The Effects of Unrolling and Inlining
on Python Bytecode Optimizations

Yosi Ben Asher, Nadav Rotem
Haifa University

15/6/09 @

The Python Programming Language

e Very popular dynamic programming language
combining object-oriented and scripting concepts

e Features a fully dynamic type system named ‘duck
typing’

e Compiled into bytecode and executed by an
interpreter

e Known to be hundreds of times slower than C or
Java

e

Python disassembly

Technology Theme

def func(a,b,c): >>> dis.dis(func)
return a[b]*c + b*c + a[0] 2 0 LOAD_FAST
3 LOAD_FAST
6 BINARY_SUBSCR
7 LOAD_FAST

10 BINARY_MULTIPLY
11 LOAD_FAST

14 LOAD_FAST

17 BINARY_MULTIPLY
18 BINARY_ADD

19 LOAD_FAST

22 LOAD_CONST

25 BINARY_SUBSCR
26 BINARY_ADD

27 RETURN_VALUE

Python interpreter code

switch (opcode) {
case NOP:
goto fast next opcode;

case LOAD FAST:

x = GETLOCAL(oparg);

if (x I=NULL) {
Py INCREF(x);
PUSH(x);
goto fast next opcode;

}

format exc check arg(PyExc UnboundLocalError,
UNBOUNDLOCAL ERROR_ MSG,
PyTuple Getltem(co->co_varnames, oparg));

break;

case LOAD_CONST:
x = GETITEM(consts, oparg);
Py INCREF(x);
PUSH(x);
goto fast next opcode;

Python object code (integer)

static PyObject *
int_add(PyIntObject *v, PyIntObject *w)
{

register long a, b, x;

CONVERT TO_LONG(v, a);

CONVERT TO LONG(w, b);

X=a+b;

if (x*a) >= 0 || (x"b) >= 0)

return PyInt FromLong(x);

return PyLong Type.tp as number->nb_add((PyObject *)v, (PyObject *)w);

b

PyDoc_ STRVAR(int_doc,
"int(x[, base]) -> integer\n\ \n\
Convert a string or number to an integer, if possible. A ... ;

static PyNumberMethods int_as number = {
(binaryfunc)int_add, /*nb add*/
(binaryfunc)int sub, /*nb_subtract®/
(binaryfunc)int mul, /*nb_multiply™*/
(binaryfunc)int classic_div, /*nb_divide*/
(binaryfunc)int mod, /*nb_remainder®/

Data Flow Optimizations

e Data flow optimizations are a set of optimizations
that are known to be very effective.

e Typically, this set includes constant propagation,
common sub-expression elimination, algebraic
simplifications, copy propagation and dead code
elimination.

e In general, these optimizations create a more dense
code by simplifying expressions and removing dead
code.

Example of Dynamic Typing

>>> add(a, b): returna +b # define a new
function

>>>add(1, 2) # integers

3

>>> add([1,2,3], [4,5,6]) # lists
[1,2,3,4,5,6]

>>> add("hello", "world") # strings

“hello world"

Failed Data Flow Optimizations

e The following algebraic simplification is valid for
integers : (a*2+ b*2) becomes (a+b) *2

e However, if a and b are strings, it is not valid.

(@*2 + b*2) ——— "aabb"

Optimizing Python

e Applying compiler optimizations is challenging due
to Python's dynamic typing system.

e In order to preserve the correctness of the original
program, special considerations must be taken even
when implementing the most standard
optimizations.

Bytecode Optimization

e In this work, we developed optimizations which are
unique to dynamic languages.

e We dissasembeled the precompiled Python bytecode
and reconstructed into data-dependency trees and
optimize them.

e We recovered compiled bytecode files (.pyc files)
which contain no AST information.

e We have extended the standard data flow analysis
with specific rules to identify cases that are safe.

Bytecode Structure

e Python uses a stack-based bytecode which is
generated from the AST.

e The Python opcodes operate directly on the stack.

e A '‘BINARY_ADD' instruction, for example, pops two
items from the stack and pushes a single item,
which is the sum of the two original items.

e The add instruction tells the lower stack object to
call the internal ' __add ' method with the other
object as a parameter.

Bytecode Structure

LOAD_FAST 0//"a"
LOAD_FAST 1//"b"
BINARY_ADD

RETURN_VALUE

Python '‘Duck Typing' System
Person():
talk(self): print "/ am a person”
p = Person() # Create a new Person object
quack(): print "I am a duck”

p.talk = quack # Override a function

>>>p.talk()

| am a duck t

Unsafe Optimizations and Side Effects

e Consider the following code:

for i1 in xrange(100):
sum += Xy

e In Java, CSE pass would evaluate "x*y" only once.

e However, in Python, a method could be overridden

oy another method which has a side effect. This
method could potentially write a log file every time
X is multiplied by v.

e We have no way of knowing in advance what x would
do when multiplied by v.

Our Optimization Passes

Loop Unrolling

e Loop unrolling is a well-known transformation.

e The first unrolling pass we implemented unrolls
numeric loops (xrange loops).

e The unrolling of the 'xrange' iterator is done by
changing the 'xrange’ constructor when it is created
in order to yield values in steps that are greater
than one.

e Then, the body of the loop is duplicated and
modified to accommodate the changes and execute
the next iteration.

xrange unrolling

Original loop : Transformed loop:
for i in xrange(n): m = n-(n % unroll)
Z = i*7 + i*2 # unrolled loop body
for i in xrange(0,m-1,unroll):
Z =17 +1*2

The iteration range
may not be a
multiplication of the
unroll parameter.

7 = (i+1)*7 + (i+1)*2

loop tail
for i in xrange(m,n, 1):

T | B Z=17+12

last iterations.

Complete Unrolling of Lists

e Using iterators is the 'native’ way to iterate over
data in Python.

e We have implemented two variants of unrolled
iterations.

e The first unroll pass is for lists of known size and
content. For example:

for x in [1,2,3,4]: print 1
print[x | » drint 2
orint 3

orint 4

Unrolling Iterators of Unknown Size
f(bar):
f(bar): sum = 0
sum = 0 it = bar.__iter__()
for p in bar: t%hﬂe N
>Um +=p » D1 =(1'2c.next() -
p2 = it.next() ; i
VR
1

p3 = it.next

p4 = it.next() ;

sum += p1+p2+p3+p

Except Stoplteration:

handle tail if needed
based on value of i

ifi>1:...

ifi>2:...

1
2
3
4
4

Inlining of Functions

e Python function calls are time-consuming in
comparison to other compiled languages.

e Inlining is a transformation where a call to a
function or a method is replaced by its body, and
the called arguments are inserted into the body of
the loop.

e Each return call in the original inlined function is
translated into a 'store’ and ‘jump to end’ set of
opcodes.

Inlining example

f(x): new_g():
v=5 sum =0
if (x==9): for i in xrange(n):
return x + v Sinline_x = 7+i
return x*3 Slocal_v =5

if (Sinline_x==9):

g(): » _inline_return=x+Slocal_v
sum =0 *goto END_TAG
for i in xrange(n): *_mlme_return = X*3
sum += f(7+i) goto END_TAG
return sum END_TAG:

sum += _inline_return
return sum

Inlining and Unrolling may assist
oneanother

e These transformations help to reduce the ‘type
uncertainty'.

e Inlined functions have access to type information
from the calling function. Parameters may become
constants.

e Complete unrolling of constant lists gives concrete
knowledge of type.

Example

func_2(): func_2():
t=123 t=123
for func in [F1,F2,F3]: F1(t)
func(t) » gg;
func_9(L):
sum =0
foriin L:
sum += L » 1+2+3+4

func_9([1,2,3,4])

User-Guided Optimizations

e Some of the possible optimizations are not type-
safe.

e We allow the user to specify which methods should
be optimized by Python 'decorators’ which are
source code annotations.

e This method can be further extended to indicate
other safety features.

@NumericCode
func(x, y):
return x*2 + y*2

Bytecode Optimizations

Basic Block Optimization CFG Optimizations
e Value propagation e Loop Unrolling:

e Constant propagation o Complete unroll
e Common sub-expression o lterator unroll
elimination o Range unroll
e Loop invariant o Random access
e Strength reduction transformation

e Memory optimizations e Method Inlining

o Load elimination
o Store elimination
e Global variable cache

Benckmarks

e The proposed optimizations were tested using

several benchmarks: Pystone, Pybench, Crypto, PyPy
and several micro tests.

e Results show significant improvement.

Pybench

M Before B After

pkups.NormallnstanceAttr
kups.SpeciallnstanceAttr
kups.NormalClassAttr
D ns.SpecialClassAttr
~Lists.SmallLists
sts.SimpleListManipul

s.CompareLongs
hers.CompareFloatsint
bers Compar?FIoats
Ngs.CreatestringsWithCon [e=====—-=
ings.ComparelnternedStr e ———

P o e —
Arith.SimplelntFloatArith EEE==——————————
g R —]
0 1 2 3 4 5 16

Time(sec) Pystone PypyMD5 RSAMDS Pypy.SHA Crpt.Rijnd

Impraoverment %

Thank you. Questions ?

Backup Slides

