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ABSTRACT
Hardness amplification is the fundamental task of converting
a δ-hard function f : {0, 1}n → {0, 1} into a (1/2− ε)-hard
function Amp(f), where f is γ-hard if small circuits fail to
compute f on at least a γ fraction of the inputs. Typically,
ε, δ are small (and δ = 2−k captures the case where f is

worst-case hard). Achieving ε = 1/nω(1) is a prerequisite for
cryptography and most pseudorandom-generator construc-
tions.

In this paper we study the complexity of black-box proofs
of hardness amplification. A class of circuits D proves a
hardness amplification result if for any function h that agrees
with Amp(f) on a 1/2+ ε fraction of the inputs there exists
an oracle circuit D ∈ D such that Dh agrees with f on a
1 − δ fraction of the inputs. We focus on the case where
every D ∈ D makes non-adaptive queries to h. This setting
captures most hardness amplification techniques. We prove
two main results:

1. The circuits in D “can be used” to compute the major-
ity function on 1/ε bits. In particular, these circuits
have large depth when ε ≤ 1/poly log n.

2. The circuits in D must make Ω
(
log(1/δ)/ε2

)
oracle

queries.

Both our bounds on the depth and on the number of
queries are tight up to constant factors.

Our results explain why hardness amplification tech-
niques have failed to transform known lower bounds against
constant-depth circuit classes into strong average-case lower
bounds. When coupled with the celebrated“Natural Proofs”
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result by Razborov and Rudich (J. CSS ’97) and the pseudo-
random functions by Naor and Reingold (J. ACM ’04), our
results show that standard techniques for hardness amplifi-
cation can only be applied to those circuit classes for which
standard techniques cannot prove circuit lower bounds.

Our results reveal a contrast between Yao’s XOR Lemma
(Amp(f) := f(x1) ⊕ . . . ⊕ f(xt) ∈ {0, 1}) and the Direct-
Product Lemma (Amp(f) := f(x1) ◦ . . . ◦ f(xt) ∈ {0, 1}t;
here Amp(f) is non-Boolean). Our results (1) and (2) apply
to Yao’s XOR lemma, whereas known proofs of the direct-
product lemma violate both (1) and (2).

One of our contributions is a new technique to handle
“non-uniform” reductions, i.e. the case when D contains
many circuits.

Categories and Subject Descriptors
F.0 [Theory of Computation]: GENERAL; F.1.3 [Theory
of Computation]: Complexity Measures and Classes—Re-
lations among complexity measures

General Terms
Theory

Keywords
average-case complexity, hardness amplification, majority,
constant-depth circuits, black-box, natural proofs.

1. INTRODUCTION
Proving circuit lower bounds is a major goal of Complex-

ity Theory. However, the celebrated “Natural Proofs” result
by Razborov and Rudich [50], coupled with the pseudoran-
dom functions by Naor and Reingold [45], marks the class of
polynomial-size constant-depth circuits with majority gates
(TC 0) as a fundamental limit for most currently available
lower bounding techniques. This limitation already applies
to worst-case lower bounds, where one seeks a function that
small circuits fail to compute on at least one input. In par-
ticular, it applies to average-case lower bounds, where one
seeks a function that small circuits fail to compute on many
inputs. Average-case hard functions are especially impor-
tant as they are a prerequisite for most modern cryptogra-
phy and can be used to construct pseudorandom generators
[46] which in turn have a striking variety of applications (see,
e.g., the books by Goldreich [17, 18]). We stress that both
these applications require strongly average-case hard func-
tions. That is functions that small circuits cannot compute



with even a small advantage over random guessing, for a
randomly chosen input. (For concreteness, the reader may
think of a function f : {0, 1}n → {0, 1} that any small cir-

cuit fails to compute with probability 1/2−1/nω(1) over the
choice of the input).

As we do not know how to prove unconditional lower
bounds for general circuit classes, a long line of research
has focused on hardness amplification. This is the task of
transforming worst-case hard functions (or sometimes mildly
average-case hard functions) into average-case hard func-
tions [65, 40, 8, 6, 7, 32, 20, 15, 35, 36, 12, 55, 59, 51, 56,
47, 60, 58, 29, 52, 24, 33, 34, 22]. This research was largely
successful in its goal. In particular, it provided worst-case
to average-case connections within many complexity classes.
Many of these connections give strongly average-case hard
functions. This research also spurred fruitful interaction
with coding theory (see, e.g., the survey by Trevisan [57]).

Complexity theory has produced many exciting and useful
lower bounds for restricted computational models, most no-
tably against classes of circuits with unbounded fan-in and
constant depth with various gates [16, 66, 27, 49, 54, 28, 25,
5, 26]. In some of these classes we in fact can prove worst-
case lower bounds, but cannot prove strongly average-case
lower bounds (e.g. [49, 54, 5]). Several such examples are
surveyed in the full version of this paper and in [62, Chapter
6]; for concreteness, an example is the lower bound against
constant-depth circuits with And, Or and Parity gates [49,
54]. One would expect that hardness amplification tech-
niques could be used to produce strongly average-case lower
bounds from the known lower bounds (which would in turn
give pseudorandom generators for these classes [46]). But in
fact “standard hardness amplification techniques” fail.

In this paper we show that:

“standard hardness amplification techniques” only apply
when starting with hardness against circuits that can

compute the majority function.

This explains the following “lose-lose” phenomenon: For
classes that are weaker than TC 0 (e.g. constant-depth cir-
cuits, or constant-depth circuits with parity gates) we can
prove lower bounds, however we do not have hardness am-
plification theorems, while for classes at least as powerful as
TC 0 we have hardness amplification theorems but cannot
prove circuit lower bounds; see Figure 1.

A couple of remarks is in order. First, our results likely
do not apply to “every conceivable” class of circuits, but
rather they apply to the most well-studied ones. Second,
we note that, just like Razborov and Rudich’s result [50]
is not claiming that it is impossible to prove lower bounds
for classes like TC 0, but rather that certain techniques will
not do, this work is not claiming that it is impossible to
prove strong average-case hardness results for circuit classes
weaker than TC 0, but that we cannot obtain such results by
“standard hardness amplification techniques.” We elaborate
on these techniques next.

1.1 Hardness amplification
In this section we review the notion of hardness amplifi-

cation. Let us start by formalizing our notion of hardness.

Definition 1.1 (Average-case hardness). A func-
tion f : {0, 1}k → {0, 1} is δ-hard for a class of circuits
C (e.g., all circuits of size s) if for every circuit C ∈ C we
have Prx∈{0,1}k [C(x) 6= f(x)] ≥ δ.

Circuit complexity

TC0

Cannot amplify hardness

[This work]

Cannot prove hardness results

[Razborov and Rudich’s natural proofs]

Figure 1: Reach of “standard techniques.” Recall
TC 0 is the class of polynomial-size constant-depth
circuits with majority gates.

Hardness amplification is the generic task of transforming
a given function f : {0, 1}k → {0, 1} that is δ-hard for a
class of circuits C into another function Amp(f) : {0, 1}n →
{0, 1} that is (1/2− ε)-hard for a related class of circuits C′,
where one wants ε as small as possible and n not much larger
than k. The first and most important example of hardness
amplification is Yao’s XOR lemma (cf. [20]), which works
as follows. We let n := t · k for a parameter t and on input

(x1, . . . , xt) ∈
(
{0, 1}k

)t
= {0, 1}n we define

Amp(f)(x1, . . . , xt) := f(x1)⊕ · · · ⊕ f(xt),

where ⊕ denotes exclusive OR. The lemma states that if f
is δ-hard for (the class of) circuits of size s, then choosing
t := O(log(1/ε)/δ) one has that Amp(f) is (1/2−ε)-hard for
circuits of size s ·poly(ε · δ/k). In particular, if f is 1/3-hard

for circuits of superpolynomial size s = nω(1), then by choos-
ing a suitable t := ω(log n) we obtain a (1/2−1/nω(1))-hard
function, (recall that such a function is a prerequisite of most
cryptography and can be used to construct pseudorandom
generators [46]).

Yao’s XOR lemma is not useful when starting from worst-
case hard functions, i.e., when δ = 2−k. Hardness amplifica-
tion from worst-case hardness is still possible (e.g., [40, 8, 6,
7, 15, 12, 55, 59]) but is more difficult. This distinction is not
relevant to our work which, jumping ahead, proves limita-
tions on hardness amplification that already apply when am-
plifying from constant hardness δ = Ω(1) (and in particular
apply when amplifying from worst-case hardness δ = 2−k).

1.2 Black-box hardness amplification
We now explain what we mean by “standard techniques”

for proving hardness amplification theorems. To explain
this, we use the classical notion of an oracle circuit Dh(x),
where h : {0, 1}n → {0, 1}. This is simply a circuit with
special oracle gates that on input y ∈ {0, 1}n return the
value h(y) ∈ {0, 1}. We note that this notion also makes
sense when restricting the depth of the circuit D. It has
been observed several times (see, e.g., [56]) that most proofs
of hardness amplification in the literature are black-box in
the following sense.



Definition 1.2. (Black-box hardness amplifica-
tion). A δ → (1/2 − ε) black-box hardness amplification
with input lengths k and n is a pair (Amp,D) such that Amp
is a map from functions f : {0, 1}k → {0, 1} to functions
Amp(f) : {0, 1}n → {0, 1}, D is a class of oracle circuits
on k input bits (e.g., all oracle circuits of size s), and the
following holds:

For every function f : {0, 1}k → {0, 1} and every function
h : {0, 1}n → {0, 1} such that

Pr
y∈{0,1}n

[h(y) 6= Amp(f)(y)] < 1/2− ε

there is an oracle circuit D ∈ D such that

Pr
x∈{0,1}k

[
Dh(x) 6= f(x)

]
< δ.

The black-box hardness amplification is non-adaptive q-
query if every circuit D ∈ D makes q non-adaptive queries
to h. Finally, we say that a class of circuits D proves a
black-box hardness amplification (with certain parameters)
if there is a map Amp such that (Amp,D) is a black-box
hardness amplification (with the same parameters).

Why black-box hardness amplification lets us amplify
hardness.

It is instructive to verify that black-box hardness amplifi-
cation indeed lets us amplify hardness. To see this, suppose
that (Amp,D) is a q-query δ → (1/2 − ε) black-box hard-
ness amplification where D is the class of circuits of size s.
Now let f : {0, 1}k → {0, 1} be δ-hard for (the class of)
circuits of size t ≥ 2 · s. Observe that indeed the function
Amp(f) : {0, 1}n → {0, 1} is (1/2 − ε)-hard for circuits of
size t/(2 · q) (where recall q is the number of oracle queries
made by circuits in D). This is proven by a standard coun-
terpositive argument. Suppose for the sake of contradiction
that there exists a circuit h of size t/(2 · q) that computes
Amp(f) on more than a 1/2+ ε fraction of the inputs. Then
by definition of black-box hardness amplification there is a
circuit D ∈ D such that Dh computes f on more than a 1−δ
fraction of the inputs. Since D has size s and makes q oracle
queries, by replacing each query with a copy of the circuit
for h we see that Dh can be computed by a circuit of size
q · t/(2 · q) + s ≤ t/2 + s ≤ t, contradicting our assumption
that f was δ-hard for circuits of size t.

It is also instructive to remark that, in the language of
Definition 1.2, Yao’s XOR lemma is a δ → (1/2 − ε) black-
box hardness amplification (Amp,D) with input lengths k
and n, where n = O(k · log(1/ε)/δ) and D is the class of
circuits of size poly(k/(ε · δ)).

The complexity of D.
We want to stress that the complexity of the class D

plays a crucial role when deriving average-case hardness
results using a black-box hardness amplification. Specifi-
cally, to obtain hardness amplification the initial function
f : {0, 1}k → {0, 1} must be hard for a class of circuits
that contains D. This is a key point for our results which
will essentially show that D has to be at least as powerful
as TC 0, the class of constant-depth circuits with majority
gates. Thus for hardness amplification we need to start from
a lower bound against TC 0.

Non-uniformity.
Another aspect we wish to stress is the non-uniformity

of the notion of black-box hardness amplification. In Def-
inition 1.2 the circuit D ∈ D is allowed to depend arbi-
trarily on both the δ-hard function f and the function h
that approximates Amp(f). It can be shown that some non-
uniformity is necessary for black-box hardness amplification:
|D| ≥ (1/ε)Ω(1) [59]. Establishing hardness amplification
results with small non-uniformity (e.g. |D| = poly(1/ε))
is important for achieving “uniform hardness amplification
within NP” and is the focus of a lot of recent attention (see
Section 1.4 on related work). In this work we give impossi-
bility results for black-box hardness amplification and there-
fore are interested in handling any black-box hardness am-
plification, including ones which use large non-uniformity
(e.g. |D| = exp(1/ε)).

1.3 Our results
The main result of this paper applies to non-adaptive

black-box hardness amplification and can be stated infor-
mally as follows:

If a set of circuits D proves non-adaptive
δ → (1/2− ε) black-box hardness amplification

then D “can be used” to compute
majority on 1/ε bits.

(?)

The formal statement of the above result requires a bit of
notation, and is deferred to Theorem 1.6 at the end of this
section where, intuitively, we show how oracle access to the
circuitsD is sufficient to compute majority. For now we state
a qualitatively weaker result which requires less notation.
Specifically, the next theorem shows that if D proves non-
adaptive δ → (1/2 − ε) black-box hardness amplification,
then the depth of the circuits in D must be large whenever
ε is small (cf. Definition 1.2 for the definition of “proves”).
This weak form of the theorem intuitively follows from (?)
by using the well-known fact that computing the majority
function on m := 1/ε bits by circuits of depth d requires size

s ≥ exp
(
mΩ(1/d)

)
= exp

(
(1/ε)Ω(1/d)

)
, i.e. exponential in

1/ε [27, 49, 54].

Theorem 1.3. (Decoding requires majority, stated
in terms of circuit depth). Suppose that a class of non-
adaptive oracle circuits D proves a (δ = 1/3) → (1/2 − ε)
black-box hardness amplification (Amp,D) with input lengths
k and n.

Suppose that every circuit D ∈ D has size s and depth d.
Then

s ≥ min
{

exp
(
(1/ε)Ω(1/d)

)
, 2Ω(k)

}
.

In particular, Theorem 1.3 implies that poly(n)-size
constant-depth circuits (i.e., d is fixed and s = poly(n)
grows) can only prove hardness amplification up to 1/2−ε ≤
1/2−1/poly log n. This should be contrasted with standard
hardness amplifications (e.g., [20]) that show that if we do
not put any restriction on the depth of the circuits in D then
circuits of size poly(n) can prove hardness amplification up
to 1/2− 1/n.

We remark that, for constant-depth circuits, the size
bound in Theorem 1.3 is tight. This follows easily from Im-
pagliazzo’s beautiful hard-core set theorem [32] when am-
plifying from constant hardness δ = Ω(1). Moreover, Im-
pagliazzo’s result [32] conceptually matches our result (?)



by showing that computing majority on poly(1/ε) bits is
“all that is needed” for proving hardness amplification. Pre-
cisely this feature was exploited a few times in complexity
theory, for example in Klivans’ elegant work [38]. When am-
plifying from worst-case hardness δ = 2−k, the construction
by Goldwasser et al. [21]1 again matches the size bound in
our Theorem 1.3.

Our second main result is a lower bound on the number of
queries made by circuits D in any black-box hardness ampli-
fication (Amp,D). One reason for studying the number of
queries necessary for proving hardness amplification is the
loss in circuit size, i.e. the difference between the circuit sizes
that come up in the assumption and conclusion of the hard-
ness amplification theorem. The question of how much loss
is necessary has been raised a number of times (see, e.g.,
[20, 37]) but was never answered in generality until this pa-
per. Additional motivation is given in the full version of this
paper.

Theorem 1.4 (Decoding requires many queries).
There is a universal constant C > 1 such that the follow-
ing holds. Let (Amp,D) be a non-adaptive q-query
δ → (1/2− ε) black-box hardness amplification. Suppose

that log |D| ≤ 2k/C , and n, k ≥ C2, and that both δ and ε

are between 2−k/C and 1/3.
Then

q ≥ 1

C
· log(1/δ)

ε2
.

We also note that the lower bound of Theorem 1.4 is
tight (up to constants) even when only considering XOR-
lemmas. This is because Impagliazzo’s proof of the XOR-
lemma [32] can be made to work with q = O

(
log(1/δ)/ε2

)
queries matching our lower bound.2

It has been observed (see e.g. [56]) that black-box hardness
amplification is closely related to list-decodable codes. Using
this connection our results can be seen as lower bounds on
the “complexity of decoding” locally-decodable codes. We
explain this view in the full version of this paper.

XOR lemma vs. direct product: A qualitative differ-
ence.

So far we have discussed hardness amplification where the
amplified function Amp(f) is Boolean, i.e. its range is {0, 1},
and our leading example was Yao’s XOR lemma which recall
is defined as Amp(f) := f⊕t(x1, . . . , xt) = f(x1) ⊕ . . . ⊕
f(xt) ∈ {0, 1}, where ⊕ denotes exclusive-or.

Hardness amplification where the amplified function
Amp(f) : {0, 1}n → {0, 1}t is not Boolean, i.e. t ≥ 1, is
also widely studied. The first and most important exam-
ple of this is the direct product which is defined as follows
Amp(f) := f◦t(x1, . . . , xt) = f(x1) ◦ . . . ◦ f(xt) ∈ {0, 1}t,
where ◦ denotes concatenation. Recall that in XOR-lemmas
we are interested in amplifying hardness from δ to 1/2 − ε,

1See Theorem 5.20 in the full version of [21].
2The proof in Impagliazzo’s paper gives q =
O

(
log(1/εδ)/ε2

)
(when using the min-max proof for

the hard-core theorem). However, a more efficient version
(in terms of queries) of the hard-core theorem is given in
[37], and using it one can push the number of queries to
q = O(log(1/δ)/ε2).

whereas in direct-product lemmas we are interested in am-
plifying from δ to 1− ε.

The direct product and the XOR lemma, and more gener-
ally Boolean and non-Boolean hardness amplification, have
often been regarded as essentially interchangeable. In fact,
many proofs of Boolean hardness amplification proceed by
proving the direct product first and then transforming the
amplified function f◦t into a Boolean function (see, e.g., [20,
35, 55, 47, 56, 29]), often using the remarkable Goldreich-
Levin Theorem [19]. The converse, proving a direct product
lemma from an XOR lemma, is much easier [64].

By contrast, our results show that Yao’s XOR lemma and
the direct product lemma are qualitatively different.

The main difference is that the proof of Yao’s XOR lemma
requires majority, whereas the proof of the direct product
lemma does not. Specifically, our results show that if a class
D proves a (δ = 1/3) → (1/2− ε) black-box hardness ampli-
fication, such as Yao’s XOR lemma, then “D can compute
majority,” and in particular D requires either large depth or
exponential size in 1/ε (Theorem 1.3). On the other hand,
there are black-box proofs of the δ → (1− ε) direct-product
lemma that can be implemented by small constant-depth
circuits for arbitrary ε > 0. For example, this is achieved by
the proof of Goldreich et al. [20].3

Another difference can be seen in the number of queries.
The proof of the direct-product lemma in [20] uses q =
O (log(1/δ)/ε) queries, and note that for small ε this beats
our Ω

(
log(1/δ)/ε2

)
lower bound that applies to XOR lem-

mas (Theorem 1.4).
Finally, we point out that the techniques in this paper

show that q = Ω(log(1/δ)/ε) queries are necessary for black-
box proofs of the direct-product lemma (details omitted),
which again matches the upper bound in [20].

Our main result: The general form.
We now state our main result that hardness amplifica-

tion requires majority in its full generality. Previously, we
had stated a corollary of it that was tailored to circuit
depth (Theorem 1.3). The general form of our results shows
that the circuits D in a black-box hardness amplification
(Amp,D) can be used to compute the majority function by a
small constant-depth circuit. The way in which we are going
to use a circuit D ∈ D is simple and explained next. First,
let us remark that since the circuit makes non-adaptive or-
acle queries, for a fixed x ∈ {0, 1}k the output of Dh(x) is a
function Dx : {0, 1}q → {0, 1} of q evaluations of h at fixed
points y1, y2, . . . , yq ∈ {0, 1}n (again, the yi’s depend on x
only): Dh(x) = Dx(h(y1), . . . , h(yq)). Let us formally state
this key definition.

Definition 1.5. Let Dh(x) be an oracle circuit that
makes q non-adaptive queries to its oracle. For a fixed input
x we denote by Dx : {0, 1}q → {0, 1} the function that maps
the q oracle answers to the output Dh(x) ∈ {0, 1}.

We are going to show that having access to the above
functions Dx : {0, 1}q → {0, 1} for a few distinct D ∈ D and
x ∈ {0, 1}k is sufficient to compute majority.

3We remark that the proof that appears in [20] does not
directly achieve this. However, several researchers have in-
dependently observed that this is possible via a simple mod-
ification. We also mention that an unpublished manuscript
[53] gives an alternative proof of the direct-product lemma
that is also implementable by constant-depth circuits.



Theorem 1.6 (Decoding requires majority).
There is a universal constant C > 1 such that the fol-
lowing holds. Let (Amp,D) be a q-query non-adaptive
(1/2− γ) → (1/2− ε) black-box hardness amplification.

Suppose that q, log |D|, 1/γ ≤ 2k/C , and n, k ≥ C2, and that
γ ≥ 1/ log(1/ε).

Then there is a circuit of depth C and size (q/ε)C with

oracle access to (at most (q/ε)C of) the functions {Dx :
{0, 1}q → {0, 1}}D∈D,x∈{0,1}k that computes majority on in-
puts of length 1/ε.

To understand the above theorem, let us briefly see how
to obtain Theorem 1.3 from it. Suppose that D consists
of circuits of size s and depth d, that 1/2 − γ = 1/3, and
that s ≤ 2γ·k for a suitable universal constant γ. First, we
verify that the hypothesis of Theorem 1.6 is satisfied. This is
because the circuits in D make at most q ≤ s ≤ 2γ·k ≤ 2k/C

queries – where the last inequality holds for a small enough

γ – and |D| ≤ 2sO(1)
which implies log |D| ≤ sO(1) ≤ 2k/C

– where again the last inequality holds for a small enough
γ. At this point, observe that the functions Dx : {0, 1}q →
{0, 1} are also computable by circuits of size s and depth d.
Substituting these circuits for the oracle gates in the circuit
of depth C and size (q/ε)C given by the above theorem, we

obtain a circuit of depth C · d = O(d) and size (q/ε)C · s =
poly(s/ε) that computes the majority function on inputs of
length 1/ε. As we mentioned earlier, by known lower bounds
for the majority function [27, 49, 54] we obtain Theorem 1.3:

s ≥ exp
(
(1/ε)Ω(1/d)

)
.

1.4 Related work
The inapplicability of hardness amplification techniques

against low-complexity classes seems to have been observed
independently by several researchers, and is also pointed out
in [1] and in [60, Section 10]. The latter paper informally
conjectures the main result of this work that proving hard-
ness amplification requires computing majority (Theorem
1.6). A preliminary version of this work [62, Chapter 6]
proves the conjecture in the special case where the class D
in Definition 1.2 is small. The main result in this paper ad-
dresses for the first time the general case when there is no
bound on the size of D. The same preliminary version [62,
Chapter 6] also proved a qualitatively weaker lower bound
on the number of queries. We note that a recent work by Lu
et al. [44] addresses the necessity of both majority and many
queries in proofs of Impagliazzo’s hard-core set theorem [32].
Specifically, [44] introduces two notions of black-box proof of
the hard-core set theorem, and shows that one proof cannot
be implemented by small constant-depth circuits, and that
the other requires many oracle queries. Their arguments
only apply to proofs of the hard-core set theorem, whereas
our work addresses arbitrary black-box hardness amplifica-
tion.

We remark that there is a variety of features that it is
interesting to study and optimize of q-query δ → (1/2 −
ε) hardness amplification (Amp,D) with input lengths k, n.
We discuss the most relevant ones next.

Optimizing the ratio between k and n: E.g. [7, 32, 35,
55]. This is in particular relevant to obtain conclusions
such as P = BPP under the assumption that E requires
exponential-size circuits [35].

Optimizing |D| = advice = list size: [36, 55, 59, 56, 58,

33, 34]. This is in particular relevant when D is a class of
uniform machines (as opposed to circuits).

Optimizing the number of queries q: [32, 37], as well as
the literature on locally-decodable codes (see, e.g., [57]). As
discussed in Section 1.1, this is particularly relevant to the
loss in circuit size incurred by hardness amplification.

The complexity of Amp: [47, 56, 60, 61, 58, 29, 39, 43, 41,
42] This line of research is orthogonal to this paper which
studies the complexity of D and does not place any restric-
tion on Amp. For context, we mention that the complexity
of Amp is a key issue when we want to guarantee that the
amplified function Amp(f) lies in a specific class whenever
the starting function f does. An example of this is the line
of work on hardness amplification within NP [47, 56, 29, 58,
43] which started with the remarkable result by O’Donnell
[47].

Relaxed definitions of hardness amplification: There are
other works that study different, less demanding models of
hardness amplification which are tailored to important ques-
tions such as worst-case to average-case connections within
NP [10, 9, 61]. These works are incomparable with ours, one
key difference being that they impose computational restric-
tions on the starting function f and the amplified function
Amp(f), whereas our results do not.

Finally, we would like to mention that there is a long line
of research that is devoted to proving average-case hardness
results for circuit classes below TC 0, e.g. [27, 25, 38, 4, 11,
23, 64]. With a few exceptions (discussed below) this re-
search has been independent of hardness amplification, and
our results may be interpreted as a partial explanation for
this independence. The work by Klivans [38] stands out.
Exploiting precisely the fact that computing majority is all
that is needed for hardness amplification, Klivans uses a
lower bound for constant-depth circuits with one majority
gate [5] to give an alternative proof of the strong average-
case hardness of parity for constant-depth circuits without
majority gates. We remark that [38] does not contradict the
results in this paper, but rather matches them by showing
that a lower bound for a class with majority gates is suffi-
cient for hardness amplification; see the full version of this
paper for more on the status of lower bounds for constant-
depth circuits with few (e.g. one) majority gates.

2. OVERVIEW OF THE PROOF
In this section we give a high level overview of the ideas

that come into the proofs of our main results (Theorems
1.6,1.4). Within this section we allow ourselves to oversim-
plify and ignore some technicalities; the reader is referred to
the formal proofs for precise details.

The Zoom Theorem.
Both the result about the necessity of majority (Theorem

1.6) and our lower bound on the number of queries (Theorem
1.4) rely on a theorem that we call“the Zoom Theorem.” Let
us first recall the setup. We are given a non-adaptive q-query
δ → (1/2 − ε) black-box hardness amplification (Amp,D)
where Amp maps functions f : {0, 1}k → {0, 1} into func-

tions Amp(f) : {0, 1}n → {0, 1} (think n = kO(1)). Recall
that D is a class of oracle circuits and that for any circuit
D ∈ D and input x ∈ {0, 1}k, Definition 1.5 defines a func-
tion Dx : {0, 1}q → {0, 1} which captures the way D uses
the answer to its q oracle queries to compute its output.



An informal statement of the Zoom Theorem follows (see
Theorem 3.2 for a precise statement).

Informal Theorem 2.1 (Zoom Theorem). There
exists a circuit D ∈ D and an input x ∈ {0, 1}k such that
there is a function T : {0, 1}q → {0, 1} of roughly the same
complexity as Dx that satisfies:

1. Pr[T (N1
1/2, . . . , N

q
1/2) = 1] ≥ 0.49, where

(N1
1/2, . . . , N

q
1/2) is a vector of q independent bits

with probability of being 1 equal to 1/2 (i.e., the vector
is uniform in {0, 1}q).

2. Pr[T (N1
1/2−ε, . . . , N

q
1/2−ε) = 1] ≤ 2δ, where

(N1
1/2−ε, . . . , N

q
1/2−ε) is a vector of q independent bits

with probability of being 1 equal to 1/2− ε.

We refer to the distributions (N1
1/2, . . . , N

q
1/2) and

(N1
1/2−ε, . . . , N

q
1/2−ε) above as“uniform noise”and“bounded

noise,” respectively. Loosely speaking, the theorem says that
T (which has the same complexity as circuits in D) distin-
guishes between uniform noise and bounded noise.

Usefulness of the Zoom Theorem.
Our two main results follow from the Zoom Theorem. On

an intuitive level, it seems that the natural way to decide
whether a string w ∈ {0, 1}q was chosen according to uni-
form noise or according to bounded noise is to compute the
Hamming weight of w (which we denote by weight(w)) and
decide according to whether weight(w) ≤ (1/2−ε/2)q. Note
that if T implements this strategy then it can indeed be
used to compute majority. Furthermore note that when im-
plementing this strategy, a Chernoff-style bound shows that
q = O(log(1/δ)/ε2) independent variables are sufficient in
order to distinguish uniform noise from bounded noise (at
rate 1/2−ε) with confidence 1−δ. Our bound on the number
of queries essentially follows from the fact that this bound
on q is tight.

Let us be more precise in explaining how the “necessity of
majority”Theorem 1.6 follows from the Zoom Theorem. We
would like to argue that T can be used to compute majority
on inputs z of length ` := 1/ε. For simplicity, we explain
how to use T to accomplish a slightly easier task, namely
distinguishing between inputs z with weight(z) = `/2 and
inputs z with weight(z) = `/2 − 1 (in the formal proof we
essentially show that computing majority can be reduced to
this simpler task). Given an input z ∈ {0, 1}` we generate a
string w ∈ {0, 1}q where wi is obtained by picking a random
index j ∈ [`] and setting wi = zj . In words, each bit in w
is filled with a bit from a random position in z. Note that
if weight(z) = `/2 then w is distributed like uniform noise,
whereas if weight(z) = `/2 − 1 then w is distributed like
bounded noise, because weight(z)/` = 1/2− 1/` = 1/2− ε.
It follows that we can use T to distinguish between the two
cases (and recall that T has roughly the same complexity as
circuits in D).

This key idea was communicated to us by Madhu Sudan.
Finally, we point out that although the above reduction

is randomized, at the end we obtain a deterministic circuit
that computes majority. For this we also exploit that the
relevant probabilities in the above reduction are sufficiently
bounded away that they can be amplified using circuits of
constant-depth by the result [2] (see also [3, 63]).

2.1 Proving the Zoom Theorem when D con-
tains a single circuit

The proof of the Zoom Theorem is the main technical con-
tribution of this paper. What makes this problem challeng-
ing is that the class D can be very large (e.g. |D| = exp(k)).
We explain how we handle such large D later on. As a warm-
up, we outline of the argument in the case that D contains
only one circuit D. We consider a probability space with
four independent random variables:

• A uniformly chosen function F : {0, 1}k → {0, 1}. We
think of F as the original hard function.

• An input X ∈ {0, 1}k that is uniformly distributed.
We think of X as a random input to F .

• A uniformly chosen function UN : {0, 1}n → {0, 1}.
We refer to UN as “uniform noise function.”

• A function BN : {0, 1}n → {0, 1} where for every y ∈
{0, 1}n, BN(y) is an independent bit with probability
of being 1 equal to 1/2−ε. We refer to BN as“bounded
noise function.”

We first consider the setting in which D is run with oracle
Amp(F )⊕UN . (This is an oracle that on input y ∈ {0, 1}n

returns Amp(F )(y)⊕ UN(y)). Note that the uniform noise
function UN “masks out” the values of Amp(F ) and there-
fore the circuit D receives no information about F . Thus, D
cannot possibly compute a function that is correlated with
F :

Pr
[
DAmp(F )⊕UN (X) 6= F (X)

]
= Pr

[
DUN (X) 6= F (X)

]
≥ 0.49. (1)

We also consider the setting in which D is run with oracle
Amp(F )⊕BN . (This is an oracle that on input y ∈ {0, 1}n

returns Amp(F )(y) ⊕ BN(y)). Since BN corresponds to
bounded noise at rate 1/2−ε, we have that this oracle agrees
with Amp(F ) on a (1/2+ε) fraction of inputs and therefore,
by the definition of black-box hardness amplification:

Pr
[
DAmp(F )⊕BN (X) 6= F (X)

]
≤ δ. (2)

Intuitively, the inequalities (1), (2) are going to translate
into the two items of the Zoom Theorem. We now explain
this part of the argument. Let us examine the computation
of D on an input x ∈ {0, 1}k with the two different oracles:
In both cases D prepares the same q queries y1, . . . , yq ∈
{0, 1}n to the oracle and receives answers a1, . . . , aq from the
oracle. It then outputs Dx(a1, . . . , aq). The high level idea
is that when run on random X ∈ {0, 1}k, DX distinguishes
between the two oracles and therefore distinguishes between
uniform noise and bounded noise. More precisely, by an
averaging argument we can fix the random variables F and
X and obtain a fixed function T that essentially equals DX

and distinguishes between bounded noise and uniform noise.

2.2 Extending the argument to the case when
D is large

We would like to imitate the proof above when the class D
contains many circuits. For concreteness let us assume that

D contains 2k2
circuits, i.e. |D| = exp

(
k2

)
. In this general

case the definition of black-box hardness amplification only
says that for any choice of f, h where h agrees with Amp(f)



on a (1/2+ ε) fraction of inputs there exists a circuit D ∈ D
such that Dh agrees with f on a 1 − δ fraction of inputs.
Note that the circuit D is a function of both f and h, and
let us denote this function by circuit(f, h).

We would like to imitate the previous argument. However,
when we use oracle Amp(F )⊕BN , we do not know which cir-
cuit D ∈ D is the “correct circuit”, i.e. circuit(F,Amp(F )⊕
BN). More formally, we have that circuit(F,Amp(F )⊕BN)
is a random variable that in particular depends on BN . In
the previous argument we applied a fixed function Dx on the
answers a1, . . . , aq that were returned by the oracle. How-
ever, the function Dx for D = circuit(F,Amp(F ) ⊕ BN)
that we want to apply on a1, . . . , aq is now a random variable
that depends on a1, . . . , aq and we cannot use the argument
above.

Going back to the case of a single circuit.
To avoid the aforementioned problem we start by fixing

the random variable circuit(F,Amp(F ) ⊕ BN) to its most
likely value. That is, let D be the most likely value of
circuit(F,Amp(F ) ⊕ BN) and let E = E(F, BN) be the
event

E := {circuit(F,Amp(F )⊕BN) = D} .

Note that the probability of E is at least 1/|D| =

2−k2
(which is small but not too small). We have that

circuit(F,Amp(F ) ⊕ BN) is fixed in E (which means that
in E we only need to consider one fixed circuit D). From
now on we restrict our attention to E. That is, let F ′, BN ′

denote the distribution of F, BN when conditioned on the
event E. Note that this conditioning can skew the distri-
bution of F ′, BN ′ and that these variables are no longer
distributed like the original variables F, BN and in partic-
ular may become dependent. For the purpose of explaining
the argument let us assume the unjustified assumption that
F ′ and BN ′ are independent. (In the actual argument we
bypass this problem by fixing F to some fixed function f
before conditioning on the event E).

We would like to imitate the argument of the previous
section in this new probability space. Indeed, we are back
to dealing with one fixed circuit D. However, the previous
argument critically relies on properties of BN : Most no-
tably that for any y1, . . . , yq ∈ {0, 1}n, the random variable
(BN(y1), . . . , BN(yq)) is distributed like bounded noise.
This may not necessarily hold for BN ′.

An information-theoretic lemma.
In order to handle this problem, we use the following

Lemma (stated informally; cf. the full version of this work
for a precise statement).

Informal Lemma 2.2. Let V1, . . . , Vt be independent and
identically distributed random variables. Let E be an event
whose probability is “not too small.” Then for any inte-
ger q there exists a “large” set G ⊆ [t] such that for ev-
ery i1, . . . , iq ∈ G, the distribution (Vi1 , . . . , Viq ) “does not
change significantly” when conditioning on E.

This lemma can be viewed as a generalization of a Lemma
by Raz (in which q = 1) that is used in his parallel repetition
theorem [48]. We have recently found out that this lemma
follows easily from the results in [14, Section 4].

We apply the lemma to the random variables
{BN(y)}y∈{0,1}n . We conclude that there exists a

large set G ⊆ {0, 1}n such that for any y1, . . . , yq ∈ G the
variable

(BN ′(y1), . . . , BN ′(yq))

is statistically close to

(BN(y1), . . . , BN(yq)).

This lemma intuitively helps us recover the previous argu-
ment in the new probability space: We consider the opera-

tion of DAmp(F ′)⊕BN′
on an input x ∈ {0, 1}k. If the queries

y1, . . . , yq ∈ {0, 1}n that D makes are all in the “good set”
G, then the rest of the proof essentially goes through. This
is because on these q queries the distribution of the bounded
noise function is statistically close to its initial distribution
and we can continue with the previous argument.

However, even though the set G of “good queries” is large,
it may be the case that on every input x ∈ {0, 1}k , D makes
a“bad query”y′ 6∈ G. We have no control on the distribution
BN ′(y′) when y′ 6∈ G; for example, it may be correlated
with the value of BN ′ on another query y, and so we cannot
relate this distribution to that of bounded noise (in which
different coordinates are independent and distributed in the
same way).

Fixing bad queries.
In order to address this issue we further refine the proba-

bility space by fixing the value of BN ′ at some bad queries.
The high level idea is that by fixing the bounded noise func-
tion on these queries we “remove dependencies” between the
answers that the circuit D sees when making its queries.
This part of the argument is more technical and we will not
describe it in detail. However, we point out that fixing bad
queries is a tricky business as whenever we fix a bad query
we change the probability space, which in turn skews the
distribution of the bounded noise function and may result
in introducing new bad queries (and it seems that we make
no progress as we can never fully get rid of bad queries).
In the actual argument we fix the bounded noise function
only on those queries that are heavy in the sense that they
are “asked frequently” by D. The rationale is that even if
fixing the bounded noise function on these queries skews
the distribution and introduces new bad queries we do make
progress as the new bad queries are queries that are not
asked frequently by D. Finally, we argue that bad queries
that are not asked frequently by D do not hurt us too much
when implementing the initial argument (because on an in-
tuitive level, this means that D asks good queries “most of
the time”).

One technical point that we want to make is that for im-
plementing the approach above we must make sure that the
number of bad queries that are introduced after fixing the
frequent queries does not depend on the number of frequent
queries that we fix. This is because in the actual argument
we do a union bound over all bad queries and argue that
the probability that a random input queries any bad query
(that is not already fixed) is low. This allows us to ignore
bad queries as the weight of inputs which query bad queries
is small.

3. THE ZOOM THEOREM
Both our result about the necessity of majority (Theorem

1.6) and our lower bound on the number of queries (Theorem



1.4) rely on a theorem which we call the “Zoom Theorem”
and is our main technical contribution. In this section we
state this theorem formally; we refer the reader to the full
version of this paper for a proof of the zoom theorem and
for the proofs of our main theorems from the zoom theorem.
The Zoom Theorem shows that given a non-adaptive q-query
black-box δ → (1/2−ε) hardness amplification (Amp,D) we
can“zoom in”on a particular function Dx : {0, 1}q → {0, 1},
where D ∈ D, x ∈ {0, 1}k (cf. Definition 1.5 for the definition
of Dx) that is distinguishing noise rate 1/2 from noise rate
1/2 − ε. The distinguisher will not quite be a function Dx

but rather (a distribution on) projections of such functions,
which are simply functions that can be obtained from Dx by
fixing some input variables to constants and complementing
others. We give the formal definition of a projection and
then we state the zoom theorem.

Definition 3.1. Let d = d(y1, . . . , yq) : {0, 1}q → {0, 1}
be a function. A projection of d is a function d′ : {0, 1}q →
{0, 1} that can be obtained from d by fixing some in-
put variables to constants and complementing others, and
possibly complementing the output. Formally, there are
a1, . . . , aq, b1, . . . , bq, c ∈ {0, 1} such that for any y1, . . . , yq ∈
{0, 1}, d′(y1, . . . , yq) = d((y1 ·a1)⊕ b1, . . . , (yq ·aq)⊕ bq)⊕ c.

Theorem 3.2 (Zoom theorem). There is a universal
constant C > 1 such that the following holds. Let (Amp,D)
be a non-adaptive q-query δ → (1/2− ε) hardness amplifica-

tion scheme. Suppose that q, log |D| ≤ 2k/C , and n, k ≥ C2.
Then there is a distribution T on functions t : {0, 1}q →

{0, 1} such that

1. PrT,N1
1/2,...,N

q
1/2

[T (N1
1/2, . . . , N

q
1/2) = 1] ≥ 1/2−2−k/C ,

where (N1
1/2, . . . , N

q
1/2) is a vector of q independent bits

with probability of being 1 equal to 1/2 (i.e., the vector
is uniform in {0, 1}q),

2. PrT,N1
1/2−ε

,...,N
q
1/2−ε

[T (N1
1/2−ε, . . . , N

q
1/2−ε) = 1] ≤ δ +

2−k/C , where (N1
1/2−ε, . . . , N

q
1/2−ε) is a vector of q in-

dependent bits with probability of being 1 equal to 1/2−
ε, and

3. each t ∈ T is a projection of a function Dx for some
D ∈ D and x ∈ {0, 1}k. I.e., every t ∈ T can be
obtained from Dx for some D ∈ D, x ∈ {0, 1}k by fixing
some input variables to constants and complementing
others, and possibly complementing the output.

4. OPEN PROBLEMS
One weakness of our result is that we can only handle

black-box hardness amplification which use nonadaptive cir-
cuits. While to the best of our knowledge most known black-
box hardness amplification results use nonadaptive circuits,
it is an interesting open problem to extend the results in this
work to the case of adaptive circuits. We remark that, for
some specific functions Amp, the techniques in this work
already give some results on adaptive circuits when the
amount of non-uniformity |D| of the black-box hardness am-
plification is small (e.g., |D| = poly(1/ε)). In particular,
one can show that achieving the parameters of the hard-
ness amplification in [19] (based on the Hadamard code) or
the parameters of the hardness amplification in [55] (based

on Reed-Muller codes), requires computing majority. The
details of these results appear in [62, Chapter 6].

Another problem that deserves more investigation is
whether something similar to our results can be said about
pseudorandom generator constructions. For example, is
computing majority necessary for a black-box construction
of a pseudorandom generator with constant error from a
(1/3)-hard function?
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Computer Science, 2(1), 2006.

[10] A. Bogdanov and L. Trevisan. On worst-case to
average-case reductions for np problems. SIAM J.
Comput., 36(4):1119–1159, 2006.

[11] J. Bourgain. Estimation of certain exponential sums
arising in complexity theory. C. R. Math. Acad. Sci.



Paris, 340(9):627–631, 2005.

[12] J.-Y. Cai, A. Pavan, and D. Sivakumar. On the
hardness of the permanent. In 16th International
Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science, Volume
1563, pages 90–99, Trier, Germany, 1999.
Springer-Verlag.

[13] R. Canetti, G. Even, and O. Goldreich. Lower bounds
for sampling algorithms for estimating the average.
Information Processing Letters, 53(1):17–25, 1995.

[14] J. Edmonds, R. Impagliazzo, S. Rudich, and J. Sgall.
Communication complexity towards lower bounds on
circuit depth. Computational Complexity,
10(3):210–246, 2001.

[15] U. Feige and C. Lund. On the hardness of computing
the permanent of random matrices. Computational
Complexity, 6(2):101–132, 1996.

[16] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits,
and the polynomial-time hierarchy. Mathematical
Systems Theory, 17(1):13–27, April 1984.

[17] O. Goldreich. Modern cryptography, probabilistic proofs
and pseudorandomness, volume 17 of Algorithms and
Combinatorics. Springer-Verlag, Berlin, 1999.

[18] O. Goldreich. Foundations of Cryptography: Volume 1,
Basic Tools. Cambridge University Press, Cambridge,
2001.

[19] O. Goldreich and L. A. Levin. A hard-core predicate
for all one-way functions. In Proceedings of the Twenty
First Annual ACM Symposium on Theory of
Computing, pages 25–32, Seattle, Washington, 15–17
May 1989.

[20] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s
XOR lemma. Technical Report TR95–050, Electronic
Colloquium on Computational Complexity, March
1995. http://www.eccc.uni-trier.de/eccc.

[21] S. Goldwasser, D. Gutfreund, A. Healy, T. Kaufman,
and G. N. Rothblum. Verifying and decoding in
constant depth. In STOC, pages 440–449, 2007.

[22] P. Gopalan and V. Guruswami. Hardness amplification
within np against deterministic algorithms. In
Proceedings of the 23nd Annual Conference on
Computational Complexity. IEEE, June 23–26 2008.

[23] F. Green, A. Roy, and H. Straubing. Bounds on an
exponential sum arising in Boolean circuit complexity.
C. R. Math. Acad. Sci. Paris, 341(5):279–282, 2005.

[24] V. Guruswami and V. Kabanets. Hardness
amplification via space-efficient direct products. In
J. R. Correa, A. Hevia, and M. A. Kiwi, editors,
LATIN, volume 3887 of Lecture Notes in Computer
Science, pages 556–568. Springer, 2006.

[25] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and
G. Turán. Threshold circuits of bounded depth. J.
Comput. System Sci., 46(2):129–154, 1993.

[26] K. A. Hansen and P. B. Miltersen. Some
meet-in-the-middle circuit lower bounds. In
Proceedings of the 29th International Symposium on
Mathematical Foundations of Computer Science
(MFCS), Lecture Notes in Computer Science, Volume
3153, pages 334 – 345, August 22–27 2004.

[27] J. H̊astad. Computational limitations of small-depth
circuits. MIT Press, 1987.

[28] J. H̊astad and M. Goldmann. On the power of
small-depth threshold circuits. Comput. Complexity,
1(2):113–129, 1991.

[29] A. Healy, S. P. Vadhan, and E. Viola. Using
nondeterminism to amplify hardness. SIAM J.
Comput., 35(4):903–931, 2006.

[30] IEEE. Proceedings of the 20th Annual Conference on
Computational Complexity, June 12–15 2005.

[31] IEEE. Proceedings of the 22nd Annual Conference on
Computational Complexity, June 13–16 2007.

[32] R. Impagliazzo. Hard-core distributions for somewhat
hard problems. In 36th Annual Symposium on
Foundations of Computer Science, pages 538–545,
Milwaukee, Wisconsin, 23–25 Oct. 1995. IEEE.

[33] R. Impagliazzo, R. Jaiswal, and V. Kabanets.
Approximately list-decoding direct product codes and
uniform hardness amplification. In FOCS, pages
187–196. IEEE Computer Society, 2006.

[34] R. Impagliazzo, R. Jaiswal, V. Kabanets, and
A. Wigderson. Uniform direct-product theorems:
Simplified, optimized, and derandomized. In
Proceedings of the 40th Annual ACM Symposium on
the Theory of Computing (STOC), Victoria, Canada,
17–20 May 2008.

[35] R. Impagliazzo and A. Wigderson. P = BPP if E
requires exponential circuits: Derandomizing the XOR
lemma. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 220–229,
El Paso, Texas, 4–6 May 1997.

[36] R. Impagliazzo and A. Wigderson. Randomness vs
time: derandomization under a uniform assumption.
J. Comput. System Sci., 63(4):672–688, 2001. Special
issue on FOCS 98.

[37] A. Klivans and R. A. Servedio. Boosting and hard-core
sets. Machine Learning, 53(3):217–238, 2003.

[38] A. R. Klivans. On the derandomization of constant
depth circuits. In Proceedings of the Fifth
International Workshop on Randomization and
Approximation Techniques in Computer Science,
August 18–20 2001.

[39] H. Lin, L. Trevisan, and H. Wee. On hardness
amplification of one-way functions. In J. Kilian,
editor, TCC, volume 3378 of Lecture Notes in
Computer Science, pages 34–49. Springer, 2005.

[40] R. Lipton. New directions in testing. In Proceedings of
DIMACS Workshop on Distributed Computing and
Cryptography, volume 2, pages 191–202. ACM/AMS,
1991.

[41] C.-J. Lu, S.-C. Tsai, and H.-L. Wu. On the complexity
of hardness amplification. In Proceedings of the 20th
Annual Conference on Computational Complexity [30],
pages 170–182.

[42] C.-J. Lu, S.-C. Tsai, and H.-L. Wu. Impossibility
results on weakly black-box hardness amplification. In
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