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Abstract

A timestamping scheme is non-interactive if a stamper can stamp a document without communicating
with any other player. The only communication done is at validation time. Non-Interactive timestamping
has many advantages, such as information theoretic privacy and enhanced robustness. Non-Interactive
timestamping, however, is not possible against polynomial time adversaries that have unbounded storage
at their disposal. As a result, no non-interactive timestamping schemes were constructed up to date.

In this paper we show non-interactive timestamping is possible in the bounded storage model. I.e., if
the adversary has bounded storage, and a long random string is broadcast to all players. To the best of our
knowledge, this is the first example of a cryptographic task that is possible in the bounded storage model,
but is impossible in the “standard cryptographic setting”, even when assuming “standard” cryptographic
assumptions.

We give an explicit construction that is secure against all bounded storage adversaries, and a signifi-
cantly more efficient construction secure against all bounded storage adversaries that run in polynomial
time.

Keywords: Timestamping, Bounded Storage model, Unbalanced Expander Graphs, Randomness Extrac-
tors.

1 Introduction

The date on which a document was created is often a significant issue. Patents, contracts, wills and countless
other legal documents critically depend on the date they were signed, drafted, etc. A timestamp for a
document provides convincing proof that it existed at a certain time. For physical documents, many methods
are known and widely used for timestamping: publication, witnessed signing and placing copies in escrow
are among the most common. Techniques for timestamping digital documents, which are increasingly being
used to replace their physical counterparts, have also become necessary.

Loosely speaking, a timestamping scheme consists of two mechanisms: A stamping mechanism which
allows a user to stamp a document at some specific time t, and a verification mechanism which allows a
recipient to verify at a later time t′ > t that the document was indeed stamped at time t.

1.1 Previous Work

Digital timestamping systems were first introduced by Haber and Stornetta [18], where three timestamping
systems are described. In the näıve timestamping protocol, the stamper sends the document to all the verifiers
during timestamp generation. In the linking scheme, the stamper sends a one-way hash of the document to
a trusted timestamping server. The server holds a current hash, which it updates by hashing it with the
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value sent by the stamper. This links the document to the previous documents and to the succeeding ones.
In the distributed trust scheme, the document is used to select a subset of verifiers, to which the stamper
sends a hash of the document. Bayer, Haber and Stornetta [3] improve upon the linking scheme, reducing
the communication and storage requirements of the system and increasing its robustness, by replacing the
linear list with a tree. Further work [19, 7, 6, 8, 5, 4] is mainly focused on additional improvements in terms
of storage, robustness and reducing the trust required in the timestamping server(s).

One common feature of all the above protocols is that they require the stamper to send messages to a
central authority (or a distributed set of servers) at timestamp generation.

1.2 Non-interactive Timestamping

We call a timestamping scheme non-interactive if it does not require the stamper to send messages at times-
tamp generation. Non-interactive timestamping schemes, if they exist, have a number of obvious advantages
over interactive schemes. However, the notion of non-interactive timestamping seems self-contradictory. How
can we prevent an adversary from faking timestamps, if no action is taken at timestamp generation? More
precisely, suppose that an adversary “learns” some document at time t′ > t and wants to convince a verifier
that he stamped the document at time t. He can simulate the behavior of an “honest stamper” who signs
the document at time t and generates a timestamp for the document. Note that the “honest stamper” does
not need to send any messages before time t′ and therefore the adversary will be able to convince a verifier
that the document was stamped at time t.

We can think of the adversary as an honest stamper who was corrupted at some later time. Therefore
it is clear that giving the honest stamper secret information and/or allowing “standard” cryptographic
assumptions (that some function is infeasible to compute) will not help: anything the honest stamper can
do, the adversary must be able to do as well. Even allowing the verifier to send messages to the stamper
(but not vice versa) does not invalidate the simulation argument, since the adversary has access to anything
the honest stamper received in the past.

A crucial point in the argument above is that in order to perform this simulation the adversary must store
all the information available to the “honest stamper” at time t. We show that non-interactive timestamping
is possible in a scenario in which parties have bounded storage.

1.3 The Bounded Storage Model

In contrast to the usual approach in modern Cryptography, Maurer’s bounded storage model [22] bounds the
storage (memory size) of dishonest players rather than their running time.

In a typical protocol in the bounded storage model a long random string r of length R is initially broadcast
and the interaction between the polynomial-time participants is conducted based on storing small portions
of r. The security of such protocols should be guaranteed even against dishonest parties which have a lot
of storage (much more than the honest parties) as long as they cannot store the whole string. Most of the
previous work on the bounded storage model concentrated on private key encryption [22, 10, 2, 1, 14, 15,
21, 34], Key Agreement [10] and Oblivious Transfer [9, 12, 13]. In contrast to the tasks above, the notion of
non-interactive timestamping cannot be implemented in the “standard cryptographic setting”. To the best
of our knowledge this is the first example of a protocol in the bounded storage model which achieves a task
that is impossible in the “standard cryptographic setting”.

1.4 Non-interactive Timestamping in the Bounded Storage Model

We now explain our setting for non-interactive timestamping in the bounded storage model. We assume
that there are ` rounds and at every round 1 ≤ t ≤ `, a long random string r of length R is transmitted.1

1One can imagine that random bits are transmitted at high rate continuously by a trusted party, and that the string r
consists of the bits transmitted between time t and time t + 1.
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The Stamping Mechanism: To stamp a document doc at time t, the scheme specifies a function
Stamp(doc, r) whose output is short. To stamp the document doc, the stamper stores Stamp(doc, r). Intu-
itively, an adversary (who does not know doc at time t) is not able to store the relevant information and
therefore is unable to stamp doc.

The Verification Mechanism: The verifier stores a short “sketch” of r (denoted by Sketch(r)) for every
time t. At a later time the stamper can send the timestamp Stamp(doc, r) and the verifier checks whether
this timestamp is “consistent” with his sketch.

Efficiency of a Timestamping Scheme: We say that a timestamping scheme is (T, V )-efficient if the
stamper’s algorithm runs online (that is, in one pass) using space T and polynomial time and the verifier’s
algorithm runs online using space V and polynomial time. We want T and V to be small as functions of R.

1.5 Our Notion of Security

Loosely speaking, we want to ensure that even an adversary with a lot of storage (say storage M = δR for
some constant δ < 1) cannot forge a timestamp. Note, however, that a stamper with storage M > T can
easily stamp k = M/T documents by running the stamping mechanism on some k documents and storing
the generated timestamps (each of which has length at most T ). We will therefore say that a scheme is
secure if no adversary with space M can successfully stamp significantly more than M/T documents. More
precisely, security is defined with respect to a parameter M∗

max which bounds the storage of the most powerful
adversary. The scheme is α-optimal (for a parameter α > 1) if for every M ≤ Mmax, no adversary with
space M can successfully stamp more than αM

T documents. (The precise definitions appear in Section 3).
Notice that the definition above requires α–optimality for every M ≤ Mmax. Requiring α–optimality

for Mmax only, would have allowed adversaries with M ¿ Mmax to produce Mmax

T stamped documents,
contradicting the definition’s spirit. The definition in its current form assures us that any adversary, weak
or strong, with at most Mmax memory, can honestly stamp the same number of documents if given slightly
more resources (storage αM instead of M).

Usefulness of our notion of security Let us illustrate the usefulness of this notion by an example.
Suppose that there is a random variable V that is uniformly distributed over a large set. Furthermore,
suppose that the value of this variable is known only to some parties at time t and is revealed to everybody
at time t′ > t. (This is a formal way of saying that some parties do not know the value of V at time
t). Note that parties that do know the value v of the variable V at time t can timestamp the document
doc = “The value is v”. Such a timestamp indeed convinces a verifier that this party knew the value v at
time t. This is because a stamper who did not know the value of V at time t will be caught cheating.
Specifically, our definition of security says that there exists a set (that is defined in time t) of at most αM

T
of documents which the stamper can successfully stamp. Note that the random variable V is uniformly
distributed from the point of view of the stamper at time t. Therefore, the probability that a document
containing the correct value of V appears in any of the αM

T documents that the adversary can successfully
stamp is very small and it follows that no matter how the stamper acts with high probability he will not be
able to convince the verifier at time t′ that he stamped the document at time t.

We remark that this argument applies if V is not uniformly distributed, but rather “unpredictable” in
the sense that it has high min-entropy.

1.6 Our Results

In this paper we give two explicit constructions of non-interactive timestamping schemes in the bounded
storage model. The first is secure in an information-theoretic sense (in the spirit of previous constructions
in the bounded storage model). It requires no unproven assumptions and is secure against any adversary
with arbitrary computational power as long as its storage capability is bounded. We now state this result
(precise definitions appear in Section 3 and the Theorem is restated in Theorem 4.2 with some more precise
notation).
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Theorem 1.1. For every η > 0 and large enough R there exists a timestamping scheme that is (T =
O(R1/2+η), V = O(R1/2+η))-efficient and O(1)-optimal. More precisely, every adversary with space M∗ ≤
M∗

max = Ω(R) has probability at most 2−RΩ(1)
to successfully stamp more than O(M∗/T ) documents. The

timestamping scheme allows stamping documents of length RΩ(1).

Our second system is more efficient. To achieve this efficiency it relies on cryptographic assumptions and
is therefore secure only against adversaries that, in addition to being storage bounded, are required to run
in polynomial time. (This Theorem is restated with more precise notation in Theorem 5.2).

Theorem 1.2. Assume that there exist “strong collision resistant hash functions”. Then there exists a
timestamping scheme that is (T = 2(log log R)O(1)

, V = 2(log log R)O(1)
)-efficient and O(log R)-optimal. More

precisely, every adversary with space M∗ ≤ M∗
max = Ω(R) and running time polynomial in R has negligible

probability to successfully stamp more than O(log R ·M∗/T ) documents. The timestamping scheme allows
stamping documents of length R.

We remark that our technique can potentially reduce T and V to logO(1) R. This improvement requires
an explicit construction of certain “expander graphs” that is not known today. More details appear in
Section 5.

Non-malleable timestamping The notion of security defined above makes sense in certain applications.
However, this notion does not take into account that a dishonest stamper may see some correct timestamps
of related documents before he attempts to timestamp his document. Note that seeing correct timestamps
may indeed give the dishonest stamper additional information on the random string which he did not know
at time t.

In Section 6 we present stronger security definitions that address this more complicated setup. The high
level idea is that we consider a stronger adversary which first views the random string and stores some
information about it, then before attempting to timestamp his own document, the adversary is allowed to
request to see correct timestamps of few “hint documents” doc1, . . . , docw that he may choose in any way
that he want as a function of his own document. We require that even such an adversary cannot successfully
stamp more than αM∗

T documents.
Our definition allows the adversary to choose the hint documents as a function of his own document.

(This guarantees that even seeing correct timestamps of related documents does not help the adversary).
Furthermore, note that when we require that the adversary can successfully stamp few documents we allow
him to choose different hint documents for different documents that he attempts to stamp.

We show that our information theoretic scheme is secure even with this more general security definition.
However, to implement our scheme in this setup we need explicit constructions of expander graphs with
certain parameters that are currently not known. Therefore, this result does not give an explicit solution.

1.7 Overview of the “Information-Theoretic” Construction

We now give a high level overview of our two constructions. The setup is the following: A string r of length
R is transmitted and the stamper wants to convince a verifier that he “knew” a document prior to the
transmission of this string.

Using the Document to Select Indices: We implement the function Stamp(doc, r) as follows: Each
document doc specifies some D indices that the stamper will remember from the long string. For that we use
a bipartite graph where the left-hand vertices are all possible documents, the right-hand vertices are indices
1 ≤ i ≤ R and every left vertex has D neighbors. The indices selected by a document doc are the neighbors
of doc. We want to force a stamper who would like to stamp k documents to store many indices. Intuitively,
this is equivalent to the requirement that every k documents on the left have many different neighbors. This
naturally leads to using an expander graph. (A bipartite graph is a (K, c)-expander if every k ≤ K vertices
on the left have at least kc neighbors on the right.)2

2We stress that we need to use unbalanced graphs (graphs which have many more vertices on the left than on the right-hand
side). Such graphs were constructed in [32, 31, 17]. However, we need graphs with somewhat different parameters. We explain
how to derive such graphs from previous work in Section 7.
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To stamp a document doc, the stamper stores the content of the long string at the indices specified by
doc. We use graphs with expansion c ≈ D which implies that to correctly stamp k documents simultaneously
an honest stamper must store roughly kD bits.

Using Random Sets for Verification: The function Sketch(r) is implemented as follows. The verifier
chooses a random subset of size |H| ≈ R/D from the indices of r and stores the content of r at these indices.
After the transmission of the random string r, a stamper may send a timestamp of a document doc (that
consists of the content of r at the D indices defined by doc). By the birthday problem, with high probability
(over the choice of the verifier’s random set) some of these indices were also stored by the verifier. The
verifier checks that the content sent by the stamper is consistent with what he stored.

For a fixed string r and document doc, we say that a timestamp is “incorrect” if it differs from the
“correct” timestamp of doc in many indices. The verification process we described guarantees that, with
high probability, the verifier will reject an “incorrect” timestamp.

A Sketch of the Security Proof: The basic intuition for the security proof is the following: Suppose that
an adversary is able to successfully stamp some k documents. This means that he correctly stamped these
k documents (as otherwise he is caught by the verifier). However, correctly stamping k documents requires
storing kD indices, therefore if the storage of the adversary is kD ≤ M < (k+1)D he can successfully stamp
at most k documents. This is the best we can hope for (by our notion of security) as he could have stamped
k documents by simply running the “stamping mechanism” on any k documents.

We remark that the actual argument given in Section 4 is more complex. This is because we allow
the adversary to choose the k documents on which he wants to convince the verifier as a function of the
random string r. This complicates the proof. To prove the security of our scheme we use a “reconstruction
argument” and show that any adversary that breaks the security guarantee can be used to compress the
string r into a shorter string in a way that does not lose a lot of information. As the string r is random, we
get a contradiction. The details are given in Section 4.

1.8 Overview of the “Computationally-Secure” Construction

In the previous construction we chose |H| ≈ R/D so that a random subset of size |H| in [R] would intersect
a subset of size D. We chose |H| = D ≈ √

R, allowing both the honest stamper and the verifier to store
only

√
R bits. We now show how to increase the efficiency and reduce the storage of honest parties to only

2(log log R)O(1)
bits.

We use the same index selection mechanism as before. However, this time we choose D = 2(log log R)O(1)

(this precise choice of parameters corresponds to certain expander graphs). The verifier stores a short “hash”
of the string r. When stamping a document the stamper also supplies a short “proof” that the indices he
sent are consistent with the hashed value held by the verifier. We implement such a hashing scheme using
Merkle trees [23]. We show that if collision resistant hash functions exist then a polynomial time adversary
with bounded storage cannot produce an incorrect timestamp of a document. More precisely, we show that
after the transmission of the random string r, no polynomial time adversary can generate many documents
and stamp them correctly.

Hashing Documents Before Stamping Them: A bottleneck of our scheme is that when using ex-
panders of degree D we can only handle documents of length D.3 However, in a computational setting (as
we have already assumed the existence of collision resistant hash functions) we can stamp longer documents
by first hashing them to shorter strings and then stamping them.

3This is because in unbalanced expander graphs, the degree must be logarithmic in the number of left-hand vertices. Thus,
shooting for degree D we can at most get that the left-hand set (which is the set of documents) is of size 2D.
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2 Preliminaries

2.1 Notation

The following conventions will be used throughout the paper.

Random String We refer to the random string as r, its length is denoted by R, and we think of it as
composed of N blocks of length n denoted r1, . . . , rN . For any subset S ⊆ [N ], the expression r|S will be
taken to mean the string generated by concatenating the blocks ri for all i ∈ S.

Hamming Distance The Hamming Distance between two strings r1 and r2 is the number of blocks on
which the two strings differ (rather than the number of bits).

Online Space We will be interested in procedures that have small memory and read an enormous stream
of bits. We say a function f can be computed online with space s if there is an algorithm using space at
most s which reads its input bits one by one and computes f in one pass.

2.2 Unbalanced Expander Graphs

A graph is expanding if every sufficiently small set has a lot of neighbors. Our timestamping scheme relies
on unbalanced expanders.

Definition 2.1 (unbalanced expander graphs). A bipartite graph G = (V1, V2, E) is (Kmax, c)-expanding
if, for any set S ⊂ V1 of cardinality at most Kmax, the set of its neighbors Γ(S) ⊆ V2 is of size at least c|S|.

Note that we do not require that |V1| = |V2|. In fact, in our timestamping scheme we will use graphs
in which |V1| À |V2|. In this paper we need unbalanced expanders with very specific requirements. Loosely
speaking we want a (Kmax, Ω(D))-expanding graph with as small as possible degree D and right-hand
side of size roughly KmaxD. Such graphs are closely related to lossless condensers. In a beautiful work
([17], Theorem 1.1), Guruswami, Umans and Vadhan show how to construct such graphs with small degree
D = polylog(|V1|/ε), and relatively small right hand size, being roughly K1+α

maxD2 for a small constant α.
However, we would like the right hand side to be even smaller, of order KmaxD. Our penalty is that we
have a much larger degree. We prove:

Theorem 2.2. There exists a fixed constant β > 0 such that for every Kmax ≤ |V1|, there exists a bipartite
graph G = (V1, V2, E) with left degree D that is (Kmax, c = βD)-expanding with D = 2O(log log |V1|+(log log Kmax)3),
and |V2| = 4βKmaxD. Furthermore, this graph is explicit in the sense that given a vertex v ∈ V1 and an
integer 1 ≤ i ≤ D one can compute the i’th neighbor of v in time polynomial in log |V1|+ log D.

We give the proof of Theorem 2.2 in Section 7.

2.3 Collision Resistant Hash Functions And Merkle Hash Trees

We need the notion of collision resistant hash functions which is implied by standard assumptions on the
hardness of factoring integers (see [11, 16]). We sometimes need functions that are secure against adversaries
that run in super-polynomial time (see e.g. [20]) and therefore we use a parameter for the running time of
the adversary:

Definition 2.3 (collision resistant hash functions). A family of functions
H : {0, 1}2n → {0, 1}n is said to be (εH(n), µ(n))-collision resistant if, there is a polynomial time algo-
rithm that, given the description of h ∈ H and an input x ∈ {0, 1}2n, outputs h(x). Furthermore, given
a random function h ∈ H, no algorithm with running time bounded by µ(n) can find x 6= y such that
h(x) = h(y) with probability greater than εH(n) where the probability is over the choice of h and the random
coins of the algorithm and n is large enough.
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We use Merkle hash trees [23]. We give a detailed definition so that we can later use the notation in our
construction.

Definition 2.4 (Merkle hash tree). Let H : {0, 1}2n → {0, 1}n be a (εH(n), µ(n))-collision resistant family
of hash functions and (r1, . . . , rN ) ∈ {0, 1}n × · · · × {0, 1}n a vector of binary strings (assume N is a power
of 2). Fix a key h ∈ H. The Merkle tree with key h of r1, . . . , rN , denoted Treeh (r1, . . . , rN ), is a binary
tree with N leaves, where each vertex is labelled in the following way:

• The ith leaf is labelled with ri.

• An internal vertex v with left child labelled by c1 and right child labelled by c2 is labelled with h(c1, c2).

Rooth(r1, . . . , rN ) denotes the label of the root vertex.
A Merkle path from a leaf ri is an ordered collection of all the nodes on the path from ri to the root of

Treeh (r1, . . . , rN ), along with their siblings in the tree. Let Pathh
i (r1, . . . , rN ) denote the labelled Merkle-

path from ri where each node is labelled by the labeling of the Merkle hash tree. That is a labelled Merkle
path from a string ri is consists of a path in the tree and collection of strings c1, . . . , ct that can syntactically
be interpreted as a Merkle path for some labelling that has the relevant leaf labelled with ri.

A labelled Merkle path P from a leaf ri is valid if P labels the root with
Rooth(r1, . . . , rN ), and for every node v in the path from ri to the root, P labels v by h(c1, c2) where the
c1, c2 are the labels P assigns to the children of v. (Note that the children of v appear in P ). A labelled
Merkle path P from a leaf ri is correct for a tree Treeh (r1, . . . , rN ) if its label for ri is identical with the
label of ri in the tree.

Clearly, every description of the form Pathh
i (r1, . . . , rN ) is both valid and correct for Treeh(r1, . . . , rN ).

The usefulness of Merkle hash trees stems from the fact that it is infeasible to find an incorrect valid path.

Definition 2.5. A Merkle tree construction is (εH(N, n), µ(N,n))-secure if, for any adversary with running
time bounded by µ(N, n), the probability that it can output a set of leaves (r1, . . . , rN ), an index i ≤ N and a
valid path from ri that is incorrect for Treeh (r1, . . . , rN ) is less than εH(N, n) (where the probability is over
the choice of h and the random coins of the algorithm).

The following standard Lemma observes that collision-resistant hash functions are sufficient to build
Merkle Trees (we sometimes set N to be super-polynomial in n, and this is why we need very strong collision
resistant hash functions):

Lemma 2.6. [23] Let H : {0, 1}2n → {0, 1}n be a (εH(n), µ(n))-collision resistant family of hash functions.
Then the Merkle tree construction based on H is

(
εH(n), µ(n)−NnO(1)

)
-secure.

Informally, this is because if we can find two valid but differently labelled paths to the root from the
same leaf in the tree, we have found a collision in the hash function. Given an adversary that can find a
set of leaves and an incorrect but valid path from one of them to the root, we can find a second valid path
by computing the correct path to the root for the same set of leaves (computing this second path can take
O(NnO(1)) time, since we may have to compute the hash function for each node of the tree).

Merkle Trees and storage: We now note that certain tasks related with Merkle trees can be done with
small storage. To check whether a given path is valid requires a verifier to store h and Rooth(r1, . . . , rN ),
but not the rest of the tree. To prove that ri is a leaf in Treeh(r1, . . . , rN ), the prover needs to store only
Pathh

i (r1, . . . , rN ), which is logarithmic in N .
We furthermore note that Merkle paths (and in particular the root of the Merkle tree) can be computed

online with small storage when given sequential one-way access to r1, . . . , rN . More precisely, assuming that
the computation of the hash function can be done for free it is possible to compute Merkle-paths online with
space O(n log N). This is done by computing the paths sequentially and keeping in memory only the roots
of the subtrees whose leaves have been seen so far (i.e. after we are given r1 and r2, we can compute h(r1, r2)
and forget the values of r1 and r2; in the same way after we have seen r1, . . . , r2k we can remember only the
label of the common ancestor for these leaves, forgetting all the nodes in the subtree).
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3 One Round Timestamping: The Model

In this section we formally define our model for timestamping in the bounded storage model. In order to
simplify the presentation we assume that there are only two time frames. Our model and constructions can
be easily adapted to the case of multiple time frames (see Remark 3.5).

We now explain the formal model. A long random string r of length R is transmitted. The verifier takes
a short sketch Sketch(r) of the random string and remembers it. An honest stamper, who wants to stamp a
document doc ∈ DOC, calculates y = Stamp(doc, r). When, at a later stage, the stamper wants to prove he
knew the document doc at stamping time, he sends y to the verifier who computes Verify(Sketch(r), doc, y)
and decides whether to accept or reject. More formally,

Definition 3.1 (Non-Interactive timestamping scheme). A non-interactive timestamping scheme consists
of three functions:

• A stamping function Stamp(doc, r).

• A sketch function Sketch(r) (we allow Sketch to be a probabilistic function).

• A verification function Verify(Sketch(r), doc, y).

We require that for every string r and document doc, the function Verify(Sketch(r), doc, Stamp(doc, r))
accepts.

We define efficiency:

Definition 3.2 (Efficiency). A non-interactive timestamping scheme is (T, V )-efficient if Stamp can be
computed online in space T = T (R) and time polynomial in R, and Sketch can be computed online in space
V = V (R) and time polynomial in R.

An honest stamper with space M can easily stamp M/T documents by running the function Stamp in
parallel. We require that no adversary with memory M∗ can successfully stamp significantly more than
M∗/T documents. We first define our model for adversaries:

Definition 3.3 (Adversary). An adversary consists of two functions: Store∗(r), which produces a “short”
string b, and Stamp∗(doc, b) which, given a document doc and b, attempts to produce a timestamp for doc.
The space M∗ of an adversary is the maximal length of Store∗(r).4 An adversary γ-successfully stamps a
document doc at (some fixed) r if

Pr[Verify(Sketch(r), doc, Stamp∗(doc, Store∗(r))) = Accept] ≥ γ

where this probability is over the coin tosses of Sketch and the internal random coins of the adversary.
Note that when the adversary is not computationally bounded, we can assume w.l.o.g. that the adversary is
deterministic (does not use random coins).

We denote the set of documents that an adversary A γ-successfully stamps for a given string r by
Successful(A,γ)(r).

We define security as:

Definition 3.4 (Security). We say that a (T, V )-efficient timestamping scheme is α-optimal (for ρ > 0,
α ≥ 1, γ > 0 and M∗

max < R) if for every M∗ ≤ M∗
max and every adversary A with space M∗,

Pr
r

[
|Successful(A,γ)(r)| > α

M∗

T

]
≤ ρ

Definition 3.4 is very strong. It guarantees that whenever the sketch size is small, no matter how powerful
the adversary is, the number of documents the adversary can successfully stamp is very small. Moreover,
any strategy the adversary chooses for his Store∗ function can be replaced with a legitimate strategy that
uses roughly the same storage and successfully stamps the same number of documents.

We now discuss some more issues that come up in the security definition.
4Note that we do not require Store∗ to run online in space M∗. Instead, we only restrict the output length of Store∗.

Furthermore, note that we place no restrictions on Store∗ and in particular do not assume that it is feasibly computable.
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Remark 3.5 (Multiple time frames). The definition stated above has only two time frames: “before” and
“after” the random string was transmitted. It can be easily extended to the case of multiple time frames
assuming a random string is transmitted at any time frame.

Remark 3.6 (What does doc depend on?). One thing that is hard to model is how the adversary gets hold
of the document doc that it attempts to stamp. We stress that in the definition above the adversary is allowed
to choose doc as a function of the random string r. (This can be seen from the fact that the set Successful
is allowed to depend on r). We remark that the security proofs of the next sections could be significantly
simplified if this was not the case. The reason we insist on the stronger notion of security is that it would
have been bad if for many random strings r the adversary had many documents that he would be able to
successfully stamp.

Remark 3.7. Another issue is that the adversary may later on receive additional information about the
random string r, beyond the value of Store∗(r). This is because the adversary may see correct timestamps
of some other documents. We find the following example helpful. Suppose Alice correctly stamped a patent
saying that she is the inventor. When revealing the timestamp it is undesirable that a cheating party Eve can
now use this information to produce a timestamp of the same document but for replacing the name “Alice”
by “Eve”. In Section 6, we suggest a stronger notion of security that attempts to handle such situations.

3.1 Security Against Time Bounded Adversaries

The definition used above does not bound the computational power of the adversary in any way. The only
assumption we made is on the storage capacities of the adversary (which is reflected in the output length of
Store∗). We now consider adversaries which are also time bounded.

Definition 3.8 (Time bounded adversary). We say that an adversary runs in time t if the functions
Store∗, Stamp∗ associated with it are randomized machines running in time t.

We now want to define timestamps that are secure against time bounded adversaries. Recall that an
unbounded adversary is considered successful if there exist many documents for which he can convince the
verifier. When the adversary is time-bounded, it is possible that Definition 3.4 does not hold, yet the system
is still secure because it is infeasible to find the documents he can illegally stamp.

This leads us to a weaker notion of security. In this setup an adversary is considered successful it is
possible to feasibly generate many documents on which the adversary can convince the verifier.

This is captured by requiring that there exists a probabilistic polynomial time machine Generate∗c which,
on input r and an integer k, outputs k documents (which, intuitively, are the documents the adversary thinks
he can succeed on). The formal definition follows:

Definition 3.9 (Security against feasibly generated documents). We say that a (T, V )-efficient timestamping
scheme is α-optimal (for ρ > 0, α ≥ 1, γ > 0 and M∗

max < R) against feasibly generated documents, if for
every M∗ ≤ M∗

max, every adversary A with space M∗, and every machine Generate∗c(r, k) that runs in time
polynomial in the length of r:

Pr
[
A γ-successfully stamps at r the documents Generate∗c(r, α

M∗
T )

]
≤ ρ

where the probability is over the choice of r and the random coins of Generate∗c and A.

Note that in the definition above we don’t explicitly require that the adversary is time bounded, however
we will use it mainly for time bounded adversaries. Furthermore, note that there are no storage bounds on
Generate∗c .

4 A Scheme with Information-Theoretic Security

In this section we describe a timestamping scheme which is information theoretically secure against arbitrary
adversaries with small storage.
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4.1 The Stamping Scheme

Let R, N and n be integers such that R = N · n. Given a string r ∈ {0, 1}R, we partition it into N blocks
of n bits. We use ri to denote the i’th block of r. Let DOC denote the set of all documents which can be
stamped. Let G be a (Kmax, βD) bipartite expander (V1, V2, E) with left degree D, where the “left” set V1

is DOC and the “right” set V2 is [N ]. We define the three procedures Sketch, Stamp and Verify:

• Stamp(doc, r) = r|Γ(doc). (Recall that Γ(S) is the set of neighbors of S).

• Sketch(r) = H, r|H where H is a multi-set that has |H| elements selected at random (with repetiton)
from [N ]. (Note that Sketch is probabilistic and relies on internal random coins of the verifier that are
used to choose H).

• Verify(Sketch(r), doc, y) =

{
Accept Sketch(r)|H∩Γ(doc) = y|H∩Γ(doc)

Reject otherwise
. In words, the adversary com-

pares the content of r in the indices he stored to the indices sent by the stamper and accepts if the
two strings are consistent.

Notice that Sketch(r) contains the restriction of r to the indices of H, and therefore in particular contains
the restriction of r to the indices of H ∩ Γ(doc), and y contains the restriction of r to Γ(doc) and therefore
in particular contains the restriction of r to the indices of H ∩ Γ(doc).

To assist the reader we include a reference of all the parameters in Table 1. The following Theorem states
requirements on the parameters with which the system is secure. It is immediately followed by a corollary
in which we plug in specific parameters.

Theorem 4.1. Let G be a (Kmax, βD)-expanding graph with left degree D and let γ > 0. If n ≥ max( 5
β , log N)

and log |DOC| ≤ βDn/5 and D|H| ≥ 5N
β ln( 1

γ ) then the scheme is (T = Dn, V = 2|H|n)-efficient and α-
optimal for α = 5

β , ρ = 2−βnD/5 and M∗
max = βDnKmax/5.

Plugging in parameters, a corollary of this is the following restatement of Theorem 1.1.

Theorem 4.2. For every η > 0 and large enough R we construct a timestamping scheme which is (T =
R1/2+η, V = R1/2+η)-efficient and O(1)-optimal with ρ = 2−RΩ(1)

, γ = 2−RΩ(1)
and M∗

max = Ω(R). The
timestamping scheme allows stamping documents of length RΩ(1).

We prove Theorem 4.2 in Subsection 4.6. We now turn to proving Theorem 4.1.

4.2 Efficiency

The verifier first chooses a random set H and stores it, and then stores rH. This can indeed be done online
with space V = 2|H|n). We now explain how the stamper can run online in space T = Dn. Observe that it
can calculate the indices it will need to store before the random string goes by (since it knows doc before it
sees the random string). As the indices take D log N < Dn space, it can work in place, replacing each index
with the contents of the block as it goes by. We now turn to proving security.

4.3 Security

The proof below is somewhat technical and involves many parameters and we therefore start with a high
level outline.

High level outline of the argument: Our goal is to show that no adversary with space M∗ ≤ M∗
max can

successfully stamp more than k = αM∗/T documents. The notion of “successfully stamping” speaks about
whether or not the verifier accepts the timestamp. The first stage is to show that whenever the adversary
“successfully stamps” a document he must provide a string which is close in Hamming distance to the correct
timestamp. In such a case we say that the adversary “correctly stamps” the document. The second stage is
to show that an adversary with bounded storage cannot correctly stamp too many documents.
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Name Description Notes
R length of the random string in bits
N Number of blocks in random string
n Length of each block in random string R = N · n. Typically n is very small while N is large.
M∗ The amount of storage of the adversary M∗ ≤ M∗

max which is a bound on the storage
of the most powerful adversary.

G A bipartite graph over the sets DOC and [N ]
D Left degree of the graph
β The expansion factor of the graph
Kmax The expansion threshold of the graph Sets of size up to Kmax expand by a factor of β.
T Length of timestamp T = D · n
V The amount of storage of the verifier V = |H|(n + log N) where H is a random set

chosen by the verifier.
γ The adversary is considered successful

on a document if the verifier is convinced with
prob > γ (over coin tosses of the verifier)

ρ Threshold on the probability that the
adversary successfully stamps many documents

α The optimality factor An adversary with memory M∗ ≤ M∗
max cannot

successfully stamp more than αM∗/T documents.
g The fraction of errors above which the This is an internal parameter usually set to 1/5.

verifier catches the adversary
k Internal parameter for number of documents Set to αM∗/T in the actual proof.
H A multi-set of randmly chosen indices Chosen by the verifier.

Table 1: Parameters used in the construction

The first stage in our plan is relatively simple. Recall that the set H is chosen by the verifier in a way that
is independent of the adversary’s actions. If the adversary provides a timestamp which is far in Hamming
distance than the correct one, then with high probability (over the verifier’s coins) some of the incorrect
indices will be selected by the verifier and the verifier will not accept the timestamp. The first stage follows.

We now turn our attention to the second phase. Our security definitions allow the adversary to attempt
to stamp different k documents for different strings r. Nevertheless, for the sake of simplicity let us first rule
out an adversary for which there is a set S (that does not depend on r) of k documents such the adversary
can successfully stamp all of them on any choice of r.

By the expansion properties of the graph we have that |Γ(S)| ≥ βDk indices which translate into
βDnk = βTk = βαM∗ bits. Thus, choosing α slightly larger than 1/β one gets that the documents in S
require more storage than is available to the adversary.

In the general case the adversary may choose the set S as a function of r (see Remark 3.6). This technically
complicates the argument for the second phase. What we show is that an adversary that successfully stamps
many documents using short storage can be translated into a “compression scheme” that can compress the
string r into a shorter string and that there is a decompression scheme that decompresses correctly with
high probability. It follows that such adversaries do not exist. The remainder of the section gives the formal
proofs.

We now start implementing the plan described above. Without loss of generality, we assume the adversary
is deterministic (this can be done as the adversary is computationally unbounded). Fix some adversary and
let Rsuccessful(k) = Rγ

successful(k) denote the set of strings r on which the adversary γ-successfully stamps at
least k documents. We would like to prove that Rsuccessful has small probability. We first define a notion of
“correct stamping”:

Definition 4.3. An adversary correctly stamps a document doc at r if Stamp∗(doc, Store∗(r)) = r|Γ(doc).
An adversary correctly stamps a document doc at r with at most err errors, if the Hamming distance between
Stamp∗(doc, Store∗(r)) and r|Γ(doc) is at most err.
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Let g = 1/5 and let Rcorrect(k) = Rerr=gβD
correct (k) denote the set of random strings r for which there are at

least k documents that the adversary correctly stamps with at most err = gβD errors.

The security proof has two parts. We first show that if the adversary successfully stamps many documents
then he correctly stamps many documents. That is, we relate Rcorrect and Rsuccessful.

Lemma 4.4. Assume D|H| ≥ N
gβ ln( 1

γ ). For every k, Rsuccessful(k) ⊆ Rcorrect(k).

The proof of Lemma 4.4 appears in Section 4.4. The next Lemma states that any adversary with small
space cannot correctly stamp many documents.

Lemma 4.5. Assume log |DOC| ≤ gβDn, err = gβD and n ≥ 1
g·β . For every k ≤ Kmax and any adversary

with space M∗ ≤ (1− 4g)kβDn we have Prr[r ∈ Rcorrect(k)] ≤ 2−gβnDk.

The proof of Lemma 4.5 appears in Section 4.5. We now show that the two lemmata give the proof of
Theorem 4.1:

Proof. (of Theorem 4.1) We need to show that no adversary with space M∗ can γ-successfully stamp more
than k = αM∗

Dn documents. Notice that for M∗ ≤ M∗
max it follows that k = αM∗

Dn ≤ αM∗
max

Dn = Kmax and
M∗ = kDn

α = kDn(1 − 4g)β. Hence, Prr[r ∈ Rsuccessful(k)] ≤ Prr[r ∈ Rcorrect(k)] ≤ 2−gβnDk ≤ 2−gβnD

where the first inequality follows by Lemma 4.4 and the second inequality follows by Lemma 4.5. The third
inequality is because k ≥ 1.

4.4 The Proof of Lemma 4.4

Claim 4.6. Fix an adversary, a string r and a document doc. If the adversary γ-successfully stamps doc at
r then it correctly stamps doc at r with at most N

|H| ln( 1
γ ) errors.

Proof. We prove the contrapositive. Suppose for some doc ∈ DOC and r, the timestamp provided by the
adversary for doc has err∗ > err incorrect indices. Denote by BADdoc ⊂ [N ] the set of incorrect indices. The
verifier catches the adversary iff BADdoc∩H 6= ∅, i.e. if one of the incorrect indices is in H (the set of indices
stored by Sketch). For each index in H, the probability that it hits BADdoc is err∗

N , and the probability that

none of them hits BADdoc is (1− err∗
N )|H| ≤ e−

err∗|H|
N . Hence, the adversary γ-successfully stamps doc with

γ ≤ e−
err|H|

N . Turning that around, if the adversary γ-successfully stamps doc, then err ≤ N
|H| ln( 1

γ ).

In particular, for every r and doc for which the stamper is γ successful, err ≤ N
|H| ln( 1

γ ) ≤ gβD. Hence, the
stamper correctly stamps doc at r with at most err = gβD errors. It follows that Rsuccessful(k) ⊆ Rcorrect(k)
as desired.

4.5 The Proof of Lemma 4.5

We first define a compression function Com(r) for r ∈ Rcorrect(k). Let r ∈ Rcorrect(k). Suppose doc1, . . . , dock

are the documents that the adversary correctly stamps at r with at most err errors. Denote Γ = ∪1≤i≤kΓ(doci),
that is the set of all indices which are selected by one of the k documents, and let Γ̄ = [N ] \ Γ denote the
remaining indices. Let BAD(doci) denote the set of indices that appear in the timestamp of doci and whose
content is incorrect. let BAD = ∪1≤i≤kBAD(doci), that is the set of all indices which are bad for at least
one of the k documents. We call an index j ∈ Γ \ BAD useful. We choose Com(r) to be:

Com(r) = (doc1, . . . , dock; Store∗(r); r|Γ̄;BAD; r|BAD)

We define a “decompression” function Dec(a) that gets as input Com(r) and tries to recover r. Let r be
a string from Rcorrect, i.e., a string on which the stamper correctly stamps k-documents with at most err
errors. From doc1, . . . , dock, that appear in Com(r), we recover the set Γ, and from Com(r) we learn which
indices are in the subset BAD ⊂ Γ. Now, for every 1 ≤ j ≤ N we recover rj as follows:

• If j 6∈ Γ then we use the information in r|Γ̄ to find rj .
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• If j ∈ BAD then we use the information in r|BAD to find rj .

• If j ∈ Γ \ BAD then we find an i such that
j ∈ Γ(doci). We run Stamp∗(doci,Store∗(r)) and take rj from its output.

The only case where we do not take the value of rj directly from Com(r) is for j ∈ Γ \ BAD. However,
all such indices j are useful, and therefore we correctly decode them. Therefore, for every r ∈ Rcorrect we
have Dec(Com(r)) = r.

We now analyze the output length of the compression function Com. The documents doc1, . . . , dock

take k log |DOC| bits space. By definition we have that |Store∗(r)| ≤ M∗. We have that G is expanding
and k ≤ Kmax. It follows that |Γ| ≥ βkD and therefore r|Γ̄ ≤ R − βkDn. We represent BAD ⊆ Γ by
a binary vector of length |Γ| ≤ kD which has a “one” for indices in Γ ∩ BAD and a “zero” for indices in
Γ \ BAD. Each of the k documents is correctly stamped at r with at most err errors, and therefore for
every such document doci we have |BADdoci

| ≤ err and |BAD| ≤ k · err. The representation of r|BAD
is therefore bounded by k · err · n. We conclude that the total length of the output of Com is at most
k log |DOC|+ M∗ + R− βkDn + kD + k · err · n. We denote this quantity R−∆.

As every r ∈ Rcorrect has a small description (of length R−∆) we have |Rcorrect| ≤ 2R−∆ and therefore
Pr[r ∈ Rcorrect] ≤ 2−∆. We have required that n ≥ 1/gβ and therefore kD ≤ gβkDn. We also have
err = gβD and by our assumption log |DOC| ≤ gβnD. Altogether, R −∆ ≤ R − βDkn(1− 3g) + M∗. We
get that ∆ ≥ (1− 3g)βDkn−M∗. As M∗ ≤ (1− 4g)βkDn, we get ∆ ≥ gβkDn as desired.

4.6 Proof of Theorem 4.2

We plug into Theorem 4.1 the (Kmax, βD)-expanding graph of Theorem 2.2 to get a concrete result. The
result then follows by choosing the remaining parameters. More precisely, let β > 0 be the constant that is
guaranteed in Theorem 2.2. We are going to set the parameter n to n = log N . Note that for large enough
N , n ≥ 5/β.

Let η > 0 be some constant. We set |H| = D = N1/2+η and γ = 2−Nη

. Thus, D|H| = N1+2η ≥ 5N
β ln( 1

γ ),
where the inequality follows because for large enough N , Nη ≥ log N ≥ 5

β . We use the explicit expander of
Theorem 2.2 where:

• we set Kmax = N
4Dβ ,

• and we let |V1| = |DOC| be the largest integer such that the expander of Theorem 2.2 gives an expander
with degree D.

We first show that we can achieve log |DOC| ≥ DΩ(1). By Theorem 2.2 we have that:

D ≤ 2a[log logDOC+(log log Kmax)3] (1)

for some constant a. Setting log |DOC| = D
1
2a we can get a graph with degree bounded by

√
D ·

2a(log log Kmax)3 ≤ √
D2a(log log N)3 ≤ D as required (where the two last inequalities follow by Kmax ≤ N and

the fact that D ≥ √
N).

We now apply Theorem 4.1. Note that by our choice of parameters log |DOC| ≤ D ≤ 5Dnβ where the
last inequality follows as n ≥ 5

β . We have that the scheme is (T = V = N1/2+ηn)-efficient and α-optimal for
α = 5

β , ρ = 2−βnD/5 ≤ 2−D, and M∗
max = βDnKmax/5 = nN/20 = R/20.

This is very close to what we need to prove in Theorem 4.2 except that T, V = N1/2+ηn and not
(Nn)1/2+η as required. Nevertheless, as n = log N we can meet the required values for T to V by slightly
decreasing the constant η. Theorem 4.2 follows.
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5 An Efficient Scheme Secure Against Polynomial Time Adver-
saries

The scheme suggested in Section 4 requires the honest parties (stamper and verifier) to store many bits,
namely TV > R where T is the stamp size, V the sketch size and R the random string length. In other words,
if the stamp size is small (say T = log R) then the sketch size V is almost all of the random string. Our second
scheme has a very small sketch and stamp size. This is achieved by using the previous stamping scheme
with a small T and using a different verification method that allows the verifier to use much less storage.
This verification method is valid only against computationally bounded adversaries and takes advantage of
the bounded computational capabilities of the cheating party.

5.1 The Stamping Scheme

Let H be a family of collision resistant hash functions and R = log |H|+Nn. We partition a string r ∈ {0, 1}R

into N + 1 blocks, denoted r0, r1, . . . , rN where r0 is of length log |H| and for i > 0, ri is of length n. The
string r0 (which didn’t appear in the previous scheme) serves as a “key” to the hash function. We use the
same “index selection” mechanism as in Section 4; G is a bipartite graph with left degree D, where the left
set is the set DOC and the right set is the set [N ]. We now describe the stamp, sketch and verify procedures:
(We use the subscript “c” to distinguish these functions from the ones given in Section 4)

Sketchc The verifier stores r0 and the root of a Merkle hash tree over r1, . . . , rN with hash function r0.
That is Sketchc(r) = (r0, Rootr0(r1, . . . , rN )). Note that Sketchc is deterministic (unlike the case of
the previous section where Sketch is probabilistic).

Stampc Given a document doc ∈ DOC we define
Stampc(doc, r) =

(
Pathr0

j (r1, . . . , rN )
)
j∈Γ(doc)

. I.e., the stamper uses the function Stamp of the previ-

ous section, and for every j ∈ Γ(doc) adds a “Merkle proof”
(
Pathr0

j (r1, . . . , rN )
)

that he stamped it
correctly.

Verifyc Given a document doc, a “root” a and a stamp y composed of D Merkle-paths p1, . . . , pD, the
function Verifyc(a, doc, y) accepts iff all paths are valid.

Theorem 5.1. There exists a polynomial p(·) such that the following holds: Let H be a (εH(n), µ(n))-collision
resistant hash family which can be computed in space O(Dn log N). Assume the adversary runs in time at
most µ(n)

p(R) . Let G be a (Kmax, βD)-expanding graph. Assume log |DOC| ≤ βDn/5 and n > log N ≥ 5
β . The

scheme is (T = O(Dn log N), V = O(Dn log N))-efficient and O(α · log N)-optimal against feasibly generated
documents for α = 5

β , ρ = 2−βnD/5 + εH and M∗
max = βDnKmax/5.5

Plugging in the expander construction of Theorem 2.2 and collision resistant hash functions we obtain a
scheme with efficiency 2(log log R)O(1)

. This is stated formally in the next theorem. (We remark that Theorem
5.2 is almost a formal restatement of Theorem 1.2. The only difference is that the scheme in Theorem 5.2
only allows to stamp short documents of length 2(log log R)O(1)

rather than documents of length R. We will
deal with this problem separately in Section 5.5).

Theorem 5.2. Let H be a (εH(n), µ(n))-collision resistant hash family with µ(n) = 1
εH(n) = 22(log n)Ω(1)

and
c > 1 be some constant. Assume the adversary has running time polynomial in R. There exists a scheme that
is (T = 2(log log R)O(1)

, V = 2(log log R)O(1)
)-efficient and O(log R)-optimal against feasibly generated documents

for ρ = neg(R) and M∗
max = Ω(R). The scheme allows stamping documents of length 2(log log R)c

.

Here neg(R) is a negligible function of R (a function is negligible in R if for any constant c there exists
some Rc such that ∀R > Rc : neg(R) < R−c). Letting ρ be a negligible function in R is a natural requirement
when dealing with polynomially bounded adversaries: the probability of breaking the scheme by repeating

5Recall that in this scheme the verifier is deterministic. Thus, γ is unimportant, and we therefore omit it in this section. To
be strictly formal all the propositions in this section apply for any γ > 0.
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an action that succeeds with negligible probability remains negligible even after a polynomial number of
repetitions.

We prove Theorem 5.2 in Subsection 5.4. It is possible to get an even more efficient scheme with
T = V = (log R)O(1). However, this result requires a better graph than the one constructed in Theorem 2.2.
It is folklore that such graphs exist by a probabilistic argument. In Subsection 5.6 we survey the parameters
that can be achieved if such graphs are explicitly constructed. In the remainder of the section we prove
Theorem 5.1.

5.2 Efficiency

The efficiency parameters are derived from the fact that it is possible to compute a path of a Merkle tree
online in space O(n log N), when not taking the complexity of the hash function into account. The hash
function can be computed, by our assumption, in space O(Dn log N) and therefore the verifier (who stores
only the root) can run online in space O(n log N)+O(Dn log N) = O(Dn log N). The stamper calculates the
indices it will need before it sees r. It computes the Merkle-paths of these leaves, and stores the labels for
the paths it will need for stamping as it goes along. There are D paths where each is of length O(n log N).
By using additional O(Dn log N) space to compute the hash function, the stamper can run online in space
O(Dn log N). This proves the efficiency of the scheme. We now turn to proving security.

5.3 Security

We follow the outline of the correctness proof of the information-theoretic version of Section 4, except that
now we work with security for generated documents. We show that if the adversary successfully stamps many
documents then he correctly stamps many documents which is impossible by the “reconstruction argument”
of the previous section.

Fix some adversary with memory M∗ and running time to be specified later. We use coins to denote the
concatenation of the random coins used by Store∗c , Stamp∗c and Generate∗c . We define Rcomp

correct(k) to be the set
of pairs (r, coins) such that, for every 1 ≤ i ≤ k, the Merkle paths output by Stamp∗c(Store∗c(r),Generate∗c(r, k)i)
are correct.

We now want to define the computational analogue of Rsuccessful and relate it to Rcomp
correct. We define:

Rcomp
successful(k) = Rcomp,γ=1

successful (k) to be the set of all pairs (r, coins) for which the adversary 1-successfully stamps
the k documents Generate∗c(r, k) (i.e. all the Merkle paths output by Stamp∗c(Store∗c(r), Generate∗c(r, k)i)
are valid). This definition of success corresponds to the notion of security in Definition 3.9. We prove:

Lemma 5.3. There exists a polynomial p(·) such that if the adversary runs in time at most µ(n)
p(R) . Then, for

every k ≤ R
Pr

r,coins
[(r, coins) ∈ Rcomp

successful(k) \ Rcomp
correct(k)] ≤ εH

Proof. Assume not. Then, given a random h we generate a random r by setting r0 = h and choosing
r1, . . . , rN at random and pick coins at random. We run Store∗c(r) (using coins) and compute Generate∗c(r, k)
to get k documents doc1, . . . , dock. We now simulate the adversary’s timestamp on these documents by
running Stamp∗c . In addition we compute the correct timestamps on these documents and we also run the
verifier to check whether the timestamps are accepted.

We know that with probability at least εH we have that there is at least one document on which the
adversary was successful but did not provide the correct timestamp. We can identify this document (as we
have the correct timestamps) and check the merkle paths associated with it. Note that on this document
the adversary has to provide a merkle path that is valid with respect to r1, . . . , rN but is incorrect.

Thus, the procedure we described finds a valid, incorrect path for Treeh(r1, . . . , rN ) with probability
εH . Let us examine the running time of this procedure. There exist some polynomial p(·) such that this
procedure runs in time p(R) times the running time of the adversary. As we assume that the running time
of the adversary is less than µ(n)

p(R) we have that this procedure runs in time bounded by µ(n) contradicting
the security promised by Lemma 2.6.
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Thus, we have that Pr[Rcomp
successful(k)] ≤ Pr[Rcomp

correct(k)]+εH . We want to use Lemma 4.5 from the previous
section to bound the probability of Rcomp

correct(k). A technicality is that this lemma deals with a more general
setup where the definition of Rcorrect also involves an error parameter. For this technical reason we now
introduce a parameter g (that is used in the Lemma) and set it to 1/5. This will allow us to show:

Lemma 5.4. Assume log |DOC| ≤ gβDn, err = gβD and n ≥ 1
g·β . For any adversary with space M∗ ≤

(1− 4g)βkDn and k ≤ Kmax we have Prr,coins[(r, coins) ∈ Rcomp
correct(k)] ≤ 2−gβnDk.

Proof. By an averaging argument there exists some fixed value coins′ of coins, such that

Pr
r

[(r, coins′) ∈ Rcomp
correct(k)] ≥ Pr

r,coins
[(r, coins) ∈ Rcomp

correct(k)]

Let Rcorrect(k) = {r|(r, coins′) ∈ Rcomp
correct(k)}. Note that Rcorrect(k) ⊆ Rerr=0

correct(k) where the latter is the set
defined in Section 4 with zero errors. This follows because the adversary with coins fixed to coins′ outputs
correct paths on k different documents, and every such path contains the correct leaf. Thus, if there exists
an adversary A for which Prr,coins [(r, coins) ∈ Rcomp

correct(k)] > 2−gβnDk, then there exists a deterministic
algorithm A′ (which may be non-uniform), for which Prr[r ∈ Rcorrect(k)] > 2−gβnDk. By Lemma 4.5, for
any adversary with space M∗ ≤ (1− 4g)βkDn and k ≤ Kmax,

Pr
r

[r ∈ Rcorrect(k)] ≤ 2−gβnDk

(In fact the parameters are slightly better because we have err = 0 and therefore BAD is empty). Note
that Lemma 4.5 is true for any adversary – it makes no assumptions about its running time or uniformity –
therefore our use of A′ instead of A is allowed.

Together, Lemmas 5.3 and 5.4 imply that Prr,coins[(r, coins) ∈ Rcomp
successful(k)] ≤ 2−gβnDk + εH . Let

T = cDn log N (where c is the constant hidden in the O(·) notation in the assumption of Theorem 5.1).
Then for k = cα log N M∗

T ≤ α log N
M∗

max

T = Kmax, the probability that an adversary can generate and
stamp more than k documents is less than 2−gβnDk + εH ≤ 2−gβnD + εH = ρ, which proves Theorem 5.1.

5.4 Proof of Theorem 5.2

Let η > 0 be a constant. We use the explicit expander of Theorem 2.2, with left-hand set DOC, right-hand
set of size N , left degree D, and which is (Kmax, βD)-expanding, where we set

• Kmax = N
4βD and

• |V1| = |DOC| = 2D1/2a

, where the constant a > 0 is the constant hidden in the O(·) in Theorem 2.2.

The degree of this graph is

2a[log (D1/2a)+(log log Kmax)3] =
√

D · 2a(log log Kmax)3 ≤
√

D2a(log log N)3 ≤ D

where the inequalities follow by Kmax ≤ N , and by choosing D = 2(log log N)v

where v > 3 is a constant
to be chosen later. We choose n = 2(log log N)2/a′

, where a′ is the constant hidden in the Ω(·) in the condition
on µ in Theorem 5.2. We observe that µ(n) and 1

εH(n) are greater than any polynomial in N and that

N = R
n ≥ √

R. We will make sure that e > 2/a′ so that the space needed to compute the hash function

(which is some fixed polynomial in n = 2(log log N)2/a′
) is less than D = 2(log log N)v

. Thus, the space of the hash
function is bounded by D ≤ Dn log N as required. We meet all the requirements of Theorem 5.1 and conclude
that the scheme is (T, V )-efficient for T = V = O(Dn log N) ≤ 2(log log N)3v ≤ 2(log log R)2v

= 2(log log R)O(1)
.

Furthermore, M∗
max = Ω(KmaxDn) = Ω(Nn) = Ω(R) as required, and the scheme is O(log R)-optimal for

ρ = 2−D = neg(R). The scheme can stamp documents of length βDn/5 ≥ D. By setting v ≥ 2c we have
that D = 2(log log N)v ≥ 2(log log R)c

.
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5.5 Stamping Longer Documents

The timestamping system described in this section has good security parameters but only works if log |DOC| =
2(log log R)a

for a small constant a. This is somewhat small (Recall that honest parties run in time polynomial
in R). However, using the standard technique of collision resistant hashing we can convert any timestamping
system which works for short documents into a system which works for longer documents by first hashing
the documents and then stamping them. When applying this to the scheme of Theorem 5.2 we get a scheme
which allows stamping documents of length R. This requires the same assumption on collision resistant hash
functions which was used to derive Theorem 5.2.

We now explain this transformation more formally. Let Stampc, Sketchc and Verifyc be the stamping
and verification functions for the original scheme, which stamps documents of length log |DOC|. Assume
there exists H : {0, 1}R → {0, 1}n that is an (εH(n), µ(n))-collision resistant hash family. We will use this
hash function with n = log |DOC|.

Given r, we partition it into h, r′, where |h| = log |H| will be used to select a function from H. We define
the new procedures Sketchlong, Stamplong and Verifylong.

• Sketchlong(r) = h, Sketchc(r′)

• Stamplong(doc, r) = Stampc(h(doc), r′).

• Verifylong(Sketchlong(r), doc, y) = Verifyc(Sketch(r′), h(doc), y).

Theorem 5.5. Suppose the original system is a (T, V )-efficient timestamp system that is α-optimal against
feasibly generated documents with parameters ρ and γ for adversaries with running time polynomial in R.
Assume µ(log |DOC|) is larger than any polynomial in R and that Space(H) ≤ T . Then the derived scheme
allows stamping documents of length R. The scheme is also (T, V + log |H|)-efficient and α-optimal against
feasibly generated documents for ρ′ = ρ + εH(log |DOC|) and γ′ = γ when considering polynomial time
adversaries.

Proof. Suppose for a particular r and random coins the adversary can generate and γ-successfully stamp
k = αM∗

T documents in the new system. That is that there is a machine Generate∗c that on input (r, k)
outputs k documents doc1, . . . , dock that the adversary γ-successfully stamps. Consider the set of hashed
documents {h(doc1), . . . , h(dock)}. If this set has k distinct values then this adversary can be used to γ-
successfully stamp αM∗

T documents in the original system. Therefore the probability that this event occurs is
at most ρ (the adversary against the original system runs the new adversary and then hashes each document
it outputs). Otherwise, by the pigeonhole principle there must be i 6= j for which h(doci) = h(docj), thus
we can find a collision for h in time polynomial in R. Therefore the probability that this event occurs is at
most εH(log |DOC|). The total probability of success is thus bounded by ρ + εH(log |DOC|).

Combining Theorem 5.5 with the scheme of Theorem 5.2 allows us to obtain a scheme with essentially
the same properties while stamping longer documents. This is stated formally in the next theorem which is
a formal restatement of Theorem 1.2.

Theorem 5.6. Let H be a (εH(n), µ(n))-collision resistant hash family with µ(n) = 1
εH(n) = 22(log n)Ω(1)

. As-

sume the adversary has running time polynomial in R. There exists a scheme that is (T = 2(log log R)O(1)
, V =

2(log log R)O(1)
)-efficient and O(log R)-optimal against feasibly generated documents for ρ = neg(R) and

M∗
max = Ω(R). The scheme allows stamping documents of length R.

Proof. Let a be the constant hidden in the Ω(·) in the definition of µ. We use the scheme guaranteed in
Theorem 5.2 choosing c = 2/a. (Note that we can indeed implement this scheme as our assumption gives
us a hash function with sufficiently good parameters). This scheme allows stamping documents of length
` = 2(log log R)c

. To apply Theorem 5.5 we need to make sure that µ(`) is larger than any polynomial in R.
Indeed,

µ(`) = 22(log log R)ca

= 22(log log R)2

is larger than any polynomial in R. We also need to check that space used to compute H on documents of
length ` is at most T . We have that T = 2(log log R)a′

for some constant a′ > 0. By increasing this constant
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if necessary we can make sure that T is larger than any polynomial in ` and so as the hash function runs in
polynomial time it must use polynomial space that is smaller than T . It follows that we can apply Theorem
5.5 and obtain a scheme that allows stamping documents of length R. Let us examine the parameters of
the scheme. The only losses over the original scheme is that V is longer by a polynomial in ` which is
2(log log R)O(1)

(that we can afford) and that ρ increased by an additive factor of εH that is negligible in
R.

5.6 A Scheme Using a Non-Explicit Expander Graph

It is folklore that there exist very good non-explicit expanders (in fact, almost every random graph is a good
expander). For completeness, we give the proof for the following lemma:

Lemma 5.7. For any constant 0 < ε < 1, any D > 1
−ε log (1−ε) , N ≤ 2D and M > D there exists a

(Kmax, (1− ε)D) expanding bipartite graph G = (V1, V2, E) , for Kmax = 1

(2e2)
1
ε

M
D left degree D, left-hand

side having |V1| = N vertices and right hand side having |V2| = M vertices.

Proof. We use a probabilistic argument to show that the probability that a random graph with the above
parameters is not an expander is less than 1. Let G = (V1, V2, E), |V1| = N , |V2| = M be a random bipartite
graph with left degree D constructed by choosing independently and uniformly at random D neighbors (not
necessarily distinct) for each vertex v ∈ V1. The resulting graph may not be D regular, however if it is an
expander adding edges will not lower the expansion factor (hence it is enough to show that such a graph is
an expander with the required properties). Note that if G is not (Kmax, (1 − ε)D) expanding, there must
exist a set S ⊂ V1 of size less than Kmax and a set T ⊂ V2 of size at less than |S|(1−ε)D such that Γ(S) ⊆ T .
We will bound the probability that such a pair of sets exists.

For a specific pair of sets S ⊂ V1 and T ⊂ V2, the probability that all of S’s neighbors are in T is(
|T |
M

)|S|D
. By the union bound, the probability that there exists a pair of sets S, T where S is exactly of

size i ≤ Kmax is less than

pi ≤
(

N

i

)(
M

i(1− ε)D

)(
i(1− ε)D

M

)iD

≤
(

Ne

i

)i (
Me

i(1− ε)D

)i(1−ε)D (
i(1− ε)D

M

)iD

= Xi

where

X =
(

Ne

i

)(
Me

i(1− ε)D

)(1−ε)D (
i(1− ε)D

M

)D

≤ Ne1+(1−ε)D

(
i(1− ε)D

M

)Dε

≤ 2De2D

(
i(1− ε)D

M

)Dε

= Y D

for

Y = 2e2

(
i(1− ε)D

M

)ε

≤ 2e2

(
KmaxD

M

)ε

(1− ε)ε = (1− ε)ε

For D > 1
−ε log (1−ε) , this means that X < 1

2 . Using the union bound again, the total probability that there
exists a pair of sets (S, T ) which contradicts the expansion property of the graph is at most

Kmax∑

i=1

Xi ≤
Kmax∑

i=1

2−i < 1
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We show that an explicit construction of such a graph implies much better non-interactive time-stamping
schemes. Specifically,

Theorem 5.8. Assume a graph G as above can be explicitly constructed for some β = (1−ε) > 0. Let H be a
(εH(n), µ(n))-collision resistant hash family with εH(n) = 2−nΩ(1)

and µ(n) = 2nΩ(1)
. Assume the adversary

has running time polynomial in R. For every c > 0, there exists a scheme that is (T = (log R)O(1), V =
(log R)O(1))-efficient and O(log R)-optimal against feasibly generated documents for ρ = 2−(logc R), M∗

max =
Ω(R). The scheme allows stamping documents of length logc R.

Proof. We now use non-explicit expanders. We choose n to be large enough so that µ(n) and 1/εH(n) are
greater than N logc N . We can meet this requirement with n = (log N)O(1). This makes N = R/n ≥ √

R. Let
d be a constant to be chosen later. We choose D = logd R. We meet all the requirements of Theorem 5.1 and
conclude that the scheme is ((log R)O(1), (log R)O(1))-efficient for M∗

max = Ω(KmaxDn) = Ω(Nn) = Ω(R)
as required and that it is O(log R)-optimal for ρ = 2−D ≤ 2− logc R for sufficiently large d. The scheme can
stamp documents of length DΩ(1) ≥ logc R for large enough d.

We can now stamp much longer documents (even up to length R) using the techniques of Subsection 5.5.

6 Non-Malleable Timestamping

For several applications of timestamping, Definitions 3.4 and 3.9 do not seem to suffice. The reason is that
they do not preclude the following scenario:

Alice stamps a document doc and stores the timestamp Stamp(doc, r). Eve stores the output of Store∗(r).
At verification time, Alice publishes doc and Stamp(doc, r). At this point Eve may be able to use the
timestamp for doc in order to successfully stamp a different document (for instance, a document almost
identical to doc but which contains the word “Eve” instead of the word “Alice”). Definitions 3.4 and 3.9 do not
apply in this case because they only specify which documents Eve can stamp without additional information.
In this section we present modified definitions and constructions that work even against adversaries that see
many timestamps of documents before being requested to timestamp some other document. Throughout
this section we refer to the timestamps seen by the adversary as “hints”.

Unfortunately, when the adversary is unbounded we cannot expect to achieve “perfect” non-malleability,
in which receiving additional hints does not allow the adversary to stamp anything but those documents.
This is because there must exist a document doc1 whose timestamp contains some non-negligible amount of
information about the timestamp of a different document doc2. If the adversary stores all but the shared
information from doc1’s timestamp, the additional hint of doc2’s timestamp will allow the adversary to stamp
two documents (while storing less than two timestamps). In addition, there must clearly be a limit to the
number of hint documents against which the system remains secure – this is because given the timestamps
of enough documents, the adversary can exceed the storage bound.

A slightly weaker version of non-malleability is still possible. Under this definition of non-malleability,
we want the addition of “hint” documents to be equivalent to giving the adversary more memory ahead of
time (but no hints). This is similar to the idea behind Definition 3.4.

6.1 Security against w hints

To formally define non-malleable security of a timestamp scheme, we must first formally define the adversary
in this model. Our definition is similar to Definition 3.3, however in the new model the adversary is also
given a “hint oracle”, H. The hint oracle returns the correct timestamp for any document (except for the
document the adversary is attempting to stamp). The adversary successfully stamps a document with w
hints if it can successfully stamp the document in the sense of Definition 3.3 with at most w queries to the
oracle (the hints may depend on the document to be stamped and on the responses to previous hints). More
formally:
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Definition 6.1 (Adversary). An adversary with hints consists of two functions: Store∗(r), which produces a
short string b, and Stamp∗H(doc, b) which, given a document doc, b and access to the hint oracle H attempts
to produce a timestamp for doc. The space M∗ of an adversary is the maximal length of Store∗(r).6 An
adversary γ-successfully stamps a document doc at (some fixed) r with w hints if it makes at most w queries
to H and

Pr[Verify(Sketch(r), doc, Stamp∗H(doc, Store∗(r)) = Accept] ≥ γ

where this probability is over the coin tosses of Sketch and the internal random coins of the adversary.
We denote the set of documents that an adversary A γ-successfully stamps with w hints for a given string

r by Successful(A,γ)
w (r)

We can now use essentially the same definition of security as before:

Definition 6.2 (Security against w hints). We say that a (T, V )-efficient timestamping scheme is α-optimal
against w hints (for ρ > 0, α ≥ 1, γ > 0 and M∗

max < R) if for every T ≤ M∗ ≤ M∗
max and every adversary

A with space M∗ and w hints,

Pr
r

[
|Successful(A,γ)

w (r)| > α
M∗

T

]
≤ ρ

Remark 6.3. The notion of α optimality defined in Definition 6.2 is a little different than that in Definition
3.4, in the sense that we now make the additional restriction and require that M∗ ≥ T (that is, we only
bound adversaries with memory that is sufficient to make at least one honest timestamp). This restriction is
added as we do not know how to meet the original definition. Making this additional restriction says that, in
the new definition, we do not rule out that “weak” adversaries with memory M∗ ¿ T can somehow stamp
α documents. However, as timestamps are of length T , it seems that interesting adversaries are those that
have at least this much storage; this is why we feel this modification is not significant.

Remark 6.4 (Usefulness of this security notion). Let us demonstrate the usefulness of this notion by consid-
ering the scenario described in the introduction. That is, we assume that there is a random variable V that
is uniformly distributed over a large set and its value is not known to Eve at the time of the transmission
of the random string. After the transmission of the random string, Eve sees a correct timestamp made by
Alice who knew the value of V before the random string was transmitted. That is Eve sees a timestamp of
the document:

doc = “I Alice say that the value is v”

Eve would like to timestamp the document doc′ in which the word “Alice” is replaced with “Eve”. In our
definition of security this is captured by allowing Eve to see a correct timestamp of the hint document doc′

before she attempts to stamp the document doc. Our definition of security says that even in such a scenario
the number of documents which Eve can successfully stamp is bounded by αM∗

T . As V is uniformly distributed,
it follows that the probability that the value of V happens to appear in one of these documents is very small,
and therefore Eve cannot successfully stamp the document doc′ even after seeing Alice’s timestamp.

6.2 A non malleable timestamping scheme

In this section we revisit the information theoretic timestamping scheme defined in Section 4 and show
that it is non-malleable although with weaker parameters. We remark that it is also possible to extend the
definition and construction in the computational setting to be secure with hints.

We use a graph that is (Kmax, βD) expanding for β that is very close to 1, (say β = 1− (1/(w + 1)2))).
Loosely speaking, in this setting if the adversary receives w hints then this amounts to receiving wD indices
“for free”. We now claim that for any additional document that the adversary wants to stamp, most indices
of this document were not revealed by the hints. This is because if one looks at the set of the hint documents
and an additional document then this set expands to size (w + 1)βD and we note that

(w + 1)βD − wD = (w + 1) ·
(

1− 1
(w + 1)2

)
D − wD =

(
1− 1

w + 1

)
D

6Note that the adversary is not required to run online in space M∗. The function Store∗(r) can be an arbitrary function of
r.
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So, intuitively, the hints do not help the adversary by much as he needs to store the additional indices. A
more formal argument follows. We prove the following Theorem (which is analogous to Theorem 4.1).

Theorem 6.5. Let G be a (Kmax, βD)-expanding graph with left degree D, let γ > 0 and let w be such
that w ≤ 1

8(1−β) and w ≤ Kmax/2. Let g = 1/100(w + 1). Assume that log |DOC| ≤ Dn
200(w+1) and

n ≥ max(100(w + 1), log N) and D|H| ≥ N
gβ ln( 1

γ ). Then the scheme is (T = Dn, V = 2|H|n)-efficient and
α-optimal against w hints. For α = 16w2, ρ = 2−nD/6(w+1) and M∗

max = KmaxDn/32w2.

The parameters in Theorem 6.5 resemble those of Theorem 4.1. The main differences are:

• The new theorem requires a graph with better expansion properties. The expansion factor β is now
1 − 1/8w and in particular needs to be close to one, whereas Theorem 4.1 allows β to be small. In
particular, when using the explicit graph of Theorem 2.2, we have β that is a small positive constant,
which is not good enough for our purposes.

• The optimality factor α is now O(w2) whereas in Theorem 4.1 the optimality factor can be made O(1)
when β is a constant.

• The parameter g (which measures the fractions of errors above which the verifier rejects) is now set
to 1/100(w + 1) whereas in Theorem 4.1 it was set to 1/5. This creates losses that depend on w in
several of the parameters whereas previously these losses were constants.

• The maximal memory of the adversary M∗
max is smaller by a multiplicative factor of 1/w2 compared

to Theorem 4.1. This means that even in an optimal graph where KmaxD ≈ N the adversary will
only be allowed to store R/w2 bits from the random string. This should be compared to Theorem 4.1
which allows M∗

max to approach R when picking g = o(1).

To simplify the parameters let us focus on w = O(1); that is, achieving security against a constant number
of hints. In this case, if we have a graph that meets the more stringent requirements of Theorem 6.5, then
the timestamping scheme we get has comparable parameters to that obtained in Theorem 4.1.

However, as noted earlier, Theorem 2.2 does not give a graph with an expansion factor β that is close to
one. Using non-explicit graphs (such as the one in section 5.6) it is possible to get a scheme with parameters
comparable to those in Theorem 4.2 that is secure against a constant number of hints.

Remark 6.6 (Toward explicit constructions of expander graphs). It seems plausible that combining the
technique used in our proof of Theorem 2.2 with the idea of “adding a buffer” (see [26, 31]) would allow us
to construct graphs in which the expansion factor β is 1− o(1) and the degree is comparable to the degree in
our Theorem 2.2.

6.3 The security proof

We prove Theorem 6.5 in a similar way to the proof of Theorem 4.1. Fix some adversary A with w hints, we
denote the set of strings r on which the adversary γ-successfully stamp k documents by Rsuccessful

γ(k,w).
We now define the notion of “correct stamping with w hints” in a similar way to Definition 4.3.

Definition 6.7. Let g > 0 be a parameter. An adversary correctly stamps a document doc at r with
w hints if Stamp∗H(doc, Store∗(r)) = r|Γ(doc) and it makes at most w queries to H. An adversary cor-
rectly stamps a document doc at r with w hints and at most err errors, if the Hamming distance between
Stamp∗H(doc, Store∗(r)) and r|Γ(doc) is at most err and it makes at most w queries to H.

Let Rcorrect(k, w) = Rerr=gβD
correct (k, w) denote the set of random strings r for which there are at least k

documents that the adversary correctly stamps with at most err = gβD errors and w hints.
Note that the timestamping system is the same as that in Section 4. Thus, from the point of view of the

verifier, nothing has changed and Lemma 4.4 applies. In our terminology we have that:

Lemma 6.8. Assume D|H| ≥ N
gβ ln( 1

γ ). For every w, k,

Rsuccessful
γ(k, w) ⊆ Rcorrect(k, w).
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We now show that any adversary that correctly stamps too many documents with w hints can be used
to compress the string r, which in turn gives a contradiction.

Lemma 6.9. Assume log |DOC| ≤ Dn/200(w + 1), err = gβD, g ≤ 1/100(w + 1), n ≥ 100(w + 1) and
β ≥ (1 − 1/4(w + 1)). For every k such that 4(w + 1)2 ≤ k ≤ Kmax − w and any adversary with space
M∗ ≤ kDn/4(w + 1) we have Prr[r ∈ Rcorrect(k, w)] ≤ 2−nDk/6(w+1).

The overall structure of the proof is similar to the one used in the proof in Lemma 4.5. However, the
situation here is somewhat more complicated, as the compression procedure is not allowed to use hints.
Instead, we show how to find a set of k documents (which may be different than the one which the adversary
is correct on) such that we can use the adversary and some additional information (used to simulate hints) to
correctly reconstruct the content of indices adjacent to these documents even without hints. The interplay
between the various parameters is also somewhat different than the situation in Lemma 4.5 as we need much
more additional memory in order to compensate for not having hints. The proof of Lemma 6.9 appears in
Section 6.4. We now conclude the proof of Theorem 6.5.

Proof. (of Theorem 6.5) The efficiency requirement follows immediately as in the proof of Theorem 4.1. We
need to show that no adversary with space T ≤ M∗ ≤ M∗

max can γ-successfully stamp more than k = αM∗
Dn

documents. Given an adversary that γ-successfully stamps k documents, we meet the requirements of Lemma
6.8 and therefore this adversary correctly stamps k documents with at most err = gβD errors. We now
apply Lemma 6.9. We first check that the parameters we chose meet the requirements. This is immediate
for the first five requirements. For the sixth requirement we note that we have required that M∗ ≥ T = Dn
and therefore k = αM∗

Dn ≥ α = 16w2 ≥ 4(w +1)2. We also need to meet the requirement that k ≤ Kmax−w.
We have that

k =
αM∗

Dn
≤ αM∗

max

Dn
≤ Kmax

2
≤ Kmax − w

where the second inequality follows from the definition of M∗
max and α, and the third inequality follows from

the requirement that w ≤ Kmax/2. We also meet the requirement that M∗ ≤ kDn/4(w + 1) which holds
as k = αM∗/Dn = 16w2M∗/Dn. We thus conclude that the probability that the adversary successfully
stamps k documents is at most ρ = 2−nDk/6(w+1) ≤ 2−nD/6(w+1) as k ≥ 1.

Remark 6.10. We remark that we could have set the parameters differently and improved the optimality
factor from O(w2) to O(w), at the cost of requiring that M∗ ≥ Tw. This would have enabled us to meet the
requirement that k ≥ 4(w + 1)2 even when setting α = Θ(w), as in that case k = αM∗

Dn ≥ αw = Θ(w2) ≥
4(w + 1)2.

6.4 Proof of Lemma 6.9

We first define a compression function Com(r) for r ∈ Rcorrect(k, w). Let r ∈ Rcorrect(k,w) and let Sr denote
the set of documents that the adversary correctly stamps with w hints and at most err = gβD errors. We
conduct the following process:

• We start with Br ← ∅,
• At each step we take a document doc out of Sr. We examine all the documents queried by Stamp∗H

when given Store∗(r) and attempting to stamp doc.

• We add doc to Br and call it a “base document” and we also add to Br all the hint documents queried
by Stamp∗H that are not already in Br and call them “hint documents”. We delete from Sr all the
hint documents that appear in it, and we also remove doc from Sr.

• We continue this process until Br has at least k documents. (Note that at this point Br contains at
most k + w documents).

We define Γ = ∪doc∈BrΓ(doc). That is the set of all indices which are neighbors of documents in
Br. For a base document doc ∈ Br we define BAD(doc) to be the indices of blocks in which Stamp∗H

makes an error when attempting to stamp doc using correct hints. Let BAD be the union of BAD(doc)
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over all base documents. Let q be the number of base documents in Br and enumerate the elements of
Br by doc1, . . . , doc|Br| where the first q elements are base documents. Let v denote the concatenation of
Stamp(r, doc) over all hint documents. (That is the correct timestamping of all hint documents). We define:

Com(r) = (doc1, . . . , doc|Br|; Store∗(r), r|Γ̄,BAD, r|BAD, v, q)

We now show that for every r ∈ Rcorrect(k,w) it is possible to reconstruct r given Com(r). When given
an index j we reconstruct rj as follows:

• If j 6∈ Γ then we have rj stored.

• If j ∈ Γ, then it is a neighbor of some document doc ∈ Br. Using the stored information we can check
whether doc is a base document or a hint document.

– If doc is a hint document then we have its timestamp and we can reconstruct rj .

– If doc is a base document then we can compute its timestamp as follows: Simulate Stamp∗H when
attempting to stamp doc (note that we have Store∗(r)). Whenever an oracle query is made, the
queried document is in Br. If it is a hint document then we can answer the query. If it is a base
document we recursively start to compute its timestamp. When we complete the simulation of
Stamp∗H we “error-correct” this value by checking which indices of the timestamp are in BAD
and replacing their content with the correct content that we have stored.

We need to show that:

Claim 6.11. The simulation described above stops, and it stops with the correct timestamp of the given base
document.

Proof. (of claim) We define the following relations on base documents: We say that doc1 appeared after doc2

denoted by doc1 Â doc2 if in the process of constructing Br, doc1 was taken from Sr after doc2. We say that
doc1 calls doc2 denoted by doc1 ⇒ doc2 if doc2 is one of the hints that Stamp∗H queries when attempting to
stamp doc1. Let ⇒∗ be the transitive closure of ⇒. That is, we say that doc1 eventually calls doc2 denoted
by doc1 ⇒∗ doc2 if there is a sequence of calls that starts from doc1 and ends at doc2.

We claim that if doc1 eventually calls doc2 then doc1 appeared after doc2. Before verifying this claim we
note that Â is an ordering of the base documents, and therefore the recursion does not run into an infinite
loop and will eventually end. It can be verified by induction that each time the recursive procedure “returns”
a timestamp, then this timestamp is correct.

We are left with proving that if doc1 ⇒∗ doc2 then doc1 Â doc2. We prove this by induction on the
number of calls. For the base case note that if doc1 ≺ doc2 then it could not be the case that doc1 ⇒ doc2 as
when removing doc1 from Sr we have removed from Sr all the documents such that doc1 ⇒ doc2 and thus
could not select doc2 at a later stage. The same reasoning applies to any number of calls by induction on
the number of calls.

We now bound the output length of Com(r).

• Storing |Br| documents takes at most (k + w) log |DOC| bits.

• The length of Store∗(r) is at most M∗.

• The length of r|Γ̄ is at most R− kβDn. This is because |Γ| ≥ kβD.

• We represent the set BAD by a binary vector of length kD, composed of k blocks (one for each base
document in Br) and the i’th bit in a block of a document is set if the document is a base document
and the i’th block in its timestamp is incorrect.

• The length of r|BAD (in bits) is at most kgβDn. This is because the size of BAD is at most k · err ≤
kgβD.
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• The length of v is at most (1− 1/(w + 1)) · (k + w) ·Dn. This is because at least a 1/(w + 1) fraction
of the documents in {0, 1}r are base documents (as in each step in the process one out of at most
w + 1 documents added to Br is a base document). Thus, out of at most k + w documents in Br a
1− 1/(w + 1) fraction are hint documents and the time stamp of each one takes Dn bits.

• The length of q is log k.

Overall the total length of the output of Com(r) is bounded by

|Com(r)| = |(doc1, . . . , doc|Br|,Store∗(r), r|Γ̄,BAD, r|BAD, v, q)|

= |doc1, . . . , doc|Br||︸ ︷︷ ︸
≤(k+w) log |DOC|

+ |Store∗(r)|︸ ︷︷ ︸
≤M∗

+ |r|Γ̄|︸︷︷︸
≤R−kβDn

+ |BAD|︸ ︷︷ ︸
≤kD

+ |v|︸︷︷︸
≤(1− 1

w+1 )·(k+w)·Dn

+ |q|︸︷︷︸
≤log k

We note that |Com(r)| ≤ R−∆ for

∆ = kβDn− ((k + w) log |DOC|+ M∗ + kD + kgβDn + (1− 1/(w + 1)) · (k + w) ·Dn + log k) (2)

Thus, we have that |Rcorrect(k,w)| ≤ 2R−∆, and therefore the probability that a randomly chosen r lands
in Rcorrect(k,w) is at most 2−∆. We are left with checking that the requirements in the Lemma give that
∆ > kDn

100(w+1) . We define A = kDn
(w+1)

Let us examine the expression in (2). Intuitively, we set the parameters so that all the terms apart from
the first and sixth terms are small compared to A, and the fact that β is very close to 1 will give that the
first term minus the sixth term is Ω(A). (This is the best we can get because no matter how we set the
parameters the first term minus the fourth term is at most A).

We first go over each of the other terms and verify that the requirements we have made make them small
compared to A. We have required that log |DOC| ≤ Dn/200(w + 1) and we have that w ≤ k which gives
that (k + w) log |DOC| ≤ 2k log |DOC| ≤ A/100. We have required that M∗ ≤ A/4. We have required that
n ≥ 100(w + 1) which gives that kD ≤ A/100. Note that log k ≤ kD, and therefore log k ≤ A/100. We have
required that g ≤ 1/100(w + 1) which gives that kgβDn ≤ A/100.

Overall we have that ∆ ≥ kβDn − (1 − 1/(w + 1)) · (k + w) ·Dn − A/3. We now use the requirement
that β ≥ 1− 1/4(w + 1) and compute:

kβDn− (1− 1/(w + 1)) · (k + w) ·Dn ≥ Dn

(
k(1− 1

4(w + 1)
)− (k + w)(1− 1

w + 1
)
)

≥ Dn

(
k(1− 1

4(w + 1)
)− k(1− 1

w + 1
)− w

)
≥ Dn

(
3k

4(w + 1)
− w

)
≥ Dn

(
k

2(w + 1)

)
≥ A

2

where the last inequality follows from the requirement k ≥ 4 · (w + 1)2 which entails w ≤ k/4(w + 1). Thus,
we conclude that ∆ ≥ A/2−A/3 = A/6 as required.

7 An Explicit Expander Construction

7.1 Extractors

In this section we prove Theorem 2.2. The proof uses techniques from the area of “randomness extractors”.
We only briefly describe the needed background from this area and the interested reader is referred to the
survey papers [25, 29].

We begin with some definitions. For a distribution X we denote X(a) = Pr[X = a]. We measure
the distance between two distributions X and Y over the same domain Λ, by their `1 distance, d(X, Y ) =∑

a∈Λ |X(a)−Y (a)|. We say X is ε-close to Y if their distance is at most ε. The min-entropy of a distribution
X is the maximal k such that for every a, X(a) = Pr[X = a] ≤ 2−k. Randomness extractors are given an
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input drawn from some unknown distribution X that is guaranteed to have at least k min-entropy. They
also use a short independent random string. The goal is to output a short string (of length k or smaller)
such that the output distribution is close to uniform. Formally.

Definition 7.1 (Strong Extractor). We say F : {0, 1}n×{0, 1}d → {0, 1}m is a strong (k, ε)-extractor if for
every distribution X over {0, 1}n that has min-entropy at least k, the distribution F (X, Ud) ◦ Ud is ε-close
to uniform (where F (X,Ud) ◦ Ud is the distribution obtained by picking x according to the distribution X,
picking y uniformly at random from {0, 1}d and outputting F (x, y) ◦ y).

7.2 Universal Extractors

It is easy to see that a (k, ε) strong extractor gives rise to a bipartite graph in which every set S of size K = 2k

on the left hand side expands (where the expansion factor depends on the parameters of the extractor). (We
elaborate on this relationship in Section 7.3). The notion of expander graphs used in this paper makes the
stronger requirement that there is some threshold Kmax such that every set of size at most Kmax expands.
While extractors do not suffice for this, universal extractors, that we soon define, give rise to such graphs.

The extractor property guarantees that every distribution X that has a lot of entropy, is converted to
(close to) the uniform distribution. We now extend this notion to distributions with less entropy as follows.
Given an input from an unknown distribution X with some min-entropy k ≤ kmax, we require that the
randomness-extractor output has a restriction to m(k) bits (where m(k) is some function of k) that is close
to uniform. We say F ′ : {0, 1}n × {0, 1}d → {0, 1}m′

is a restriction of F : {0, 1}n × {0, 1}d → {0, 1}m, if
there exists some set S ⊆ {1, .., m} of size m′ such that F ′(x, y) = F (x, y)|S , that is F ′ outputs only the
indices of F that are in S. We define:

Definition 7.2 (universal extractor). [27, 28, 31]
F : {0, 1}n × {0, 1}d → {0, 1}m(kmax) is a strong (kmax, k → m(k), ε) universal extractor if for every k′ ≤
kmax there is a restriction F ′ : {0, 1}n × {0, 1}d → {0, 1}m(k′) of F which is a strong (k′, ε)–extractor. If
m(k) = k −∆, we say F has ∆ entropy loss.

Raz, Reingold and Vadhan [28] show variants of Trevisan’s extractor [33] with optimal entropy loss. Raz
et. al. note that some of the constructions they give are universal.7 In particular, the following construction
is universal:

Fact 7.3. For every ε > 0 and kmax ≤ n, ERRV : {0, 1}n×{0, 1}d → {0, 1}m(kmax) is a strong (kmax, k → m(k), ε)
universal extractor, with m(k) = k −∆, ∆ = 2 log( 1

ε ) + O(1) and d = O(log2(n
ε ) log k).

We would like to reduce the seed length of the above strong extractor from d = O(log3(n/ε)) to d =
O(log n + log3(kmax/ε)). Given an unknown distribution X with k ≤ kmax entropy, [17] showed how to
condense it while essentially retaining all its min-entropy. Formally, they show a function F : {0, 1}n ×
{0, 1}d1=4(log(n/ε)) → {0, 1}m=2(d1+kmax) such that for every distribution X over {0, 1}n with k ≤ kmax min-
entropy, F (X, Ud) is ε-close to a distribution with k + d1 min-entropy (see Theorem 4.2 there when setting
α = 1). Furthermore F (x, y) = (y, F ′(x, y)) for some function F ′, i.e., the output contains the seed. Thus,
the condenser uses d1 = O(log(n/ε)) truly random bits to condense the distribution X (over n bits) to a
new distribution X ′ over just m = O(d1 + kmax) bits while essentially retaining all the min-entropy of the
distribution.

If we first apply apply such a lossless condenser F (x, y) = (y, F ′(x, y)) and then a strong universal
extractor on the second register, we get a strong universal extractor. To see that, notice that for every
distribution X with min-entropy k ≤ kmax, F (X, Ud) is ε–close to a distribution B with k + d1 min-entropy.
In B at most ε of y get weight larger than 2 · 2−d1 . For all other y’s, (B|Y = y) has min-entropy at least
k− 1. Then, by the universal extractor property, there is a restriction of the output that is close to uniform.
In particular, by first applying the [17] condenser and then the extractor of Fact 7.3, we get:

Lemma 7.4. (based on [28, 17]) For every ε > 0 and kmax ≤ n there exists an explicit strong (kmax, k → m(k), ε)
universal extractor F : {0, 1}n × {0, 1}d → {0, 1}m(kmax) with d = O(log n + log3(kmax/ε)), m(k) = k − ∆
and ∆ = 2 log( 1

ε ) + O(1).
7Raz et. al. remark on this property without giving it a name. See Remark 12 in [28]. The name universal first appears in

[31].
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7.3 Graphs and functions

Randomness extractors are, in fact, equivalent to unbalanced expander graphs, and here we repeat this
well known connection. We translate a function F : {0, 1}n × {0, 1}d → {0, 1}m to a bipartite graph
G = (V1, V2, E) with |V1| = N = 2n, |V2| = D · 2m and left degree D = 2d, where we put an edge
(v1, (v2, y)) ∈ E iff F (v1, y) = v2. A simple observation is:

Lemma 7.5. Assume F is a strong (kmax, k → m(k), ε) universal extractor with ∆ entropy loss. Then G is
(Kmax = 2kmax , β) expanding, with β = 1

2
1

2∆ (1− ε).

Proof. Fix any subset A ⊆ V1 of cardinality K ≤ Kmax. Let K = 2k. Notice that we can associate
with the subset A ⊆ V1 a distribution which is uniform over the elements of A, and this distribution has
log(|A|) = k min-entropy. In particular, (F (A,UD), UD) is ε-close to uniform. This means that A has at
least (1− ε)|V2| = (1− ε)D2m(k) different neighbors in V2 (the factor D appears because F is strong, and so
the output contains the seed). In particular, the number of neighbors is 1

2 (1− ε)D K
2∆ as desired (the extra

1/2 factor is because the cardinality of A may not be a power of two).

Having that, Theorem 2.2 follows from Lemma 7.4 by plugging in ε = 1
2 .

8 Discussion and Open Problems

8.1 Advantages of Our Non-interactive Timestamping Scheme

Let us discuss some obvious advantages of non-interactive timestamping over more standard notions of
timestamping.

• The only communication made before the verification process is the transmission of the random string
r. This allows the timestamping system to be used in situations where communication is infeasible or
undesirable. E.g., communication may be asymmetric: one central agency can broadcast to all other
users, while the users can not send messages to the agency.

• Everyone can stamp and everyone can verify and no central control or acquaintance between stamper
and verifier is needed. The decentralized nature of this scheme overcomes many of the “trust” problems
with interactive timestamping systems. Even in distributed interactive systems, some measure of trust
must be given to third parties. Our non-interactive timestamping system requires only that the random
string be truly random and receivable by all parties.

• Privacy. The scheme hides the fact that timestamping occurred at all, e.g., an inventor can safeguard
her inventions without revealing even the fact of their existence. This also ensures privacy in an
information-theoretic sense.

• Our schemes solve some of the robustness problems that plague interactive timestamping systems. In
particular, it is much more difficult to mount a denial-of-service attack as there is no central point that
can shut down the system, and even temporarily shutting down communications will not prevent the
creation of new timestamps. The lack of communication also makes it difficult for an attacker to tell
whether such an attack was successful.

8.2 Open Problems

Dealing with Errors: Most protocols in the bounded storage model, and ours among them, assume the
broadcast random string is received identically and without errors by all parties. However, in many natural
implementations of such protocols, this assumption may not be realistic (e.g. when the random string has a
natural source).

Our information-theoretic scheme can be made to work even with errors (provided the error rate is low
enough) by allowing the verifier to accept a timestamp even if the blocks in the intersection differ by a small
amount. The proof of Lemma 4.5 already allows the adversary to make some errors when stamping, and
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still be considered successful. Increasing the error rate by a small amount will not invalidate the lemma
(although the parameters suffer slightly).

The computational scheme, on the other hand, currently requires the random string to be received
perfectly by all parties. It is an interesting open question whether this requirement can be removed.

Removing the Need for Constant Monitoring: Our timestamping schemes require the verifier to run
the Sketch function in every round for which it may, someday, want to verify documents. The verifier must
therefore constantly monitor the random string, which is too much to ask from a casual user of the system.

An implementation of our timestamping systems can overcome this difficulty by using “verification cen-
ters”: dedicated third parties who act as verifiers. In some sense, such third parties appear in all previous
timestamping protocols. This raises the issue of how much trust the user must place in the verification
center.

In the computational version of our protocol, the verification center is also easily auditable by casual
users: the verifier is deterministic and has no secret information. Any user can act as a verifier for a single
round, and compare its state to that of the verification center: any inconsistency will be instantly visible.

Online Versus Locally-Computable: The strategies for the honest players are efficient in the sense
that they work online using small space and polynomial time. A stronger notion of efficiency called “locally-
computable” was suggested in [34]. It requires the honest players to store a small substring of the string
r. More precisely, the players need to choose a subset S ⊆ [R] before the random string is transmitted
and only store r|S . We point out that the “information-theoretic” scheme (Section 4) has this additional
property, whereas the “computationally-secure” scheme (Section 5) does not.8 Natural open problems are
whether the “information-theoretic” scheme can be improved to yield better parameters, and whether the
“computationally-secure” scheme can be improved to run with strategies that are locally computable.
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