16 203

16 ∼0 ∼0 ∼0 46 688
32 ∼0 ∼0 15 203 1,735
64 31 31 93 516 4,812

128 156 156 328 1,500 13,406
256 484 547 984 5,078 45,172
512 1,765 2,047 3,734 18,078

TABLE 3 Runtimes obtained by applying the Earley parser for context-free grammars
to sentences inLk.

constant factors and in practical computational complexity, thus increasing
execution times by several orders of magnitude with respectto CFG parsing.
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6

Properties of Binary Transitive Closure
Logic over Trees
S K

Abstract
Binary transitive closure logic (FO∗ for short) is the extension of first-order predicate
logic by a transitive closure operator of binary relations.It is known that this logic
is more powerful than FO on arbitrary structures and on finiteordered trees. It is also
known that it is at most as powerful as monadic second-order logic (MSO) on arbitrary
structures and on finite trees. We will study the expressive power of FO∗ on trees to
show that several MSO properties can be expressed in FO∗.

The following results will be shown.. A linear order can be defined on trees.. The class EVEN of trees with an even number of nodes can be defined.. On arbitrary structures with a tree signature, the classes of trees and finite trees can
be defined.. FO∗ is strictly more powerful than tree walking automata.

These results imply that FO∗ is neither compact nor does it have the Löwenheim-
Skolem-Upward property.

6.1 Introduction
The question about the best suited logic for describing treeproperties or defin-
ing tree languages is an important one for model theoretic syntax as well
as for querying treebanks. Model theoretic syntax is a research program in
mathematical linguistics concerned with studying the descriptive complex-
ity of grammar formalisms for natural languages by defining their derivation
trees in suitable logical formalisms. Since the very influential book by Rogers
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(1998) it is monadic second-order logic (MSO) or even more powerful logics
that are used to describe linguistic structures.

With the advent of XML and query languages for XML documents,in par-
ticular XPath, the interest in logics for querying treebanks rose dramatically.
There is now a large interest in this topic in computer science. Independent of
that, but temporarily parallel, large syntactically annotated treebanks became
available in linguistics. They provide nowadays a rich and important source
for the study of language. But in order to access this source,suitable query
languages for treebanks are required.

One of the simplest properties that are known to be inexpressible in first-
order predicate logic (FO henceforth) is the transitive closure of a binary rela-
tion. It is therefore a natural move to extend FO by a binary transitive closure
operator. And this move has been done before in the definitionof query lan-
guages for relational databases, in particular for the SQL3standard. But it
seems that the expressive power of FO plus binary transitiveclosures (FO∗

for short) to define tree properties is not much studied yet. This is somewhat
surprising, because there is reason to believe that FO∗ is more user friendly
than MSO. Most users of query languages, in particular linguists, understand
the concept of a transitive closure very well and know how to use it. It is a lot
more difficult to use set variables to describe tree properties. An example for
this claim is the fact MSO is capable of defining binary transitive closures,
as shown by Moschovakis (1974). His formula is given at the end of the next
section. It is questionable that ordinary users (without profound knowledge
of MSO) would be able to find this formula.

We propose to seriously consider FO∗ as a language for defining tree prop-
erties. We do so by showing that several important MSO definable properties
can be defined in FO∗. One such example is the ability to define a linear order
on the nodes of a tree. The order resembles depth-first left-to-right traversal
of a tree. A linear order is a powerful concept that can be useddefining ad-
ditional properties. For example, it is used to count the number of nodes in a
tree modulo a given natural number. An instance is the definition of the class
EVEN of all trees with an even number of nodes in FO∗.

Arguably an important reason for Rogers’ choice of MSO is itsability
to axiomatise trees. I.e., there exists a set of axioms such that an arbitrary
structure (of a suitable signature) is a tree – finite or infinite – iff it is a model
of the axioms. It is known that this characterisation of trees cannot be done
using FO. But the full expressive power of MSO may not really be needed
for the axiomatisation, because we show that arbitrary trees and finite trees
can be axiomatised in FO∗. This capability of axiomatising finite and infinite
trees implies that FO∗ is neither compact nor does it possess the Löwenheim-
Skolem-Upward property.

There exists a tree automaton concept that defines serial instead of paral-
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lel processing of trees, namely tree walking automata (TWA). As the name
implies, a tree is processed by walking up and down in the treeand inspect-
ing nodes serially. One may therefore believe that these automata could be
the automaton-theoretic correspondant of FO∗. But we show here that FO∗

is more powerful. Every tree language that is recognised by aTWA can be
defined in FO∗. But there are FO∗-definable tree languages that cannot be
recognised by any TWA.

6.2 Preliminaries

Let M be a set. We write℘(M) for the power set ofM. Let R ⊆ M × M be a
binary relation overM. Thetransitive closure TC(R) of R is the smallest set
containingRand for allx, y, z ∈ M such that (x, y) ∈ TC(R) and (y, z) ∈ TC(R)
we have (x, z) ∈ TC(R). I.e.,

TC(R) :=
⋂
{W | R⊆W ⊆ M × M,∀x, y, z∈ M :

(x, y), (y, z) ∈W =⇒ (x, z) ∈W}.

We consider labelled ordered unranked trees. A tree is ordered if the set
of child nodes of every node is linearly ordered. A tree is unranked if there
is no relationship between the label of a node and the number of its children.
In Sections 6.3 and 6.5 we only consider finite trees, in Section 6.4 we also
consider infinite trees.

Definition 1 A tree domainis a non-empty subsetT ⊆ N∗ such that for all
u, v ∈ N∗ : uv ∈ T =⇒ u ∈ T (closure under prefixes) and for allu ∈ N∗ and
i ∈ N : ui ∈ T =⇒ u j ∈ T for all j < i (closure under left sisters).

LetL be a set of labels. Atree is a pair (T, Lab) whereT is a tree domain
andLab : T → L is a node labelling function.

A tree isfinite iff its tree domain is finite.

We remark that a tree domain is at most countable, since it is asubset of a
countable union of countable sets.

The language to talk about trees will be an extension of first-order logic.
Its syntax is as follows. LetX = {x, y, z,w, u, x1, x2, x3, . . . } be a denumerable
infinite set of variables. The atomic formulae areL(x) for each labelL ∈ L,
x → y, and x ↓ y. Complex formulae are constructed from simpler ones
by means of the boolean connectives, existential and universal quantification,
and transitive closure. I.e., ifφ andψ are formulae, then¬φ, φ ∧ ψ, φ ∨ ψ,∃x:
φ,∀x:φ, and [TCx1,x2 φ](x, y) are formulae.

The semantics of the first-order part of the language is standard. Let
(T, Lab) be a tree. A variable assignmenta : X → T assigns variables to
nodes in the tree. The root node has the empty addressǫ. Now [[L(x)]]a = T
iff Lab(a(x)) = L. [[x ↓ y]]a = T iff a(y) = a(x)i for somei ∈ N, i.e., ↓ is
the parent relation. [[x → y]]a = T iff there is au ∈ T and i ∈ N such that
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a(x) = ui anda(y) = ui + 1, i.e.,→ is the immediate sister relation.
Boolean connectives and quantification have their standardinterpretation.

Now, [[[TCx1,x2 φ](x, y)]]a = T iff

(a(x), a(y)) ∈ TC({(b, d) | [[φ]]ab/x1d/x2 = T})

whereab/x1d/x2 is the variable assignment that is identical toa except that
x1 is assigned tob andx2 to d. If φ is a formula with free variablesx1, x2, it
can be regarded as a binary relationφ(x1, x2). Then [TCx1,x2 φ] is the transitive
closure of this binary relation. This language is abbreviated FO∗.

FO∗ is amongst the smallest extension of first-order logic. It isknown that
the transitive closure of a binary relation isnot first-order definable (Fagin,
1975). But when talking about trees, people frequently wantto talk about
paths in a tree. And a path is the transitive closure of certain base steps. FO∗

has at most the expressive power of monadic second-order logic (MSO). It
is an old result, which goes back at least to Moschovakis (1974, p. 20), that
the transitive closure of every MSO-definable binary relation is also MSO-
definable. LetR be an MSO-definable binary relation. Then

∀X (∀z,w(z ∈ X ∧ R(z,w) =⇒ w ∈ X) ∧ ∀z(R(x, z) =⇒ z ∈ X))
=⇒ y ∈ X

is a formula with free variablesx andy that defines the transitive closure ofR.
It follows that every tree language definable in FO∗ can be defined in MSO.

6.3 Definability of Order

One of the abstract insights from descriptive complexity theory is that or-
der is a very important property of structures. The relationship between cer-
tain logics and classical complexity classes is frequentlyrestricted toordered
structures, i.e., structures where the carrier is linearlyordered. The reason for
this restriction is to be found in the fact that computation is an ordered pro-
cess. Definability and non-definability results for certainlogics over ordered
structures frequently do not extend to unordered structures. It is therefore an
important property of a logic, if the logic itself is capableof expressing order
without recourse to an extended signature. The probably best known logic
with this property isΣ1

1, the extension of first-order logic by arbitrary relation
variables that are existentially quantified. It is obviously possible to define
order inΣ1

1, because we can say there is a binary relation that has all theprop-
erties of a linear order. These properties are known to be first-order properties.
It is hence the ability to say “there is a binary relation” that is the key.

There is no way that FO∗ could define order on arbitrary finite structures.
But if we only consider trees as models, FO∗ can define order. Indeed it is
possible to give a definition of the depth-first left-to-right order of nodes in a
tree (and some variants).
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Proposition 9 There is an explicit definition of a linear order of the nodes in
a tree in FO∗.

Proof. Define the proper dominance relation of treesDom(x, y) as [TCx,y x ↓
y](x, y). Similarly, define the sister relationS is(x, y) as [TCx,y x → y](x, y).
Now definex < y as

Dom(x, y) ∨ (∃w, v : S is(w, v) ∧
(w = x∨ Dom(w, x)) ∧ (v = y∨ Dom(v, y))).

The first disjunct expresses the “depth-first” part of the order. The more com-
plicated second disjunct formalises the “left-to-right” part. It expresses that
there is a common ancestor of nodesx andy and nodex is to be found on a
left branch whiley is to be found on a right branch. Care is taken that mu-
tual domination is excluded. Hence the two disjuncts are mutually exclusive.
Since the dominance and the sisterhood steps are both irreflexive, the whole
relation< is irreflexive. Furthermore for each pair of distinct nodes in a tree,
either one dominates the other, or there is a common ancestorsuch that one
node is on a left branch while the other is on a right branch. Hence the rela-
tion is total. Transitivity can easily be checked by considering the four cases
involved in expandingx < y andy < z. ⊔⊓

Note that the root node is the smallest element of the order. If the tree is
finite, the largest element is the leaf of the rightmost branch of the tree. The
root node is FO-definable via¬∃y : y ↓ x. The largest elementMax of the
order is FO∗-definable by∃x¬∃y : x < y. The successory of a nodex in the
linear order (S ucc(x, y)) is also FO∗-definable:x < y ∧ ¬∃z : x < z∧ z < y.
Using a linear order it is possible to do modulo counting on trees. That is for
n, k ∈ N we can define the class of finite trees such that each tree in theclass
hasd × n + k nodes (for somed ∈ N). As an example, we define the class
EVEN of trees with an even number of nodes (i.e,n = 2, k = 0).

Proposition 10 The class of finite trees with an even number of nodes is FO∗-
definable.

Proof. We only consider the case where a tree has more than two nodes. The
formula

∃w : S ucc(Root,w) ∧ [TCx,y∃z : S ucc(x, z) ∧ S ucc(z, y)](w,Max)

expresses that we go in one step from the root to its successorw. From w
we can reach the last element of the order by an arbitrary number of two
successor steps. If we take the two-successors-step path through the linear
order from the root to the maximum, we have an odd number of nodes, since
a path ofn double-successor-steps hasn+ 1 nodes. ⊔⊓

Corollary 11 FO∗ hasnonormal form of the type[TCx,y φ(x, y)](r, r) where
φ(x, y) is an FO formula and r the root.
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Proof. With a single application of a TC-operator we can define trees with a
linear order. If FO with a single TC-operator is interpretedover finite succes-
sor structures, then it is equivalent to FO with order. But over finite orderings,
EVEN is not definable in FO. ⊔⊓

6.4 Definability of Tree Structures
In previous and all following sections we assume that we onlyconsider tree
models as defined in the preliminaries section. But in this section we take a
more general view, a view that has its origin in model theoretic syntax. The
aim is to find whether it is possible to give an axiomatisationof those struc-
tures linguists are interested in. This task has two subparts. The first consists
of defining trees, or more precisely finite trees, as the intended models. The
second part consists of axiomatising linguistic principles such as the Binding
theory in the given logic. We will only be concerned with the first part here.
This section is inspired by the book by Rogers (1998). More specifically we
show that the main results of Chapter 3 carry over to FO∗. We will frequently
cite this chapter in the current section.

The language of this section is binary transitive closure logic with equality
over the following base relations:
⊳ parent relation
⊳∗ dominance relation
⊳+ proper dominance relation
≺ left-of relation

We also assume there to be a setL of unary predicate symbols representing
linguistic labels. We write FO∗⊳ for this language to indicate that the base
relations differ from the ones in the other sections of this paper.

A model for FO∗⊳ is a tuple (U,P,D, L, Lab) whereU is a non-empty do-
main, P,D and L are binary relations overU interpreting⊳, ⊳∗ and≺. And
Lab : L → ℘(U) interpretes each label as a subset ofU.

Since the intended models of this language are trees, we haveto restrict
the class of models by giving axioms of trees. Many properties of trees can
be defined by first-order axioms. The following 12 axioms are cited from
(Rogers, 1998, p. 15f.).

A1 ∃x∀y : x ⊳∗ y
(Connectivity wrt dominance)

A2 ∀x, y : (x ⊳∗ y∧ y ⊳∗ x)→ x = y
(Antisymmetry of dominance)

A3 ∀x, y, z : (x ⊳∗ y∧ y ⊳∗ z)→ x ⊳∗ z
(Transitivity of dominance)

A4 ∀x, y : x ⊳+ y↔ (x ⊳∗ y∧ x , y)
(Definition of proper dominance)
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A5 ∀x, y : x ⊳ y↔ (x ⊳+ y∧ ∀z : (x ⊳∗ z∧ z ⊳∗ y)→ (z ⊳∗ x∨ y ⊳∗ z))
(Definition of immediate dominance)

A6 ∀x, z : x ⊳+ z→ ((∃y : x ⊳ y∧ y ⊳∗ z) ∧ (∃y : y ⊳ z))
(Discreteness of dominance)

A7 ∀x, y : (x ⊳∗ y∧ y ⊳∗ x)↔ (x 6≺ y∧ y 6≺ x)
(Exhaustiveness and exclusiveness)

A8 ∀w, x, y, z : (x ≺ y∧ x ⊳∗ w∧ y ⊳∗ z)→ w ≺ z
(Inheritance of Left-of wrt dominance)

A9 ∀x, y, z : (x ≺ y∧ y ≺ z)→ x ≺ z
(Transitivity of left-of)

A10 ∀x, y : x ≺ y→ y 6≺ x
(Asymmetry of left-of)

A11 ∀x(∃y : x ⊳ y)→ (∃y : x ⊳ y∧ ∀z : x ⊳ z→ z 6≺ y)
(Existence of a minimum child)

A12 ∀x, z : x ≺ z→ (∃y : x ≺ y∧ ∀w : x ≺ w→ w 6≺ y) ∧
(∃y : y ≺ z∧ ∀w : w ≺ z→ y 6≺ w)

(Discreteness of left-of)

A discussion of these axioms can be found in (Rogers, 1998, p.16f.). Ev-
ery tree (finite or infinite) obeys to these axioms. But there are non-standard
models, i.e., structures that are models of theses axioms but would not be con-
sidered as trees. Actually, it isnotpossible to give a first-order axiomatisation
of trees, as was shown by Backofen et al. (1995). A look at the non-standard
model given by Backofen et al. (1995) helps to understand where the problem
is located. Consider the modelM of Figure 1. It consists of two components:
an infinite sequence of nodes, each with a single child, extending up from the
root; and, infinitely far out, a second component in which every node has ex-
actly two children, every node has a parent in that component, and every node
is dominated by every node in the first component. The arrows in the figure
are intended to suggest that there is no maximal point (wrt dominance) among
the set of points with single children and no minimal point (wrt dominance)
among the set of points with two children.

It is easy to see that the proper dominance relation does not only contain
the immediate dominance relation but also the transitive closure of the imme-
diate dominance. In the nonstandard models, proper dominance truly extends
the transitive closure of immediate dominance. In the example, all nodes of
the first component properly dominate all nodes of the secondcomponent.
But this part of the dominance relation is not contained in the transitive clo-
sure of immediate dominance. In a proper tree model, the proper dominance
is always identical to the transitive closure of immediate dominance. This
insight can be expressed in FO∗⊳ as an axiom.
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FIGURE 1 A nonstandard model of the first-order tree axioms.

AT1 ∀x, y : x ⊳+ y→ [TCz,wz ⊳ w](x, y)
(Proper dominance is the transitive closure of immediate dominance)

Another way of reading this axiom is to say that the path from an arbitrary
node back to the root is finite. AT1 together with the first-order axioms does
still not suffice to axiomatise proper trees. Consider the sisters of a node.
They are ordered by≺, and there is a left-most sister. Now, in a proper tree, the
number of sisters to the left is finite for every node. This canbe axiomatised as
follows. We can easily define that one node is the immediate sister of another
node. The relationIS(x, y) is defined as∃z : z ⊳ x∧ z ⊳ y∧ x ≺ y∧¬∃w : x ≺
w ≺ y. Now we can spell out an axiom analogue to AT1.

AT2 ∀x, y, z : (x ⊳ y∧ x ⊳ z∧ y ≺ z)→ [TCv,wIS(v,w)](y, z)
(Finitely many left sisters)

Theorem 12 Axioms A1–A12, AT1, and AT2 define the class of tree models.

Proof. The proof is analogous to the proof of Theorem 3.9 in (Rogers, 1998).
Consider in particular Footnote 8 on page 23.

Rogers showed that every tree (in the sense of Definition 1) isa model
of axioms A1–A12 and for each nodex ∈ U the setsAx = {(y, x) ∈ D} of
ancestors ofx and Lx = {y | ∃z : (z, x), (z, y) ∈ D and (y, x) ∈ L} of left
sisters ofx are finite (Lemma 3.5). And every tree obviously satisfies axioms
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AT1 and AT2. Furthermore, each model of axioms A1–A12 whereAx and
Lx are finite for each nodex ∈ U is isomorphic to a tree (Lemma 3.6). Now
suppose a model of A1–A12 satisfies AT1. Then for each nodex ∈ U the
setAx is finite, because it contains the root (A1) and is constructed of parent-
child steps (AT1), and a transitive closure of single steps cannot reach a limit
ordinal. An analogous argument can be made with respect to models of A1–
A12 and AT2. Hence for every model of of A1–A12, AT1, and AT2 and all
nodesx ∈ U we see that the setsAx andLx are finite. By the above quoted
Lemma 3.6, these models are isomorphic to trees. ⊔⊓

The tree models of Axioms A1–A2, AT1, and AT2 can be finite as well
as infinite. But since they are all tree models, they are at most countable.
This is because every tree domain is at most countable (see remark after Def-
inition 1). And every tree model is isomorphic to a tree. As animmediate
consequence we get that FO∗ doesnot have the Löwenheim-Skolem-Upward
property. This property states that if a theory (i.e., potentially infinite set of
sentences) has a model of sizeω it has models of arbitrary infinite cardinali-
ties.

Linguists are mostly (if not exclusively) concerned with finite trees. Hence
it would be nice if we could restrict the class of models further down to finite
trees. This can indeed be done. Rogers (1998) defines a linearorder on the
nodes of a tree as follows. Nodex < y iff x ⊳+ y ∨ x ≺ y. By Axiom A7,
each pair of nodes is either a member of the dominance relation or a member
of the left-of relation. Hence this defines indeed a linear order. Actually, the
order is the same as the one in the previous section: depth-first left-to-right
tree traversal. As in the previous section we useS ucc(x, y) for y being the
immediate successor ofx in the order. Finiteness can now be defined in two
steps. Firstly we demand the linear order to be the transitive closure of the
immediate successor relation. The consequence of this demand is that for
every element in the order there is only a finite number of nodes that are
smaller than this element. Secondly we demand the order to have a maximal
element. If the maximal element has only a finite number of elements smaller
than it, the tree is obviously finite.

AF ∀x, y : x < y =⇒ [TCx,y S ucc(x, y)](x, y) ∧
∃x∀y : y < x∨ y = x.
(Finiteness of the order<)

Theorem 13 Axioms A1–A12, AT1, AT2, and AF define the class offinite
tree models.

Proof. By Theorem 12, every model of the Axioms A1–A12, AT1, and AT2
is isomorphic to a tree model. If a model is finite, then AF is certainly true.
For the converse, assume that∀x, y : x < y =⇒ [TCx,y S ucc(x, y)](x, y). By
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definition of the TC-operator, the set{y | y < x} of elements smaller thanx
is finite for every nodex. If the order has additionally a maximal elementm,
then it is finite. ⊔⊓

As a simple consequence of the above theorem we get that FO∗ is not
compact.

6.5 FO∗ and Tree Walking Automata
Tree walking automata were introduced by Aho and Ullman (1971) as se-
quential automata on trees. At every moment of its run, a TWA is in a single
node of the tree and in one of a finite number of states. It walksaround the
tree choosing a neighboring node based on the current state,the label of the
current node, and the child number of the current node.

More formally, we consider trees of maximal branching degreek. The fol-
lowing definition is mainly cited from (Bojanczyk and Colcombet, 2005). Ev-
ery nodev has a type. The possible values are Types= {r, 1, 2, . . . , k} × {l, i}
wherer stands for the root,j ∈ {1, . . . , k} states thatv is the j-th child, l
states thatv is a leaf,i thatv is an internal node. A direction is an element of
Dir = {↑, ↓1, . . . , ↓k, stay} where↑ stands for ‘move to the parent’,↓ j ‘move
to the j-th child, andstayto ‘stay at the current node’. A TWA is a quintuple
(S,Σ, δ, s0, F) whereS is a finite set of states,Σ is the alphabet of node labels,
s0 ∈ S is the initial state andF ⊆ S is the set of final states. The transition
relationδ is of the form

δ ⊆ S × Types× Σ × S × Dir.

A configuration is a pair of a node and a state. A run is a sequence of config-
urations where every two consecutive configurations are consistent with the
transition relation. A run is accepting iff it starts and ends at the root of the
tree, the first state iss0 and the last state is a member ofF. The TWA accepts
a tree iff there is an accepting run. The set ofΣ-trees recognised by a TWA is
the set of trees for which there is an accepting run.

Bojanczyk and Colcombet (2005) showed that TWA cannot recognise all
regular tree languages. This means that MSO and tree automata are strictly
more powerful than TWA. In an extension of their proof we willshow that
even FO∗ is more powerful than TWA.

Theorem 14 The classes of tree languages definable in FO∗ strictly extend
the classes of tree languages recognisable by TWA.

Proof. The proof consists of two parts. We will first show that everyTWA-
recognisable tree language is FO∗-definable. Secondly we will show that there
is an FO∗-definable tree language that cannot be recognised by any TWA.

The first part of the proof is based on recent results by Neven and Schwentick
(2003). They showed that a tree language is recognisable by aTWA if and
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only if it is definable by a formula of the following type: [TCx,y φ(x, y)](r, r)
wherer is a constant for the root of a tree,φ is an FO formula with additional
unarydepthm predicates. Apart from thedepthm predicates, these formulae
are obviously in FO∗. Now, depthm(x) is true iff x is a multiple ofm steps
away from the root. For everym, the predicatedepthm can be defined by an
FO∗-formula: [TCx0,xm ∃x1, . . . xm−1 : x0 ↓ x1 ∧ · · · ∧ xm−1 ↓ xm](r, x) is a
predicate that is true on a nodex just in case there is ak ∈ N such thatx is at
depthk×m. Thus every TWA-recognisable tree language is FO∗-definable.

To show the second half of the theorem, we will indicate that the separating
languageL given by Bojanczyk and Colcombet (2005) can be defined in FO∗.
The authors consider binary trees. They show (in Fact 1) thatL can be defined
in first-order logic with the following three basic relations: left and right child,
and ancestor relation. Now, left and right child are obviously FO∗-definable
relations. And the ancestor relation is easily FO∗-definable: [TCx,y x ↓ y]. ⊔⊓

The relationship between TWA and transitive closure logicswas recently
also studied by Engelfriet and Hoogeboom (2006). They show that if one
extends deterministic TWA by finite sets of pebbles, they have the same ex-
pressive power as deterministic transitive closure logics.

6.6 Conclusion

We showed a number of properties of FO∗ to indicate that it should seriously
be considered as a logic for defining tree languages. Although the addition
of binary transitive closure to first-order logic can be seenas a small one,
FO∗ is capable of expressing important second-order properties over trees.
It is possible to define a linear order over the nodes in a tree.And using
this order one can count modulo any natural number. On arbitrary structures
with appropriate signature one can axiomatise the classes of trees and finite
trees. These axiomatisations showed that FO∗ is neither compact nor does
it have the Löwenheim-Skolem-Upward property. Furthermore although tree
walking automata look like they might serve as an automaton model for FO∗,
it turns out that FO∗ is more powerful than TWA.

A word about complexity issues may be in place. FO∗ has quite a good data
complexity. By translating FO∗ formulae into MSO formulae and using the
equivalence between MSO and tree automata one can see that FO∗ has a linear
time data complexity. And since FO∗ is a sublogic of FO+TC (see below), it
also has NLOGSPACE data complexity. A straight-forward implementation
of transitive closure yields a PTIME query complexity. It isunclear to the
author whether this result can be improved upon.

The main open question is of course whether FO∗ is strictly less powerful
than MSO. It is also interesting to study the relationship ofFO∗ to modal lan-
guages for trees like PDLTree (Kracht, 1995). Marx (2004) basically showed



88 / S K

that PDLTree is at most as powerful as FO∗3, where FO∗3 is the restriction of
FO∗ where every formula has at most 3 different variables. ten Cate (2006)
recently showed that queries in XPath with Kleene star and loop predicate
have the same expressive power as FO∗3.

One may also ask what happens if we introduce the transitive closure
of arbitrary relations, not just binary ones. This logic (abbreviated FO+TC)
was introduced by Immerman (see Immerman, 1999) to logically describe
the complexity class NLOGSPACE. Tiede and Kepser (2006) have recently
shown that FO+TC is more expressive than MSO over trees. The statement
remains true even if one only considersdeterministictransitive closures.
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Germany

References
Aho, Alfred V. and Jeffrey D. Ullman. 1971. Translations on a context-free grammar.

Information and Control19:439–475.

Backofen, Rolf, James Rogers, and Krishnamurti Vijay-Shanker. 1995. A first-order
axiomatization of the theory of finite trees.Journal of Logic, Language, and Infor-
mation4:5–39.

Bojanczyk, Mikolaj and Thomas Colcombet. 2005. Tree-walking automata do not
recognize all regular languages. In H. N. Gabow and R. Fagin,eds.,The 37th ACM
Symposium on Theory of Computing (STOC 2005), pages 234–243. ACM.

Engelfriet, Joost and Hendrik Jan Hoogeboom. 2006. Nested pebbles and transitive
closure. In B. Durand and W. Thomas, eds.,STACS 2006, vol. LNCS 3884, pages
477–488. Springer.

Fagin, Ronald. 1975. Monadic generalized spectra.Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik21:89–96.

Immerman, Neil. 1999.Descriptive Complexity. Springer.



R / 89

Kracht, Marcus. 1995. Syntactic codes and grammar refinement. Journal of Logic,
Language, and Information4(1):41–60.

Marx, Maarten. 2004. XPath with conditional axis relations. In E. Bertino,
S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis, K. Böhm,
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Pregroups with modalities
A K-M

Abstract
In this paper we concentrate mainly on the notion ofβ-pregroups, which are pregroups

(first introduced by Lambek Lambek (1999) in 1999) enriched with modality operators.
β-pregroups were first proposed by Fadda Fadda (2002) in 2001.The motivation to intro-
duce them was to limit (locally) the associativity in the calculus considered. In this paper
we present this new calculus in the form of a rewriting system, prove the very important
feature of this system - that in a given derivation the non-expanding rules must always
proceed non-contracting ones in order the derivation to be minimal (normalization theo-
rem). We also propose a sequent system for this calculus and prove the cut elimination
theorem for it.

Keywords P, β-,  ,  .

7.1 Introduction

Definition 2 A pregroup is a structure (G,≤, ·, l, r, 1) such that
(G,≤, ·, 1) is a partially ordered monoid, andl, r are unary operations onG,
fulfilling the following conditions:

ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara (7.1)

for all a ∈ G. Elemental (ar respectively) is called the left (right) adjoint of
a.

The notion of a pregroup, introduced by Lambek Lambek (1999), is con-
nected to the notion of a residuated monoid, known from the theory of par-
tially ordered algebraic systems.

Theorem 15 Lambek (1999) In each pregroup the following equalities and
inequalities are valid:
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1l = 1r = 1, alr = a = arl , (7.2)

(ab)l = blal , (ab)r = brar , (7.3)

a ≤ b iff bl ≤ al iff br ≤ ar . (7.4)

For any arbitrary elementa of a pregroup we define an elementa(n), for n ∈ Z,
in a following way:
a0 = a,
a(n+1) = (a(n))r ,
a(n−1) = (a(n))l .

As a consequence of (2) and (7.4) we get:

a(n)a(n+1) ≤ 1 ≤ a(n+1)a(n) (7.5)

i f a ≤ b then a(2n) ≤ b(2n) and b(2n+1) ≤ a(2n+1) (7.6)

for all n ∈ Z.

Let (P,≤) be a poset. Elements of the setP are treated as constants.Termsare
expressions of the formp(n), for p ∈ P, n ∈ Z; p(0) is equalp. Typesare finite
strings of terms, denoted byX,Y,Z,V,U etc.

The basic rewriting rules are as follows:

(CON) - contraction:
X, p(n), p(n+1),Y→ X,Y;

(EXP) - expansion:
X,Y→ X, p(n+1), p(n),Y;

(IND) - induced step:
X, p(2n),Y→ X, q(2n),Y,
X, q(2n+1),Y→ X, p(2n+1),Y, for p ≤ q w (P,≤).

Further, we consider derivationsX⇒ Y in F(P) (free pregroup generated by
(P,≤)). After Lambek Lambek (2001), we distinguish two special cases:

(GCON) - generalized contraction:
X, p(2n), q(2n+1),Y→ X,Y;
X, q(2n−1), p(2n),Y→ X,Y; wherep ≤ q in (P,≤).

(GEXP) - generalized expansion:
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X,Y→ X, p(2n+1), q(2n),Y;
X,Y→ X, q(2n), p(2n−1),Y; wherep ≤ q in (P,≤).

Relation⇒ is a reflexive and transitive closure of the relation→.

Theorem 16 (Lambek switching lemma), Lambek (1999)
If X ⇒ Y in F(P), then there exist types U,V such that we can go from type
X to U (X ⇒ U) only using generalized contractions, from type U to V
(U ⇒ V) using only induced steps, and from type V to Y ( V⇒ Y) using only
generalized expansions.

From the above mentioned lemma we get:

Corollary 17 Buszkowski (2003) If X⇒ Y in F(P), and Y is a simple type or
an empty string, then X can be transformed into Y only by meansof (CON)
and(IND).
If X ⇒ Y in F(P), and X is a simple type or an empty string, then X can be
transformed into Y only by means of(EXP) and(IND).

7.2 Pregroups with modalities
In this section we generalize some definitions and results concerning pre-
groups introduced in Lambek (1999). The definition of a pregroup with β-
operator was proposed by Fadda in Fadda (2002). The motivation to introduce
modality operators was given by the fact there was a need to limit (locally)
associativity in the calculus considered.

Definition 3 A pregroup withβ-operator is a pregroupG enriched addition-
ally with a monotone mappingβ : G→ G.

Definition 4 β-pregroup is a pregroup withβ-operator such thatβ-operator
has the right adjoint̂β (β̂- operator), ie. there exists a monotone mapping
β̂ : P→ P with the property that for alla andb in P, β(a) ≤ b if and only if
a ≤ β̂(b).

It is easy to show that̂β-operators, if they exist, are uniquely defined and con-
nected toβ - operators with the following rules of expansion and contraction,
for all a ∈ P.

a ≤ β̂(β(a)) and β(β̂(a)) ≤ a. (7.7)

The basic rewriting rules are as follows:

1. Contracting rules

(CON) - contraction:
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X, p(n), p(n+1),Y→ X,Y;

(B−CON) - B-contraction:
X, [B(Y)](n), [B(Y)](n+1),Z→ X,Z; whereB ∈ {β, β̂}.

(β −CON) - β - contraction:
X, [β(β̂(Y))](2n),Z→ X,Y(2n),Z;
X, [β̂(β(Y))](2n+1),Z→ X,Y(2n+1),Z;

(B− INDc) - Bc induced step:
X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, andY1 → Y2 is a contracting rule.

X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, aY1 → Y2 is an expanding rule.

2. Expanding rules

(EXP) - expansion:
X,Y→ X, p(n+1), p(n),Y;

(B− EXP) - B-expansion:
X,Z→ X, [B(Y)](n+1), [B(Y)](n),Z; whereB ∈ {β, β̂}.

(β − EXP) - β - expansion:
X,Y(2n),Z→ X, [β̂(β(Y))](2n),Z;
X,Y(2n+1),Z→ X, [β(β̂(Y))](2n+1),Z.

(B− INDe) - Be induced step:
X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, aY1 → Y2 is an expanding rule.

X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, aY1 → Y2 is a contracting rule.

3. P-rules (neither expanding nor contracting)

(IND) - induced step:
X, p(2n),Y→ X, q(2n),Y,
X, q(2n+1),Y→ X, p(2n+1),Y, for p ≤ q w (P,≤).

(B− INDp) - Bp induced step:
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X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, andY1 → Y2 is a P-rule.

X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, andY1 → Y2 is a P-rule.

In above mentioned rules we assume thatp, q are elements ofP, whereas
X,Y,Z,Y1,Y2 are elements ofP′.

Relation⇒ is a reflexive and transitive closure of the relation→.

In his work Fadda (2002) Fadda gives some examples illustrating the usage
of β - pregroups for natural language. Among others, he shows that assigning
a type [β(X)]rX[β(X)] l to the conjunctionand (whereX is an arbitrary type),
will let us see the structure of a sentence more clearly.
Consider the sentence:John and Mary left.Applying the calculus of pre-
groups without modalities we can show that the string of types assigned to
given words can be reduced to the type of a sentence. However,the order of
consecutive contraction is important here:
(npmeans a noun phrase).

(*) John and Mary left.
np npr np npl np npr s →

np npl np npr s →

np npr s → s

(**) John and Mary left.
np npr np npl np npr s →

np npl np npr s →

np npl s 9 s

In the second case (**) we do not get a types. Applying the calculus ofβ-
pregroups, we could handle the above mentioned sentence in the following
way:

(**) John and Mary left.
β(np) [β(np)]rnp [β(np)] l β(np) npr s → s

In that case the structure of types ’induces’ the order of contractions.

Normalization theorem for β - pregroups
Further we consider derivations of a typeX⇒ Y.

Definition 5 A derivation is called non-expanding, if there are no expanding
rules present.
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Definition 6 A derivation is called non-contracting, if there are no contract-
ing rules present.

Definition 7 Composition of derivationsd1(X ⇒ U) andd2(U ⇒ Y) is a
derivationY from X, which transforms firstX into U according tod1, and
thenU into Y according tod2.

Definition 8 A derivationd(X ⇒ Y) is called normal, if it is a composition
of some non-expanding derivationd1(X ⇒ U) and some non-contracting
derivationd2(U ⇒ Y).

On elements ofP′ we introduce a measure in the following way:

µ(ε) = 0,
µ(p(n)) = 1,
µ(B(Y)) = µ(Y) + 1, for B ∈ {β, β̂}
µ(Y1, ...,Yk) = µ(Y1) + ... + µ(Yk).

Measure on the rewriting rules is defined as follows:

µ(CON) = 2,
µ(EXP) = 2,
µ(β −CON) = 2,
µ(β − EXP) = 2,
µ(B−CON) = 2+ 2µ(Y),
µ(B− EXP) = 2+ 2µ(Y),
µ(IND) = 1,
µ(Bc − IND) = 1+ µ(d(Y1→ Y2)),
µ(Be− IND) = 1+ µ(d(Y1→ Y2)),
µ(Bp − IND) = 1+ µ(d(Y1→ Y2)),

µ(d(X0⇒ Xk)) = µ(d(X0→ X1)) + ... + µ(d(Xk−1→ Xk)),
whereX0⇒ Xk meansX0→ X1→ ...→ Xk.

Definition 9 A derivationd(X⇒ Y) is called minimal, if it has the least pos-
sible measure of all derivationsY from X, and the least possible complexity
(which is understood as a sum of measures of all rules used in the derivation).

Definition 10 The position of a given rule in the derivationX0 → X1 →

...→ Xn is numberi, such thatXi−1 → Xi is the occurrence of this rule in the
derivation.

Definition 11 A degree of non-normal derivationd(X ⇒ Y) is the minimal
position of a contracting rule which occurs (not necessarily directly) after an
expanding rule.
A degree of normal derivation is number 0.
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Theorem 18 (Normalization theorem for β - pregroups).
Every minimal derivation is normal.

Proof. Let X0 → X1→ ...→ Xn be a minimal derivation. Leti be a degree of
this derivation. We will show thati = 0, and as a consequence our derivation
is normal.
Assume thati > 0. Of course 1< i ≤ n from the definition of a degree.
Let j be the greatest number less thani, such thatX j−1→ X j is the occurrence
of an expanding rule.
Let R1 denote the rule used on the positionj, andR2 the rule used in the
positioni.
There are following cases to be considered:

1.1. R1 = (EXP) R2 = (CON),
1.2. R1 = (EXP) R2 = (B−CON),
1.3. R1 = (EXP) R2 = (β −CON),
1.4. R1 = (EXP) R2 = (B− INDc),
2.1. R1 = (B− EXP) R2 = (CON),
2.2. R1 = (B− EXP) R2 = (B−CON),
2.3. R1 = (B− EXP) R2 = (β −CON),
2.4. R1 = (B− EXP) R2 = (B− INDc),
3.1. R1 = (β − EXP) R2 = (CON),
3.2. R1 = (β − EXP) R2 = (B−CON),
3.3. R1 = (β − EXP) R2 = (β −CON),
3.4. R1 = (β − EXP) R2 = (B− INDc),
4.1. R1 = (B− INDe) R2 = (CON),
4.2. R1 = (B− INDe) R2 = (B−CON),
4.3. R1 = (B− INDe) R2 = (β −CON),
4.4. R1 = (B− INDe) R2 = (B− INDc),

In the proof of this theorem the above mentioned cases are considered. In all
cases we assume that the ruleR1 occurs on the positionj, and the ruleR2

on the positioni. All stepsX j → X j+1 → ... → Xi−1 consist of application
of non-expanding and non-contracting rules. These must be of the form of
either (IND) or (Bp − IND). None of this steps cannot be independent from
Xi−1 → Xi , as otherwise we could do the last of independent steps afterR2,
getting the derivation with the same measure but the lower degree. We can
also assume that none of this steps is not independent fromX j−1 → X j ; oth-
erwise it would transform our derivation performing the first step beforeR1,
increasing the numberj, and changing neitheri norµ(d(X⇒ Y)).
If the rulesR1 andR2 are adjacent (without intermediate P-rules), we change
the order in case they are independent from each other (getting the derivation
of smaller complexity); in case they are dependent from eachother we show
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that this part of derivation can be transformed using rules of smaller com-
plexity - thus showing that the initial derivation was not normal.
Considering the above mentioned sixteen cases we show, thatnon-expanding
rules must always precede the non-contracting ones. Otherwise our deriva-
tion would be not minimal, which would be a contradiction to our assumption.
Thus every minimal derivation must be normal.
As the proof is long and technical, we show as an example only one of above
mentioned sixteen cases:

Case 1.1. R1 = (EXP) R2 = (CON),
X j−1→ X j is of the formS,T → S, p(n+1), p(n),T;
Xi−1→ Xi is of the formU, q(n), q(n+1),V → U,V.
The derivationX j−1→ X j → ...→ Xi−1→ Xi could be as follows:

S, p(2n)
0 ,T → S, p(2n)

0 , p(2n+1)
k , p(2n)

k ,T → S, p(2n)
0 , p(2n+1)

k−1 , p(2n)
k ,T → ...

→ S, p(2n)
0 , p(2n+1)

0 , p(2n)
k ,T → S, p(2n)

k ,T, (assumingp0 ≤ p1 ≤ ... ≤ pk), its
measure isµ(d(X j−1⇒ Xi)) = 2+ k+ 2 = k+ 4.

The above mentioned derivation can be changed by the derivation:

S, p(2n)
0 ,T → S, p(2n)

1 ,T → ...S, p(2n)
k−1,T → S, p(2n)

k ,T, (assumingp0 ≤ p1 ≤

... ≤ pk). The measure of a new derivation isµ(d(X j−1 ⇒ Xi)) = k (k times
the rule (IND) was used).
We get contradiction, as the measure of the second derivation is smaller. We
showed that the initial derivation was not normal.

⊔⊓

Corollary 19 If X ⇒ Y in a freeβ-pregroup, and Y is a simple type or an
empty string, then Y can be derived from X only by means of non-expanding
rules.
If X ⇒ Y in a freeβ-pregroup, and X is a simple type or an empty string, then
Y can be derived from X only by means of non-contracting rules.

7.3 Axiom system for pregroups with modalities

The rewriting system given in the previous section can also be presented as
the calculus of sequents in a Gentzen style. Let (P,≤) be fixed. Atoms and
types are defined as before.Sequentsare of the formX ⇒ Y, whereX,Y are
types. Axiom and inference rules are as follows:
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(Id) X⇒ X,

(LA) X,Y⇒ Z
X, p(n), p(n+1),Y⇒ Z

(RA) X⇒ Y,Z
X⇒ Y, p(n+1), p(n),Z

(LIND) X, q(2n),Y⇒ Z
X, p(2n),Y⇒ Z

(RIND) X⇒ Y, p(2n),Z
X⇒ Y, q(2n),Z

X, p(2n+1),Y⇒ Z
X, q(2n+1),Y⇒ Z

X⇒ Y, q(2n+1),Z
X⇒ Y, p(2n+1),Z

In rules (LIND) and (RIND) we assume thatp ≤ q in P. X,Y,Z are any
arbitrary types,p, q are arbitrary elements ofP, for n ∈ Z.

(BLA) X,T ⇒ Z
X, [B(Y)](n), [B(Y)](n+1),T ⇒ Z

(BRA) X⇒ T,Z
X⇒ T, [B(Y)](n+1), [B(Y)](n),Z

(β LA) X,Y(2n),T ⇒ Z
X, [β(β̂(Y))](2n),T ⇒ Z

(β RA) X⇒ T,Y(2n),Z
X⇒ T, [β̂(β(Y))](2n),Z

X,Y(2n+1),T ⇒ Z
X, [β̂(β(Y))](2n+1),T ⇒ Z

X⇒ T,Y(2n+1),Z
X⇒ T, [β(β̂(Y))](2n+1),Z

(BLIND) X, [B(Y2)]
(2n),Z⇒ T

X, [B(Y1)]
(2n),Z⇒ T

(BRIND) X⇒ T, [B(Y1)]
(2n),Z

X⇒ T, [B(Y2)]
(2n),Z

X, [B(Y1)]
(2n+1),Z⇒ T

X, [B(Y2)]
(2n+1),Z⇒ T

X⇒ T, [B(Y2)]
(2n+1),Z

X⇒ T, [B(Y1)]
(2n+1),Z

In rules (BLA), (BRA), (BLIND) and (BRIND),B ∈ {β, β̂}. Additionally, in
rules (BLIND) we assume thatY1→ Y2 arises as a result of a non-expanding
rule in an even case, and a non-contracting rules in an odd case, in a rewriting
system from a former section. In rules (BRIND) we assume thatY1 → Y2
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arises as a result of non-contracting rule in an even case, and non-expanding
rule in an odd case, in a rewriting system form a former section.

The cut rule is of the form:

(CUT) X⇒ Y, Y⇒ Z
X⇒ Z .

Let MS denote the system axiomatized by (Id), (LA), (RA), (LIND),
(RIND), (BLA), (BRA), (β - LA), (β - RA), (BLIND) and (BRIND). LetMS′

denote the systemMS enriched additionally with a cut rule (CUT).

7.3.1 Cut elimination for the systems with modalities

We show that for above mentioned systems the following theorems hold:

Theorem 20 For all types X,Y, X ⇒ Y holds in the sense of a rewriting
system if and only if X⇒ Y is provable in MS′.

Proof. AssumeX⇒ Y holds in the sense of the rewriting system.Then, there
exist typesZ0, ...,Zn, n ≥ 0, such thatZ0 = X, Zn = Y, andZi−1 → Zi ,
1 ≤ i ≤ n. We show thatZi−1 ⇒ Zi is provable in MS’, for 1≤ i ≤ n.
(Here we show it only for a few chosen cases)

1. If Zi−1 → Zi is the case of (CON), so it is of the form
X, p(n), p(n+1),Y → X,Y, we apply (LA) to axiomX,Y ⇒ X,Y. We get

X,Y⇒ X,Y
X, p(n), p(n+1),Y⇒ X,Y

.

7. If Zi−1 → Zi is the case of (IND), so it is of the form:

7.1.X, p(2n),Y→ X, q(2n),Y,for p ≤ q, we apply (LIND) to axiom

X, q(2n),Y ⇒ X, q(2n),Y. We get X, q(2n),Y⇒ X, q(2n),Y
X, p(2n),Y⇒ X, q(2n),Y

. We can also apply

(RIND) to axiomX, p(2n),Y⇒ X, p(2n),Y. We get then
X, p(2n),Y⇒ X, p(2n),Y
X, p(2n),Y⇒ X, q(2n),Y

.

7.2. X, q(2n+1),Y → X, p(2n+1),Y, for p ≤ q,we apply (LIND) to axiom
X, p(2n+1),Y⇒ X, p(2n+1),Y. We get:
X, p(2n+1),Y⇒ X, p(2n+1),Y
X, q(2n+1),Y⇒ X, p(2n+1),Y

. We can also apply (RIND) to axiom

X, q(2n+1),Y⇒ X, q(2n+1),Y. We get then:
X, q(2n+1),Y⇒ X, q(2n+1),Y
X, q(2n+1),Y⇒ X, p(2n+1),Y

.
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So, if n = 0, thenX ⇒ Y is an axiom (Id), ifn > 0, thenX ⇒ Y is provable
in MS’, using cut rule (CUT).

Assume, thatX⇒ Y is provable MS. We show thatX⇒ Y holds in the sense
of the rewriting system.

If X⇒ Y jest (Id), then the claim is true.
For inference rules we show, that if the premise (premises) holds (hold) in
the rewriting system, then the conclusion holds in this system. (Again, only a
few chosen cases.)

1. For (LA), the antecedent of the conclusion can be transformed into the
antecedent of the premise by (CON).
7. For (βLA)the antecedent of the conclusion can be transformed intothe
antecedent of the premise by (β-CON).
11. For (CUT),if the premises hold in the rewriting system, then the conclu-
sion also holds in this system, since⇒ is transitive. ⊔⊓

Theorem 21 (Cut elimination theorem)
For all types X,Y, X⇒ Y is provable in MS if and only if X⇒ Y is provable
in MS’.

Proof. The ’only if’ part is obvious. If for all typesX,Y, X ⇒ Y is provable
in MS (without CUT), it is also provable in MS’.

Assume thatX⇒ Y is provable in MS’.
By the theorem 20,X ⇒ Y holds in the rewriting system. From the theorem
18 there exists such typeU, thatX ⇒ U holds only by using non-expanding
rules, whereasU ⇒ Y holds only by using non-contracting rules.
Thus, there exist typesZ0, ...,Zm, (m ≥ 0), such thatZ0 = X, Zm = U and for
all 1 ≤ i ≤ m, Zi−1 → Zi is a result of non-expanding rules. We show that
Zi ⇒ U is provable in MS, for all 0≤ i ≤ m.
Zm ⇒ U is an axiom (Id). Assume thatZi ⇒ U is provable in MS,i > 0. If
Zi−1 → Zi is (CON), thenZi−1 ⇒ U is a result of applying (LA) toZi ⇒ U.
If Zi−1 → Zi is (B− CON), thenZi−1 ⇒ U is a result of applying (BLA) to
Zi ⇒ U.
If Zi−1 → Zi is (β − CON), thenZi−1 ⇒ U is a result of applying (βLA) to
Zi ⇒ U.
If Zi−1 → Zi is (IND), thenZi−1 ⇒ U is a result of application (LIND) to
Zi ⇒ U.
If Zi−1 → Zi is (B− INDc), thenZi−1 ⇒ U is a result of applying (BLIND) to
Zi ⇒ U.
If Zi−1 → Zi is (B− INDp), thenZi−1 ⇒ U is a result of applying (BLIND)
to Zi ⇒ U.
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Now, there exist typesV0, ...,Vn, n ≥ 0, such thatV0 = U, Vn = Y, an for all
1 ≤ i ≤ n, Vi−1 → Vi is a result of applying a non-contracting rule.
We show thatX⇒ Vi is provable in MS, for all 0≤ i ≤ n.
X⇒ V0 is provable in MS from the first part of the proof.
Assume thatX⇒ Vi−1 is provable in MS, 1≤ i.
If Vi−1→ Vi is (EXP), thenX⇒ Vi is a result of applying (RA) toX⇒ Vi−1.
If Vi−1 → Vi is (B − EXP), thenX ⇒ Vi is a result of applying (BRA) to
X⇒ Vi−1.
If Vi−1 → Vi is (β − EXP), thenX ⇒ Vi is a result of applying (βRA) to
X⇒ Vi−1.
If Vi−1 → Vi is (IND), thenX ⇒ Vi is a result of applying (RIND) doX ⇒
Vi−1.
If Vi−1 → Vi is (B− INDe), thenX ⇒ Vi is a result of applying (BRIND) to
X⇒ Vi−1.
If Vi−1 → Vi is (B− INDp), thenX ⇒ Vi is a result of applying (BRIND) to
X⇒ Vi−1.

Thus, we showed thatX⇒ Y is provable in MS. ⊔⊓

7.4 Conclusion
In this paper we presented pregroups with modalities. First, we presented
them in the form of a rewriting system, then we proposed the sequent system
for them and finally showed the connections between those twopresentations.
Using those connections we were able to prove the cut elimination theorem.
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Abstract

In recent years Laura Kallmeyer, Maribel Romero, and their collaborators have led
research on TAG semantics through a series of papers refininga system of TAG seman-
tics computation. Kallmeyer and Romero bring together the lessons of these attempts
with a set of desirable properties that such a system should have. First, computation of
the semantics of a sentence should rely only on the relationships expressed in the TAG
derivation tree. Second, the generated semantics should compactly represent all valid in-
terpretations of the input sentence, in particular with respect to quantifier scope. Third,
the formalism should not, if possible, increase the expressivity of the TAG formalism.
We revive the proposal of using synchronous TAG (STAG) to simultaneously generate
syntactic and semantic representations for an input sentence. Although STAG meets the
three requirements above, no serious attempt had previously been made to determine
whether it can model the semantic constructions that have proved difficult for other ap-
proaches. In this paper we begin exploration of this question by proposing STAG analy-
ses of many of the hard cases that have spurred the research inthis area. We reframe the
TAG semantics problem in the context of the STAG formalism and in the process present
a simple, intuitive base for further exploration of TAG semantics. We provide analyses
that demonstrate how STAG can handle quantifier scope, long-distance WH-movement,
interaction of raising verbs and adverbs, attitude verbs and quantifiers, relative clauses,
and quantifiers within prepositional phrases.
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8.1 Introduction
In recent years Laura Kallmeyer, Maribel Romero, and their collaborators
have led research on TAG semantics through a series of papersrefining a
system of TAG semantics computation using evolving techniques including
enriched derivation tree structure (Kallmeyer, 2002a,b),flexible composition
of feature-based TAG with a semantic representation associated with each
elementary tree (Kallmeyer and Joshi, 2003, Joshi et al., 2003, Kallmeyer,
2003), semantic features in a more expressive extension of feature-based TAG
(Gardent and Kallmeyer, 2003), and, most recently, semantic features on the
derivation tree itself (Kallmeyer and Romero, 2004, Romeroet al., 2004).
Kallmeyer and Romero (2004) bring together the lessons of these attempts
with a set of desirable properties that such a system should have. First, com-
putation of the semantics of a sentence should rely only on the relationships
expressed in the TAG derivation tree. Because TAG elementary trees rep-
resent minimal semantic units, the only information necessary for semantic
computation should be the information encoded in the derivation tree: which
elementary trees have combined and the address at which the combining op-
eration took place. Second, the generated semantics shouldcompactly repre-
sent all valid interpretations of the input sentence, in particular with respect
to quantifier scope. Third, the formalism should not, if possible, increase the
expressivity of the TAG formalism.

We revive the proposal of using synchronous TAG (STAG) to simultane-
ously generate syntactic and semantic representations foran input sentence
(Shieber and Schabes, 1990). Although STAG meets the three requirements
above, no serious attempt had previously been made to determine whether
it can model the semantic constructions that have proved difficult for other
approaches. In this paper we begin exploration of this question by proposing
STAG analyses of many of the hard cases that have spurred the research in
this area. We reframe the TAG semantics problem in the context of the STAG
formalism and in the process present a simple, intuitive base for further ex-
ploration of TAG semantics.

After reviewing STAG in Section 8.2, we provide analyses in Sections
8.3.1 through 8.3.4 for sentences that exemplify several hard cases for TAG
semantics that have been raised by Kallmeyer and others in recent papers:
quantifier scope (as exemplified by sentences (12) and (16), presented be-
low along with the desired semantic interpretations), long-distance WH-
movement (13), interaction of raising verbs and adverbs, attitude verbs and
quantifiers (14,15,16), relative clauses (17), and quantifiers within preposi-
tional phrases (18) (Kallmeyer and Romero, 2004, Romero et al., 2004, Joshi
et al., 2003, Kallmeyer, 2003, Kallmeyer and Joshi, 2003).1

1We notate curried two-place relationsP(x)(y) asP(y, x) for readability.
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(12) Everyone likes someone.
every(x, person(x), some(z, person(z), like(x, z)))
some(z, person(z), every(x, person(x), like(x, z)))

(13) Who does Bill think Paul said John likes?
who(y, think(bill , say(paul, like( john, y))))

(14) Bill thinks John apparently likes Mary.
think(bill , apparently(like( john,mary)))

(15) John sometimes likes everyone.
every(x, person(x), sometimes(like( john, x)))
sometimes(every(x, person(x), like( john, x)))

(16) Bill thinks everyone likes someone.
think(bill , every(x, person(x), some(z, person(z), likes(x, z))))
think(bill , some(z, person(z), every(x, person(x), likes(x, z))))

(17) A problem whose solution is difficult stumped Bill.
a(x, and( problem(x),

the(y, and(solution(y), poss(x, y)), isDifficult(y))),
stumped(bill , x))

(18) Two politicians spy on someone from every city.
two(x, politician(x),

every(z, city(z),
some(y, person(y)∧ f rom(z, y),
spyOn(x, y))))

every(z, city(z),
some(y, person(y) ∧ f rom(z, y),

two(x, politcian(x), spyOn(x, y))))
two(x, politician(x),

some(y, every(z, city(z), person(y) ∧ f rom(z, y))
spyOn(x, y)))

some(y, every(z, city(z), person(y) ∧ f rom(z, y))
two(x, politician(x), spyOn(x, y)))

8.2 Introduction to Synchronous TAG

A tree-adjoining grammar (TAG) consists of a set of elementary tree struc-
tures and two operations, substitution and adjunction, used to combine these
structures. The elementary trees can be of arbitrary depth.Each internal node
is labeled with a nonterminal symbol. Frontier nodes may be labeled with ei-
ther terminal symbols or nonterminal symbols and one of the diacritics↓ or
∗. Use of the diacritic↓ on a frontier node indicates that it is asubstitution
node. Thesubstitutionoperation occurs when an elementary tree rooted in the
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FIGURE 1 Example TAG substitution and adjuction operations.

nonterminal symbolA is substituted for a substitution node labeled with the
nonterminal symbolA. Auxiliary trees are elementary trees in which the root
and a frontier node, called thefoot nodeand distinguished by the diacritic
∗, are labeled with the same nonterminal. Theadjunctionoperation involves
splicing an auxiliary tree with root and designated foot node labeled with a
nonterminalA at a node in an elementary tree also labeled with nonterminal
A. Examples of the substitution and adjunction operations onsample elemen-
tary trees are shown in Figure 1.

Synchronous TAG (STAG) extends TAG by taking the elementarystruc-
tures to be pairs of TAG trees with links between particular nodes in those
trees. An STAG is a set of triples,〈tL, tR,⌣〉 wheretL andtR are elementary
TAG trees and⌣ is a linking relation between nodes intL and nodes intR
(Shieber, 1994, Shieber and Schabes, 1990). Derivation proceeds as in TAG
except that all operations must be paired. That is, a tree canonly be substi-
tuted or adjoined at a node if its pair is simultaneously substituted or adjoined
at a linked node. We notate the links by using boxed indicesi marking linked
nodes.

Figure 2 contains a sample English syntax/semantics grammar fragment
that can be used to parse the sentence “John apparently likesMary”. The
node labels we use in the semantics correspond to the semantic types of the
phrases they dominate.2 Variables such asx in the semantic tree in Figure 3
are taken to be bound in the obvious way, so that in multiple uses of the tree

2This representation is for the sake of readability. The labels could be replaced using any
well-chosen finite set of nonterminal symbols.
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FIGURE 2 An English syntax/semantics STAG fragment (a), derived tree pair (b), and
derivation tree (c) for the sentence “John apparently likesMary.”

they can be presumed to be renamed apart.
Figure 2(c) shows the derivation tree for the sentence. Substitutions are

notated with a solid line and adjunctions are notated with a dashed line. Note
that each link in the derivation tree specifies a link number in the elementary
tree pair. The links provide the location of the operations in the syntax tree
and in the semantics tree. These operations must occur at linked nodes in the
target elementary tree pair. In this case, the noun phrasesJohnandMary sub-
stitute intolikes at links 3 and 4 respectively. The wordapparentlyadjoins
at link 2 . The resulting semantic representation can be read off the derived
tree by treating the leftmost child of a node as a functor and its siblings as its
arguments. Our sample sentence thus results in the semanticrepresentation
apparently(likes( john,mary)).

8.3 STAG Analyses of the Phenomena

8.3.1 Quantifier Scope and Wh-Words

For sentence (12), we would like to generate a scope-neutralsemantic rep-
resentation that allows both the reading wheresometakes scope overevery
and the reading whereeverytakes scope oversome. We propose a solution
in which a derivation tree with multiple adjunction nondeterministically de-
termines multiple derived trees each manifesting explicitscope (Schabes and
Shieber, 1993); the derivation treeitself is therefore the scope neutral repre-
sentation.

The multi-component quantifier approach followed by Joshi et al. (2003)
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FIGURE 3 The elementary tree pairs (a), derivation tree (b), and derived syntactic and
semantic trees (c) for the sentence “Everyone likes someone”. Note that the

derivation tree is a scope neutral representation: depending on whethereveryor some
adjoins higher, different semantic derived trees and scope orderings are obtained.

suggests a natural implementation of quantifiers in STAG.3 In this approach
the syntactic tree for quantifiers has two parts, one that corresponds to the
scope of the quantifier and attaches at the point where the quantifier takes
scope, and the other that contains the quantifier itself and its restriction and
attaches where syntactically expected at a noun phrase. In their work, a single-
node auxiliary tree is used for the scope part of the syntax inorder to get the
desired relationship between the quantifier and the quantified expression in
features threaded through the derivation tree and hence in the semantics. Us-
ing STAG, we do not need the single-node auxiliary tree in thesyntax because
we can pair the usual syntactic representation for quantified NPs with a multi-
component semantic representation that expresses the sameidea (Figure 3).
In order to use these quantifiers, we change the links in the elementary trees
for verbs to allow a single link to indicate two positions in the semantics

3The multi-component approach to quantifiers in STAG was firstsuggested by Shieber and
Schabes (1990) under the rewriting definition of STAG derivation where the order of rewrit-
ing produced the scope ambiguity. Williford (1993) explored the use of multiple adjunction to
achieve scope ambiguity.



S TAG S  S / 109

WH

e

y

who y

t

t∗

who

WH↓

V

NP↓

e↓

e↓

11

V P3
3

NP

ǫ

t 2S

tS
′

2

likes

〈e, t〉

34

4

4

johnwho say

thinkspaul

bill

13

3

25

4

1 2

3

1

23

S

NP↓ V P

V

t

e↓

thinksS∗ t∗

3

think

〈e, t〉

likeswh

likeswh

FIGURE 4 Selection of elementary trees and full derivation tree for the sentence “Who
does Bill think Paul said John likes?”.

where a tree pair can adjoin, as shown in Figure 3.4

Given this representation of quantifiers we get the derivation tree shown
in Figure 3 for sentence (12).5 Note that the resulting derivation tree neces-
sarily incorporatesmultiple adjunction(Schabes and Shieber, 1993), that is,
multiple auxiliary trees are adjoined at the same node in an auxiliary tree. In
particular, the scope parts of botheveryand someattach at the root of the
semantic tree oflikes. Such cases of multiple adjunction induce ambiguity;
the derivation tree represents multiple derived trees. In the case at hand, the
derivation is ambiguous as to which quantifier scopes higherthan the other.
This ambiguity in the derivation tree thus models the set of valid scopings
for the sentence. In essence, this method uses multiple adjunction to model
scope-neutrality.

This same method can be used to obtain the correct scope relations for
sentences with long-distance WH-movement such as sentence(13) using the
multi-component elementary tree pair forwhoand the elementary tree pairs
for thinks(the tree pair forsaysis similar) andlikes in the WH context given
in Figure 4. Kallmeyer and Romero (2004) highlight this caseas difficult be-
cause in the usual syntactic analysis there is no link in the derivation tree

4We have chosen here to add the three-way links in addition to the existing links in the tree
for unquantified noun phrases such as proper nouns (though wesuppress the two-way NP links
in the figures for readability). Another possibility would be to remove the two-way links. In this
case, all noun phrases would be “lifted” à la Montague. Thatis, even unquantified noun phrases
would have a scope part, which could be a single-node auxiliary tree.

5We notate multi-component insertions that involve both a substitution and an adjunction
with a combination dashed and dotted line.
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FIGURE 5 Derivation trees for (a) “Bill thinks John apparently likesMary”, (b) “John

sometimes likes everyone”, and (c) “Bill thinks everyone likes someone.”

betweenwho and thinksor betweenthinksand likes, but in the desired se-
manticswhotakes scope over thethinksproposition and thelikesproposition
is an argument tothinks.

In our analysis, by contrast, the semantics follows quite naturally from the
standard syntactic analysis of the structure of thelikeselementary tree in the
WH context and the elementary tree pair forthinksgiven in Figure 4. The
derivation of this sentence is also given in Figure 4. Note that it is required by
the structure of the trees thatwho take scope overthinks.

8.3.2 The Interaction Between Attitude Verbs, Raising Verbs, Adverbs
and Quantifiers

The interaction between attitude verbs and raising verbs oradverbs as in
sentences (14), (15), and (16) has been problematic for TAG semantics
(Kallmeyer and Romero, 2004). A successful analysis must beflexible enough
to produce the correct semantics for sentence (14) even though there is no link
betweenthinksandapparentlyin the derivation tree. It must also be flexible
enough to allow all scope orderings between VP modifiers and quantifiers as
in sentence (15). In fact, given the elementary trees we havealready presented
and the ones for attitude verbs demonstrated by Figure 4, ouranalysis already
allows for scope interactions among all these elements. Indeed, because the
semantic components of attitude verbs, VP modifiers, and quantifiers all ad-
join at the same node in the semantic tree of the verb, our analysis allows all
scope orderings among them. This is clearly too permissive,because it allows
quantifiers to scope out of the finite clause in which they appear and would
allow a reading of sentence (14) in whichapparentlyscopes overthinks. To
prevent quantifiers from scoping out of the finite clause in which they appear,
as in sentences (14) and (16), we can add an additional adjunction site to the
semantic trees for verbs above the current root node. This isshown in Fig-
ure 6 in thelikes2 tree pair. The link configuration ensures that attitude verbs
(adjoining at link 1 ) will now scope higher than all VP modifiers (adjoining
at 2 ) and quantifiers (adjoining at links3 and 4 ). VP modifiers and quantifiers
will still be able to take all scope orderings relative to each other. Using the
modified verb trees, STAG produces the correct semantics forsentences (14),
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FIGURE 7 Key elementary trees and derivation for “A problem whose solution is
difficult stumped Bill.”

(15), and (16) with the derivations given in Figure 5.

8.3.3 Relative Clauses

Relative clauses provide another putatively difficult case for TAG seman-
tics because both the main verb and the relative clause need access to the
variable introduced by the determiner as in sentence (17) (Kallmeyer, 2003).
We overcome this difficulty and compute the desired semantics by intro-
ducing higher-order functions into the semantic trees using lambda-calculus
notation. This modification allows us to maintain tree-locality. The syntac-
tic analysis we use is similar to that of Kallmeyer (2003) in that it main-
tains theCondition on Elementary Tree Minimality(Frank, 1992) and uses
the relative pronoun to introduce the relative clause. However, it treats the
relative pronoun as a noun modifier rather than a noun phrase modifier.
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FIGURE 8 Derived tree for “A problem whose solution is difficult stumped Bill.”

We also posit the existence of “lifted” versions of the elementary trees for
verbs in which their argument positions have been abstracted over. We use a
higher-order conjunctionand that relates two properties:λPQx.P(x) ∧ Q(x),
and a higher-orderse function that relates two properties and makes use
of the higher-order conjunction:λPQx.the(y, and(P, λz.poss(x, z))(y),Q(y)).
The elementary tree pairs and resulting derivation tree forsentence (17)
are given in Figure 7. The derived tree is given in Figure 8. When re-
duced, the resulting semantics isa(z, λx.(problem(x) ∧ the(y, solution(y) ∧
poss(x, y),isDifficult(y))), stumped(bill , z)).

8.3.4 Nested Quantifiers and Inverse Linking

Quantifiers in prepositional phrases such as in sentence (18) pose another
challenge for TAG semantics (Joshi et al., 2003). Although anested quanti-
fier may take scope over the quantifier within which it is nested (so-called “in-
verse linking”) not all permutations of scope orderings of the quantifiers are
available (Joshi et al., 2003). In particular, readings in which a quantifier in-
tervenes between a nesting quantifier and its nested quantifier are not valid. In
our example sentence (18), this predicts that the readingssome> two> every
andevery> two > someshould not be valid. Joshi et al. (2003) introduce a
special device allowing nesting and nested quantifiers to form an indivisi-
ble quantifier set during the derivation, which prevents other quantifiers from
intervening between them. In our solution, because the nested quantifier is
introduced through the prepositional phrase, which in turnmodifies the noun
phrase containing the nesting quantifier, the two quantifiers already naturally
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FIGURE 9 Key elementary trees and derivations for “Two politicians spy on someone
from every city.”

form a set that operates as a unit with respect to the rest of the derivation.6 The
elementary tree pairs and derivation trees for our analysisof (18) are shown
in Figure 9.

One notable feature of this analysis is that the four different scope read-
ings that result are not the product of a single derivation tree. The alternate
scope orderings for the nested and nesting quantifier exist because there are
two available adjunction sites for the scope of quantifiers in the prepositional
phrase to attach. This results in two distinct derivation trees. The alternate
scope orderings for this quantifier set and the remaining quantifier are ob-
tained by multiple adjunction at the root of the verb tree. The set of valid
derivation trees for a sentence thus constitutes the scope neutral representa-
tion. This set of trees may be compactly represented, for instance as a shared
forest.7

8.4 Comparison to the Kallmeyer and Romero Approach

As mentioned above, research on TAG semantics has been led byLaura
Kallmeyer, Maribel Romero, and their collaborators through a series of pa-
pers refining a system of TAG semantics computation using feature unifica-
tion and other formal devices (Kallmeyer and Romero, 2004, Romero et al.,
2004, Kallmeyer, 2003, Kallmeyer and Joshi, 2003, Joshi et al., 2003, Gar-
dent and Kallmeyer, 2003). Although their approach has evolved over time,

6We make use of tree-set-local TAG in the semantics where the tree set foreveryadjoins into
the tree set forf rom. Although tree-set-local TAG is more powerful than TAG, this particular
use is benign because it cannot be iterated. More concretely, we could conventionally make the
grammar tree-local by including all combinations of prepositions with quantifiers as elementary
trees in the grammar.

7This analysis, like that of Joshi et al. (2003), makes several predictions about quantifier scope
that might be disputed. First, some argue that more than fourscope orderings should be available
for sentences like sentence (18) (VanLehn, 1978, Hobbs and Shieber, 1987). This analysis cannot
generate additional scope orderings without breaking treeset locality. Second, the scope readings
in which the nesting quantifier takes scope over the nested quantifier result in the nested quantifier
having scope over the restriction of the nesting quantifier but not over its scope. Donkey sentence
constructions such as “Every man with two books loves them” call this prediction into question.
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the underlying principles of using the relationships expressed in the derivation
tree as the basis for the computation and generating underspecified semantic
representations have been constant. In its current formulation, they perform
semantic computation by attaching semantic feature structures directly to the
nodes in the derivation tree. When carefully chosen, these features unify to
produce an underspecified representation of the semantics of a sentence that,
when further disambiguated, generates the set of valid interpretations. In one
or another of their recent papers they have provided successful analyses of
each of the hard cases that we have addressed here, though some of their
analyses might have to be restated to bring them up to date with the newest
formulation of their method.

Our work owes much to theirs both for the clear formulation ofthe prob-
lems and the progress in formulating analyses for some of thehard cases.
The primary advantage of our approach is its conceptual simplicity. The clear
separation of syntax and semantics, the directness of the link interface, and
the familiarity of the TAG operations used in our approach make it very sim-
ple. The semantic-feature-unification-basedapproach hasbecome cleaner and
easier to understand as Kallmeyer and others have refined it over the years.
Nonetheless, it is safe to say that the amount of formal machinery—including
propositional labels, separate individual and propositional variables, semantic
representations consisting of a set of formulas and a set of scope constraints,
features on the derived tree and the derivation tree, each semantic feature
structure containing a nested feature structure for each address in the elemen-
tary syntax tree, each of these feature structures containing features to handle
binding of propositional and individual variables, feature unification, flexible
composition, and quantifier sets—necessary to solve the range of problems
that we have addressed here, is qualitatively more complex.In fact, we use
no formal machinery that had not been introduced by 1994 in the TAG litera-
ture.

An additional advantage of our approach is that it does not increase the
expressivity of the TAG formalism. One might think that the inclusion of
multiple adjunction would lead to an increase in expressivity (Dras, 1999).
However, because links can only be used once in an STAG derivation, only
a finite number of multiple adjunctions may occur at a single adjunction
site. This rules out problematic uses of multiple adjunction. Kallmeyer and
Romero maintain the semantic features on the derivation tree rather than in
the feature structures already used in the feature-based TAGs (FTAG) of their
syntax in part because the set of semantic feature structures is not finite, po-
tentially increasing the expressivity of the FTAG formalism (Kallmeyer and
Romero, 2004). Although moving the features to the derivation tree avoids in-
creasing the expressivity of the formalism used for syntax when taken alone,
the additional expressivity in the features of the semantics could be used to
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block operations in the syntax thereby filtering the syntax to produce non-
tree-adjoining languages. It remains to be seen whether this additional ex-
pressivity will be required for TAG semantics.

Advantages and disadvantages of the different methods aside, in this still
nascent area of research it is desirable to have several quite different ap-
proaches at our disposal as we explore the hard problems presented by gen-
erating natural language semantics in the TAG framework. Our approach re-
vives an old idea with the aim of opening a new avenue for research into
semantics in the TAG framework.

8.5 Conclusion

We have presented the synchronous TAG formalism as a method for comput-
ing semantics in the TAG framework, and have shown that it enables simple,
natural analyses for all of the cases that have exercised recent attempts at for-
mulating formal semantics for TAG. It satisfies each of the desiderata laid out
at the beginning of this paper. First, it does not require anyadditional informa-
tion other than that available in the derivation tree to generate the semantics.
Because the syntax and semantic representations are built up synchronously,
the derivation tree set is a complete specification of the relationship between
them. Nothing other than the set of elementary tree pairs andthe synchronous
TAG operations are required to generate a semantic representation. Second,
the derivation tree set provides a compact representation for all valid seman-
tic interpretations of the given sentence. Using multiply-adjoined quantifiers
we take advantage of the ambiguity in the interpretation of the derivation tree
that is introduced by multiple adjunction. We take each possible ordering of
multiply-adjoined trees to be valid. We leave open the possibility of using an
additional method to prefer certain scope orders and disprefer or eliminate
others. Third, the STAG system, as used, does not increase the expressivity of
the TAG formalism (Shieber, 1994). Finally, our analysis isa straightforward
expression of a simple idea: we use TAG for both syntax and semantics and
use the derivation tree and the links between trees in elementary tree pairs as
the interface between them.
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9

Encoding second order string ACG with
Deterministic Tree Walking Transducers.
S S

9.1 Introduction

Abstract Categorial Grammars (ACGs) (de Groote (2001)) arebased on the
linear logic (Girard (1987)) and on the linearλ-calculus. They describe the
surface structures by using for syntax the ideas Montague (1974) devoted to
semantics. ACGs describe parse structures with higher-order linearλ-terms
and syntax as a higher-order linear homomorphism (lexicon)on parse struc-
tures. Intuitively, the higher the order of the parse structures is, the richer
should the languages of analysis be and the higher the order of the lexicons
is, the richer should the class of languages be. On the one hand, de Groote
and Pogodalla (2004) have shown how to encode of several context free for-
malisms by using second order parse structures (i.e. regular sets of trees).
They have encoded Context Free Grammars using second order lexicons, Lin-
ear Context Free Tree Grammars using third order lexicons and Linear Con-
text Free Rewriting Systems (Weir (1988)) with fourth orderlexicons. On the
other hand Yoshinaka and Kanazawa (2005) have explored the expressivity of
lexicalized ACGs. They have exhibited a non-semilinear string language with
third order parse structures and an NP-complete string language with fourth
order parse structures. (Salvati (2005) gave an example of an NP-complete
language with third order parse structures and a first order lexicon).

The present work addresses the problem of the expressivity of ACGs in
a particular case. We show that the class of languages definedby second or-
der string ACGs is the same as the class of languages defined asoutputs of
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Deterministic Tree Walking Transducers (DTWT) (Aho and Ullman (1971)).
Together with the results of de Groote and Pogodalla (2004) and Weir (1992),
this result proves that the generative power of second orderstring ACGs is ex-
actly the same as the generative power of Linear Context FreeRewriting Sys-
tems. This furthermore shows that second order string ACGs can always be
described with fourth order lexicons. We may nevertheless conjecture that the
use of lexicons of order greater than four may give more compact grammars.

The paper is organized as follows: we first briefly define the linearλ-
calculus and ACGs in section 9.2. In section 9.3, we use the correspondence
between proofs of linear logic and linearλ-terms to relate subformulae of a
typeα with subterms of terms of typeα. Section 9.4 introducesh-reduction,
the reduction used by the DTWTs which encode second order string ACGs.
Section 9.5 presents the encoding of second order string ACGs with DTWTs.
Finally we conclude and outline future work in section 9.6.

9.2 Definitions
Given a finite set of atomic typesA, we define,TA, the set of linear applica-
tive types built onA with the following grammar:

TA ::= A | (TA ⊸ TA)

If α1, . . . ,αn are elements ofTA andα ∈ A we will write (α1, . . . , αn) ⊸ α

the type (α1 ⊸ (· · · (αn ⊸ α) · · · )). The order of the typeα, ord(α), is 1 if α
is atomic (i.e.α ∈ A), and ord(α⊸ β) = max(ord(α) + 1, ord(β)).

Higher-order signatures are triples (C,A, τ) whereC is a finite set of con-
stants,A is a finite set of atomic types andτ is a function fromC toTA. The
order of a signature (C,A, τ) is max{ord(τ(a))|a ∈ C}. Given a higher-order
signatureΣ = (C,A, τ) we will denoteA byAΣ, C byCΣ, τ by τΣ andTA by
TΣ; if τΣ(a) = (α1, . . . , αn)⊸ α, then the arity ofa ∈ CΣ is n, it will be noted
ρΣa or ρa (whenΣ is clear from the context).

A higher-order signatureΣ is said to be astring signatureif AΣ = {∗},
# ∈ CΣ, τΣ(#) = ∗ and for alla ∈ CΣ\{#}, τΣ(a) = (∗⊸ ∗).

We are now going to define the set of linearλ-terms built on a signature
Σ. We assume that the notions of free variables1, capture-avoiding substitu-
tions,α-conversion,β-reduction,η-reduction. . . are familiar to the reader. If
necessary, one may consult Barendregt (1984).

Given a higher-order signatureΣ andα ∈ TΣ, we assume that we are given
an infinite enumerable set of variablesxα, yα, zα. . . , Λα

Σ
the set of linearλ-

terms of typeα built onΣ is the smallest set verifying:

1. if a ∈ CΣ andτΣ(a) = α thena ∈ Λα
Σ

2. xα ∈ Λα
Σ

1Given aλ-term t, we will write FV(t) to denote the set of its free variables.



E   ACGD TW T. / 121

3. if t1 ∈ Λ
(β⊸α)
Σ

, t2 ∈ Λ
β

Σ
andFV(t1) ∩ FV(t2) = ∅ then (t1t2) ∈ Λα

Σ

4. if t ∈ Λβ
Σ
, xα ∈ FV(t) thenλxα.t ∈ Λ(α⊸β)

Σ

The setΛΣ denotes
⋃
α∈TΣ Λ

α
Σ
. Linearλ-terms arelinear because variables

may occur free at most once in them and that wheneverλxα.t is a linearλ-
term,xα has exactly one free occurrence int. Moreover, whenevert ∈ Λα

Σ
∩Λ

β

Σ

thenα = β, i.e.every linearλ-term has a unique type in a given signatureΣ.
We may, when it is not relevant, strip the typing annotation from the vari-

ables. We will writeλx1 . . . xn.t for the termλx1. . . . λxn.t and t0t1 . . . tn for
(. . . (t0t1) . . . tn). Given a list of indicesS = [i1, . . . , in], we will write λ−→xS.t
the termλxi1 . . . xin.t, t0

−→
tS the termt0ti1 . . . tin and−→cSt the termci1(. . . cin(t) . . .)

when for all j ∈ [1, n], ci j has type∗ ⊸ ∗. In particular,λ−→xn.t, t0
−→
tn and−→cnt

may be used whenS = [1, . . . , n].
Given a string signatureΣ, strings will be represented by the closed terms

of type∗. For example, the termc1(. . . (cn#) . . .) represents the stringc1 . . . cn;
given w, a string built onCΣ, /w/ will denote the term ofΛ∗

Σ
which is in

normal form and representsw.
To define the subterms oft ∈ ΛΣ, we follow Huet (1997) and consider

them as pairs (C[] , t′) (whereC[] is a context,i.e. a term with a hole) such
that t = C[t′]. The set of subterms oft is denoted bySt. In particular, we
defineSαt to be {(C[] , v) ∈ St|v ∈ ΛαΣ}. If x is free in t, we noteCt,x[] the
context such thatCt,x[x] = t andx is not free inCt,x[]. Remark that sincet is
linearCt,x[] is uniquely defined.

We say that a termt is in long from if for all (C[] , t′) ∈ Sα⊸βt eithert′ =
λx.t′′ or C[] = C′[[] t′′]. Every term can be put in long form byη-expansion,

therefore ift is the long form oft′, thent
∗
→η t′. When a term is in long form,

all its possible arguments are abstracted by aλ-abstraction. For example, the
term x∗⊸∗, which is not in long form, can be applied to an argument of type
∗; in long form, this term becomesλy∗.x∗⊸∗y∗, the possibility of applying it
to a term of type∗ is syntactically represented by theλ-abstraction. A term is
in long normal form (lnf for short) if it is both inβ-normal form and in long
form. The set lnfαΣ (resp.clnfαΣ) represents the set of terms ofΛα

Σ
in lnf (resp.

the closed terms ofΛα
Σ

in lnf). In the sequel of the paper we only deal with

terms in long form; thus each time we will writeλ−→xS.t, x
−→
tS or a

−→
tS, we will

implicitly make the assumption thatt, x
−→
tS or a

−→
tS has an atomic type.

We define homomorphisms between the higher-order signaturesΣ1 andΣ2

to be pairs (f , g) such thatf is a mapping fromTΣ1 toTΣ2, andg is a mapping
fromΛΣ1 toΛΣ2, and verifying:

1. if α ∈ AΣ1 then f (α) ∈ TΣ2, otherwise,f (α⊸ β) = f (α)⊸ f (β)

2. for all a ∈ CΣ1 such thatτΣ1(a) = α, g(a) ∈ clnf f (α)
Σ2

3. g(xα) = xf (α)
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4. g(t1t2) = g(t1)g(t2)
5. g(λxα.t) = λxf (α).g(t)

One can easily check that whenevert ∈ Λα
Σ1

, g(t) ∈ Λ f (α)
Σ2

. In general, given a
homomorphismL = ( f , g), we will write indistinctlyL(α) for f (α) andL(t)
for g(t). Theorderof L is max{ord(L(α))|α ∈ AΣ1}.

An ACG (de Groote (2001)) is a 4-tuple (Σ1,Σ2,L,S) such that:

1. Σ1 is a higher-order signature,the abstract vocabulary
2. Σ2 is a higher-order signature,the object vocabulary
3. L is a homomorphism fromΣ1 to Σ2, the lexicon
4. S ∈ AΣ1

An abstract constant(resp. object constant) is an element ofCΣ1 (resp.CΣ2),
anabstract type(resp. object type) is an element ofTΣ1 (resp.TΣ2). Given an
abstract constanta,L(a) is called therealizationof a.

An ACGG = (Σ1,Σ2,L,S) defines two languages:

1. the abstract language:A(G) = clnfSΣ1

2. the object language:O(G) = {v ∈ clnfΣ2 |∃t ∈ A(G).v =βη L(t)}

An ACGG = (Σ1,Σ2,L,S) is said to be astring ACGif Σ2 is a string signa-
ture andL(S) = ∗. Theorder of an ACGis the order of its abstract signature.

9.3 Path in types, active substerms and active variables
We assume that we are given a signatureΣ and that all the types and all the
terms used in this section are built on that signature.

A linearλ-termt ∈ lnfαΣ represents, via the Curry-Howard isomorphism, a
cut-free proof ofα in the Intuitionnistic Implicative and Exponential Linear
Logic. This correspondence leads to a natural relation between subformulae
of α and subterms oft. This section presents this relation which will play a
central role in our encoding.

The subformulae of a type will be designated by means of paths. A path
π = i1 · i2 · · · in−1 · in is a possibly empty sequence of strictly positive integers;
n is the length ofπ and whenn = 0, π will be denoted by•. Given a set of
pathsP, i · P denotes the set{i · π|π ∈ P}. The set of paths in the typeα, Pα is
defined as follows:

P(α1,...,αn)⊸α0 = {•} ∪

n⋃

i=1

i · Pαi (recall thatα0 is atomic)

The setPα is split within two parts: the positive paths, denoted byP+α and the
negative paths denoted byP−α. Positive (resp.negative) paths are the path of
Pα which have an even (resp.odd) length.

Given a pathπ, we definep+ π as:p+ π =

{
• if π = •
(p+ k) · π′ if π = k · π′
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Given t ∈ lnfαΣ, we define two particular subsets ofSt, the set ofactive
subterms,AT t, and the set ofactive variables,AVt. The setsAT t andAVt

are defined as the smallest sets satisfying:

1. ([], t) ∈ AT t

2. if (C[] , λ−→xn.t′) ∈ AT t then for alli ∈ [1, n],

(C[λ−→xn.Ct′ ,xi []] , xi) ∈ AVt

3. if (C[[] t1 . . . tn], x) ∈ AVt then for alli ∈ [1, n],

(C[xt1 . . . ti−1[] . . . tn], ti) ∈ AT t

If a termt can be applied ton arguments, then, givent1, . . . , tn terms in lnf,
during theβ-reduction oftt1 . . . tn the active variables oft will eventually sub-
stituted by a term duringβ-reduction and the residuals of the active subterms
of t will eventually become the argument of a redex. On the other hand, the
variables oft which are not active will never be substituted and the subterms
of t which are not active will never be the argument of a redex.

We can now define two mutually recursive functionsAT t andAV t respec-
tively fromAT t ontoP+α and fromAVt ontoP−α:

1. AT t([] , t) = •

2. if AT t(C[] , λ−→xn.t′) = π then for alli ∈ [1, n],

AV t(C[λ−→xn.Ct′ ,xi []] , xi) = π · i

3. if AV t(C[[] t1 . . . tn], x) = π then for alli ∈ [1, n],

AT t(C[xt1 . . . ti−1[] . . . tn], ti) = π · i

One can easily check thatAT t(C[] , v) = π (resp.AV t(C[] , x) = π) implies that
the type ofv (resp. x) is the type designated (in the obvious way) byπ in α.

The functionsAT t andAV t are bijections whose converse isPt:

1. Pt(•) = ([] , t)

2. Pt(π · i) =

{
(C[λ−→xn.Ct′ ,xi [] , xi) if Pt(π) = (C[] , λ−→xn.t′)
(C[xt1 . . . ti−1[] . . . tn, ti) if Pt(π) = (C[[] t1 . . . tn], x)

For all (C[] , t′) ∈ AT t (resp.(C[] , x) ∈ AVt) it is straightforward that
Pt(AT t(C[] , t′)) = (C[] , t′) (resp.Pt(AV t(C[] , x)) = (C[] , x)); and that for all
π ∈ P+α (resp.π ∈ P−α), AT t(Pt(π)) = π (resp.AV t(Pt(π)) = π).

9.4 h-reduction

The DTWTs which encode second order string ACGs perform the normal-
ization of the realization of abstract terms. They use a particular reduction
strategy,h-reduction, which is related tohead linear reduction(Danos and
Regnier (2004)).
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This reduction strategy is only defined for a particular class of λ-terms.
Firstly, theseλ-terms have to be built on a string signatureΣ; secondly, they
have a particular form. To describe this form, we need first defineNα

Σ
⊆ Λα

Σ

(NΣ =
⋃
α∈TΣ N

α
Σ
) as:

Nα
Σ ::= lnfαΣ | (N

β⊸α

Σ
N

β

Σ
)

Then, the set of terms we are interested in are theHT-terms defined by the
following grammar:

HT ::= N∗Σ | cHT | (λxα1
1 . . . xαn

n .HT )Nα1
Σ
. . .Nαn

Σ

wherec ∈ CΣ. EveryHT-term is inΛ∗
Σ

and is of the form:

(λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→cTn(x j

−→
tQ))−−→vSn . . .))

−−→vS1

so thatSi ∩ S j , ∅ implies thati = j, vk (with k ∈
⋃

i∈[1,n] Si) andtq (with
q ∈ Q) are elements ofNΣ.

Given aHT-term,

t = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→cTn(x j

−→
tQ))−−→vSn . . .))

−−→vS1

we say thatt h-contracts tot′ (notedt →h t′) if

t′ = (λ−−→xS′1
.−→cT1(. . . (λ

−−→xS′n.
−→cTn(v j

−→
tQ))−−→vS′n . . .))

−−→vS′1

whereS′k = Sk\{ j}. It is a routine to check thatt =β t′, that t′ is also a
HT-term and that the normal form oft can be obtained in a finite number of
h-contractions. The reflexive and transitive closure of→h, h-reduction, will
be written

∗
→h.

GivenG = (Σ1,Σ2,S,L) a second order string ACG, andu ∈ clnfSΣ , we
are going to see howh-contraction normalizesL(u). The determinism of→h

allows one to predict statically (i.e. without performing the reduction) which
subterm ofL(u) will be substituted to a given bound variable inL(u) during
h-reduction. This prediction is based on the notions ofreplaceable variables
andunsafe termsintroduced by Böhm and Dezani-Ciancaglini (1975). Re-
placeable variables and unsafe terms ofu belong toSL(u) and will be respec-
tively denoted byRVu andUT u.

If (C[] , a) ∈ Su and (C′[] , x) ∈ AVL(a), then (L(C)[C′[]] , x) ∈ RVu;UT u

is the smallest set verifying:

1. if (C[] , a−→vρa) ∈ Su andC[] , [] then (L(C)[] ,L(a−→vρa)) ∈ UT u

2. if (C[] , a) ∈ Su and (C′[] , v) ∈ ATL(a) then (L(C)[C′[]] , v) ∈ UT u

The prediction will be given byφu, a bijection betweenRVu andUT u.
The definition ofφu relies on few more technical definitions.

Given (Ca[] , a) ∈ Su such thatCa[] = C[[] v1 . . . vρa], then

(C[av1 . . . vi−1[] . . .vρa], vi)
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is the ith argumentof (Ca[] , a). Given (Ca[] , a), (Cb[] , b) ∈ Su, we say that
(Ca[] , a) is thehead of the ith argumentof (Cb[] , b) if

Cb[] = C[[] v1 . . . vi−1(a−−→wρa) . . .vρb] andCa[] = C[bv1 . . . vi−1([]−−→wρa) . . .vρb]

Given (C[] , x) ∈ RVu, we now defineφu(C[] , x). As (C[] , x) ∈ RVu,
we have (Ca[] , a) ∈ Su andCx[] such that (Cx[] , x) ∈ AVL(a) andC[] =
L(Ca)[Cx[]]. Let π = AVL(a)(Cx[] , x), sinceπ ∈ P−

L(τΣ1 (a)), π is of odd length,

andπ = i.π′. Then we have three cases:

1. if i ≤ ρa andπ′ = •, thenφu(C[] , x) = (L(C′)[] ,L(t)) where (C′[] , t) is
the ith argument of (Ca[] , a)

2. if i ≤ ρa andπ′ , •, thenφu(C[] , x) = (L(Cb)[C′[]] , t) where (Cb[] , b)
is the head of theith argument of (Ca[] , a) and (C′[] , t) = PL(b)(ρb + π

′)
3. if i > ρa thenφu(C[] , x) = (L(Cb)[C′[]] , t) where (Ca[] , a) is the head

of thekth argument of (Cb[] , b) and (C′[] , t) = PL(b)(k · (i − ρa) · π′).

Computingφu(C[] , x) only requires to know about the immediate sur-
rounding ofa. This is the reason why the normalization ofL(u) can be per-
formed by a DTWT. To prove the correctness of the prediction of φu we need

the notion ofstrict residual: given t and t′ such thatt
∗
→h t′, (C[] , v) ∈ St

and (C′[] , v) ∈ St′ , we say that (C′[] , v) is the strict residualof (C[] , v) when-

everC[xy1 . . . yn]
∗
→h C′[xy1 . . . yn] with FV(v) = {y1, . . . , yn} andx is a fresh

variable.
Given t such thatL(u)

∗
→h t, we say thatt is predicted byφu if the two

following properties hold:

1. for all (C[] , (λ−→xnλ
−→yq.v)−→vn) ∈ St andi ∈ [1, n], the fact that

(C[(λ−→xnλ
−→yq.Cv,xi [])

−→vn], xi)

is the strict residual of (Cxi [] , xi) ∈ RVL(u) implies that

(C[(λ−→xnλ
−→yq.v)v1 . . . vi−1[] . . .vn], vi)

is the strict residual ofφu(Cxi [] , xi).
2. for all (C[[]−→vq], x) ∈ St, (C[[]−→vq], x) is the strict residual of some

(C′[[]−→vq], x) ∈ RVu.

We are now going to show thath-reduction preserves the predictions ofφu.
This will be achieved by using the following technical lemma:

Lemma 22 Given (C[[]−→vq], x) ∈ RVu if we haveφu(C[[]−→vq], x) = (C′[] , t′)
then t′ = (λ−→xp

−→yq.w)−→wp and we have

φu(C′[(λ−→xp
−→yq.Cw,yk[])

−→wp], yk) = (C[xv1 . . . vk−1[] . . .vq], vk)

Proof. This proof only consists in unfolding the definitions. Since (C[[]−→vq], x) ∈
RVu, we must have (Ca[] , a) ∈ Su andCx[] such that:
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1. C[[]−→vq] = L(Ca)[Cx[[]
−→vq]]

2. (Cx[[]
−→vq], x) ∈ AVL(a)

3. AVL(a)(Cx[[]
−→vq], x) = i · π for somei andπ

There are three different cases depending oni andπ.

Case 1:i ≤ ρa andπ = •: this case is very similar to the following one and is
thus left to the reader. It is the only case wherep may be different from 0.

Case 2: i ≤ ρa and π , •: by definition if (Cb[] , b) is the head of the
ith argument of (Ca[] , a), and if PL(b)(ρb + π) = (C′′[] , λ−→yq.w) thenC′[] =
L(Cb)[C′′[]] and t′ = λ−→yq.w. Let’s now suppose thatπ = m · π′, then we have
that AVL(b)(λ

−→yq.Cw,yk[] , yk) = (ρb + π) · k = (ρb + m) · π′ · k. Therefore, as
ρb + m > ρb and as (Cb[] , b) is the head of theith argument of (Ca[] , a), we
have thatφu((λ−→yq.Cw,yk[]) , yk) = (L(Ca)[Ck[]] , uk) where

(Ck[] , uk) = PL(a)(i · (ρb +m− ρb) · π′ · k) = PL(a)(i · π · k)

But we have thatAVL(a)(Cx[[]
−→vq], x) = i · π which implies that

(Ck[] , uk) = PL(a)(i · π · k) = (Cx[xv1 . . . vk−1[] . . .vr ], vk).

Finally asC[] = L(Ca)[Cx[]] we get the result.

Case 3:i > ρa: this case is similar to the previous one. ⊔⊓

Proposition 23 If L(u)
∗
→h t, then t is predicted byφu.

Proof. This proof is done by induction on the number ofh-contraction steps
of the reduction. The case where this is zero is a simple application of the

definitions. Now let’s suppose thatL(u)
∗
→h t →h t′, then, by induction

hypothesis,t is predicted byφu; furthermore,t is aHT-term, thus

t = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→c Tn(x j

−→
tQ))−−→vSn . . .))

−−→vS1

and
t′ = (λ−−→xS′1

.−→cT1(. . . (λ
−−→xS′n.
−→c Tn(v j

−→
tQ))−−→vS′n . . .))

−−→vS′1

with S′i = Si\{ j}.
Within the two conditions required to obtain thatt′ is predicted byφu, only

the first one requires more than a straightforward application of the induction
hypothesis. There is actually only one subterm oft′ which is problematic:
v j
−→tQ. From the induction hypothesis we know that the subterm corresponding

to x j in t is the strict residual of (C[[]−→tQ], x j) ∈ RVu and that the subterm

corresponding tov j in t is the strict residual ofφu(C[[]−→tQ], x j). Finally the

previous lemma allows us to conclude thatv j
−→
tQ fullfills the first condition.⊔⊓
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9.5 Encoding second order string ACGs with DTWT
We are now going to show how to encode second order string ACGsinto
DTWT. We do not follow the standard definition of DTWT as givenin Aho
and Ullman (1971). Indeed, instead of walking on the parse trees of a context
free grammar, the transducers we use walk on linearλ-terms built on a second
order signature. But, as these sets ofλ-terms are isomorphic to regular sets of
trees, the string languages outputed by our transducers arethe same as those
of usual DTWT. By abuse, we call our transducers DTWT.

A DTWT is defined as a 6-tuple

A = (Σ,D,Q,T, δ, q0, q f )

whereΣ is a second order signature;D ∈ AΣ; Q is a finite set of states;T is
a finite set of terminals;δ , the transition function, is a partial function from
CΣ×(Q\{q f }) to ({up; stay}∪(down×N+))×Q×T∗ whereN+ denotes the set of
strictly positive natural numbers andT∗ denotes the monoid freely generated
by T; q0 ∈ Q is the initial state; andq f ∈ Q is the final state. Aconfiguration
of A is given by (C[] , a, q, s) whereC[a] ∈ clnfDΣ , a ∈ CΣ, q ∈ Q ands ∈ T∗;
initial configurationsare of the form ([]−→vρa, a, q0, ǫ) (ǫ being the empty string)
wherea−→vρa ∈ clnfDΣ . The automatonA defines a move relation,⊢A (⊢∗A is the
reflexive transitive closure of⊢A), between configurations: (C[] , a, q, s) ⊢A
(C′[] , b, q′, sw) if δ(a, q) = (q′,m,w) and one of the following holds:

1. m= upand (C[] , a) is the head of one of the arguments of (C′[] , b)
2. m= stayand (C′[] , b) = (C[] , a)
3. m= (down, i) and (C′[] , b) is the head of theith argument of (C[] , a)

Givena−→vρa ∈ clnfDΣ , a−→vρa generatesswith A if

([]−→vρa, a, q0, ǫ) ⊢∗A (C[] , b, q f , s).

The language ofA, LA , is {s|∃v ∈ clnfDΣ .v generatess}.
Given a second order string ACGG = (Σ1,Σ2,L,S) we are going to build

an automatonAG = (Σ,D,Q,T, δ, q0, q f ) such thatO(G) = {/w/|w ∈ LAG}.
Let kG = max{ρa|a ∈ CΣ1}, we then defineΣ as:

1. AΣ = AΣ1 × [1, kG]

2. CΣ = CΣ1 × [1, kG]
3. if τΣ1(a) = (α1, . . . , αn)⊸ α then

τΣ((a, k)) = ((α1, 1), . . . , (αn, n))⊸ (α, k).

Remark that ifv ∈ clnf(α,k)
Σ

, then for all (C[] , (a, j)) ∈ Sv, C[] , []−→vρa implies
that (C[] , (a, j)) is the head of thejth argument of (C′[] , (b, l)) ∈ Sv. Further-
more, givenv = (a, k)−→vρa ∈ clnf(α,k)

Σ
we notẽv the term of clnfαΣ1

such that

ṽ = a
−→
ṽρa.
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ThenD = (S, 1), Q = ([0, kG] × P) ∪ {q f } whereP =
⋃
α∈CΣ1

PL(α), q0 =

(0, •); buildingδ requires some more definitions.
Given (a, k) and (i, π), theselection pathof (a, k) and (i, π) is:

π′ =

{
i · π if i > 0
ρa + π if i = 0

If the selection path of (a, k) and (i, π) is in P+
L(τΣ1 (a)) then we say that (a, k)

and (i, π) arecoherent; δ will be only defined on coherent pairs of (a, k) and
(i, π). A configurationK = (C[] , (a, k), (i, π),w) is said to becoherentif (a, k)
and (i, π) are coherent.

If (a, k) and (i, π) are coherent and ifπ′ is their selection path, then
we define thefocused termof (a, k) and (i, π) asPL(a)(π′). Furthermore, if
(C[] , t) is the focused term of (a, k) and (i, π) and if t = λ−→xp.

−→cn(x−→vq), then
(C[λ−→xp.

−→cn([]−→vq)], x)) is called thefocused variableof (a, k) and (i, π).
If (a, k) and (i, π) are coherent thenδ((a, k), (i, π)) = (q,move,w) depends

on the focused term of (a, k) and (i, π), (noted (C[] , t)):

1. if t = −→cn# thenq = q f , move= stayandw = c1 . . . cn

2. if t = λ−→xp.
−→cn(x−→vq), AVL(a)(C[λ−→xp.

−→cn([]
−→vq)], x) = l · π′′ and l > ρa then

q = (k, (l − ρa) · π′′), move= upandw = c1 . . . cn

3. if t = λ−→xp.
−→cn(x−→vq), AVL(a)(C[λ−→xp.

−→cn([]
−→vq)], x) = l · π′′ and l ≤ ρa then

q = (0, π′′), move= (down, l) andw = c1 . . . cn

We now relate the walk ofAG onv ∈ clnf(S,1)
Σ

with theh-reduction ofL(̃v).
To establish this relation we need to show that the transducer computesφṽ.
Given a coherent configurationK = (C[] , (a, k), (i, π),w), theactivated term

of K is (L(C′)[] ,L(a
−→
ṽρa)) if ( i, π) = (0, •) andC̃[] = C′[[]

−→
ṽρa], otherwise it is

(L(C̃)[C′[]] , t) if (C′[] , t) is the focused term of (a, k) and (i, π); theactivated
variableof K is (L(C̃)[C′[]] , x) if the focused variable of (a, k) and (i, π) is
(C′[] , x). We will show that givenK1 andK2 such thatK1 ⊢AG K2, if (C[] , x)
is the activated variable ofK1 thenφṽ(C[] , x) is the activated term ofK2. This
property shows thatAG performs theh-reduction ofL(̃v) and that ifL(̃v)
normalizes to/w/ then, walking onv, AG ends in the final state and outputs
w.

Lemma 24 Given v= (a, 1)−→vρa ∈ clnf(S,1)
Σ

and two coherent configurations
K1 and K2 such that([]−→vρa, (a, 1), (0, •), ǫ) ⊢∗AG K1 ⊢AG K2, if (C[] , x) is the
activated variable of K1 thenφṽ(C[] , x) is the activated term of K2.

Proof. As for the proof of lemma 22, this proof is mainly based on theunfold-
ing of the definitions. We simply computeφṽ(C[] , x) and the activated term of
K2 and then show that they are the same.

We assume thatKr = (Cr [] , (ar , kr), (ir , πr ),wr) with r ∈ [1, 2], thatπ′r is
the selection path ofKr . If PL(a1)(π′1) = (C′1[] , λ−→xp.

−→cn(x−→vq)), then letπ′′1 =
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AVL(a1)(C′1[λ−→xp.
−→cn([]
−→vq), x); asπ′′1 ∈ P

−
L(τΣ1(a1)), we know thatπ′′1 = i · π′′. We

then have three cases:

Case 1:if i ≤ ρa1 andπ′′ = •, thenφṽ(C[] , x) = (L(C′)[] ,L(t)) if (C′[] , t) is
theith argument of (C1[] , a1). But in that case, we have thatδ((a1, k1), (i1, π1)) =
((0, •), (down, i), c1 . . .cn); thus (a2, k2) is the head of theith argument of
(a1, k1) and as (i2, π2) = (0, •), we obtain, by definition, that the activated
term ofK2 is indeed (L(C′)[] ,L(t)).

Case 2:if i ≤ ρa1 andπ′′ , •, thenφṽ(C[] , x) = (L(Cb)[C′[]] , t) if (Cb[] , b)
is theith argument of (C1[] , a1) and if (C′[] , t) = PL(b)(ρb + π

′′). In that case,
we haveδ((a1, k1), (i1, π1)) = ((0, π′′), (down, i), c1 . . . cn); therefore, (a2, k2)
is the head ofith argument of (a1, k1) which implies that (C2[] , a2) = (Cb[] , b);
finally by definition we have that the activated term ofK2 is (L(Cb)[C′[]] , t) =
φṽ(C[] , x).

Case 3:if i > ρa1 thenφṽ(C[] , x) = (L(Cb)[C′[]] , t) if (Ca1[] , a1) is the head of
thek1

th argument of (Cb[] , b) and (C′[] , t) = PL(b)(k1·(i−ρa1)·π
′′). In that case,

we haveδ((a1, k1), (i, π)) = ((k1, (i − ρa1) · π
′′), up, c1 . . . cn), and the definition

leads to the fact that the activated term ofK2 is (L(Cb)[C′[]] , t) = φṽ(C[] , x).
⊔⊓

Proposition 25 Given u∈ clnfSΣ1
, there is a unique v= (a, 1)−→vρa ∈ clnf(S,1)

Σ

such that̃v = u, and([]−→vρa, (a, 1), (0, •), ǫ) ⊢∗AG (C[] , b, qf ,w) iffL(u) =βη /w/.

Proof. The existence and the uniqueness ofv are obvious from the definition
of Σ. To prove the proposition it suffices to study the walk ofAG on v and
the h-reduction ofL(u) in parallel: assume thatK1 = ([]−→vρa, (a, 1), (0, •), ǫ),

t1 = L(u), K1 ⊢
k
AG

Kk and t1
k
→h tk (where⊢kAG corresponds tok steps of

AG and
k
→h to k steps ofh-reduction). The use of the previous lemma and an

induction onk prove thattk is of the form

tk = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSk.
−→cTk(x j

−→
tQ))−→vSk . . .))

−−→vS1

if and only if Kk = (Ck[] , (ak, lk), (ik, πk),wk) so thatwk =
−→cT1 . . .

−−−→cTk−1, if
(C′k[] , λ

−−→xSk.
−→cTk(x j

−→tQ)) ∈ Stk (with the obviousC′k[]) is the strict residual of

(C′′k [] , λ−−→xSk.
−→cTk(x j

−→
tQ)) ∈ St1 then (C′′k [] , λ−−→xSk.

−→cTk(x j
−→
tQ)) is the activated term of

Kk and (C′′k [λ−−→xSk.
−→cTk([]

−→
tQ)], x j) is the activated variable ofKk. This allows us

to conclude that the walk ends in the configuration (C[] , b, qf ,w) iff L(u) =βη
/w/. ⊔⊓

This finally shows thatO(G) is indeed equal to{/w/|w ∈ LAG}.
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9.6 Conclusions and future work

In this paper, we have proved that the languages defined by second order
string ACGs were the same as the output languages of DTWT. From the re-
sults of Weir (1992) and de Groote and Pogodalla (2004), we obtain as a
corolarry that the languages defined by second order string ACGs are exactly
the languages defined by LCFRS. Furthermore as, according tode Groote and
Pogodalla (2004), LCFRS can be encoded by second order string ACGs with
a fourth order lexicons, we obtain that every second order string ACG can be
encoded by another one whose lexicon has at most fourth order.

In our next work, we would like to exhibit a direct translation of a second
order string ACG into another one with a fourth order lexicon. This would
help understanding how relevant the order of the lexicon is.We conjecture
that using lexicons of order greater than four may lead to more compact gram-
mars. The problem is to know how compact those grammars can beand if the
compaction is important whether it can be used do design large grammars for
natural languages.

As the tools we used are general, we think it is possible to prove that
any second order ACG can be represented as a second order ACG whose
lexicon is at most fourth order. Indeed, the notion of paths and the relations
they establish with active subterms and active variables donot depend on the
problem. The only definition which is dependant of the fact wedeal with
strings is the definition ofh-reduction. We nevertheless think that, provided
we define a generalized notion of DTWT which would output linearλ-terms
instead of strings, we can show that second order ACGs can be encoded with
these generalized DTWTs. It would remain to encode those DTWTs with
second order ACGs with a fourth order lexicon to generalize our result. But
this last part does not seem too difficult.

The first part seems also feasible since it should be possibleto generalize
h-reduction. Indeed, instead of having a unique variable on which we could
make the substitution, the fact that the constants in the term introduce some
branching may lead to have several such variables. This would correspond
on the generalized DTWTs to the fact that when it would outputa branching
constant the transducer should duplicate its head in order to have one head to
generate each argument of that constant.

Finally this work may lead to the definition of an abstract machine for sec-
ond order ACGs. Such a machine would be valuable to study the problem of
parsing second order ACGs and give insights on the strategies that can be im-
plemented for those grammars. Furthermore, as such a machine would have a
language made of linearλ-terms, it would be a first step towards the definition
of an abstract machine whose language is a set ofλ-terms. In Montague style
semantics, the problem of generation mainly consists in parsing languages
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of λ-terms. We would then obtain a valuable tool to study the problem of
generation in that setting.
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de Groote, Philippe. 2001. Towards abstract categorial grammars. In A. for Compu-
tational Linguistic, ed.,Proceedings 39th Annual Meeting and 10th Conference of
the European Chapter, pages 148–155. Morgan Kaufmann Publishers.

de Groote, Philippe and Sylvain Pogodalla. 2004. On the expressive power of abstract
categorial grammars: Representing context-free formalisms.Journal of Logic, Lan-
guage and Information13(4):421–438.

Girard, Jean-Yves. 1987. Linear logic.Theoretical Computer Science50:1–102.

Huet, Gérard. 1997. The zipper.Journal of Functional Programming7(5):549–554.

Montague, Richard. 1974.Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, CT.
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10

Sidewards without copying
E P. S

A traditional movement step relates a single source position to a single c-
commanding target position, and never moves an argument to another argu-
ment position. But head movement involves non-c-command relations, and
control relates two argument positions that are not always in a c-command
relation. Special mechanisms could be invoked for these things, but a differ-
ent strategy slightly generalizes movement and enforces certain fundamental
symmetries observed by all movements to block overgeneration. This paper
defines a class of ‘sideward movement grammars’ (s) with such symme-
tries, with example applications to adjunct control and head movement. These
grammars allow copying, but the question of whether to copy is completely
independent of the question of whether to allow sideward movement. Fur-
thermore, since these grammars distinguish complement attachments from
others, a simple CED-like constraint can block extractionsfrom specifiers
and adjuncts except in the exceptional circumstance of adjunct control.
definable languages are all definable, and hence are efficiently recog-
nizable.

10.1 Introduction

One of the most basic properties of human language is its simple, recursive,
layered character in which similar structure is iterated, sometimes with spe-
cial variations at the top, matrix level and at the deepest levels:

Does Alice know that
3

Bob thinks that
2

Carol says
1

you like her?
0
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Certain kinds of recursive symmetry in languages allow the ‘pumping lem-
mas’ which have been valuable diagnostics of the availability of certain kinds
of grammars. A regular grammar for a language is only possible when the
language has a simple symmetry of this kind; context free grammars have a
weaker requirement, and so on through the hierarchy of multiple context free
languages (Seki et al., 1991), etc.

Many descriptions of human languages involve rearranging constituents.
In grammars with movements, how is the structure of each ‘layer’ affected?
This fundamental question is a topic of active study. In early transformational
grammars, a set of base structures is generated and then transformed into
surface structures, as in the following example (witheandt unpronounced):

[I [know [e [I [ e [saw [who]]]]]]] −→ [I [know [who [I [ t [saw [t]]]]]].

The sequences of positions related by movement in these accounts are not
random. Among other things, landing sites of movement do notdisrupt layer
structure too much (‘structure preservation’, ‘shape conservation’), and when
an element moves through several clauses, it never moves from a high po-
sition in a lower clause to a lower position in a higher clause(cf. the ‘ban
on improper movement’ ‘chain uniformity’, ‘level embedding’). So in effect,
the hierarchy of each layer of phrase structure is respectedin sequences of
movements too, another reflection of the basic invariants mentioned at the
outset.

Some recent grammars compose generation and transformation steps,1 so
transformations are, in effect, executed as soon as requisite structure is built,
reducing the need for revising completed structure:

1. [saw]+[who]
merge
−→ [saw [who]]

2. [saw [who]]+[I]
merge
−→ [I [saw [who]]]

3. [I [saw [who]]]
move
−→ [who [I [saw [who]]]

4. [know]+[who [I [saw [who]]]
merge
−→ [know [who [I [saw [who]]]]

5. [know [who [I [saw [who]]]] +[I]
merge
−→ [I [know [who [I [saw [who]]]]]

But step 3 showswho being copied and deleted, revising the structure built
by step 2. One response is to say that the syntax simply copiesthe earlier
structure (perhaps only adding a link, a pointer to the embeddedwho), and
then a post-syntax “spellout” process determines which copies to pronounce.
This pushes the changes to completed structure out of the syntax, by invoking
a “spellout” process that is sensitive to much of the same structure that syn-
tactic operations are sensitive to. When two processes seemto be sensitive
to the same structure it is a natural hunch that they are really thesamepro-
cess. Adopting this perspective instead, we could then say that the depiction

1Tree transducer composition, ‘deforestation’, is a commonstep for reducing program com-
plexity (Kühnemann, 1999, Reuther, 2003, Maneth, 2004).
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of the derivation 1-5 is slightly misleading: whenwho is introduced in step 1,
it satisfies a requirement of the verb but is not actually placed in complement
position. Rather, it is held out to be placed at the left edge of the embedded
clause. This strategy for (not postponing but) eliminatinga kind of structural
revision is formalized ins (Stabler and Keenan, 2003, Frey and Gärtner,
2002, Michaelis, 2001, Harkema, 2001, Lecomte and Retoré,1999), buts
do not ban improper movements.

Now consider the coindexed elements in sentences like these:

Hei tries [ei to succeed]
Hei laughs [beforeei eating]

These ‘obligatory control’ (OC) relations have enough in common with
movement to suggest a uniform treatment (Hornstein, 2006, 2001, 1999,
Polinsky and Potsdam, 2002, Bowers, 1973). If we generalizetraditional
movement so that a subject can move to another subject position even out
of an adjunct as in the latter example, the rest of the phrasalconstruction
can remain completely standard. But such movements betweenunconnected
structures must be restricted to avoid unwanted movements,like these for
example:

*Johni likes ti
*The cook theyi like tried [ti to make them]
*Johni persuaded Mary [ti to make them]
*Johni ’s friends prefer [ti to behave himself]

One critique of movement analyses of control wonders, if sideways move-
ment is allowed, what rules out sideward movement from complements gener-
ally (Landau, 2003, p.477). In the present account, the status and restrictions
on sideward movement will be clear: sideward movement from complements
is impossible.

Another kind of problem is posed by head movements like this:

[-an]+[ustedes [habl- [español]]]→ [[habl-an] [ustedes [habl-[español]]]]

If we sayxc-commandsy in a tree iff a sister ofxdominatesy, thenhabl-does
not c-command its original position. Adapting a proposal from Nunes (2001)
and Hornstein (2001), in analogy to phrasal movement, we cancompute this
result without surgery by keeping the headhabl-out of its projection so that is
available for attachment to the appropriate affix. But the indicated assembly of
the head and affix with the rest of the projection is more complicated than any
of the other (merge,move) rules, looking suspiciouslyad hoc. An alternative
is to, in effect, allow the head to move before it projects its structure.This
yields essentially the same result, but by allowing the headto simply move to
another projection, allows the construction of the phrase and the selection of
that phrase to be completely standard. But obviously this step needs to bring
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some analog of the traditional head movement constraint (HMC):

*be -s he have be-en making tortillas

Conventional movements relate source constituents with targets that c-
command them. Ins, the same effect is achieved by keeping the sources
separate from the target while they wait for their final licensed positions. In
this setting, the needed generalization simply allows new,‘disconnected’ el-
ements to beinsertedinto an expression. With this generalization of expres-
sions, we need only one feature-checking operation,merge. We define ‘side-
ward movement grammars’ (s) in this way. To avoid overgeneralization,
we impose a specifier island constraint (SpIC) and also impose a generalized
ban on improper movements. Since all phrases other than the matrix clause
are either complements or specifiers, SpIC allows extractedphrases to enter
a derivation only through complements, though as explainedbelow this con-
straint is weaker than usual because a complement can be remnant-moved to
a specifier without freezing any of its moving elements.

Formal antecedents include tree adjoining grammar (Joshi and Schabes,
1997) and especially the variants proposed for scrambling (Rambow et al.,
2001, Rambow, 1994, Kallmeyer, 1999), certain elaborations of pregroup
grammars (Stabler, 2004a, Casadio and Lambek, 2002, Buszkowski, 2001),
and the minimalist grammars (s) already mentioned. The derivations in
these formalisms all extend and simplify complexes of possibly discontinu-
ous constituents. But none of them enforces the ban on improper movements,
and none of them defines the same class of languages ass.  lan-
guages are not all definable, but they are all-definable (Seki et al.,
1991) and hence are polynomially parsable. We conjecture that all  lan-
guages are definable too.

10.2 Sideward movement grammars

LetΣ be a finite vocabulary, associated with phonetic and semantic properties.
The empty sequence isǫ. Head movement will be triggered by a morpholog-
ical property that we indicate with hyphens: a preceding hyphen -s indicates
that a lexical head is a suffix; a following hyphen s- indicates a prefix; and the
affix s can be empty.

A set of syntactic featuresF is partitioned into 2 basic kinds: properties -F
and requirements+F. Properties -F are either persistent -f or not -f. Require-
ments+F: some simply require agreement+f, others trigger overt movement
+f, and others trigger overt movement and also leave a copy+f. As in s,
we use the typesT = {::, :} to indicate lexical and derived expressions, re-
spectively. TheprojectionsP = Σ∗ × T × F∗. TheexpressionsE = P × ℘(P).
Consider, e.g., the expression
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(loves:-v,{Mary:-focus, who:-case -wh}).

To reduce clutter, we often omit some braces and parentheses,

loves:-v, Mary:-focus, who:-case -wh.

With this simpler notation, remember that the head of an expression comes
first, and the order of remaining elements (if any) is irrelevant.

A lexicon is a finite subset ofΣ∗ × {::} × (+F∗ × -F+) × {∅} with a des-
ignated ‘start’ category f. A lexical item hascategoryf iff its first property
is -f or -f. f comp-selectsg iff there as a lexical item with category f whose
first requirement is+g or +g or +g. A cycle is a sequence f0. . .fn such that

f0 is the start category, fi−1 comp-selects fi (all 0 < i ≤ n), and no feature
appears twice. fcycle-selectsg iff f precedes g in a cycle. A lexicon isproper
iff whenever -f precedes -g in any lexical item, some lexical item containing
-f has category c and some lexical item containing -g has category d, where d
cycle-selects c. With this constraint on lexicons, (Proper), we can remain neu-
tral about whether human languages have a universal, fixed clausal structure.
A grammar is given by a proper lexicon, generating the structures in the clo-
sure of lexicon with respect to the fixed structure building rules. A completed
structure is one containing only one syntactic feature, thestart category f. The
string language is the set of yields of those completed structures.

There are two structure building relations, ins and merge. The partial bi-
nary functionins applies to pairs of expressions ((p,S), (q,T)) only if (i) ei-
ther (q,T) is lexical orS = ∅, and (ii) match(p, q) is defined. Its value is given
by ins((p,S), (q,T)) = (p,S ∪ {q} ∪ T). Condition (i) is our version of SpIC,
mentioned above.

The relation merge⊂ E × E applies to (p,S) only if there is a unique
q ∈ S such that match(p, q) is defined. Then it takes as value merge(p,S ∪
{q}) = (r, (S−q)∪T) for each match(p, q) = (r,T). The uniqueness condition
on application of this function is our version of the shortest move constraint
(SMC).

The relation match⊂ P× P × E is given as follows, wheres, t ∈ Σ∗ are not
marked with an initial or final hyphen to trigger head movement,α, β, γ ∈ F∗,
δ ∈ F+, and· ∈ T,
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Overt movement:
p q match(p,q)

s::+fα t·-f st:α,∅ saturated complement (i)
s:+fα t·-f ts:α,∅ saturated specifier (ii)
s·+fα t·-fδ s:α,{t:δ} moving,unsaturated projection (iii)

s::+fα t·-f st:α,∅ final use of -f (iv)
s:+fα t·-f ts:α,∅ final use of -f (v)
s·+fα t·-fδ s:α,{t:δ} moving,unsaturated projection (vi)
s·+fα t·-fβ s:α,{t:-fβ} moving with -f (vii)

covert movement:
s·+fα t·-fδ s:α,{t:δ} check non-persistent -f (viii)
s·+fα t·-fδ s:α,{t:δ} final use of -f (ix)
s·+fα t·-fβ s:α,{t:-fβ} moving with -f (x)

copy movement:
s::+fα t·-f st:α,∅ saturated complement (xi)

s:+fα t·-f ts:α,∅ saturated specifier (xii)

s::+fα t·-fδ st:α,{t:δ} moving (xiii)

s:+fα t·-fδ ts:α,{t:δ} moving (xiv)

s::+fα t·-f st:α,∅ final move to complement (xv)

s:+fα t·-f ts:α,∅ final move to specifier (xvi)

s::+fα t·-f st:α,{t:-fβ} moving with -f (xvii)

s:+fα t·-f ts:α,{t:-fβ} moving with -f (xviii)

We present some examples to illustrate these mechanisms andset the stage
for introducing sideward movement.

Example 1: Basics.In the derivation tree on the left, the leaves are lexical
items; The binary branches represent applications of insert, and the unary
branches, applications of merge.

he laughs:-C

ǫ::+T -C,he laughs:-T

ǫ::+T -C he laughs:-T

laughs:+k -T,he:-k

ǫ::+v +k -T,laughs:-v,he:-k

ǫ::+v +k -T laughs:-v,he:-k

laughs:+D -v,he::-D -k

laughs:+D -v

laughs::+V +D -v,ǫ::-V

laughs::+V +D -v ǫ::-V

he::-D -k

CP

C’

C TP

DP(0)

D’

D

he

T’

T vP

DP

t(0)

v’

v

laughs

VP

V’

V
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Note that since insert applies to introduce a projection that can be merged,
and the derivation greedily checks features at the earliestpossible moment,
there is a merge immediately above each insert step. The additional unary
branches represent ‘external merge’ steps: these are the steps that are tra-
ditionally called ‘movements’. The tree on the right shows the correspond-
ing conventional X-bar structure. It is not difficult to translate the derivations
shown here into more traditional depictions like this.2

Example 2: Obligatory control into a complement.One idea about oblig-
atory control is that there is a special unpronounced pronoun PRO which,
unlike other pronouns, either does not need case or else needs some special
kind of case that infinitival tense can assign. But Hornsteinargues that the
PRO positions can be the empty positions left by movement, asin:

he tries to succeed:-C

ǫ::+T -C,he tries to succeed:-T

ǫ::+T -C he tries to succeed:-T

tries to succeed:+k -T,he:-k

ǫ::+v +k -T,tries to succeed:-v,he:-k

ǫ::+v +k -T tries to succeed:-v,he:-k

tries to succeed:+D -v,he:-D -k

tries::+V +D -v,to succeed:-V,he:-D -k

tries::+V +D -v to succeed:-V,he:-D -k

ǫ::+T -V,to succeed:-T,he:-D -k

ǫ::+T -V to succeed:-T,he:-D -k

to::+v -T,succeed:-v,he:-D -k

to::+v -T succeed:-v,he:-D -k

succeed:+D -v,he::-D -k

succeed:+D -v

ǫ::+V +D -v,succeed::-V

ǫ::+V +D -v succeed::-V

he::-D -k

This derivation is checking the categorial D feature of [he]twice (and then
checking its case feature in a higher clausal position, in conformity with
Proper). Hornstein suggests that really it isθ-features getting checked twice
in constructions like this. (And there have been suggestions that categorial

2This translation can be done automatically. See the implementations at
http://www.linguistics.ucla.edu/people/stabler/epssw.htm.
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features generally should be replaced by appropriate complexes of more ba-
sic features:θ-features etc.) For present purposes, the simple analysis above
provides a suitable starting point.

Example 3: Obligatory control into an adjunct. There are many interest-
ing questions about adjunction, but for present purposes itsuffices to adopt
a treatment that allows it to be category-preserving, iterable, optional, and
opaque to extraction. These properties can be obtained by introducing an
empty category to host the adjunct; for clausal adjuncts of noun phrases
we useǫ:+N+C+N-N, and for prepositional modifiers of v we can use:
ǫ::+v+P+v-v, as in:

he laughs before he eats:-C

ǫ::+T -C,he laughs before he eats:-T

ǫ::+T -C he laughs before he eats:-T

laughs before he eats:+k -T,he:-k

ǫ::+v +k -T,laughs before he eats:-v,he:-k

ǫ::+v +k -T laughs before he eats:-v,he:-k

before he eats:+v -v,laughs:-v,he:-k

ǫ:+P+v -v,laughs:-v,he:-k,before he eats:-P

ǫ:+P+v -v,laughs:-v,he:-k

ǫ::+v +P+v -v,laughs:-v,he:-k

ǫ::+v +P+v -v laughs:-v,he:-k

laughs:+D -v,he::-D -k

laughs:+D -v

laughs::+V +D -v,ǫ::-V

laughs::+V +D -v ǫ::-V

he::-D -k

before he eats:-P

before::+C -P,he eats:-C

before::+C -P he eats:-C

ǫ::+T -C,he eats:-T

ǫ::+T -C he eats:-T

eats:+k -T,he:-k

ǫ::+v +k -T,eats:-v,he:-k

ǫ::+v +k -T eats:-v,he:-k

eats:+D -v,he::-D -k

eats:+D -v

eats::+V +D -v,ǫ::-V

eats::+V +D -v ǫ::-V

he::-D -k

The fact that [before he eats] is a specifier is indicated by the non-lexical sta-
tus of the selector [ǫ:+P +v -v,laughs:-v,he:-k,before he eats:-P]. Since SpIC
blocks any extraction from specifiers, we do not need to separately stipulate
that adjuncts are islands. So if we introduce right and left X-adjuncts of Y
with lexical items of the formǫ::+X+Y+X-X, or ǫ::+X+Y-X, respectively (or
with any processes that yields similar structure), we get the desired properties
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for adjuncts: optionality, iterability, and opacity to extraction. This sets the
stage for the special treatment of adjunct control.

Since the proposed treatment of adjuncts makes them opaque to extraction,
while the proposed treatment of control makes it an extraction relation, we
should not get control into adjuncts, but we do:

hei laughs beforeei eating

Hornstein notices that a slight tweak on our mechanisms can let this kind of
case through without allowing other kinds of adjunct extractions. Roughly, if
we derive the modifier [beforeei eating,{he}] which wants to attach to a v,
and then we derive a v that is looking for a D, we can allow [he] to ‘move
sideways’ onto the v before inserting it into the derivation. This step can be
presented in logicians’ style, as the inference from the expressions above the
line to the one below:

before eating : -P, {he : -D-k} ǫ : +v+P+v-v, ∅ laughs :+D-v, ∅
laughs before eating : -v, {he : -D-k}

We express this step more generally as follows. In a grammar that contains
left X-adjuncts of Y, that is, it has some

r = ǫ::+X+Y+X-X

we extend the (ins) relation so that it also applies to ((p, {a}), (q,S)) in the
exceptional case wherep and q can be chained together byr, usinga as
follows:

match(q, a) = (b,T),
match(r, b) = (c,U),
match(c, p) = (e,V), and
match(e, f ) = (g,W) for f ∈ U.

Notice that the adjoining elementr is introduced in the second step to have
its 3 initial features checked in sequence. In this special case, let

ins((p,S), (q,T)) = (g,S ∪ T ∪ (U − { f }) ∪ V ∪W).

Control into right X-adjuncts of Y can be defined similarly, using the lexical
item ℓ = ǫ::+X+Y-X, checking its 2 initial features in sequence. With this
extension, we obtain:
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he laughs before eating:-C

ǫ::+T -C,he laughs before eating:-T

ǫ::+T -C he laughs before eating:-T

laughs before eating:+k -T,he:-k

ǫ::+v +k -T,laughs before eating:-v,he:-k

ǫ::+v +k -T laughs before eating:-v,he:-D -k

laughs:+D -v

laughs::+V +D -v,ǫ::-V

laughs::+V +D -v ǫ::-V

before eating:-P,he:+D -k

before::+v -P,eating:-v,he:+D -k

before::+v -P eating:-v,he:+D -k

eating:+D -v,he::-D -k

eating:+D -v

eating::+V +D -v,ǫ::-V

eating::+V +D -v ǫ::-V

he::-D -k

Example 4: Head movementis similar to adjunct control in relating con-
stituents that do not c-command each other, but, unlike control, we want just
the phonetic parts of the heads to move while their projections are developed
in their original positions. Nevertheless, there is an application of the side-
ward movement idea that avoids splitting all phrases kept into triples so that
the head can be separate when the phrase is complete, as was done in Stabler
(2001).

We extend match so that, when the category of -s::α is comp-selected by
t::β and t-s is morphologically well-formed,

p q match(p,q)

-s::α t::β ǫ::α,{t-s::β} suffix left adjoins lower head
s-::α t::β ǫ::α,{s-t::β} prefix right adjoins lower head

And then, when match(q, p) is defined by one of (i-xviii) we bring the adjunc-
tion up:

p q match(p,q)

p q q,{p} higher head promoted

With these extensions, we get derivations like the following:
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habl- -ǫ -an -ǫ ustedes espanol::-C

habl- -ǫ -an -ǫ::+T -C,ustedes espanol::-T

ustedes espanol::-T,habl- -ǫ -an -ǫ::+T -C

espanol::+k -T,ustedes::-k,habl- -ǫ -an -ǫ::+T -C

ǫ::+v +k -T,espanol::-v,ustedes::-k,habl- -ǫ -an -ǫ::+T -C

-ǫ::+T -C habl- -ǫ -an::+v +k -T,espanol::-v,ustedes::-k

espanol::-v,habl- -ǫ -an::+v +k -T,ustedes::-k

espanol::+D -v,habl- -ǫ -an::+v +k -T,ustedes::-D -k

espanol::+D -v,habl- -ǫ -an::+v +k -T

ǫ::+V +D -v,habl- -ǫ -an::+v +k -T,espanol:-V

-an::+v +k -T habl- -ǫ::+V +D -v,espanol:-V

espanol:-V,habl- -ǫ::+V +D -v

ǫ:+k -V,espanol::-k,habl- -ǫ::+V +D -v

ǫ:+D +k -V,espanol::-D -k,habl- -ǫ::+V +D -v

ǫ::+D +k -V,habl- -ǫ::+V +D -v

-ǫ::+V +D -v habl-::+D +k -V

espanol::-D -k

ustedes::-D -k

No revisions of completed structure are needed, and there isno need to treat
every phrase as a triple of strings.

10.3 Expressive power and recognition complexity
Previous studies have shown that head movement, though it may seem like
a small thing in informal presentations, allows the definition of non-context
free patterns even when there is no phrasal movement in the grammar. But the
translation froms tos defined by Michaelis (2001) is easily adapted
to show that grammars without copying all define definable lan-
guages. There are various theory-internal arguments for copying in grammar,
and various ways to implement them (Stabler, 2004b). See forexample Nunes
(2001) and Kobele (2006) for some empirical arguments in support of rather
powerful copy operations. The addition of copy features makes it easy to
define non-semilinear languages likea2n

, but a straightforward extension of
Michaelis’s translation to these cases shows that they are-definable, and
hence polynomially recognizable.

10.4 Conclusions
This paper does not attempt to resolve the controversy over whether move-
ment analyses of obligatory control are empirically well-motivated (Landau,
2003, Boeckx and Hornstein, 2004), but provides a formalization of some
parts of these ideas that can be rigorously studied.
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Althoughs can be regarded as extendings, notice that they differ
in a number of significant respects: (1)s extend the domain of move-
ment just slightly to offer tightly constrained treatments of obligatory control
and head movement. Future work may find ways to make these constraints
more general and natural. And there are regularities in the definition ofmatch
that should allow a more elegant statement. (2)s are bound by SMC, while
s also are required to respect SpIC and Proper, and future work may pro-
vide further additions. (3) To handle head movement,s require either extra
rules for head movement (Michaelis, 2001) or else one of the approaches
mentioned in the introduction.s allow head movement with a simple
mechanism analogous to the sideward mechanisms used for control. (4) s
have no copy operation, and while none of the analyses above depend on
it, s allow copying. That is, we have presented a treatment of sideward
movement that does not rely in any way on the copy theory of movement for
its appeal. In the present setting, sideward movement is a natural option not
because we already have operations on copies, but because wealready have
operations on moving phrases (the original phonetic materials, not copies).
s are naturally extended to allow copying though, setting the stage for
studying proposals about overt copying (Boeckx et al., 2005, for example) –
unfortunately beyond the scope of this short report. All themechanisms pro-
posed here are obtained in the well-understood and feasiblespace of-
definable languages.
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English prepositional passives in HPSG
J T

Abstract
This paper discusses the treatment of English prepositional passives (also known as

“pseudopassives”) in HPSG. The empirical overview includes a discussion of the famil-
iar (but unformalizable) notion of semantic cohesiveness,as well as new observations
about the possibility of intervening elements between V andP. Two formal approaches
to the syntactic aspects of the problem are then outlined andcompared—one relying on
lexical rules, the other taking advantage of HPSG’s capacity to express constraints on
constructions.

Keywords , , , HPSG, , -


11.1 Empirical observations
English has an exceptionally rich variety of preposition stranding phenomena,
the most striking of which is the prepositional passive—thepossibility of
passivizing the object of a preposition instead of the direct object of a verb.

(19) a. You can rely [on David] to do get the job done.

b. Davidi can be relied onti to get the job done.

Here the NPDavid, initially the complement ofon, is realized as the subject
of the passive verbrelied, leaving the preposition behind.1

It is often suggested that the underlined verb and preposition in this con-
struction form a kind of “compound”, an intuitive notion that is open to many

1I will occasionally use the symbol “t” to mark the “deep” position of the passive subject, in
cases where there might be ambiguity. This is obviously reminiscent of NP-trace in transforma-
tional analyses, but here it should be understood only as a expository device with no theoretical
strings attached.
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formal interpretations. I will begin by presenting some attempts to character-
ize the phenomenon in semantic terms, before turning to the syntactic aspects,
which will be the main focus of the rest of the paper.

11.1.1 Semantic cohesion

One semantic approach that dates back at least to the classicdescriptions of
Poutsma and Jespersen is the idea that the prepositional passive is possible if
there is a high degree of “cohesion” between V and P. Variantsof this position
can be found in modern grammars (e.g., Quirk et al., 1985) andin theoreti-
cal work on preposition stranding phenomena (see Hornsteinand Weinberg
(1981), who propose that V and P must form a “natural predicate” or a “pos-
sible semantic word”). The most accessible indicator of semantic cohesion is
the possibility of replacing the V+P sequence by a single-word synonym:

(20) David can be relied on; trustedto get the job done.

But this criterion can easily be shown to be unreliable, constituting neither a
necessary nor a sufficient condition for passivizability.

It has also been observed that V+P sequences with abstract, transferred, or
metaphorical meaning are more cohesive (i.e., they are morelikely to allow
the prepositional passive) than concrete, literal uses of the same sequence:

(21) a. An acceptable compromise was finally arrived at.

b. ??A picturesque mountain village was finally arrived at.

Similarly, semantically non-compositional combinationsand idiomatic ex-
pressions can be said to be more cohesive. In these cases there would be no
motivation for postulating a difference in terms of syntactic structure or func-
tion.

Other authors have attempted to analyze the prepositional passive by look-
ing at the semantic properties of the targeted oblique NP. Bolinger (1977,
1978) proposes that this NP can become the passive subject ifit refers to a
strongly “affected” patient. As Riddle and Sheintuch (1983) note, no satisfac-
tory definition is provided for this “dangerously wide” notion, and it is easy
to find examples of grammatical prepositional passives where affectedness is
not involved. Their own functional account (relying on the notion of “role
prominence”) is equally vague.2

Cohesion and affectedness are of course gradient properties, and they can
no doubt be decomposed into more primitive, interacting factors. For exam-
ple, modality, tense, and negation have all been found to influence the accept-
ability of the prepositional passive. Furthermore, examples that are dubious
in isolation can usually be improved with an enlarged context.

2They themselves note that it is “impossible to offer an algorithm for determining what causes
some entity or concept to be viewed as role prominent.”
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In this paper I make the (oversimplifying) assumption thatanyV+PP com-
bination can give rise to a syntactically well-formed prepositional passive.
The grammaticality of the resulting structure, however, isconditioned by non-
syntactic restrictions that are not well enough understoodto be incorporated
into a formal analysis. Existing semantic accounts may be intuitively appeal-
ing but they lack a precise, empirical basis. Ultimately, wemay simply have
to conclude that more or less unpredictable lexical properties are the predom-
inant factor.

11.1.2 Adjacency

A directly observable sign that V and P form a kind of “compound” in prepo-
sitional passive constructions is the fact that the insertion of adverbs and other
material between V and P is generally disallowed, whereas various kinds of
intervening elements are possible between V and PP in the corresponding
active structure:

(22) We rely increasingly[on David]; *David is relied increasinglyon.

This evidence suggests a constraint on syntactic structureand/or surface word
order.3 I will assume in this paper that intervening adverbs and PPs (modify-
ing the verb or the VP) cannot appear in the prepositional passive. This could
be formalized by introducing a word order constraint requiring V and P to be
adjacent, but for various reasons this approach would be inadequate.

The specifierright, for instance, is (perhaps marginally) possible with
some spatial and temporal Ps:4

(23) Mr. Cellophane may be looked rightthrough, walked rightby and never
acknowledged by those who have the audacity to suppose that they
cannot be looked rightthrough.

These cases can be distinguished from (22) either structurally ( increas-
ingly is adjoined to V whileright is adjoined to P) or in terms of syntactic
function (increasinglyis a modifier whileright is a specifier). Alternatively,
we could consider the facts in (23) to result from a lexical idiosyncrasy of the
word right. But in fact other specifiers (straight, clear, etc.) can be found in
similar examples, so a more general solution is called for.

Nominal elements can also separate V and P. It is well known that prepo-
sitional passives can be formed from some fixed expressions and light verb

3Note that preposition stranding by extraction is much freerin this respect (although there are
restrictions, perhaps of a prosodic nature):

i We rely increasingly[on David] ; David is someone that we rely increasinglyon.

4This example is from a letter to the editor of theBradford Telegraph& Argus(5 June 2003),
referring to lyrics from a song: “Mr. Cellophane shoulda been my name, ’cause you can look
right though me, walk right by me, and never know I’m there.”
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constructions containing a bare N or full NP:

(24) a. We were opened fireon, made foolsof, paid attentionto, taken
unfair advantageof.

b. ?That product can’t be made a profitfrom.

The commonly accepted assumption is that ordinary NP objects cannot ap-
pear between V and P, and the prepositional passive is indeedtotally ungram-
matical in most examples of this structure:5

(25) Samuel explained a complicated theoremto David.; *David was ex-
plained a complicated theoremto.

But some passived examples of the same sequence [V NP P] are surprisingly
good:

(26) ?[To be whispered such dirty innuendoes about] would beenough to
drive anyone crazy.

According to Bolinger (1977, 1978), the underlined direct object in this sen-
tence functions as part of the predicate, and the passive subject (left unex-
pressed here) is strongly “affected” by being whispered-dirty-innuendoes-
about. Another proposal by Ziv and Sheintuch (1981) requires such inter-
vening direct objects to be “non-referential”. This is a reasonable characteri-
zation of the idiomatic examples in (24), but in order to accommodate cases
like (26), the authors are forced to broaden the commonly understood notion
of non-referentiality considerably, and to admit that it is“not a discrete prop-
erty”. In the end, the acceptability of this kind of prepositional passive (and
of all prepositional passives, for that matter) may depend primarily on usage
and frequency effects associated with specific lexical items (or combinations
of lexical itmes).

What is clear is that there can be no strict structural constraint against the
presence of a direct object in the prepositional passive construction (e.g., an
adjacency condition). We can also demonstrate that the ungrammaticality of
the prepositional passive in cases like (25) is not due to thelinear position
of the direct object (between V and P). Even if the object is realized in a
different position, making V and P adjacent, the prepositional passive is still
totally ungrammatical:

(27) a. Samuel explained to David [a fantastically complicated theorem
about the price of cheese]. (heavy NP shift)

b. *Davidi was explained toti [a fantastically complicated theorem
about the price of cheese].

5Again, the contrast with extraction constructions is striking:
i Samuel explained a complicated theoremto David. ; Who did Samuel explain

a complicated theoremto?
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(28) a. the theorem that Samuel explained to David/ Which theorem did
Samuel explain to David? (extraction)

b. *the theorem that Davidi was explained toti / *Which theorem was
Davidi explained toti?

Furthermore, in cases where a direct object is possible, as in (24), there
appears to be a sort of “anti-adjacency” condition on V and P.Although the
direct object can be realized in various positions in the active voice, in the
prepositional passive itmustappear between V and P:

(29) a. the unfair advantage that [they took of us]/ How much advantage
did they take of us? (extraction)

b. *the unfair advantage that [we were taken of]/ *How much advan-
tage were we taken of?

(30) a. We could make from this product [the kinds of profits that no one
has ever dreamed of] (heavy NP shift)

b. *This producti could be made fromti [the kinds of profits that no
one has ever dreamed of].

Based on these observations, I make the following assumptions for the re-
mainder of this paper:

. The prepositional passive is syntactically compatible with the presence of
a direct object.. The direct object must be realized in its canonical positionbetween V and
P.. The acceptability of the prepositional passive is ultimately determined by
non-syntactic factors that (for now) resist formalization.

To my knowledge, only one other kind of element can intervenebetween
V and P in the prepositional passive: when a phrasal verb is involved in this
construction, its particle must appear in this position:

(31) a. This situation will simply have to be put upwith t.
b. The loss in speed can be made upfor t by an increase in volume.

This is unsurprising, given the strong restrictions on particle placement in
English. In the active voice, the particle must be realized closest to the verb
(in the absence of a direct object); this constraint continues to apply in the
passive.6

6The rare examples of verbs selecting simultaneously a particle and a direct objectandallow-
ing the prepositional passive suggest that the relative order of the particle and the object remains
the same in the active and in the passive:

(i) a. They kept an eyeout for David.; ?David was kept an eyeout for.
b. *They kept outan eyefor David.; *David was kept outan eyefor.
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11.1.3 Further observations

Most of the examples given so far involve passive subjects originating in com-
plement PPs, but it is clear that prepositional passives canalso be formed from
V + adjunct PP structures:

(32) a. This bed has not been slept in.

b. David always takes that seat in the corner because he hatesbeing
sat next to.

The most common sources are temporal and locative modifiers,but we also
find other PPs, like instrumentalwith-phrases. Again, I will not attempt to
identify or formalize the relevant semantic and lexical constraints. For the
moment, I simply note that the possibility of passivizing out of adjuncts con-
stitutes a crucial difference between the prepositional passive and the ordinary
passive.7

We might also wonder if there is any difference between the two passives
in terms of their morphological effects, given that they target different (but
overlapping) sets of verbs. In particular, the prepositional passive applies to
intransitive verbs likesleepor go, and to prepositional verbs likerely, which
never undergo ordinary passivization. For verbs that do participate in both
types of passivization, we might ask if two distinct morphological operations
can be identified. In fact, there is no evidence for this. In every case, the same
participial form is used in both constructions:

(34) a. The pilot flew the airplane under the bridge.; The airplane was
flown t under the bridge. (ordinary passive)

b. The pilot flew under the bridge.; The bridge was flownundertx .
(prepositional passive)

It is not the case that (say) a strong participleflown is used for the ordinary
passive, whicle a weak form *flied is used in the prepositional passive. Both
passives require a form of the verb identical to the past participle.8

Finally, I briefly discuss the formation of deverbal adjectives from passive
V+P sequences:

7NP adjuncts, for any number of reasons, cannot passivize like direct objects:

(33) The children slept three hours.; *Three hours were slept (by the children).

8One apparent counterexample is the following pair:
(i) a. They laid the sleeping child on the rug.; The child was laidt on the rug.

b. The child lay on the rug.; ?The rug was lain/laid on t by the child.
Here is looks as if a single verb can have a special participial form lain in the prepositional
passive. But in fact two distinct verbs are involved in theseexamples: transitivelay (with past
participlelaid) vs intransitivelie (past participle ?lain/laid). This pair causes confusion and hesi-
tation for most speakers in the past and perfect. It is safe tosay, however, that no speaker merges
the two into a single verb while maintaining distinct passive forms as in (34).
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(35) a. our effective, relied-uponmarketing strategy
b. a first novel from an as yet unheard-ofauthor

This is sometimes taken as an additional argument for “cohesion” between
V and P in the prepositional passive. For example, Hornsteinand Weinberg
(1981) use it to motivate the semantic notion of “possible word”. It is unclear,
however, what these adjectives can tell us about the passivestructures they
derive from, since they are evidently subject to additionalconstraints. Not all
prepositional passives can be used to derive prenominal adjectives:

(36) a. *a sailed-under bridge, *a sat-beside grouch
b. *a taken unfair advantage of partner, *an opened fire upon enemy

camp
c. *a put-up-with situation, *a made-up-for loss

Some of these examples could be improved with more context, but they all
clearly have a degraded status with respect to their fully acceptable verbal
counterparts. This is particularly true for the examples with an NP or parti-
cle intervening between V and P. The data suggest strongly that adjectival
derivation is not a truly productive process, but is more or less lexicalized on
a case by case basis. This could perhaps be accounted for witha usage-based
model, but I will not pursue the idea any further here.

11.2 Implications for an HPSG analysis
11.2.1 Modularity

The normal passive construction (with the direct object NP “promoted” to
subject) is standardly handled as a lexical phenomenon in HPSG, either using
a lexical rule deriving the passive participle from an active base verb (Pollard
and Sag, 1987), or by assuming an underspecified verbal lexeme that can be
resolved to either an active or a passive form with the appropriate linking
constraints (Davis and Koenig, 2000).

A number of other approaches can be imagined and technicallyimple-
mented within the framework, although they have never been seriously ex-
plored. For example, new syntactic combination schemas could exception-
ally realize a element in subject position and the element as a
coindexedby-phrase. This analysis establishes a different division of labor
between lexical information and syntactic operations, butit does not seem to
present any advantages in return for the additional complexity it introduces.

A more radical solution would be to approximate the old transformational
analysis within HPSG. A recent trend in the framework (most fully devel-
oped in Ginzburg and Sag (2001)) is the use of constructionalconstraints, a
departure from the original emphasis (perhaps over-emphasis) on lexical de-
scriptions as the driving force behind syntactic derivation. One characteristic
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of the constructional approach is a reliance on nonbranching (“head-only”)
syntactic rules. Such rules can potentially be used to encode arbitrarily ab-
stract syntactic operations, from a simple change of bar level (e.g., X0 to XP),
to a coercion of one syntactic category into another (e.g., Sto NP), or even in
our case, the transformation of an active clause into a passive clause.

This last proposal would be soundly rejected by the linguists working in
HPSG, for violating various well-motivated locality and modularity princi-
ples. In particular, a syntactic rule should not be able to refer to or arbitrarily
modify the phonological, morphological, or internal syntactic structure of the
constituents it manipulates. The proposed non-branching passive transforma-
tion rule would have to do all of the above. The problem is thatthese locality
and modularity principles cannot be formally enforced in HPSG; they have
the status of conceptual guidelines that responsible practitioners of the the-
ory agree to follow by convention. Of course, this is a fundamental issue
that is relevant for all grammatical frameworks, and rarelyaddressed. But the
“all-in-one” sign-based architecture that constitutes the principal strength of
HPSG, also makes it particularly easy to fall afoul of these basic principles.
In the case of the passive, a constraint requiring non-branching rules to leave
the and values unchanged would be enough to inval-
idate the undesirable transformational analysis. But thisis nothing more than
an artifical stipulation, covering only a small subset of cases, and the more
general theoretical question remains.

11.2.2 Adjunct analyses

For the ordinary passive construction, a strictly lexical analysis is available,
because it only needs to refer to the subject and direct object, both of which
are present in the lexically defined “argument structure” (encoded in the-
 list). The PP adjunct data in (32), however, is problematic for a treatment
of the prepositional passive as a lexical phenomenon. This is because infor-
mation about the identity of eventual adjuncts is not normally available at
the lexical level, at least not according to the original assumptions of HPSG.
A technical work-around to this problem is possible, in the form of the-
 list of Bouma et al. (2001). This list, whose value is defined as the
lexical- extended by zero or more (underspecified) adjuncts, was intro-
duced in order to allow a uniformly head-driven analysis of extraction from
complement and adjunct positions.

This result is made possible basically by treating some adjuncts as com-
plements, from a syntactic point of view. This reverses the direction of se-
lection in adjunct structures: The head now selects these adjuncts, in com-
plete contrast to the treatment of adjuncts in Pollard and Sag (1994). This
move potentially introduces significant problems for semantic composition.
Levine (2003) discusses a problem involving adjuncts scoping over coordi-
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FIGURE 1 Prepositional Passive LR

nated structures, and argues for a return to the earlier HPSGapproach, with
adjuncts introduced at the appropriate places in the syntactic derivation (per-
haps as empty elements, if they are extracted). Sag (2005) offers a response,
requiring modifications to the proposal by Bouma et al. but maintaining the
treatment of certain adjuncts as elements selected lexically by the head (and
a traceless analysis of extraction).

11.2.3 Prepositional passive: lexical approach

In light of this active controversy, any phenomenon involving adjuncts can be
approached in two very different ways in HPSG. At first sight, the adjuncts-
as-complements approach seems more appropriate for the prepositional pas-
sive, precisely because it targets complement and adjunct PPs in the same
way. The lexical rule in Figure 1 takes as input a base form (active voice) verb
with a PP on its list and outputs a passive participle with a specifi-
cation custom-built to generate the prepositional passive: The first element on
 is the subject, followed optionally by a particle or a directobject.9 The di-
rect object, if present, is constrained to be canonical, to account for the data in
(29–30) above. (Extracted and extraposed/shifted phrases have non-canonical
synsemtypes.) The crucial operation in this lexical rule is the replacement of
a saturated PP (complement or adjunct) in the input by a-unsaturated
P in the output description. The unrealized complement of the preposition is
coindexed with the passive subject NP, and the original subject is optionally
realized in aby-phrase, as in the ordinary passive construction.

The complexity and ad hoc nature of this rule is perhaps forgivable, given
the highly exceptional status of the phenomenon it models. On the other hand,
the proposal fails to capture what is common to the prepositional passive and
the ordinary passive. In fact, most aspects of the prepositional passive could
be handled by the existing rule for the ordinary passive, which already pro-
vides a mechanism for: promoting a non-subject NP to subjectposition, de-

9This simplified formulation does not accommodate structures containing both a particle and
an object (recall fn. 6).
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moting the subejct NP to an optionalby-phrase, and ensuring the appropriate
morphological effects (identical for both kinds of passive, as confirmed in
§11.1.3). For this to work, the NP complement of P must be made available
directly on the list of the base verb (by applying argument raising, famil-
iar from HPSG analyses of French and German non-finite constructions10) so
it can be input to the general passive rule. But this means introducing a sys-
tematic ambiguity between PP and P, NP in the value of the active form
of the verb, potentially giving rise to two structures:

(37) a. VP

V

rely
[ 〈NP, PP〉]

PP

on David

b. VP

V

rely
[ 〈NP, P, NP〉]

P

on

NP

David

The unwanted analysis (37b) should be blocked, although we need this
version of the verbrely in order to generate the prepositional passivewas
relied on. One straightforward way to achieve this would be to add the speci-
ficationnon-canonicalto the second NP element on the verb’s list. This
would make it impossible for it to be realized as a complement, as in (37b),
but we would still have spurious ambiguity in extraction constructions (where
the NP is in fact non-canonical). A more adequate solution would be to en-
rich the hierarchy ofsynsemsubtypes to encode the syntactic function of the
corresponding phrase. This would then allow us to state the appropriate con-
straint (e.g., “¬comps-synsem”).11

This analysis of the prepositional passive is still incomplete, because the
insertion of intervening modifiers between V and P must blocked; recall the
discussion of example (22). The lexical operations proposed so far manipulate
the  list, a rather abstract level of representation that cannotbe used to
express constraints on surface word order. The required constraint therefore
has to be formulated separately.

11.2.4 Prepositional passive: syntactic approach

A more radical treatment can be developed for the prepositional passive by
combining the earlier HPSG approach to adjuncts (as unselected elements
introduced in the syntax) and the more recent trend of constructional analysis.

Figure 2 sketches a special head-adjunct rule that can be used to construct
the adjunct-based examples in (32). As in an ordinary head-adjunct phrase,
semantic composition is handled via selection. But this rule is extraor-

10E.g., Hinrichs and Nakazawa (1994) and Abeillé et al. (1998).
11This can be thought of as a very weak kind of inside-out constraint (as used in LFG, and

reinterpreted for HPSG by Koenig (1999)).
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FIGURE 2 Constructional rule for adjunct prepositional passives

dinary in that it requires the adjunct to be-unsaturated, and it specifies
the coindexation of the unrealized complement of P and the as-yet-unrealized
subject of the resulting VP. The rule also imposes special constraints on the
head daughter. The sign typecore-vpis defined to be compatible with a bare
V, or a combination of V with a particle and/or a direct object. In other words,
as soon as a verb combines with a non-nominal complement or any kind of
modifier, the resulting phrase is no longer acore-vp. This determines what
can and cannot intervene between V and P in the prepositionalpassive, as
discussed in§11.1.2 The negative constraint on the head daughter’s list
and the empty specification ensure that the particle and object (if any)
are actually realized within thecore-vp.12

A number of additional details need to be worked out; in particular, some
aspects of passivization (e.g., morphological effects) must still be dealt with
at the lexical level. It should also be noted that a similar special version of
the head-complement rule is needed for prepositional passives involving PP
complements, although it is possible to factor out the shared aspects of the
two constructional rules; this is precisely the advantage of the hierarchical
approach to constructions in HPSG. These preliminary observations suggest
that the constructional treatment provides a more satisfactory account of the
phenomenon than the lexical approach. Additional questions for further work
include a comparison with the prepositional passive in Scandinavian, and a
search for similar phenomena anywhere outside of the Germanic family.

References
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Linearization of Affine Abstract
Categorial Grammars
R Y

Abstract
The abstract categorial grammar (ACG) is a grammar formalism based on linear

lambda calculus. It is natural to ask how the expressive power of ACGs increases when
we relax the linearity constraint on the formalism. This paper introduces the notion of
affine ACGs by extending the definition of original ACGs, and presents a procedure for
converting a given affine ACG into a linear ACG whose language is exactly the set of
linearλ-terms generated by the original affine ACG.

Keywords ACG, GC, LC-
, C-F TG, LC-FR S,
M C-F G

12.1 Introduction

De Groote (2001) has introducedabstract categorial grammars (ACGs), in
which both lexical entriesof the grammar as well asgrammatical combi-
nationsof them are represented by simply typed linearλ-terms. While the
linearity constraint on grammatical combinations is thought to be reasonable,
admitting non-linearλ-terms as lexical entries may allow ACGs to describe
linguistic phenomena in a more natural and concise fashion.

On the other hand, de Groote and Pogodalla (2003, 2004) have shown that
a variety of context-free formalisms, namely, context-free grammars, linear1

1This paper lets the term “linearity” mean non-duplication and non-deletion. Thus “lin-
ear CFTGs” means non-duplicating non-deleting CFTGs here,though usually “linear CFTGs”
means non-duplicating CFTGs.

161

FG-2006.
Edited by Paola Monachesi, Gerald Penn,
Giorgio Satta and Shuly Wintner.
Copyright c© 2006, CSLI Publications.



162 / R Y

context-free tree grammars (linear CFTGs)2 and linear context-free rewrit-
ing systems (LCFRSs), is encoded by ACGs in straightforwardways. In this
sense, ACGs can be thought of as a generalization of those grammar for-
malisms. The linearity constraint in those formalisms matches that of the
ACG formalism.

Concerning those grammar formalisms, it is known that the expressive
power does not change when the linearity constraint is relaxed to just non-
duplication, allowing deleting operations. Seki et al. (1991) have shown the
equivalence between LCFRSs and multiple context-free grammars (MCFGs),
which correspond to the relaxed version of LCFRSs that may have deleting
operations. Fujiyoshi (2005) has established the equivalence between lin-
ear monadic CFTGs and non-duplicating monadic CFTGs. Fisher’s result
(Fisher, 1968a,b) is rather general. He has shown that the string IO-languages
generated by general CFTGs coincide with the string IO-languages generated
by non-deleting CFTGs.

Along this line, extending the definition of usual linear ACGs, this paper
introducesaffine ACGs, which have BCKλ-terms as their lexical entries, and
compares the generative power of linear ACGs and affine ACGs. We present
a procedure for converting a given affine ACG into a linear ACG whose lan-
guage is exactly the set of the linearλ-terms generated by the original ACG.
Therefore, affine ACGs are not essentially more expressive than linear ACGs,
since strings and trees are usually represented with linearλ-terms.

As linear ACGs encode linear CFTGs and LCFRSs, affine ACGs encode
non-duplicating CFTGs and MCFGs in straightforward ways. For such affine
ACGs, our linearization method constructs linear ACGs which have the form
corresponding to linear CFTGs or LCFRSs. Thus, our result isa generaliza-
tion of the results we have mentioned above with the exception of Fisher’s,
which covers CFTGs involving duplication.

12.2 Preliminaries

12.2.1 Lambda-Terms

Let A be a finite non-empty set ofatomic types. The setT (A ) of typesbuilt
onA is defined as the smallest superset ofA such that

. if α, β ∈ T (A ), then (α→ β) ∈ T (A ).

Theorder of a type is given by the function ord :T (A )→ N,

. ord(p) = 1 for all p ∈ A ,

. ord((α→ β)) = max{ord(α) + 1, ord(β)}.

2See also Kanazawa and Yoshinaka (2005) for complete proof ofencodability of linear
CFTGs by ACGs.
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A higher-order signatureΣ is a triple 〈A ,C , τ〉 whereA is a finite non-
empty set of atomic types,C is a finite set of constants, andτ is a func-
tion from C to T (A ). Theorder of the higher-order signature is defined as
ord(Σ) = max{ord(τ(a)) | a ∈ C }.

Let X be a countably infinite set ofvariables. The setΛ(Σ) of λ-terms
(termsfor short) built uponΣ and the type ˆτ(M) of a termM ∈ Λ(Σ) are
defined inductively as follows:

. For everya ∈ C , a ∈ Λ(Σ) andτ̂(a) = τ(a).. For everyx ∈X andα ∈ T (A ), xα ∈ Λ(Σ) andτ̂(xα) = α.. For M,N ∈ Λ(Σ), if τ̂(M) = (α → β), τ̂(N) = α, then (MN) ∈ Λ(Σ) and
τ̂((MN)) = β.. For x ∈ X , α ∈ T (A ) andM ∈ Λ(Σ), (λxα.M) ∈ Λ(Σ) andτ̂((λxα.M)) =
(α→ τ̂(M)).

For convenience, we simply writeτ instead of ˆτ and often omit the superscript
on a variable if its type is clear from the context. The notions of free variables,
closed terms,β-normal form,βη-normal form, are defined as usual (see Hind-
ley (1997) for instance). A termM is acombinatoriff M is closed andM con-
tains no constants. A termM is said to beaffine if any variable occurs free at
most once in every subterm ofM. An affine term is said to belinear if every
λ-abstraction binds exactly one occurrence of a variable. The sets of affine
and linear terms are respectively denoted byΛaff(Σ) andΛlin(Σ). As usual, let
։β,=β,=βη, ≡ denoteβ-reduction,β-equality,βη-equality, andα-equivalence
respectively.|M|β and |M|βη respectively represent theβ-normal form and
βη-normal form. We use upper case italic lettersM,N,P, . . . for terms, late
lower case italic lettersx, y, z, . . . for variables, middle lower case italic letters
o, p, . . . for atomic types, Greek lettersα, β, . . . for types, sanserifa,A, . . . for
constants. We writeα → β → γ → δ for (α → (β → (γ → δ))), α3 → δ for
α→ α→ α→ δ, MNPQ for (((MN)P)Q), λxyz.M for (λx.(λy.(λz.M))), and
so on.

12.2.2 Abstract Categorial Grammars

Definition 12 For two sets of atomic typesA0 andA1, a type substitutionσ
is a mapping fromA0 toT (A1), which can be extended homomorphically as

σ(α→ β) = σ(α)→ σ(β).

For two higher-order signaturesΣ0 andΣ1, a term substitutionθ is a mapping
from C0 to Λ(Σ1) such thatθ(a) is closed for alla ∈ C0. A term substitution
θ is linear iff θ(a) is linear for alla ∈ C0. For two higher-order signatures
Σ0 andΣ1, we say that a type substitutionσ : A0 → T (A1) and a term
substitutionθ : C0 → Λ(Σ1) arecompatibleiff σ(τ0(a)) = τ1(θ(a)) holds for
all a ∈ C0. A lexiconfrom Σ0 to Σ1 is a compatible pair of a type substitution
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and a term substitution. A lexiconL = 〈σ, θ〉 is linear iff θ is linear. For a
lexiconL = 〈σ, θ〉, we definêθ as the homomorphic extension ofθ such that
θ̂(xα) = xσ(α). Indeed,̂θ(M) is always a well-typedλ-term if so isM; if M has
typeα, thenθ̂(M) has typeσ(α).

Hereafter we identify a lexiconL = 〈σ, θ〉 with the functionsσ and θ̂. A
lexiconL is n-th orderif ord(L ) = max{ord(σ(p)) | p ∈ A0 } ≤ n.

Definition 13 An abstract categorial grammar (ACG)is a quadrupleG =
〈Σ0,Σ1,L , s〉, where

. Σ0 is a higher-order signature, called theabstract vocabulary,

. Σ1 is a higher-order signature, called theobject vocabulary,

. L is a linear lexicon fromΣ0 to Σ1,

. s ∈ A0 is called thedistinguished type.

We sometimes call the triple〈a, τ0(a),L (a)〉 for a ∈ C0 a lexical entry, and
specify an ACG by giving the set of lexical entries and the distinguished type.

Definition 14 An ACG G = 〈Σ0,Σ1,L , s〉 generates two languages, theab-
stract languageA(G ) and theobject languageO(G ), defined as

A(G ) = {M | M ∈ Λlin(Σ0) is a closedβη-normal term of types},

O(G ) = { |L (M)|βη | M ∈ A(G ) }.

The abstract language can be thought of as a set of abstract grammatical
structures, and the object language is regarded as the set ofconcrete forms
obtained from these abstract structures and the lexicon. Thus, we simply say
the language generated by an ACG for its object language. Thetermabstract
categorial languages (ACLs)means the object languages of ACGs.

Though de Groote’s original definition of an ACG requires thelexicon
to be linear, this paper allows the lexicon to be non-linear.We call an ACG
whose lexicon is affine affine ACG, and denote the class of affine ACGs by
Gaff. We then distinguish affine ACGs whose lexicons are linear, i.e., original
ACGs, by calling themlinear ACGsand letGlin denote the class of linear
ACGs. Note that the abstract language always consists oflinear terms, though
an ACG is not necessarily linear. For eachG∗ ∈ {Glin ,Gaff}, G∗(m, n) denotes
the subclass of ACGs belonging toG∗ such that the order of the abstract
vocabulary is at mostm and the order of the lexicon is at mostn. An ACG is
m-th orderif it belongs toG∗(m, n) for somen.

Example 1 Let str = o→ o andM+N be an abbreviation ofλzo.M(Nz) if the
types ofM andN arestr. Let us consider the affine ACGG = 〈Σ0,Σ1,L , s〉
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with the following lexical entries:

x ∈ C0 τ0(x) L (x)
C n λv.v/cat//cats/
M n λv.v/mouse//mice/
J np λy.y/John/P1

R np→ s λx.x(λuv.u+ v/runs//run/)
E np2→ s λx1x2.x2(λuv.u+ v/eats//eat/) + x1(λuv.u)
A n→ np λzy.y(/a/ + zP1)P1

L n→ np λzy.y(/all/ + zP2)P2

where each/xxx/ is a constant of typestr, Pi denotesλustr
1 ustr

2 .ui , L (n) =
(str2 → str) → str, L (np) = (str → (str2 → str) → str) → str, L (s) = str.
The object languageO(G ) consists of terms representing some English sen-
tences such asJohn runs, all mice run, all cats eat a mouse, and so on.

12.3 Linearization of Affine ACGs

While linear ACGs can generate languages consisting of linear terms only,
affine ACGs can generate languages containing non-linear terms. Therefore,
affine ACGs define a strictly richer class of languages than linear ACGs. How-
ever, since terms representing strings or trees are linear3, affine terms in the
object languages are not very interesting. This paper showsthat for every
G ∈ Gaff(m, n), we can constructG ′ ∈ Glin(m,max{2, n}) such that

O(G ′) = {P ∈ O(G ) | P is linear} (12.8)

Moreover, in case ofm= 2, we can findG ′ ∈ Glin(2, n) satisfying the equation
(12.8). Therefore extending the definition of an ACG to allowlexical entries
affine does not enrich the expressive power of ACGs in an essential way. Be-
fore proceeding with our construction, we mention a partially stronger result
on the special case of this problem on string-generating second-order ACGs,
obtained from Salvati’s work (Salvati, 2006). He presents an algorithm that
converts a linear ACGG ∈ Glin(2, n) generating a string language into an
equivalent LCFRS (via a deterministic tree-walking transducer). Even if an
input is an affine ACGG ∈ Gaff(2, n), his algorithm still outputs an equiv-
alent LCFRS. Since every LCFRS is encodable by a linear ACG belonging
to Glin(2, 4) (de Groote and Pogodalla, 2003, 2004), therefore this entails the
following corollary.

3A string a1 . . .an on an alphabetV is represented byλzo.a1(. . . (anz) . . . ) ∈ Λlin(ΣV) where
ΣV = 〈{o},V, τV〉 with τV(a) = str for all a ∈ V as in Example 1. Trees are constructed on some
ranked alphabet. A ranked alphabet〈F, ρ〉, whereF is an alphabet andρ is a rank assignment on
F, can be identified with a higher-order signatureΣ〈F,ρ〉 = 〈{o}, F, τρ〉 such thatτρ(a) = ok → o if
ρ(a) = k for all a ∈ F, and a tree is identified with a variable-free (thus linear) term of the atomic
typeo in the obvious way.
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Corollary 26 For every string-generating affine ACGG ∈ Gaff(2, n), there is
a linear ACGG ′ ∈ Glin(2, 4) such thatO(G ′) = O(G ).

12.3.1 Basic Idea

We explain our basic idea for the linearization method for affine ACGs
through a small example. Let us consider the affine ACG G consisting of
the following lexical entries:

x ∈ C0 τ0(x) L (x)

A p→ s λwo2→o.waobo

B p λxoyo.x

whereL (s) = o andL (p) = o2 → o. Corresponding toAB ∈ A(G ), we
havea ∈ O(G ) by

L (AB) ≡ (λwo→o→o.waobo)(λxoyo.x)→β (λxoyo.x)aobo
։β ao. (12.9)

The occurrences of vacuousλ-abstractionλyo causes the deletion ofb in
(12.9). Such deleting operation is what we want to eliminatein order to lin-

earize the affine ACGG . Let us retypeλyo with λyo and replacebo with b
o

to
indicate that they should be eliminated. Then (12.9) is decorated by bars as

(λwo→o→o.waob
o
)(λxoyo.x)→β (λxoyo.x)aob

o
։β ao, (12.10)

where we retypewo→o→o with wo→o→o, so that the whole term is well-typed.
In our setting, when a term has a barred type, it means that theterm should be
erased duringβ-reduction steps, and vice versa. By eliminating those barred
terms and types from (12.10), we get

(λwo→o.wao)(λxo.x)→β (λxo.x)ao→β ao, (12.11)

which solely consists of linear terms. Hence, the linear ACGG ′ with the
following lexical entries generates the same language as the original ACGG .

x ∈ C ′0 τ′0(x) L ′(x)
A′ [p, o→ o→ o] → [s, o] λwo→o.wao

B′ [p, o→ o→ o] λxo.x

where [p, o → o → o] and [s, o] are new atomic types that are mapped
to o → o ando, respectively, and [s, o] is the distinguished type. We have

L (AB) = L ′(A′B′). The termλwo→o→o.waob
o
, which is led toL ′(A′), is

just one possible bar-decoration forL (A). For instance,λwo→o→o.waobo and
λwo→o→o.waobo are also possible. Bars appearing inλwo→o→o.waobo predict
that the subterma will be erased, andλwo→o→o.waobo predicts that no sub-
term of it will disappear. Our linearization method also produces lexical en-
tries corresponding to those bar-decorations.
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12.3.2 Formal Definition

We first give a formal definition of the set of possible bar-decorations on a
type and a term. Hereafter, we fix a given affine ACGG = 〈Σ0,Σ1,L , s〉.
DefineΣ1 = 〈A1,C1, τ1〉 by

A1 = { p | p ∈ A1 }, C1 = { c | c ∈ C1 }, τ1 = { c→ τ1(c) | c ∈ C1 },

whereα→ β = α→ β. LetΣ′1 = 〈A
′

1 ,C
′
1, τ
′
1〉 = 〈A1 ∪A1,C1 ∪ C1, τ1 ∪ τ1〉.

Here, we have the simple lexicoñ· from Σ′1 to Σ1 defined as

p̃ = p̃ = p for p ∈ A1, and̃c ≡ c̃ ≡ c for c ∈ C1.

The set̂T (A1) of possible bar-decorations on types is defined by

T̂ (A1) = {α ∈ T (A ′
1 ) | if β1 → · · · → βn → p is a subtype ofα

for somep ∈ A1, thenβ1, . . . , βn ∈ T (Σ1) }

Actually, terms inΛaff(Σ′1) that we are concerned with have types inT̂ (A1).

The reason why we ignore types inT (A ′
1 ) − T̂ (A1) is that if a term is bound

to be erased, then so is every subterm of it. For instance, if avariablex has
typeo→ o < T̂ ({o}), then the termxo→oyo has typeo, which, in our setting,
means that it should disappear. But ifxo→oyo disappears, so doesyo, which,
therefore, should have typeo to be consistent with our definition.

The setΛ̂aff(Σ1) of possible bar-decorations on terms is the subset of
Λaff(Σ′1) such thatQ ∈ Λ̂aff(Σ1) iff

. every variable appearing inQ has a type in̂T (A1), and. if λxα.Q′ is a subterm ofQ and xα does not occur free inQ′, thenα ∈
T (A1).

We are not concerned with terms inΛaff(Σ′1) − Λ̂aff(Σ1).
The following properties are easily seen:

. If Q ∈ Λ̂aff(Σ1), thenτ′1(Q) ∈ T̂ (A1),

. If τ′1(Q) ∈ T (A1) for Q ∈ Λ̂aff(Σ1), every subterm ofQ is inΛaff(Σ1),

. If Q ∈ Λ̂aff(Σ1) andQ։β Q′, thenQ′ ∈ Λ̂aff(Σ1).

For eachα ∈ T (A1) andP ∈ Λaff(Σ1), Π gives the set of possible bar-
decorations on them:

Π(α) = { β ∈ T̂ (A1) | β̃ = α },

Π(P) = {Q ∈ Λ̂aff(Σ1) | Q̃ ≡ P }.

In other words,Π and ·̃ are inverse of each other, if we disregard types in
T (A ′

1 ) − T̂ (A1) and terms inΛaff(Σ′1) − Λ̂aff(Σ1).
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Secondly, we eliminate barred subtypes fromα ∈ T̂ (A1) − T (A1) and
barred subterms fromQ ∈ Λ̂aff(Σ1) − Λaff(Σ1). Let us define (α)† and (Q)† as
follows:

(p)† = p for p ∈ A1,

(α→ β)† =


(α)† → (β)† if α < T (A1),

(β)† if α ∈ T (A1),

(xα)† ≡ x(α)† ,

(c)† ≡ c for c ∈ C1,

(λxα.Q)† ≡


λx(α)† .(Q)† if α < T (A1),

(Q)† if α ∈ T (A1),

(Q1Q2)† ≡


(Q1)†(Q2)† if τ′1(Q2) < T (A1),

(Q1)† if τ′1(Q2) ∈ T (A1).

The following properties are easily seen (α ∈ T̂ (A1) − T (A1) andQ,Q′ ∈
Λ̂aff(Σ1) − Λaff(Σ1)):

. (α)† ∈ T (A1) and (Q)† ∈ Λlin(Σ1),

. τ1((Q)†) = (τ′1(Q))†,

. If Q is β-normal, then so is (Q)†,

. Q =β Q′ implies (Q)† =β (Q′)†.

Lemma 27 For every closed term Q∈ Λ̂aff(Σ1), τ′1(Q) ∈ T (A1) iff (Q)† =β
Q =β Q̃.

Lemma 28 For every closed term P∈ Λaff(Σ1), |P|β is linear iff there is Q∈
Π(P) whose type is inT (A1).

Second-Order Case

We say that an abstract atomic typep ∈ A0 is uselessif there is noM ∈ A(G )
that has a subterm whose type containsp. An abstract constanta ∈ C0 is
uselessif there is noM ∈ A(G ) containinga. If an ACG is second-order,
it is easy to check whether the abstract vocabulary containsuseless atomic
types or constants, and if so, we can eliminate useless abstract atomic types
and constants. This can be done in a way similar to the elimination of useless
nonterminal symbols and productions from a context-free grammar.

Definition 15 LetG = 〈Σ0,Σ1,L , s〉 be a second-order ACG that has no use-
less abstract atomic types or constants. We defineG ′ = 〈Σ′0,Σ1,L

′, [s,L (s)]〉



L  A A C G / 169

as follows: defineΣ′0 = 〈A
′

0 ,C
′
0, τ
′
0〉 by

A
′

0 = { [p, β] | p ∈ A0, β ∈ Π(L (p)) − T (A1) },

C
′
0 = { [[a,Q]] | a ∈ C0, Q ∈ Π(L (a)) − Λaff(Σ1) },

τ′0 = { [[a,Q]] 7→ ([τ0(a), τ′1(Q)])‡ },

where ([p, β])‡ = [p, β],

([α→ γ, β→ δ])‡ =


([α, β])‡ → ([γ, δ])‡ if β < T (A1),

([γ, δ])‡ if β ∈ T (A1),

andL ′ by

L
′([p, β]) = (β)†, L

′([[a,Q]]) = (Q)†.

G ′ is linear, but it may contain useless abstract atomic types or constants. The
linearized ACGG l for G is the result of eliminating all the useless abstract
atomic types and constants fromG ′.

Lemma 29 LetG andG ′ be as in Definition 15.
For every variable-free M∈ Λlin(Σ0) of an atomic type and every Q∈

Π(L (M)) − Λaff(Σ1), there is N∈ Λlin(Σ′0) such thatτ′0(N) = [τ0(M), τ′1(Q)]
andL

′(N) ≡ (Q)†.
Conversely, for every variable-free N∈ Λlin(Σ′0) of an atomic type,

there are M ∈ Λlin(Σ0) and Q ∈ Π(L (M)) − Λaff(Σ1) such thatτ′0(N) =
[τ0(M), τ′1(Q)] andL ′(N) ≡ (Q)†.

Theorem 30 For every affine ACGG ∈ Gaff(2, n), there is a linear ACG
G l ∈ Glin(2, n) such thatO(G l) = {P ∈ O(G ) | P is linear}.

Proof. Use Lemmas 28, 29, and 27. ⊔⊓

De Groote and Pogodalla (2003, 2004) have presented encoding methods
for linear CFTGs and LCFRSs by linear ACGs. Their methods canalso be
applied to non-duplicating CFTGs and MCFGs.

Example 2 Let a non-duplicating CFTGG consist of the following produc-
tions:4

S→ P(a, b), P(x1, x2)→ P(c(x1), c(S)) | d(x1, x2),

where the ranks ofS, P, a, b, c, d are 0, 2, 0, 0, 1, 2, respectively. De Groote
and Pogodalla’s method transformsG into the following affine ACGG :

x ∈ C0 τ0(x) L (x)

A p→ s λyo2→o
p .ypaobo

B s→ p→ p λyo
sy

o2→o
p xo

1xo
2.yp(co→ox1)(co→oys)

C p λxo
1xo

2.d
o2→ox1x2

4The notation adopted here follows de Groote and Pogodalla.
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When we apply the linearization method given in Definition 15to G , we get
the following linear ACGG l whose distinguished type is [s, o]:

x ∈ C l
0 L

l(x)
τl

0(x)

[[A, λyo→o→o
p .ypab]]

λyo2→o
p .ypab

[p, o→ o→ o] → [s, o]
[[A, λyo→o→o

p .ypab]]
λyo→o

p .ypa
[p, o→ o→ o] → [s, o]

[[B, λyo
sy

o→o→o
p xo

1xo
2.yp(cx1)(cys)]]

λyo
sy

o2→o
p xo

1.yp(cx1)(cys)[s, o] → [p, o→ o→ o] → [p, o→ o→ o]
[[B, λyo

sy
o→o→o
p xo

1xo
2.yp(cx1)(cys)]] λyo→o

p xo
1.yp(cx1)

[p, o→ o→ o] → [p, o→ o→ o]
[[C, λxo

1xo
2.dx1x2]]

λxo
1xo

2.dx1x2[p, o→ o→ o]

The linearized ACGG
l is actually the encoding of the linear CFTGG′ con-

sisting of the following productions:

S→ P(a, b) | P′(a), P′(x1)→ P(c(x1), c(S)) | P′(c(x1)),

P(x1, x2)→ d(x1, x2),

where the ranks of nonterminalsS, P, P′ are 0, 2, 1, respectively.G, G , G
l ,

andG′ generate the same tree language.

The following corollary generalizes the result by Fujiyoshi (2005), which
covers themonadiccase only.

Corollary 31 For every non-duplicating CFTG G, there is a linear CFTG G′

such that G and G′ generate the same tree language.

LetG be the affine ACG that encodes an MCFGG. The linearized ACGG l

is indeed in the form that is the encoding of an LCFRS5 (butG ′ is not). There-
fore, our result covers the following theorem shown by Seki et al. (1991).

Corollary 32 For every MCFG G, there is an LCFRS G′ such that the lan-
guages generated by G and G′ coincide.

Third or Higher-Order Case
Definition 15 itself does not depend on the order of the given affine ACG
except that in the general case, we do not know how to find and eliminate
useless abstract atomic types and constants. For the general case, however, the
linearized ACG given in Definition 15 may generate a strictlylarger language

5The LCFRS obtained from an MCFG through our linearization method may have nonter-
minals of rank 0. The reason why usual definitions of an LCFRS do not allow nonterminals
to have rank 0 is just to avoid redundancy. Mathematically speaking, allowing or disallowing
nonterminals of rank 0 does not matter at all.
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than the original affine ACG. In the remainder of this paper, we present a
linearization method for general affine ACGs.

Example 3 Suppose that an affine ACGG ∈ Gaff(3, 1) consists of the fol-
lowing lexical entries:

x ∈ C0 τ0(x) L (x)
A q #
B p→ q→ q λyozo.bo→oz
C q→ s λzo.z
D (p→ s)→ s λxo→o.ao→o(xeo)

We seeO(G ) = {

n-times︷  ︸︸  ︷
a(. . . (a(

n-times︷  ︸︸  ︷
b(. . . (b #) . . . )) . . . ) | n ≥ 0 }. The linear ACGG ′

by Definition 15 consists of the following lexical entries:

x ∈ C ′0 τ′0(x) L ′(x)
[[A, #]] [q, o] #

[[B, λyozo.bz]] [q, o] → [q, o] λzo.bz
[[C, λzo.z]] [q, o] → [s, o] λzo.z

[[D, λxo→o.a(xe)]] [s, o] → [s, o] λxo.ax
[[D, λxo→o.a(xe)]] ([p, o] → [s, o]) → [s, o] λxo→o.a(xe)

The last lexical entry is useless. We have

O(G ′) = {

m-times︷  ︸︸  ︷
a(. . . (a(

n-times︷  ︸︸  ︷
b(. . . (b #) . . . )) . . . ) | m, n ≥ 0 } ) O(G ).

Though any term of typep that is the first argument of an occurrence ofB is
bound to be erased in the original ACGG , we cannot ignore the occurrence of
the typep, because that occurrence ofp balances the numbers of occurrences
of B andD in a term inA(G ).

Our new linearization method gives the linear ACGG ′′ consisting of the
following lexical entries (useless lexical entries are suppressed):

x ∈ C ′′0 τ′′0 (x) L ′′(x)
[[A, #]] [q, o] #

[[B, λyozo.bz]] [p, o] → [q, o] → [q, o] λyo→ozo.y(bz)
[[C, λzo.z]] [q, o] → [s, o] λzo.z

[[D, λxo→o.a(xe)]] ([p, o] → [s, o]) → [s, o] λx(o→o)→o.a(x(λzo.z))

where [p, o] is mapped too→ o. We haveO(G ) = O(G ′′).

Now, we give the formal definition of our new linearization method for
general affine ACGs. For simplicity, we assume thatA1 = {o} here, but it is
possible to lift this assumption. The new linearized ACGG ′′ has the form
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G ′′ = 〈Σ′′0 ,Σ1,L
′′, [s,L (s)]〉, whereΣ′′0 = 〈A

′′
0 ,C

′′
0 , τ

′′
0 〉 is defined by

A
′′

0 = { [p, β] | p ∈ A0, β ∈ Π(L (p)) },

C
′′
0 = { [[a,Q]] | a ∈ C0, Q ∈ Π(L (a)) },

τ′′0 = { [[a,Q]] 7→ [τ0(a), τ′1(Q)] }

where [α→ γ, β→ δ] = [α, β] → [γ, δ].

Here we have two simple lexiconsL0 : Σ′′0 → Σ0 andL1 : Σ′′0 → Σ
′
1;

L0([p, β]) = p, L0([[a,Q]]) = a, L1([p, β]) = β, L1([[a,Q]]) = Q.

We haveL̃1(N) ≡ L ◦L0(N) for N ∈ Λlin(Σ′′0 ). For anyM ∈ Λlin(Σ0) andQ ∈
Π(L (M)), one can find a termχ(M,Q) ∈ Λlin(Σ′′0 ) such thatL0(χ(M,Q)) ≡
M andL1(χ(M,Q)) ≡ Q.

Lemma 33 For every Q∈ Λ̂aff(Σ1) andα ∈ T (A0), the following statements
are equivalent:

1. There is M∈ Λlin(Σ0) of typeα such thatL (M) ≡ Q̃.
2. There is N∈ Λlin(Σ′′0 ) of type[α, τ′1(Q)] such thatL1(N) ≡ Q.

Lemmas 28 and 33 imply

{M ∈ A(G ) | |L (M)|β is linear} = {L0(N) | N ∈ A(G ′′) }.

Since (L1(N))† =β L̃1(N) ≡ L ◦L0(N) for everyN ∈ A(G ′′) by Lemma 27,
it is enough to define a new lexiconL ′′ so that

L
′′(N) =βη (L1(N))† (12.12)

for everyN ∈ A(G ′′).
We define the type substitutionσ : A

′′
0 → T ({o}) of L

′′ = 〈σ, θ〉 as

σ([p, β]) =


(β)† if β < T ({o}),

o→ o if β ∈ T ({o}).

Here we identifyσ with its homomorphic extension. As a preparation for
defining the term substitutionθ of L ′′, we give three kinds of linear combi-
nators. For [α, β] ∈ T (A ′′

0 ) such thatβ ∈ T ({o}), letσ([α, β]) = γ1 → · · · →

γm → o → o andγi = γi,1 → · · · → γi,ki → o → o. Zσ([α,β]) is a linear
combinator of typeσ([α, β]) defined as

Zσ([α,β]) ≡ λyγ1

1 . . .yγm
m zo.R1(R2(. . . (Rmz) . . . ))

whereRi ≡ yγi

i Zγi,1 . . .Zγi,ki .

For each [α, β] ∈ T (A ′′
0 ) such thatβ ∈ T̂ ({o}) − T ({o}), we define two linear

combinatorsXβ
α of typeσ([α, β]) → (β)† andYβ

α of type (β)† → σ([α, β]) by
mutual induction. Let [α, β] = [α1, β1] → · · · → [αm, βm] → [p, β0] with
[p, β0] ∈ A ′′

0 and the set{1, . . . ,m} be partitioned into two subsetsI andJ so
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thatβi < T ({o}) iff i ∈ I . Let I = {i1, . . . , ik} (i j < i j+1) andJ = { j1, . . . , j l}.
Let

Xβ
α ≡ λyσ([α,β]) x

(βi1 )†

i1
. . . x

(βik )†

ik
.yσ([α,β]) P1 . . .Pm

where Pi ≡


Yβi
αi

x(βi )†

i if i ∈ I ,

Zσ([αi ,βi ]) if i ∈ J,

and

Yβ
α ≡ λx(β)†yσ([α1,β1])

1 . . . yσ([αm,βm])
m ~z.

M j1(. . . (M j l (x
(β)†Li1 . . . Lik~z)) . . . )

where~z is short forzγ1

1 . . . zγn
n for (β0)† = γ1→ · · · → γn → o, and


Li ≡ Xβi

αi
yσ([αi ,βi ])

i for i ∈ I ,

Mi ≡ Zσ([αi ,βi ])→o→oyσ([αi ,βi ])
i for i ∈ J.

Note that if [α, β] = [p, β0] ∈ A ′′
0 , thenXβ0

p =βη Yβ0
p =βη λz(β0)† .z.

Now, we give a new linearization method as follows.

Definition 16 For a given affine ACGG , we define a new linear ACG as
G ′′ = 〈Σ′′0 ,Σ1,L

′′, [s,L (s)]〉, whereL ′′ = 〈σ, θ〉 for σ as above and

θ([[a,Q]]) ≡


|Y
τ′1(Q)
τ0(a) (Q)†|β if τ′1(Q) < T ({o}),

Zσ(τ′′0 ([[a,Q]])) if τ′1(Q) ∈ T ({o}).

If G ∈ Gaff(m, n), thenG ′′ ∈ Glin(m,max{2, n}).

Lemma 34 Given N ∈ Λ(Σ′′0 ) of type [α, β] such thatβ < T ({o}) and

L1(N) ∈ Λ̂aff(Σ1), we have

(L1(N))† =βη Xβ
αL

′′(N)φN

whereφN is the substitution on the free variables ofL ′′(N) such that

xσ([α,β])φN =


Yβ
αx(β)† if x has the type[α, β] in N andβ < T ({o}),

Zσ([α,β]) otherwise.

Theorem 35 For every affine ACGG ∈ Gaff(m, n), there is a linear ACG
G ′′ ∈ Glin(m,max{2, n}) such thatO(G ′′) = {P ∈ O(G ) | P is linear}.

Proof. Lemma 34 entails the equation (12.12). ⊔⊓

12.4 Concluding Remarks
We have shown that the generative capacity of linear ACGs is as rich as that of
affine ACGs, that is, the non-deletion constraint on linear ACGsis superficial.
Our linearization method, however, increases the size of the given grammar
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exponentially due to the definition ofΠ, so there may still exist an advan-
tage of allowing deleting operations in the ACG formalism. For instance, the
atomic typenp of the abstract vocabulary of the ACG in Example 1 will be
divided up into three new atomic types which correspond to noun phrases as
third person singular subjects, plural subjects, and objects, respectively.

One attractive feature of ACGs is that they can be thought of as a gener-
alization of several well-established grammar formalisms(de Groote, 2002,
de Groote and Pogodalla, 2003, 2004). This paper demonstrates that the ACG
formalism also generalizes some “operation” on those grammars, namely,
conversion from non-duplicating grammars into non-duplicating and non-
deleting ones. Recall that Fisher (1968a,b) showed that every CFTG has a
corresponding non-deleting CFTG whose string IO-languageis equivalent.
One may wonder if Fisher’s result can be generalized to a transformation
from λK-ACGs, where duplicating operations are allowed as well as deleting
ones, into equivalentλI-ACGs, where duplicating operations are allowed but
deleting ones are not. That is future work. The author conjectures that one
can eliminate vacuousλ-abstraction fromsemi-affine ACGs, where a term is
semi-affineif for every free variablex of any subterm, eitherx occurs at most
once, orx has an atomic type. Actually, every CFTG has a corresponding
semi-affine ACG such that the tree IO-language of the CFTG coincides with
the object language of the ACG, and the semi-affine ACG encoding a non-
deleting CFTG has no vacuousλ-abstraction. If the conjecture is correct, this
implies that every CFTG has a corresponding non-deleting CFTG whose tree
IO-language is equivalent. This also entails Fisher’s result.
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