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Abstract

In 1998, Impagliazzo and Wigderson [IW98] proved a hardness vs. randomness tradeoff for BPP
in theuniform setting, which was subsequently extended to give optimal tradeoffs for the full range of
possible hardness assumptions (in slightly weaker settings). In 2003, Gutfreund, Shaltiel and Ta-Shma
[GSTS03] proved a uniform hardness vs. randomness tradeoff for AM, but that result only worked on
the “high-end” of possible hardness assumptions.

In this work, we give uniform hardness vs. randomness tradeoffs for AM that are near-optimal for the
full range of possible hardness assumptions. Following [GSTS03], we do this by constructing a hitting-
set-generator (HSG) for AM with “resilient reconstruction.” Our construction is a recursive variant
of the Miltersen-Vinodchandran HSG [MV05], the only known HSG construction with this required
property. The main new idea is to have the reconstruction procedure operate implicitly and locally on
superpolynomially large objects, using tools from PCPs (low-degree testing, self-correction) together
with a novel use of extractors that are built from Reed-Muller codes for a sort of locally-computable
error-reduction.

As a consequence we obtain gap theorems for AM (and AM∩ coAM) that state, roughly, that either
AM (or AM ∩ coAM) protocols running in timet(n) can simulate all of EXP (“Arthur-Merlin games
are powerful”), or else all of AM (or AM∩ coAM) can be simulated in nondeterministic times(n)
(“Arthur-Merlin games can be derandomized”), for a near-optimal relationship betweent(n) ands(n).
As in [GSTS03], the case of AM∩ coAM yields a particularly clean theorem that is of special interest
due to the wide array of cryptographic and other problems that lie in this class.

1 Introduction

A fundamental question of complexity theory concerns the power of randomized algorithms: Is it true that
every randomized algorithm can be simulated deterministically with small (say, subexponential) slowdown?
Ideally, is a polynomial slowdown possible – i.e., is BPP= P? The analogous question regarding the
power of randomness in Arthur-Merlin protocols is: Is it true that every Arthur-Merlin protocol can be
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simulated by a nondeterministic machine with small slowdown? Is a polynomial slowdown possible – i.e.,
does AM = NP? We refer to efforts to answer the first set of questions positively as “derandomizing
BPP” and efforts to answer the second set of questions positively as “derandomizing AM”. Recent work
[IKW02, KI04] has shown that derandomizing BPP or AM entails proving certain circuit lower bounds that
currently seem well beyond our reach.

1.1 The hardness versus randomness paradigm

An influential line of research initiated by [BM84, Yao82, NW94] tries to achieve derandomizationunder the
assumptionthat certain hard functions exist, thus circumventing the need for proving circuit lower bounds.
More precisely, we will work with hardness assumptions concerning the circuit complexity of functions
computable in exponential time1. Derandomizing BPP can be done with lower bounds against sizes(`)
deterministic circuits while derandomizing AM typically requires lower bounds against sizes(`) nondeter-
ministiccircuits, wherè is the input length of the hard function. Naturally, stronger assumptions – higher
values ofs(`) – give stronger conclusions, i.e., more efficient derandomization. There are two extremes of
this range of tradeoffs: In the “high end” of hardness assumptions one assumes hardness against circuits of
very large sizes(`) = 2Ω(`) and can obtain “full derandomization,” i.e., BPP= P [IW97] or AM = NP
[MV05]. While in the “low-end” one assumes hardness against smaller circuits of sizes(`) = poly(`)
and can conclude “weak derandomization,” i.e., simulations of BPP (resp. AM) that run in subexponential
deterministic (resp. nondeterministic subexponential) time [BFNW93, SU05b]. Today, after a long line of
research [NW94, BFNW93, Imp95, IW97, AK01, KvM02, MV05, ISW06, SU05b, Uma03, SU05a, Uma05]
we have optimal hardness versus randomness tradeoffs for both BPP and AM that achieve “optimal param-
eters” in thenon-uniformsetting (see the discussion of non-uniform vs. uniform below).

1.2 Pseudorandom generators and hitting set generators

The known hardness versus randomness tradeoffs are all achieved by constructing apseudorandom gener-
ator (PRG). This is a deterministic functionG which on inputm, produces a small set ofT m-bit strings
in time poly(T ), with the property that a randomly chosen string from this set cannot be efficiently distin-
guished from a uniformly chosenm-bit string2. In this paper we are interested in a weaker variant of a
pseudorandom generator called ahitting set generator(HSG). A functionG is a HSG against a family of
circuits onm variables, if any circuit in the family which accepts at least1/3 of its inputs also accepts one of
them-bit output strings ofG (when run with inputm). It is standard that given a HSG against deterministic
(resp. co-nondeterministic) circuits of size poly(m) one can derandomize RP (resp. AM) in time poly(T )
by simulating the algorithm (resp. protocol) on all strings output by the HSG, and accepting if at least one
of the runs accepts. It is also known that HSGs against deterministic circuits suffice to derandomize two
sided error (BPP) [ACR96, ACRT99].

The proofs of the aforementioned hardness versus randomness tradeoffs are all composed of two parts:
first, they give an efficient way to generate a set of strings (the output of the PRG or HSG) when given access
to some functionf . Second, they give areductionshowing that if the intended derandomization using this
set of strings fails, then the functionf can be computed by a small circuit, which then contradicts the initial

1This type of assumption was introduced by [NW94] whereas the initial papers [BM84, Yao82] relied on cryptographic as-
sumptions. In this paper we are interested in derandomizing AM which cannot be achieved by the “cryptographic” line of hardness
versus randomness tradeoffs.

2An alternative formulation is to think ofG as a function that takes at = log T bit “seed” as input and outputs the element in
T indexed by the seed.
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hardness assumption when takingf to be the characteristic function of an EXP complete problem. We now
focus on the reduction part. An easy first step is that an inputx (to the randomized algorithm or AM protocol)
on which the intended derandomization fails gives rise to a small circuitDx that “catches” the generator,
i.e.,Dx accepts at least 1/3 of its inputs, but none of the strings in the generator output. (The obtained circuit
Dx is a deterministic circuit when attempting to derandomize BPP and a co-nondeterministic circuit when
attempting to derandomize AM). The main part of all the proofs is to then give a reduction that transforms
this circuitDx into a small circuitC that computesf .

1.3 Uniform hardness versus randomness tradeoffs

All the aforementioned hardness versus randomness tradeoffs arenonuniform tradeoffsbecause the reduc-
tion in the proof is nonuniform: givenDx it only shows the existence of a small circuitC that computes
f , but doesn’t give an efficient uniform procedure to produce it. (In other words, the reduction relies on
nonuniform advice when transformingDx into C). We remark that all the aforementioned results are “fully
black-box” (meaning that they do not use any properties of the hard functionf or circuit Dx) and it was
shown in [TV02] that any hardness versus randomness tradeoff that is “fully black box” cannot have a
uniform reduction.

A non-black boxuniform reduction for derandomizing BPP in the low-end was given in [IW98]. This
reduction gives auniform randomized poly-time algorithm (sometimes called areconstruction algorithm)
for transforming a circuitDx that catches the generator into a circuitC that computes the functionf . It
follows that if the intended derandomization fails, and if furthermore one canfeasibly generatean inputx
on which it fails (by a uniform computation), then one can use the uniform reduction to construct the circuit
C in probabilistic polynomial time, which in turn implies thatf is computable in BPP. (This should be
compared to the non-uniform setting in which one would get thatf is in P/poly). An attractive feature
of this result is that it can be interpreted as a (low-end)gap theoremfor BPP that asserts the following:
Either randomized algorithms are somewhat weak (in the sense that they can be simulated deterministically
in subexponential time on feasibly generated inputs) or else they are very strong (in the sense that they can
compute any function in EXP).3 Obtaining a high-end version of this result is still open. In [TV02] it was
shown how to get a high-end tradeoff in the slightly weaker setting where the hard functionf is computable
in polynomial space rather than exponential time.

1.4 Uniform hardness versus randomness tradeoffs for AM

A non-black-box uniform reduction for derandomizing AM in the high-end was given in [GSTS03]. It
yields gap theorems for both AM and AM∩coAM. The gap theorem for AM is analogous to that of [IW98]
(except that it concerns the high-end and not the low end); it asserts: Either Arthur-Merlin protocols are very
weak (in the sense that they can be simulated non-deterministically in polynomial time on feasibly generated
inputs) or else they are somewhat strong (in the sense that they can simulate E= DTIME(2O(`)) in time
2o(`) ). The gap theorem for AM∩ coAM gives the same result with “AM” replaced by “AM∩ coAM.”
The statement is in fact cleaner for AM∩ coAM because it does not mention feasibly generated inputs, and
instead applies toall inputs.

The result of [GSTS03] relies on identifying a certain “resiliency property” of an HSG construction of
[MV05] (constructed for the nonuniform setting) and on “instance checking” [BK95], which was previously
used in this context by [BFL91, BFNW93, TV02]. While it gives a high-end result it does not generalize to

3To state this result formally one needs a precise definition of “feasibly generated inputs”. The actual result also involves
“infinitely often” quantifiers which we will ignore in this informal introduction.
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the low-end because the HSG construction of [MV05] works only in the high end. We remark that there is
an alternative construction (in the nonuniform setting) of [SU05b] that does work in the low-end but does
not have the crucial resiliency property.

1.5 Our result: low-end uniform hardness versus randomness tradeoffs for AM

In this paper we obtain a resilient HSG (with a uniform reduction proving its correctness) that works over
a larger domain of parameters and covers a wide range of hardness assumptions (coming very close to the
absolute low-end). Using our result we extend the gap theorems of [GSTS03] as follows (for a formal
statement of the two Theorems below see Theorems 2.4 and 2.5 in Section 2):

Theorem (informal) 1.1. Either E = DTIME(2O(`)) is computable by Arthur-Merlin protocols with time
s(`) or for any AM languageL there is a nondeterministic machineM that runs in time exponential iǹ

and solvesL correctly onfeasibly generated inputsof lengthn = s(`)Θ(1/(log `−log log s(`))2).

The second Theorem below achieves a clean statement that works for all inputs (rather than feasibly
generated inputs). However, this is only achieved for AM∩ coAM.

Theorem (informal) 1.2. Either E = DTIME(2O(`)) is computable by Arthur-Merlin protocols with time
s(`) or for any AM∩ coAM languageL there is a nondeterministic (and co-nondeterministic) machineM

that runs in time exponential iǹand solvesL correctly onall inputs of lengthn = s(`)Θ(1/(log `−log log s(`))2).

Note that in the two theorems above we use a nonstandard way of measuring the running time of the ma-
chineM . This is because it is not possible to express the running time ofM as a function of its input length
in a closed form that covers all the possible choices ofs(`). It may be helpful to view the consequences
for some particular choices ofs(`) and then express the running time of the nondeterministic machine as a
function of the length ofits input.

• Fors(`) = 2Ω(`) (the high-end) the nondeterministic machine runs in polynomial time in the length of
its input. This is exactly the same behavior as in [GSTS03]. Thus, our results truly extend [GSTS03].
We comment that the techniques of [GSTS03] don’t work whens(`) < 2

√
`.

• For s(`) = 2`δ
and constantδ > 0, the nondeterministic machine runs in timeexp((log n)O(1/δ)) on

inputs of lengthn.

• Fors(`) = 2O(loga `) and constanta > 3, the nondeterministic machine runs in time subexponential in
the length of its input. Thea > 3 requirement is suboptimal as we can hope to get the same behavior
even whena ≥ 1 (which is the absolute low-end).

A discussion regarding the best possible parameters that can be expected in hardness versus randomness
tradeoffs appears in [ISW06]. Our results are suboptimal in the sense that one could hope to getn = s(`)Ω(1)

whereas we only getn = s(`)Ω(1/(log `−log log s(`))2). Note that this is indeed optimal in the high-end, where
s(`) = 2Ω(`). However, it becomes suboptimal whens(`) is smaller. Another effect of this problem is that
while we can hope for hardness versus randomness tradeoffs that start working as soon ass(`) = 2ω(log `)

(the “absolute low-end”), our results only start working whens(`) > 2(log `)3 .
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1.6 Our techniques

The source of our improvement over [GSTS03] is that we replace the hitting set generator of [MV05] (that
only works in the high-end) with a new construction of a generator. The new generator and its proof of
correctness build on the previous construction of [MV05] while introducing several new ideas. We give a
detailed informal overview of the ingredients and ideas that come up in our construction in Section 5.1.

On a very high level we can identify three new ideas in our construction. First, we use techniques from
PCPs (low-degree testing and self-correction) to speed up certain steps in the reduction establishing the
correctness of [MV05], so that they run in sublinear time in the size of their input. Although it has long been
observed that there is some similarity between aspects of PCP constructions and aspects of PRG and HSG
constructions, this seems to be the first time primitives like low-degree testing have proven useful in such
constructions. Second, we run both the [MV05] construction and the associated reduction recursively, in a
manner reminiscent of [ISW06, Uma05] (although the low level details are different). Finally, we introduce
a new primitive calledlocal extractors for Reed-Muller codes, which are extractors that are computable in
sublinear time when run on inputs that are guaranteed to be Reed-Muller codewords. A construction of such
an object can be deduced from [SU05b]. They play a crucial role in the improved constructions, and may be
of interest in their own right. In Section 5.1 we give a detailed informal account of our construction and the
way the new ideas fit into the proof.

1.7 Motivation

Uniform hardness vs. randomness tradeoffs represent some of the most involved proofs of non-trivial rela-
tionships amongst complexity classes, using “current technology.” Pushing them to their limits gives new
results, but also may expose useful new techniques, as we believe this work does. Moreover, the complexity
classes we study, AM and AM∩coAM, contain a rich array of important problems, from hard problems upon
which cryptographic primitives are built, to group-theoretic problems, to graph isomorphism, and indeed all
of the class SZK (Statistical Zero Knowledge).

A second motivation is the quest forunconditionalderandomization results. In [GSTS03] it was shown
that if one can prove a low-end gap theorem for AM that works for all inputs rather than just feasibly
generated inputs, then it follows that AM can be derandomized (in a weak sense)unconditionally(the
precise details appear in [GSTS03]). In this paper we come closer to achieving this goal by achieving a
low-end version of [GSTS03].

1.8 Organization of the paper

In Section 2 we restate our main theorems formally using precise notation. In Section 3 we describe some
ingredients that we use as well as the new “local extractors.” In Section 4 we define some some new variants
of AM protocols that we will use as sub-protocols in the final result. In Section 5 we give the new recursive
HSG and an important ingredient that will be used in the proof. In Section 6 we state and prove the main
technical theorem. In Section 7 we derive our main results from the main technical theorem.

2 Formal statement of results

In this section we formally state Theorems 1.1 and 1.2. In order to do so we need to precisely define the
notion of “derandomization on feasibly generated inputs”.
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2.1 Feasibly generated inputs

Following [GSTS03] we will use the notions defined in [Kab01]. Loosely speaking, we say that two lan-
guagesL,M areindistinguishableif it is hard to feasibly generate inputs on which they disagree. For this
paper it makes sense to allow the procedure trying to come up with such inputs (which is called arefuter in
the terminology of [Kab01]) to use nondeterminism. We first need the following definition.

Definition 2.1. Let L1, L2 be two languages and letx be a string. We say thatL1 andL2 disagree onx if
x ∈ (L1 \ L2) ∪ (L2 \ L1).

We now define the notion of a refuter, which is a machine attempting to distinguish between two languages.

Definition 2.2 (distinguishability of languages).We say that a nondeterministic machineR (the refuter)
distinguishesbetween two languagesL1, L2 ⊆ {0, 1}∗ on input lengthn if on every one of its accepting
computation pathsR(1n) outputs somex of lengthn on whichL1 andL2 disagree.

With this notation we can formally capture the informal statements in the introduction. More specifically,
when given a languageL ∈ AM, a nondeterministic machineM running in timet(n) < 2n succeeds on
feasibly generated inputs if for any refuterR running in timet(n), R does not distinguishL from L(M).4

2.2 Formal restatements of Theorems 1.1 and 1.2

We now restate our main theorems formally. We first require that the functions(`) (which measures hard-
ness) is a “nice” function in the standard way:

Definition 2.3 (time-constructible function). A functions(`) is time-constructibleif:

• s(`) ≤ s(` + 1), and

• s(`) is computable from̀ in timeO(s(`)).

The following Theorem is the formal restatement of Theorem 1.1. Note that we state the theorem
for both classes E= DTIME(2O(`)) and EXP= DTIME(2`O(1)

) (the parameter choices for EXP are
slightly different and appear in parenthesis). The statements below also use the notion of complete languages
for E and EXP. Here we follow the standard convention and completeness for E is with respect to linear
time reductions, whereas completeness for EXP is with respect to polynomial time reductions.

Theorem 2.4. There exists a languageA complete for E (resp. EXP) such that for every time-constructible
function` < s(`) < 2`, either:

• A has an Arthur-Merlin protocol running in times(`), or

• for any languageL ∈ AM there is a nondeterministic machineM that runs in time2O(`) (resp.

2`O(1)
) on inputs of lengthn = s(`)Θ(1/(log `−log log s(`))2) (resp.n = s(`)Θ((1/ log `)2)) such that for

any refuterR running in times(`) when producing strings of lengthn there are infinitely many input
lengthsn on whichR does not distinguishL fromL(M).

4The statement in [GSTS03] uses a formal notation borrowed from [Kab01] that in the situation above reads AM⊆
[pseudo(NTIME(t(n)))]–NTIME(t(n)) where the first occurrence of NTIME(t(n)) stands for the class of the refuter and the
second one for the class of the machineM . We choose not to use this notation as it complicates the statements of our results
and makes them less clear. However we stress that our results use exactly the same meaning of feasibly generated inputs as in
[GSTS03, Kab01]. As in [GSTS03], this meaning of “feasibly generated” is incomparable with the one used in [IW98].
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We remark that the hidden constants in the statement above depend on the languageL. The following
Theorem is the formal restatement of Theorem 1.2.

Theorem 2.5. There exists a languageA complete for E (resp. EXP) such that for every time-constructible
function` < s(`) < 2`, either:

• A has an Arthur-Merlin protocol running in times(`), or

• for any languageL ∈ AM ∩ coAM there is a nondeterministic machineM that runs in time2O(`)

(resp. 2`O(1)
) on inputs of lengthn = s(`)Θ(1/(log `−log log s(`))2) (resp. n = s(`)Θ((1/ log `)2)) such

there are infinitely many input lengthsn on whichL andL(M) are equal.

Following [GSTS03] we can also reverse the order of “infinitely often” in Theorem 2.5 and achieve:

Theorem 2.6. There exists a languageA complete for E (resp. EXP) such that for every time-constructible
function` < s(`) < 2`, either:

• A has an Arthur-Merlin protocol running in times(`) which agrees withL on infinitely many inputs.
(On other inputs the Arthur-Merlin protocol does not necessarily have a non-negligible gap between
completeness and soundness), or

• for any languageL ∈ AM ∩ coAM there is a nondeterministic machineM that runs in time2O(`)

(resp. 2`O(1)
) on inputs of lengthn = s(`)Θ(1/(log `−log log s(`))2) (resp. n = s(`)Θ((1/ log `)2)) such

thatL = L(M).

3 Preliminaries

We assume that the reader is familiar with the definition of AM and other standard complexity definitions
(see, e.g., [Gol98]). We remark that by [GS86, BM88, FGM+89] we can assume that AM is defined by an
Arthur-Merlin protocol with public coins, two rounds and perfect completeness. In this paper we also refer
to protocols “that run in times(`) on inputs of length̀” by which we mean that the total length of messages
sent during the protocol and the time of Arthur’s final computation is bounded bys(`).

3.1 Nondeterministic and co-nondeterministic circuits

We will be working with nondeterministic and co-nondeterministic circuits. Anondeterministic circuitis an
ordinary Boolean circuitC with two sets of inputs,x andy. We say thatC acceptsinputx if ∃y C(x, y) = 1
and thatC rejectsinput x otherwise. We refer to a stringy on whichC(x, y) = 1 asa witnessshowing
thatC acceptsx. A co-nondeterministic circuithas the opposite acceptance criterion: itacceptsinput x if
∀y C(x, y) = 1 andrejectsinputx otherwise. We refer to a stringy on whichC(x, y) = 0 as awitnessthat
C rejectsx.

3.2 Low degree testing and self correctors

The key to our results is that in many places we workimplicitly with functions that are supposed to be
low-degree polynomials – of course this is the central concept in PCPs as well. Just as with PCPs, we need
the ability to locally test whether an implicitly supplied function is of the “correct” form: namely, we need
to check whether it is (close to) a low-degree polynomial. As is standard, once we have determined that an
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implicitly supplied function is close to a low-degree one, we can “access” the nearby low-degree function
locally using a self-corrector.

Low-degree testersand self-correctorsare standard primitives in the PCP literature. In fact for our
intended use of these primitives, we do not need delicate control of the parameters; we only need to be
able to operate ond-variate functions over a fieldF in time poly(|F|, d) (hence making at most that many
queries), while handling constant relative distance, and with constant soundness error for both primitives.
The formal definitions, and the known results that we will make use of follow:

Definition 3.1 (low-degree tester).A low-degree testerwith parametersh, δ, ε is a probabilistic oracle
machineM that has oracle access to a functionf : Fd → F, and for which

• if deg(f) ≤ h thenMf accepts with probability 1, and

• if every polynomialg with deg(g) ≤ h satisfiesPrx[f(x) 6= g(x)] ≥ ε, thenMf rejects with proba-
bility at leastδ.

Lemma 3.2 ([FS95]).There exists a (non-adaptive) low-degree tester with parametersh, δ, ε = 2δ, running
in poly(|F|, d) time, provided|F| > ch, δ < δ0, for universal constantsc andδ0.

Definition 3.3 (self-corrector). A self-correctorwith parametersh, δ, ε is a probabilistic oracle machine
M that has oracle access to a functionf : Fd → F, and for which

• if there exists a polynomialg of total degreeh, for whichPrx[g(x) 6= f(x)] < ε, then for allx

Pr[Mf (x) = g(x)] > 1− δ.

Lemma 3.4 ([BF90, Lip90]). There exists a (non-adaptive) self-corrector with parametersh, δ = O(1/(ε|F|)), ε,
running in poly(|F|, d) time, providedε < 1

4(1− h/|F|).
We remark that for both low-degree testers and self-correctors, it is possible to decrease the soundness

error from a constant to2−t by repeating the protocolΘ(t) times.

3.3 Local extractors for subsets

Another object we will use to perform local computations on an implicitly supplied function is what we call a
“local extractor for subsets”. The notion of “locally computable extractors” was introduced in [Lu04, Vad04]
in the context of encryption in the bounded-storage model. Loosely speaking, it requires that the extractor is
computable in time sublinear in the length of its first input. In our construction we require such extractors for
very low “entropy thresholds”. However, Vadhan [Vad04] proved that it is impossible to have such extractors
unless the entropy threshold is very high. For this purpose we introduce a new variant of local extractors
in which the first input comes from some prescribed subset (rather than the set{0, 1}n) and exploit the fact
that we intend to run the extractor on inputs that are codewords in an error-correcting code. It turns out
that the construction of [SU05b] can be computed in time polynomial in the output when applied on the
Reed-Muller code, even when shooting for low entropy thresholds. The formal details follow:

Definition 3.5 (local extractor for subsets).A (k, ε) local C-extractor is an oracle functionE : {0, 1}t →
{0, 1}m for which the following holds:
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• for every random variableX distributed onC with minentropy5 at leastk, EX(Ut) is ε-close to
uniform, and

• E runs in poly(m, t) time.

Definition 3.6 (Reed-Muller code). Given parametersr, h and a prime powerq we define RMr,h,q to be
the set of polynomialsp : Fr → F over the field withq elements,F, having degree at mosth.

The construction of [SU05b] gives the following local extractor for the Reed-Muller code (we have made
no attempt to optimize the constants):

Lemma 3.7 (implicit in [SU05b]). Fix parametersr < h, and letC = RMr,h,q be a Reed-Muller code. Set
k = h5. There is an explicit(k, 1/k) local C-extractorE with seed lengtht = O(r log q) and output length
m = h = k1/5.

The following proposition follows from the definition.

Proposition 3.8. LetE : {0, 1}t → {0, 1}m be a(k, ε) local C-extractor, and letD be a subset of{0, 1}m.

Then at most2k elementsx ∈ C satisfy:Pry[Ex(y) ∈ D] > |D|
2m + ε.

We will use local extractors in the following way. We will be interested in the set
{

x : Pr
y

[Ex(y) ∈ D] = 1
}

,

and we would like to be able to check whether somex ∈ C is in this set by performing a local computation
on x. This is not possible in general but a relaxation of this goal is. If we perform the probabilistic test of
checking whetherEx(y) ∈ D for a randomy, then we will accept allx in the set, and not accept too many
otherx, because by the above proposition, the set ofx ∈ C on which this test accepts with high probability
is “small” – it has size at most2k. This relaxation will turn out to be sufficient for our intended application.

4 The GST framework

In this section we describe the approach of [GSTS03] for obtaining uniform hardness vs. randomness
tradeoffs for AM, and formalize two key ingredients,commit-and-evaluate protocols(which we define for
the first time in this paper) andinstance checkers(which have been defined in previous works).

As described in the introduction, our goal is to produce, from a hard functionf , a HSG against nondeter-
ministic circuits (and thus suitable for derandomizing AM) for which the associated reduction (showing how
to computef efficiently if the HSG fails) possesses an additionalresiliencyproperty. Here theresiliency
property means that the reduction can be cast as two phases of interaction between Arthur and Merlin: in the
first phase, Merlin commits (with high probability) to a functiong, and in the second phase, Merlin reveals
evaluations ofg upon Arthur’s request.

We formalize this two-phase protocol as acommit-and-evaluateprotocol in the next subsection; the key
properties it should posses are the aforementionedresiliency, meaning that Merlin is indeed committed to
answering all future evaluation queries according to some functiong after the commit phase, andconformity
with f , which means that the honest Merlin can commit to the “true” hard functionf . In Section 4.2,

5The minentropy of a random variableX is minx∈supp(X)− log(Pr[X = x]).
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we defineinstance checkerswhich will be used to convert a commit-and-evaluate protocol that conforms
resiliently withf into a true Arthur-Merlin protocol forf , assumingf is an E- or EXP-complete function.

Overall, we end up with a framework for obtaining uniform hardness vs. randomness tradeoffs for AM;
the missing ingredient is a HSG whose associated reduction has the required resiliency property (i.e., can be
formulated as a commit-and-evaluate protocol). This we construct in Section 5.

4.1 Commit-and-evaluate protocols

Let us start with some notation. Ani round AM protocol is a protocol in which Arthur and Merlin receive
a common inputx and at each round Arthur sends public random coins and Merlin replies. At the end of
the protocol Arthur outputs a value (not necessarily Boolean), denoted by out(π,M, x), that is a random
variable defined relative to astrategyM for Merlin; i.e., M is a function that describes Merlin’s response
given a history of the interaction so far. The value out(π,M, x) is a random variable because Arthur flips
coins during the protocol. The running time of the protocol is the running time of Arthur. A protocol
may take an auxiliary common inputy, which we will variously think of as a “commitment” or an “advice
string”. In this case we denote the output by out(π, M, x, y). The output⊥ (which is intended to be output
by Arthur when he detects a dishonest Merlin) is a distinguished symbol disjoint from the set of intended
output values.

With this notation we can define the notion of AM protocols that output values:

Definition 4.1 (AM protocols that output values). Given an AM protocolπ and an input domainI, we
say thatπ with auxiliary inputy:

• is PSV(partially single valued) overI with soundness errors if there exists a functiong defined over
I, such that for allx ∈ I, and all Merlin strategiesM∗

Pr[out(π,M∗, x, y) ∈ {g(x),⊥}] ≥ 1− s.

• conformswith a functionf defined overI with completenessc if for all x ∈ I, there exists a Merlin
strategyM for which

Pr[out(π, M, x, y) = f(x)] ≥ c.

• computesa functionf over domainI with soundness errors and completenessc if π with auxiliary
inputy is PSV overI with soundnesss and conforms withf with completenessc.

We may sometimes omits andc in which case they are fixed to their default valuess = 1/3 andc = 2/3.
We also omitI when it is clear from the context.

Note that a polynomial time AM protocol of the above type computes the characteristic function of some
languageL if and only if L ∈ AM ∩ coAM. We will be interested in protocols that are composed of two
phases, and operate over the domainI = {0, 1}n. The first phase is called thecommit phase. This is an
AM protocol whose input is1n, and whose auxiliary input is an advice stringα that depends only onn.
The role of this phase is to generate an auxiliary input to the second phase. The second phase is called the
evaluation phase. This is an AM protocol whose input isx ∈ I, and whose auxiliary input is the output
of the commit phase protocol. The reason we distinguish between two different phases is that we make the
additional requirement that there is a function computed by the combined protocol and that this function is
completely determined at the end of the commit phase (that isbeforeMerlin knows the inputx). The exact
details appear below.

10



Definition 4.2 (commit-and-evaluate protocols).A commit-and-evaluate protocolis a pair of AM proto-
colsπ = (πcommit, πeval). Givenπ and an input domainI = {0, 1}n, we say thatπ with adviceα:

• conformswith a functionf defined overI if there exists a Merlin strategyMcommit for which

Pr[πeval with auxiliary input out(πcommit, Mcommit, 1n, α) conforms withf ] = 1.

• is γ-resilientoverI if for all Merlin strategiesM∗
commit,

Pr[πeval with auxiliary input out(πcommit,M
∗
commit, 1

n, α) is PSV] ≥ γ.

• runs in timet(n) for some functiont if bothπcommitandπeval run in time bounded byt(n).

We may sometimes omitγ, in which case it is fixed to its default valueγ = 2/3.

We argue that completeness, soundness and resiliency of a commit-and-evaluate protocol can be ampli-
fied from their default values by parallel repetition.6

Proposition 4.3 (amplification of commit-and-evaluate protocols).Letπ = (πcommit, πeval) be a commit-
and-evaluate protocol that is resilient and conforms withf , with completeness1, resiliency2/3 and sound-
ness1/3. Furthermore, assume thatπcommitis a two round protocol. Thenπ can be transformed (by parallel
repetition) into a commit-and-evaluate protocolπ′ = (π′commit, π

′
eval) that is resilient and conforms withf ,

with completeness1, resiliency1− 2−t and soundness2−t. The transformation multiplies the running time
and the output length of the commit protocol byΘ(t), and the running time of the evaluation protocol by
Θ(t2). The transformation preserves the number of rounds for both the commit protocol and the evaluation
protocol.

Proof. The new commitment protocolπ′commit simply runs the old commitment protocolπcommit t
′ = Θ(t)

times in parallel, producing the commitments(u1, u2, . . . , ut′). Note that the Merlin strategyM ′
commit that

executes the honestMcommit strategy for each repetition results ineveryui being a commitment for which
πeval with auxiliary inputui conforms withf with completeness1. The new evaluation protocolπ′eval runs,
for eachi, the old evaluation protocolπeval t

′ = Θ(t) times in parallel withui as auxiliary input. If for all
commitmentsui all the repetitions ofπeval with adviceui output the same valuev thenπ′eval outputsv and
otherwise it outputs⊥.

Note that by the perfect completeness ofπeval if Merlin executes the “honest”Meval strategy on each
of the repetitions using adviceui the resulting strategy causes Arthur to outputf(x) with probability one.
Thus,π′ conforms withf .

For resiliency note that asπcommit is a two round protocol then with probability at least2/3 over Arthur’s
choice of coins, every possible reply of Merlin results in a “good” commitmentu (i.e., one for whichπeval is
PSV). It follows that when makingt′ invocations ofπcommit, with probability at least1− 2−t there exists an
i∗ on which Arthur sends coin tosses for which every possible reply of Merlin leads to a “good” commitment
ui∗ . We claim that whenever this event happens the protocolπ′eval is PSV when using adviceu1, . . . , ut′ ,
which establishes the claimed resiliency.

6In the next proposition we only claim amplification for protocols where the commit protocol has two rounds and the evaluation
protocol has perfect completeness. We make these relaxations because all protocols constructed in this paper have these properties.
However, a more careful argument can get the same conclusion without these two assumptions. This follows along the same lines
that parallel repetition of multi-round AM protocols amplifies soundness (see for example [Gol98, p.145–148]).
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We have that forui∗ there exists a functiong such that for any Merlin strategyMeval,

Pr[out(πeval,Meval, x, ui∗) ∈ {g(x),⊥}] ≥ 2/3.

It is folklore (see e.g. [Gol98, p.145–148]) that parallel repetition of (multi-round) AM protocols reduces
the soundness error exponentially. Therefore, asπ′eval runsπeval t

′ times with the commitmentui∗ it follows
that any strategy of Merlin inπ′eval has probability at most2−t to output a value that is not in{g(x),⊥} in
all t′ repetitions ofπeval with commitmentui∗ . In particular, no Merlin strategy forπ′eval can make Arthur
output a value different thang(x) with probability larger than2−t, which is the claimed soundness error.

4.1.1 Usefulness of commit and evaluate protocols

Note that after running the commitment protocolπcommit it is possible to run the evaluation protocolπeval

(with the auxiliary input that is output byπcommit) many times on many different inputs inI. We will typi-
cally perform these invocations ofπeval in parallel, and after suitably amplifying soundness (via Proposition
4.3), we can be sure that all evaluations agree with the committed-to function (with high probability). Note
also that aγ-resilient commit-and-evaluate protocol that conforms withf does not necessarily “compute”
f in any meaningful way. This is because in the commit phase, Merlin may not cooperate, causing the
evaluation phase to receive an auxiliary input leading it to compute a function different fromf . However,
Merlin cannot choose this function in a way that depends on the input to the evaluation protocol.

On a more technical level, commit-and-evaluate protocol are useful because the commit phase can be
executedbeforethe inputx is revealed, and following the commit phase it is guaranteed that Merlin is com-
mitted tosomefunctionf . This allows Arthur to make “local tests” on the functionf . For concreteness let
us demonstrate this approach on low-degree testing (that is, testing whetherf is close to a low degree poly-
nomial). Consider the following protocol: Arthur and Merlin play the commit phase of the protocol (which
determines a functionf ). Then Arthur sends randomness for a low-degree test which in turn determines
queriesx1, . . . , xm to f . On each one of the queriesxi, Arthur and Merlin play the evaluation protocol (in
parallel) and in the end Arthur checks that the low-degree test passes with the obtained evaluations. Note
that no matter how Merlin plays he cannot make Arthur accept a functionf that is far from a low degree
polynomial. If Merlin was not required to commit to a functionf in advance, he could answer queries arbi-
trarily, passing the low-degree test and then answering other queries (for example) in a manner inconsistent
with any low-degree function.

4.2 Instance checkers

Following [GSTS03], it is possible to transform an AM protocol thatconforms resilientlywith an E-complete
or EXP-complete function into one thatcomputesthe function. This is done by evaluating the function via an
instance checker(defined below) following the commit phase. Thus to construct a (standard) AM protocol
for languages in E or EXP it is sufficient to construct commit-and-evaluate protocols that conform resiliently
with a complete problem.

Instance checkers were introduced in [BK95]. These are probabilistic oracle machines that are able to
“check” that the oracle is some prescribed function in the sense that when given an “incorrect” oracle the
machine will either fail or compute the prescribed function.

Definition 4.4 (instance checker).Let f : {0, 1}∗ → {0, 1} be a function. An instance checkerIC for f
with soundness errorδ is a probabilistic oracle machine for which:

• for everyx ∈ {0, 1}∗, Pr[ICf (x) = f(x)] = 1, and
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• for every functiong 6= f and everyx ∈ {0, 1}∗, Pr[ICg(x) ∈ {f(x),⊥}] ≥ 1− δ.

We say that an instance checkerIC makes queries of lengthv(`) on inputs of length̀ if for every input
x ∈ {0, 1}` and for every oracleg all the queries made byIC to its oracle are for strings of lengthv(`).

Note that by repeating the executionΘ(t) times the soundness error of instance checkers can be reduced
from a constant to2−t. In this paper we use the fact that languages complete for EXP and E have instance
checkers. This was achieved by a sequence of works [LFKN92, Sha92, BFL91, BFLS91]. The reader is
referred to [TV02] for further details.

Theorem 4.5 (c.f. [TV02] Theorems 5.4 and 5.8).The following hold:

1. There is a language in EXP that is complete for EXP under polynomial time reductions and its charac-
teristic functionf has a polynomial-time instance checker that makes queries of lengthv(`) = `O(1),
where` is the input length.

2. There is a language in E that is complete for E under linear time reductions and its characteristic
functionf has a polynomial-time instance checker that makes queries of lengthv(`) = O(`), where`
is the input length.

5 A recursive HSG construction

In this section we present a recursive version of the Miltersen-Vinodchandran (MV) generator [MV05], that
receives a polynomialp (which should be thought of as the encoding of a hard functionf ) and outputs a
multiset ofm-bit strings.

5.1 Overview of the construction and proof

We start by describing the original MV generator using some of our language, and highlighting the parts
that we modify to obtain improvements. The reader may skip to the formal, self-contained presentation of
the new construction in Section 5.2 if they wish. Throughout this section,F is the field withq elements.

5.1.1 The original MV generator

Given a polynomialp : Fd → F of degreeh the original MV generator choosesq andm to be slightly larger
thanh and (the standard choice is, say,m = q = 2h). For every axis-parallel lineL in Fd, it outputs the
vectorzL = (pL(t))t∈F – the restriction ofp to the lineL.

Given a co-nondeterministic circuitD such thatD rejects every output of the generator we would like
to show that there is a commit-and-evaluate protocolπ that receivesD as advice and conforms withp
resiliently. We need to make the additional assumption thatD rejects very few – say2mδ

– strings of length
m overall. In the context of AM derandomization this can be achieved by amplifying the AM protocol
we are attempting to derandomize using dispersers. We stress, as this will be important later on, that this
amplification can only achieve a constant0 < δ < 1 efficiently.

We now describe the commit-and-evaluate protocol for evaluatingp. In the commit phase Arthur sends
a uniformly chosen setS ⊆ F of sizev ≈ hδ and Merlin replies with a list of values for every point inSd,
that are supposed to be the “correct” set of values — the restriction ofp to Sd. In the evaluation phase the
two parties are given a pointx ∈ Fd and Arthur wants to evaluatep(x). Arthur and Merlin first compute a
“path” to x: a sequence of axis-parallel lines starting with lines passing throughSd and proceeding through
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d− 1 sets of lines, each intersecting the previous set, until the final line which intersectsx. This path has at
mostvd lines, and for each line in the path, Merlin sends Arthur a univariate polynomialgL : F → F (that
is supposed to be the polynomialp restricted toL) by sending itsh + 1 coefficients. Arthur performs the
following tests:

Small-set test Arthur asks Merlin to supply witnesses showing thatD rejectsgL for all linesL in the path.
(Note that Merlin can do this asD is a co-nondeterministic circuit).

Consistency testArthur performs a “consistency test” using the polynomialsgL sent by Merlin. This
consists of checking that for every pair of linesL1 andL2 that intersect at a point, the values ofgL1

andgL2 agree at that point.

If both the tests pass then Arthur selects the single lineL in the path that intersectsx, and decides thatp(x)
equals the value ofgL at that intersection, outputting that value.

We describe why this protocol conforms resiliently withp. An honest Merlin can indeed conform to
p by following the protocol. A cheating Merlin has the freedom to choose values for the points inSd that
are incorrect and in this case the evaluation protocol does not necessarily conform withp. However the
evaluation protocol is (with high probability over the choice ofS) PSV by a key property of the consistency
test: it is shown in [MV05] that that there is at most one collection of functions from the small setZ =
{z : D rejectsz} that passes the consistency test. This means that once Merlin commits to values for the
points inSd he cannot make Arthur output two different values on a given inputx.

We stress that this key argument in [MV05] uses the structure of polynomials in a very weak way. The
argument only uses that eachgL sent by Merlin is a set ofm > h evaluations of a degreeh univariate
polynomial and so it is a codeword of a Reed-Solomon code. In our construction we will use a relaxed
notion of “lines” for whichp restricted to such a “line” is still a codeword of an error-correcting code, which
suffices for this argument. The precise definition of this relaxed “line” is in Definition 5.1.

We now turn our attention to the running time of the protocol. There are roughlyvd lines on the “path”
to x and for eachgL Merlin needs to sendh + 1 coefficients to definegL. Thus, overall the time is about
hvd. For the key property of the consistency test to hold, we need to setv ≈ mδ ≈ hδ (this comes from
the bound we have on the setZ, which in turn comes from the initial amplification of the AM protocol we
are derandomizing). Overall the running time is abouthδd. Specifying the polynomialp explicitly requires
roughlyhd coefficients and thus the protocol achieves something non-trivial since it runs in time that is only
some constant root ofhd.

5.1.2 Goal: achieve the low end

The parameters achieved by the construction outlined above correspond to the “high-end” of hardness as-
sumptions. When using this construction in the [GSTS03] framework, we will be given an E-complete
language and setf : {0, 1}` → {0, 1} be the characteristic function of this language (restricted to inputs of
length`). When given such a Boolean functionf over ` bits we encode it as ad = O(1) variate polyno-
mial p (the low-degree-extension off ) with h,m ≈ 2`/d. We get that if we obtain a co-nondeterministic
circuit D that rejects all outputs of the generator, thenp (and thereforef and the complete language) have
commit-and-evaluate protocols that conforms resiliently withp, and as described in Section 4, these can be
transformed into AM protocols that computep.

The overall protocol then gives us exactly the kind of parameters one wants; i.e., it runs in time polyno-
mial in the output length,m, of the generator. However, this relationship is only achieved at the “high end”,
that is whenm = 2Ω(`), and in fact the construction fails completely whenm becomes significantly smaller.
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Our goal is to achieve the “low-end” so we must modify the construction of the generator so that we get a
running time of poly(m) for anym, ideally all the way down tom = poly(`).

5.1.3 Reducing the degreeh and distinguishing betweenr, d

A very natural idea (that has been useful in previous works in this area, e.g., [STV01, SU05b]) is to encode
the functionf using a polynomialp with more than a constant number of variables. This will enable the
encoding to use smaller degree. Note however that because the number of variables increases when the
degree decreases, the running time of the protocol we just described does not benefit from reducing the
degreeh, as the gain over the trivial protocol depends only onδ which cannot be smaller than a constant.
Thus, at this point it is not clear what we can gain from reducing the degree.

We will attempt to circumvent this problem by achieving the “best of both worlds”: having a small
degree while keeping the number of variables a constant. To achieve a behavior with that flavor we distin-
guish between two parametersr (the number of variables) andd (the number of “grouped variables”). More
precisely, we now encode the functionf as a polynomialp : Fr → F for super-constantr (at the absolute
low-end we will user as large as̀/ log ` which allows the degree to go down toh = poly(`)). While
doing so we keepd as a constant and identifyFr with Bd, whereB = Fr/d. This grouping, and the precise
meaning of “line” in this generalized setting is stated in Definition 5.1.

We can now run the original MV generator just as before by thinking ofp as a functionp : Bd → F.
This follows from our observation that we only need the restriction ofp to the axis-parallel lines to form
an error-correcting code, and here for every axis-parallel lineL in Bd, the restriction ofp to L (which is
a function fromFr/d to F) is a Reed-Muller codeword. In the commit-and-evaluate protocol forp that we
already discussed, we only need to alter one thing to accommodate the grouped variables: when sending
the functionsgL, Merlin will need to supply coefficients forp restricted toL which is now a degreeh
polynomial inr/d variables and has abouthr/d coefficients (as compared toh coefficients previously).

At first glance it may seem that we have made progress and can handlem much smaller than the original
MV construction required, but this is not the case. For the restrictions ofp to the axis-parallel lines inBd to
form a code (which is needed for the key property of the consistency test), the HSG must outputm > hr/d

evaluations, and thus overall we do not gain (we were hoping to takem only slightly larger thanh, not
hr/d.). However, we did make some progress as various quantities in the protocol (such as the number of
evaluations Merlin must supply in the commitment phase, and the length of the “path” computed for each
evaluation) depend ond (which is constant) rather than onr.

5.1.4 Reducingm by using local extractors for Reed-Muller codes

We will reducem by modifying the generator construction further. For each axis-parallel lineL in Bd,
instead of outputting enough evaluations ofp restricted toL to induce an error-correcting code, we will use
an extractor. More precisely, we takeE to be an extractor with output lengthm ≈ h, and we output the
stringsE(pL, y) for all possible seedsy, andpL ranging over all restrictions ofp to axis-parallel linesL in
Bd.

Then, in the commit-and-evaluate protocol, we can replace the small-set test with aprobabilisticsmall-
set test: given the polynomialgL sent by Merlin (which is supposed to bep restricted toL) we check that
D rejectsE(gL, y), for a randomy. All of the polynomialsgL that formerly passed the small-set test will
still do so, since by assumption all of the outputs of the generator (and thus all of the outputs ofE run on
restrictions ofp to axis-parallel lines inBd) are rejected byD. At the same time, by the extractor property,
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there can be only a small number (say,2m2
) of strings that pass the new probabilistic test with reasonable

probability. This will be sufficient to maintain the resiliency of the protocol.
However, our goal was to reducem and have the protocol run in time poly(m). But even invoking the

extractor once for the probabilistic small-set test takes time linear in its input lengthhr/d, which is much
larger thanm.

The crucial realization at this point is that we are only ever interested in running the extractor on input
strings that are evaluations of low-degree polynomials! We can thus replaceE with a local extractor for the
Reed-Muller code, and consequently reduce the running time of the extractor to poly(m) when given oracle
access to its input.

So, we can perform the small-set test in time poly(m), given oracle access to the variousgL sent by
Merlin. For our choice of parameters, the consistency test will also run in time poly(m) given oracle access
to thegL. However one hurdle remains: the step in which Merlin sends the coefficients of the polynomials
gL still requireshr/d À m time to send thehr/d coefficients ofgL, while we are shooting for poly(m) time.

5.1.5 Sending the polynomialsgL implicitly

Let us assume at this point that for some reason we already knew that for every axis-parallel lineL in Bd,
the polynomialp restricted toL has a commit-and-evaluate protocol that conforms with it resiliently and
that this protocol runs in time poly(m). Then instead of having Merlin send the polynomialgL (which is
supposed to bep restricted toL) explicitly, Arthur and Merlin could play the commitment phase of the
protocol forgL, after which Merlin will be able to assist Arthur in evaluatinggL on any input that Arthur
wishes.

However, we have now exposed the protocol to the possibility that Merlin may cheat by committing to
a function that is not a low-degree polynomial, and then (at least) two things break: the local extractor for
Reed-Muller codes may be run with access to an oracle that is not a Reed-Muller codeword, destroying the
extractor property needed for the integrity of the small-set test; and, the key property of the consistency test
may fail, as it relies on all of the received functions being codewords.

The solution is to run a low-degree test on each function Merlin commits to, verifying that it is indeed
a low-degree polynomial. This test can be done locally, with oracle access to the function, and the fact that
Merlin is committedto a function (and cannot alter the requested evaluations upon seeing the randomness
of the test) ensures the validity of the test.

Let us summarize our current position.If we knew that for every axis-parallel lineL in Bd the polyno-
mial p restricted toL had a poly(m) time commit-and-evaluate protocol that conformed with it resiliently,
then we would be able to produce a commit-and-evaluate protocol that conforms withp resiliently, and more
importantly, runs in time poly(m) (which is our goal).

5.1.6 Using recursion to obtain commit-and-evaluate protocols for the polynomialsgL

It is important to note that when trying to construct a protocol for a polynomialp with r variables, we need
to assume the existence of a protocol for polynomialsgL with a smaller number,r/d, of variables. This will
allow us to use recursion. The base case will be the original MV generator, wherer = d. For the base case
we already showed how to construct a commit-and-evaluate protocol that runs in time poly(m).

To give us the commit-and-evaluate protocol on the restrictions ofp to axis-parallel linesL in Bd, needed
in the recursive step, we modify the construction of the original HSG, finally arriving at the construction
in Figure 1. In this construction, in addition to the original output of our modified MV generator run on
p, we also output all the outputs of our modified MV generator run on the polynomialsp restricted to each
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axis-parallel lineL in Bd, and continue with this recursively. The inputs to the recursive calls are sufficiently
smaller than the original input so that we do not increase the set of outputs of the generator by more than
a polynomial factor. Now, a circuitD that rejects all the outputs of our generator can be used as advice to
play the protocol on all the polynomialsgL that we will ever be interested in at any level of the recursion.

Whenever the final commit-and-evaluate protocol needs to access some restriction ofp to a lineL, it
will invoke the protocol now available for that restriction, continuing this recursively down to the base case.

We stress that the resiliency property of the commit-and-evaluate protocols plays a crucial role inside
the recursion (in addition to its role as described in Section 4). Specifically, the resiliency property of the
protocol forgL says that following the commitment phase, Merlin is committed to some function, and this
is what prevents Merlin from cheating when doing the local tests (such as the low degree test). If it wasn’t
for resiliency then Merlin would be able to choose outputs forgL after seeing the queries of the low degree
test which would make the test useless.

5.1.7 Losses suffered in the recursion

While we can reducem using the ideas outlined above, there are also some costs to using this recursive
argument. First, each recursive step in the protocol picks up two additional rounds and thus we end up with
a protocol with2 logd r rounds. Such protocols can be transformed into two round protocols but the running
time suffers a blowup which is slightly super-polynomial. The running time also suffers as each recursive
step multiples the running time of the protocol by poly(m). When taking these two factors into consideration
and transforming to a two round AM protocol we get that this protocol has running timemO(log2

d r) rather
thanmO(1). This accounts for the slight non-optimality of our main gap theorems.

5.2 The construction

We now give the full recursive HSG construction, which uses the following definition. Recall thatF is the
field with q elements.

Definition 5.1 (grouping variables and MV lines). Given a functionp : Fr → F and a parameterd that
dividesr we defineB = Fr/d and identifyp with a function fromBd to F.

Given a pointx ∈ Bd and i ∈ [d] we define theline passing throughx in directioni to be the function
L : B → Bd given byL(z) = (x1, . . . , xi−1, z, xi+1, . . . , xd). This is an axis-parallel, combinatorial line,
which we call anMV line for short.

Given a functionp : Fr → F and an MV lineL we define a functionpL : B → F bypL(z) = p(L(z)).

Note that ifp : Fr → F is a polynomial thenpL : Fr/d → F is also a polynomial with degree bounded
by that ofp. We present our construction in Figure 1.

Lemma 5.2. The construction RMVh,d(p) runs in timeqO(r) and outputs at mostqO(r) strings.

Proof. Let r = di. We show by induction oni that the running time and number of output strings is bounded
by qcr for some universal constantc.

For the base case, whenr = d1, the number of MV lines is at mostqr, and the number of output strings
produced from each line is at mostqc′r/d for some universal constantc′. We are using the fact that the
specified localC-extractor has at most poly(qr/d) seeds, whereqr/d is the blocklength of codeC. In total
the running time and the number of strings is at mostqr+c′r/d ≤ qcr.

In general, whenr = di, the number of MV lines is at mostqr and for each line, we produceqc′r/d

strings. By induction the recursive call generated for each line has running time and number of strings
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Input A multivariate polynomialp : Fr
q → Fq of degreeh.

Output A multiset ofm bit strings.

Parameters and requirementsWe require thatr is a power ofd and thath is a prime power. We set
q = h100 andm = h1/100.

Ingredients The(k, 1/k) local C-extractorE from Lemma 3.7 for Reed Muller codeC = RMr/d,h,q.
Note thatk = h5, the extractor uses seed lengthO((r/d) · log q) and (by using only a prefix of the
output) it outputsm bits.

Operation of RMV h,d(p) :

• SetB = Fr/d
q . For everyx ∈ Bd and i ∈ [d], let L : B → Bd be the MV-line passing

throughx in direction i. Note thatpL is an element of the Reed-Muller code RMr/d,h,q.
ComputeEpL(y) for all seedsy. Let Hp denote the set of thesem bit strings, asL ranges
over all MV lines.

• If r = d then outputHp.

• If r > d then for each MV lineL make a recursive call to RMVh,d(pL). Note that while the
dimension ofp wasr, the dimension ofpL is r/d. Each one of these recursive calls returns
a multiset ofm bit strings that we will callHL. Output the union ofHp andHL asL ranges
over all MV lines.

Figure 1: Recursive MV generator RMVh,d(p)

bounded above byqcr/d. So we have an overall bound ofqr+c′r/d + qr+cr/d, which is less thanqcr for a
suitably chosen universal constantc.

5.3 Miltersen-Vinodchandran consistency test

We abstract a certain part of the original Miltersen-Vinodchandran proof [MV05], and prove conformity and
resiliency for it. This primitive, together with the three primitives in Sections 3.2 and 3.3 will be the main
ingredients in the reduction proving correctness of the new generator. The main point of the abstraction is
that the consistency test makes sense when the “lines” of the original MV construction are replaced by what
we are calling “MV lines,” which are more general. We need one definition first:

Definition 5.3 (MV paths and S-boxes). Givenx ∈ Bd and a setS ⊆ B we define a sequence ofd sets
T1, . . . , Td called theMV path tox usingS. Each of these sets contains MV lines as follows:Ti contains
all MV lines through points{(x1, . . . , xi, si+1, . . . , sd) : si+1, . . . , sd ∈ S} in directioni. We say that a line
L appears in the MV path ifL ∈ ∪iTi. Given a setS ⊆ B, anS-box is a functiona : Sd → F.

Note that in the above definition, for|S| > 1, there areΣd
i=1|S|i−1 ≤ |S|d MV lines appearing in the

MV path.
Figure 2 describes a test that we call the “MV consistency test”. The usefulness of this procedure is

captured in the following lemmas:
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Input A point x ∈ Bd, a subsetS ⊆ B, and anS-box a : Sd → F. Also, the following collection of
functions: for every lineL appearing in the MV path tox usingS, a functiongL : B → F.

Operation Let T1, . . . , Td be the MV path tox usingS. The MV consistency test passes if the two tests
below pass:

• (agreement with theS-box) For every lineL in T1 and z ∈ S, we check thatgL(z) =
a(L(z)).

• (agreement at intersection points) For alli = 2, 3, . . . , d, for every pair of linesL1 ∈ Ti−1

andL2 ∈ Ti: if L1(z1) = L2(z2) for somez1, z2, we check thatgL1(z1) = gL2(z2).

Figure 2: MV consistency test

Lemma 5.4 (conformity of MV consistency test).Fix a functionp : Bd → F, anx ∈ Bd, and a subset
S ⊆ B. The MV consistency test passes when given as inputx, S, the S-box a : Sd → F defined by
a(s1, . . . , sd) = p(s1, . . . , sd), and the collection of functionspL ranging over all MV linesL in the MV
path. Furthermore, ifL is the single line inTd, thenpL(xd) = p(x).

Proof. Since all of the functionspL and theS-box a agree with a single, underlying functionp, it is clear
that these inputs pass the MV consistency test. The second item follows from the definition ofTd.

Lemma 5.5 (resilience of MV consistency test).Let Z be a set of at mostK functions where each one is
a function fromB to F and assume that for any two functionsg1, g2 ∈ Z, with g1 6= g2,

Pr
z∈B

[g1(z) = g2(z)] ≤ β.

Then with probability at leastγ over the choice of a random subsetS ⊆ B with

|S| ≥ (2 log K + log(1/(1− γ)))/ log(1/β)

the following event holds: for everyS-boxa : Sd → F and for everyx, there is at most one collection of
functions fromZ that passes the MV consistency test.

Proof. Let us call a subsetS ⊆ B of the specified size “good” if it separates the functionsg ∈ Z; i.e., for all
g1 6= g2, there is somes ∈ S for whichg1(s) 6= g2(s). It is a standard calculation to see that the probability
a randomly chosenS of the specified size is not “good” is at mostK2β|S|, which is at most1 − γ by our
choice of|S|.

Now fix anS-box a and somex. Let T1, T2, . . . , Td be the MV path tox usingS. By the definition of
“good,” for each MV lineL ∈ T1, there is at most one functiongL ∈ Z satisfyinggL(s) = a(L(s)) for all
s ∈ S.

The crucial observation is that for each MV lineL2 ∈ T2, the union of the intersections ofL2 with the
MV lines in T1 is exactlyL2(S). Therefore (again using the definition of “good”) for eachL2 ∈ T2, there
is at most one functiongL2 ∈ Z for whichgL2(s) agrees with the functions associated with lines inT1 at all
s ∈ S (since we already argued that these functions are unique if they exist at all).
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In general, each MV lineLi ∈ Ti intersects the union of the MV lines inTi−1 at exactlyLi(S). So by
the same argument, for eachLi ∈ Ti, there is at most one functiongLi ∈ Z for which gLi(s) agrees with
the functions associated with lines inTi−1 at alls ∈ S.

We conclude that ifS is “good,” then there is at most one collection of functions that passes the MV
consistency test, as required.

6 The reduction

Recall that the proof that a construction is indeed a HSG takes the form of a protocol for computing the
hard function if the HSG fails. We will specify a commit-and-evaluate protocolπ = (πcommit, πeval) that
takes adviceα = D (whereD is a co-nondeterministic circuit) and attempts to compute the polynomial
p. We will prove that wheneverD catches the generator RMVh,d(p) then the protocolπ conforms withp
resiliently. (Note that this does not mean thatπ computesp. However, in our application we will be able
to useπ to construct a protocol thatdoes computep). Our main theorem is stated below. In fact, following
[GSTS03], we prove a slightly stronger statement in which the resiliency of the protocol follows regardless
of whetherD catches RMVh,d(p) as long asD rejects few inputs. This will be useful later on.

Theorem 6.1. Let d, h, r,m, q be as in Figure 1. Letp : Fr
q → Fq be a polynomial of degree at most

h. Then there is a commit-and-evaluate protocolπ = (πcommit, πeval) with adviceα = D, whereD is a
co-nondeterministic circuit of size poly(m), that satisfies:

Conformity If D rejects every element of RMVh,d(p) thenπ conforms withp.

Resiliency If D rejects at most a1/3-fraction of its inputs thenπ is resilient.

Efficiency π runs in timehO(d logd r) and haslogd r rounds.

Moreover,πeval has completeness 1, andπcommit is a two round protocol.

The rest of Section 6 is devoted to the proof of Theorem 6.1. Our main results (Theorems 2.4 and 2.5)
then follow from Theorem 6.1 largely using machinery already worked out in [GSTS03].

6.1 The recursive commit-and-evaluate protocol

In Figure 3 we formally present the protocolσ used to prove Theorem 6.1, incorporating the ideas discussed
in Section 5.1. Our main lemma regarding this protocol is:

Lemma 6.2 (correctness ofσ). Let d, h, r,m, q be as in Figure 1. Letp : Fr → F be a polynomial of
degree at mosth. Let D be a co-nondeterministic circuit of size poly(m). Let τ = (τcommit, τeval) be a
commit-and-evaluate protocol such that for every MV lineL, τ with advice(D, L) conforms resiliently to
pL (with completeness1, soundness2−10vd

and resiliency1− 2−10vd
). Furthermore assume thatτcommit is

a two round protocol. Then the following hold:

Conformity If D rejects every element ofHp thenσ with adviceD conforms withp with completeness1.

Resiliency If D rejects at most1/3 of its inputs thenσ with adviceD is 9/10-resilient, with the soundness
error set to 1/10.

Efficiency If τ runs in timet and has2i rounds thenσ runs in timethO(d) and has2(i + 1) rounds.
Furthermore,σcommit is a two round protocol.
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Our protocol is paired with the construction in Figure 1 and uses the parameters of that construction.

Ingredients The protocol relies on commit-and-evaluate protocolτ , such that for every MV lineL, τ with advice
(D, L) conforms resiliently with the functionpL. In the final proof, this protocol will exist by recursion.

Operation of the commit phaseσcommit

• The input is1log |Fr
q | and the auxiliary input is the co-nondeterministic circuitD.

• Arthur sends a random setS ⊆ B of sizev = k2.

• Merlin replies with anS-boxa : Sd → F.

• Arthur outputs(S, a,D).

Operation of the evaluation phaseσeval

• The input isx ∈ Bd(= Fr
q), and the auxiliary input is the output of the commit phase.

• Arthur and Merlin computeT1, . . . , Td, the MV path tox usingS. For each MV lineL on the MV
path (note that the number of such lines is bounded byvd) we perform the following actions (in
parallel for all linesL):

Inner commitment Arthur and Merlin play the commit protocolτcommit with advice(D,L) which
outputs a commitmentcL.
At this point Arthur and Merlin hold the auxiliary inputcL required to play the evaluation pro-
tocol τeval for the MV lineL on any inputz ∈ B. To simplify the notation we useτL below
as if it were a function, with the understanding that any “function evaluation”τL(z) actually
invokes the evaluation protocolτeval on inputz ∈ B, with commitmentcL as its auxiliary input.
Note that if the commit-and-evaluate protocolτ is resilient, then with high probability over the
randomness of the commit phase,τeval is indeed a fixed function when given the commitmentcL.

Low-degree test Let MLDT be the machine associated with the low degree test of Lemma 3.2 with
ε = 1/10 and δ = 2−10vd

(which can be achieved by amplification as explained in Section
3.2). Arthur chooses randomness forMLDT , and then Arthur and Merlin runMτL

LDT with that
randomness. If the low degree test fails then Arthur stops and outputs⊥.
If we get to this point in the protocol, we are ensured (with high probability) thatτL is close to
a low-degree polynomial. We would like to access that nearby low-degree polynomial for the
remainder of the protocol, and we will use self-correction for that purpose. LetMSC be the
machine associated with the self-corrector of Lemma 3.4 usingε = 1/5 andδ = 2−10vd

(again
this can be achieved by amplification).

Small-set test Arthur chooses at random seedsy1, . . . , y100vd for the localC-extractorE, and then

Arthur and Merlin computewL,j = E
M

τL

SC(yj). Finally Merlin supplies witnesses showing that
for all j, D rejectswL,j .

• MV consistency test:Arthur and Merlin perform the evaluations (using the self-correctorMSC) of
the variousτL required for the MV consistency test (see Figure 2), with inputx, S, theS-boxa. (By
that we mean thatMτL

SC plays the role of the functiongL needed for performing the test.)

• Arthur stops and outputs⊥ if any of the tests fail. Otherwise, Arthur and Merlin computew =
MτL

SC(xd) whereL is the single MV line inTd, and Arthur outputsw.

Figure 3: Commit-and-evaluate protocolσ with adviceD, for use with recursive MV generator RMVh,d(p)
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Proof. (Conformity ) In the commit phaseσcommit Arthur sends a setS ⊆ B of sizev and Merlin replies
with anS-box a. We need to show that for every choice of setS ⊆ B of sizev there exists anS-box a
and a Merlin strategyM for σeval such that out(σeval,M, x, (S, a, D)) = p(x). Fix some subsetS of sizev.
Define anS-boxa by a(s1, . . . , sd) = p(s1, . . . , sd). Merlin will senda in σcommit. We define a collection of
polynomialsgL = pL, one for each lineL in the MV path tox usingS. By Lemma 5.4 the MV consistency
test passes with these choices. We now define a Merlin strategy forσeval as follows: in the inner commitment
step, Merlin will “play honestly” and use the strategy that guarantees that thatτeval conforms withpL given
the commitmentcL generated in the commit phase. (Note that Merlin has such a strategy which succeeds
with probability one by the conformity ofτ ). Merlin can now pass the low degree test by simply following
the protocol (aspL is indeed a low degree polynomial). For the small-set test, we notice that by assumption
D rejects all elements ofHp and soD rejectsEpL(y) for every MV lineL and every seedy. Thus, Merlin
can pass the small-set test. Finally we observe using Lemma 5.4 that the outputw when Merlin follows this
strategy is indeedp(x) as required. Note that the strategy we described succeeds with completeness1.

(Resiliency) We need to show that for a uniformly chosen setS ⊆ B of sizev, with high probability,
for every S-box a the protocolσeval is PSV when played with auxiliary input(S, a, D). The protocol
σeval invokes the commitment protocolτcommit once for every MV line on the MV path and there are at
mostvd such MV lines. We now argue that by our requirement on the resiliency ofτ we have that with
probability greater than99/100 over the coin tosses of Arthur in the invocations ofτcommit, all commitments
cL obtained in the inner commitment step have the property thatτeval with auxiliary inputcL is PSV. To see
that we note thatτcommit is a two round protocol and therefore with probability1 − 2−10vd

over Arthur’s
choice of coins, every reply of Merlin results in a commitment string on whichτeval is PSV. It follows by a
union bound that with probability at least99/100 all coin tosses of Arthur in the invocations ofτcommit have
the aforementioned property.7 From now on we assume that this event happens and this allows us to think
of τL (the invocation ofτeval with auxiliary inputcL) as functions. Note that Merlin still has the liberty to
play any strategy that he wants in the commitment phase ofτ and thus has many different choices for what
partial function to commit to. We will show that there is at most one choice that passes all tests.

We claim that if Arthur does not halt during the low-degree test step then with probability larger than
99/100 (over Arthur’s random choices for the low-degree test), every lineL on the MV path is close to a
polynomialgL of degree at mosth, and the self-correctorMSC accesses thisgL. The follows from a union
bound and the fact that the error for the low-degree test is at most2−10vd

.
We now define the setZ to be all polynomialsg : Fr/d → F such thatPry[D rejectsEg(y)] > 1/2. We

use Proposition 3.8 to argue that|Z| ≤ 2k = 2h5
. This follows by having the setD of Proposition 3.8 be the

set of inputs on which co-nondeterministic circuitD rejects, and by noticing that|D|/2m + ε ≤ 1/2 (where
hereε = 1/k < 1/10 is the error of the extractorE).

We claim that if Arthur does not halt during the small-set test then with probability larger than99/100,
for everyL on the MV path,gL ∈ Z. This is because ifgL 6∈ Z then the probability (over the choice of
seeds for the extractor and randomness for the self corrector) that the small set test passes onL is at most
2−5vd

and by a union bound over all MV lines in the MV path we have that the probability that this event
occurs for anyL on the MV path< 1/100.

Finally, we claim that if Arthur does not halt during the MV consistency test then by Lemma 5.5 there
is at most one choice for a collection of functions fromZ that pass the MV consistency test. To use the
Lemma we must check thatv = |S| is large enough compared toK = 2k which is the bound we have on

7We remark that although the argument above uses the fact thatτcommit is a two round protocol, the proof also goes through
without this assumption.
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the size ofZ. Indeed, takingγ = 99/100 andβ = 1/10 we have that

|S| = v ≥ (2 log K + log(1/(1− γ)))/ log(1/β)

as required. We conclude that any Merlin strategy on which Arthur does not halt and output⊥, with prob-
ability at least9/10 must end up defining this unique collection of functionsgL. In particular, there is at
most one choice for the functiongL for the single MV lineL ∈ Td, and as this function defines the out-
put uniquely, there is at most one possible value that Arthur can output and the protocol is resilient with
probability 9/10 and soundness1/10.

(Efficiency) We go over the steps one by one. The MV path contains at mostvd MV lines. For each
such MV line Arthur and Merlin perform computations that take time poly(q, r,m, vd) ≤ hO(d) when given
oracle access toτL. Thus, overall the running time ofσ is bounded bytvdhO(d) = thO(d). We now turn our
attention to the number of rounds. The number of rounds of protocolσeval is precisely the number of rounds
of τ . This is because to actually executeσeval, Arthur picks all the randomness for the various low-degree
tests, and the randomness to run the self-corrector on the evaluations required for all the other tests. Then
Arthur and Merlin play all the requested invocations ofτL(z) for the various linesL and evaluation points
z, in parallel. Merlin includes witnesses for the various small-set tests in his final message to Arthur.

Finally, we note thatσcommit has two rounds and therefore the total number of rounds ofσ is the number
of rounds ofτ plus two as required.

6.2 Proof of the main technical theorem

We now show that Theorem 6.1 follows from Lemma 6.2.

Proof. (of Theorem 6.1) LetD be a co-nondeterministic circuit. Recall that we only allow polynomials
p : Fr → F with r = dj wherej ≥ 1 is an integer. We prove the Theorem by induction onj.

(Base case) We start with the base casej = 1. In this case the output of RMVh,d(p) is simplyHp. For
the base case to follow from Lemma 6.2 we only need to supply a commit-and-evaluate protocolτ meeting
the requirements in Figure 3. We use the trivial protocol in which Merlin sends to Arthur a polynomial (by
specifying all coefficients) that is supposed to bepL. More formally, in the commit protocolτcommit Arthur
sends nothing and Merlin replies with a stringa that encodes a polynomialgL : F → F (the honest Merlin
will sendpL). In the evaluation protocolτeval Arthur can evaluategL on an input by himself without the help
of Merlin. It is immediate that this protocolτeval meets the requirements of Figure 3 and the assumptions
of Lemma 6.2, and therefore the base case follows. Note thatτ is a two round protocol (actually it is
a nondeterministic protocol rather than an AM protocol as Arthur does not send any random messages).
Furthermore, note thatτ runs in time poly(h).

(Induction step) Let j > 1. We assume by induction that we already have a commit-and-evaluate
protocolτ = (τcommit, τeval) that meets the requirements of Theorem 6.1 for everyp overr = dj−1 variables.
Furthermore, we assume by induction thatτ has completeness1 and thatτcommit is a two round protocol.
We observe that such a protocol meets the requirements of Figure 3 as well as the requirements of Lemma
6.2. This follows because we can amplify soundness and resiliency errors to the level required in Lemma
6.2 with slowdownvO(d) = hO(d). Furthermore, for the conformity part we observe that sinceD rejects
every element of RMVh,d(p) it in particular rejects every element inHp. Thus, the induction step follows
from Lemma 6.2. Any recursive level multiplies the running time by a factor ofhO(d) and adds two rounds.
There arelogd r such recursion levels and the Theorem follows.
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7 Obtaining our main results

In this section we show how our main results (Theorems 2.4, 2.5, and 2.6) follow from Theorem 6.1. The
argument for this part is essentially the argument in [GSTS03] except that now we use the new generator
RMV (Figure 1) rather than the generator of [MV05]. We give a high level overview of the argument in the
next subsection. For completeness we also provide a full formal proof that appears in the remainder of this
section.

7.1 High level overview of the argument

In this subsection we give a high level overview of how to obtain our main theorems. We start with Theo-
rem 2.4. Letf be the characteristic function of a language complete forE that is instance-checkable (via

Theorem 4.5). We are given a functions = s(`). Fix ` and setm = s(`)Θ(1/(log `−log log s(`))2). Consider
a languageL in AM and let σ be a (standard, two round) AM protocol forL with perfect completeness
(without loss of generality [FGM+89]). We will design a nondeterministic machineM running in time
exponential iǹ and show that if for each̀, M does not agree withL on anm-bit string x produced by
a uniform nondeterministic procedureR (“the derandomization fails on feasibly generated inputs”), thenf
can becomputedby an AM protocol running in times(`). We start by defining the machineM , which uses
the generator RMV from Figure 1:

7.1.1 The generator and the derandomization

Seth = m100, q = h100, and setd to be a large constant andr = O(`/ log h). It is standard that there is a
polynomialp : Fr → F (the low degree extension[BF90]) of total degree at mosth overr = O(`/ log h)
variables such that for everyy ∈ {0, 1}`, p(y) equalsf(y). Furthermore, the coefficients ofp can be
computed in time2O(`).

Given the polynomialp we run RMVh,d(p) in time qO(r) = 2O(`) to generate a setH of at most
qO(r) = 2O(`) strings of lengthm. The nondeterministic machineM is defined as follows: for every string
z ∈ H we simulate the protocolσ onx with z used as Arthur’s randomness and guess an answer for Merlin.
We accept if all of the simulated runs of the protocol accept. Note thatM is indeed a nondeterministic
machine that runs in time exponential in`.

7.1.2 The reduction

Assume thatM disagrees withL on x. Becauseσ has perfect completeness this can only happen when
x 6∈ L and yetM acceptsx. Define the co-nondeterministic circuitDx(y) that rejects if on inputx, Merlin
has a reply to Arthur’s messagey (in the AM protocolσ for L) that causes Arthur to accept. By the efficiency
of protocolσ, Dx has size poly(m), and by the soundness of protocolσ, we have thatDx rejects at most a
third of its inputs. Finally sinceM acceptedx, Dx must reject everyy ∈ H.

Note that we can now use the protocolπ = (πcommit, πeval) of Theorem 6.1 with adviceDx and we get
that π conforms withp resiliently and runs in timemO(d logd r). However, the protocolπ only conforms
resiliently withp and does not necessarilycomputef , as discussed at the end of Section 4.1.

7.1.3 Using instance checkers

To solve this problem we will use instance checkers (in the same way they are used in [BFNW93, TV02,
GSTS03]). Recall that we chose a functionf that has an instance checker. For an instance-checkablef ,
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a “commit and evaluate” protocol that conforms resiliently withf can be converted into a standard AM
protocol forf :8

Theorem (informal) 7.1. Let f be a function that is instance checkable. Letπ = (πcommit, πeval) be a
commit-and-evaluate protocol that conforms withf resiliently. Then there is an AM protocolπ′ that com-
putesf and runs in time comparable to that ofπeval using two additional rounds.

Proof. (sketch) We describe the AM protocolπ′. Given inputx, Arthur and Merlin execute the commitment
protocolπcommit. By the resiliency ofπ following this phase with high probability Merlin is committed to
some (partial) functiong (which may be different fromf ). Arthur chooses randomness for the instance
checker and sends it to Merlin. The two parties then simulate the instance checker on inputx where oracle
calls are simulated by playing the evaluation protocolπeval. Arthur outputs the recommendation of the
instance checker regarding the value off(x). The theorem follows immediately from the properties of
instance checkers.

We conclude thatf has an AM protocol that computes it in timemO(log r) that usesO(log r) rounds
(recall thatd is a constant). This protocol can be transformed into a two round protocol running in time
mO(log2 r) and the parameters are set so that the time is at mosts(`) as required. Thus, we obtain a two
round AM protocol that computes an E-complete problem in times(`).

7.1.4 The case of AM∩ coAM

We now explain the idea for Theorem 2.5. A natural idea to remove the restriction to feasibly generated in-
puts is to have Merlin supply the inputx (rather than having it supplied by some external uniform procedure
R). The only part of the above argument that might fail is that we can no longer be sure thatDx rejects
at most1/3 of its inputs, and then the resiliency of the protocolπ is not guaranteed. However, if Arthur
can verify thatx 6∈ L, then the corresponding circuitDx must reject at most a third of its inputs, and the
resiliency ofπ follows. In general, Arthur has no way to check thatx 6∈ L, but whenL ∈ AM ∩ coAM
Merlin can convince Arthur thatx 6∈ L.

In the next three subsection we give the precise details for the argument outlined in Section 7.1.

7.2 Nondeterministic simulation of AM protocols

We start with describing how to use a hitting-set generator against co-nondeterministic circuits to perform
nondeterministic simulation of AM protocols. This is standard, but we go through it in order to set parame-
ters for the next part. The first observation is that given an AM languageL and an inputx, the behavior of
the AM protocol onx can be captured by a co-nondeterministic circuitDx which receives the random coin
tosses of Arthur as input.

Lemma 7.2. For any languageL ∈ AM there is a constantc > 0 such that for any inputx ∈ {0, 1}n there
is a co-nondeterministic circuitDx of sizem = nc such that:

• If x ∈ L thenDx rejects all inputs.

• If x 6∈ L thenDx rejects at most a1/3-fraction of its inputs.

8A technicality is that instance checkers may query inputs that are longer than their input. As a result some care is needed when
stating the next theorem formally. The precise details appear in the formal proof.
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• Circuit Dx can be produced in polynomial time fromx.

Proof. By [FGM+89] we can assume that the AM protocol forL has perfect completeness. Consider
the following deterministic circuitDx(y, a): simulate Arthur’s computation with coin tossy and Merlin’s
responsea and flip the final answer. This deterministic circuit can be interpreted as a co-nondeterministic
circuit Dx(y) that fulfils all the requirements above.9

When given a hard problem we use the low-degree extension [BF90] to transform it into a low degree
polynomial as follows:

Lemma 7.3 (low degree extension).Let f : {0, 1}∗ → {0, 1} be a function,̀ be an integer,h ≤ `O(1) be
a prime power, andq = hO(1). There is a polynomialp : Fr → F of total degreeh over a fieldF of sizeq
with r = O(`/ log h) variables such that:

• There is an injective mappingI : {0, 1}` → Fr that is computable in polynomial time.

• For everyy ∈ {0, 1}`, f(y) = p(I(y)).

• p can be computed in time2O(`) when given oracle access tof .

The polynomialp is called thelow-degree extension off at length̀ with degreeh.

The proof of Lemma 7.3 is standard (see e.g., [Uma03]).
To prove Theorems 2.4, 2.5, and 2.6 we need to construct a nondeterministic machine that attempts

to simulate a given AM languageL. Figure 4 describes how to use the generator RMV from Figure 1 to
construct such a nondeterministic machineML. We observe the following properties of the machineML.

Lemma 7.4. LetL be a language in AM, and letML, f , `, andv(`) be as specified in Figure 4.

• If f is computable in time2`O(1)
andv(`) = `O(1) then the machineML runs in nondeterministic time

2`O(1)
on inputs of lengthm.

• If f is computable in time2O(`) andv(`) = O(`) then the machineML runs in nondeterministic time
2O(`) on inputs of lengthm.

• If x is an input on whichL(ML) andL disagree, thenx 6∈ L.

Proof. We have thatm < s(`) ≤ 2`. Therefore we can neglect operations that take time polynomial inm.
The machineML needs to compute the low degree extensionp of f . By Lemma 7.3 this takes time2O(`)

when given oracle access tof . The other main factor in the running time is computing RMV. By Lemma
5.2 this takes timeqO(r) = 2O(v(`)), givenp. The first two items of the lemma follow. The third item follows
from Lemma 7.2 as for everyx ∈ L we have thatDx rejects all inputs and in particular rejects all outputs
of RMV.

To finish up the argument and prove our main theorems we show that given an inputx on whichML

fails to simulateL correctly we can give an AM protocol for the supposedly hard functionf . This is done
in the next subsection.

9It is indeed more natural to think ofDx as a nondeterministic circuit (without flipping the answer). The reason we speak about
co-nondeterministic circuit is that the definition of hitting set generators is not symmetric in zeroes and ones and in order to meet
this definition we need to flip the output. In this choice we follow [MV05, GSTS03].
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Our procedure uses the construction and parameters of Figure 1.

Ingredients

• An AM languageL. This is the language to be derandomized.

• A functionf : {0, 1}∗ → {0, 1}. This is the “hard function” supplied to the derandomization
procedure.

• An time constructible integer functioǹ≤ s(`) ≤ 2` (see definition 2.3). This is a function
which measures how hard is the functionf .

• An integer functionv(`) ≥ `. The functionv(`) determines the length of queries made by
an instance checker forf on inputs of length̀ . By Theorem 4.5 we have thatv(`) = `O(1)

whenf is computable in EXP andv(`) = O(`) whenf is computable in E.

Parameter: A constantc′.

Input: A stringx of lengthn.

Operation of ML on input x

• Let c be the constant guaranteed by Lemma 7.2 forL and setm = nc.

• Compute the smallest integer` such thats(`)c′/(log v(`)−log log s(`))2 ≥ m. Sinces is time-
constructible, this can be found efficiently by binary search. Note that this is exactly the
relationship betweens, ` andm andn that we need to fulfill in our main theorems. We can
assume without loss of generality thatm100 ≥ v(`). OtherwiseML can just decideL by
brute-force simulation in time2O(nc) = 2O(m) which is at most2O(`) if m100 ≤ v(`).

• Seth to be the smallest prime power larger thanm100 andq = h100. Let p be the low degree
extension off at lengthv(`) over the field withq elements. We have thatp : Fr → F is a
polynomial withr = O(v(`)/ log h) variables over a field of sizeq.

• Setd = 2 and computeH = RMVh,d(p), which is a multi-set ofm bit strings.

• For every stringz ∈ H guess a witness showing thatDx(z) rejects. Recall thatDx is a
co-nondeterministic circuit, so it has short witnesses for rejection.

• Finally, acceptx if and only if for everyz ∈ H the guessed witness proves thatDx(z) rejects.

Figure 4: The nondeterministic machineML(x) which attempts to decide the AM languageL.

7.3 Establishing the correctness of the nondeterministic simulation

We now suppose that the machineML disagrees with the AM languageL on some inputx and show how
the protocolπ from Theorem 6.1 yields an AM protocol that computes the functionf on all inputs of a
particular length that is a function of the length ofx. We will use the fact that problems complete for E or
EXP have instance checkers. In Figure 5 we present the AM protocolτ for computing the functionf in the
event thatML fails to decideL.

Our main theorem of this subsection asserts that protocolτ indeed computesf on all inputs of a partic-
ular length when supplied with an advice stringx on whichML disagrees with the languageL. In fact, we
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Our protocol refers to the parameters and ingredients of the procedure in Figure 4.

Ingredients

• An instance checkerIC for f that makes queries of lengthv(`) on inputs of length̀ .

• The commit and evaluate protocolπ = (πcommit, πeval) that is guaranteed in Theorem 6.1
when using the polynomialp as defined in the construction of the machineML using the
parametersd, h, r,m, q defined there. Recall thatp is the low degree extension off at length
v(`) and that protocolπ expects as advice a co-nondeterministic circuit of size poly(m).

Input: A stringy of length`. The protocol is trying to computef(y).

Auxiliary input: A stringx of lengthn.

Operation

• Arthur computes the circuitDx defined in Lemma 7.2.

• Arthur and Merlin play the commit phaseπcommit using advice stringDx and they obtain as
output a commitmentcom.

At this point Arthur and Merlin hold the auxiliary inputcom required to play the evaluation
protocolπeval on any input top. Note that asp is the low-degree extension off at lengthv(`)
we can useπeval to evaluatef at any input of lengthv(`) by using the mappingI from Lemma
7.3. Furthermore, we will show that protocolπ conforms resiliently withp and therefore the
reader can imagine thatπeval is a fixed function when used with the auxiliary inputcom.

• Arthur chooses random coin tosses for the instance checkerIC when run on inputy and
sends them to Merlin.

• Merlin simulates the run ofIC on y using oraclef . Merlin sends the transcript of this
simulation to Arthur and for all queriesy′ of lengthv(`) made tof , Arthur and Merlin play
the protocolπeval on the inputy′ (in parallel). Arthur verifies that the output he obtains is
consistent with the answer to the query provided by Merlin ony′ in the transcript that Merlin
sent. Arthur also verifies that the transcript is indeed valid when using the supplied oracle
queries and answers. Arthur outputs⊥ and halts if he detects any inconsistency.

• Arthur outputs the output ofIC(y) that appears in the transcript.

Figure 5: The protocolτ(y) which attempts to computef(y)

will prove a stronger statement in which the soundness ofτ holds under the weaker condition thatx 6∈ L.
(This is indeed a weaker condition by Lemma 7.4). This stronger statement will be helpful later on when
proving Theorem 2.5 and 2.6.

Theorem 7.5. Protocolτ in Figure 5 satisfies:

completenessIf the machineML does not agree withL on inputx thenτ with auxiliary inputx conforms
with f on inputs of length̀ with completeness1.

soundnessIf x 6∈ L thenτ with auxiliary inputx is PSV on inputs of length̀.
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efficiency Protocolτ runs in timemO(log v(`)−log log m) and hasO(log v(`)− log log m) rounds.

Proof. The three items follow directly from Theorem 6.1; the details appear below:

(Completeness) We have thatL andL(ML) disagree onx. By Lemma 7.4 it follows thatx 6∈ L. We con-
clude thatML did acceptx and in particular we have thatDx rejects all the elementsz in H = RMVh,d(p).
By Theorem 6.1 we have that the protocolπ with adviceDx conforms withp, with completeness 1. There-
fore, Merlin has a strategy forπcommit so that the commitment stringcom obtained by Arthur is such that
πeval with auxiliary input com conforms withp with completeness1. Thus, by simulating the instance
checkerIC correctly, Merlin can lead Arthur to outputf(y) as he can convince Arthur that the transcript of
the instance checker is correct.

(Soundness) By Lemma 7.2 ifx 6∈ L thenDx rejects at most a1/3-fraction of its inputs. By Theorem
6.1 we have that in this caseπ is resilient. It follows that no matter how Merlin plays in the commit
phaseπcommit the outputcom is such thatπeval with auxiliary inputcom is PSV. It follows that there exists a
functiong : {0, 1}v(`) → {0, 1} such such that for any inputy′ toπeval no matter how Merlin plays he cannot
lead Arthur to accept a value different thang(y′) with noticeable probability. In such a case (assumingπ is
sufficiently amplified using Proposition 4.3) we have that no instantiation ofπeval in the protocolτ answers
incorrectly. By the properties of instance checkers we have that whenIC(y) is run with oracle access to
g then with high probability (over the randomness for IC supplied by Arthur) the output is eitherf(y) or
⊥. It follows that if Merlin is able to complete the execution ofτ then with high probability Arthur outputs
f(y). Thus, the probability that Merlin can make Arthur output a value different thanf(y) is smaller than
the default soundness error of1/3.

(Efficiency) ComputingDx can be done in time poly(n) = mO(1) by Lemma 7.2. By Theorem 6.1 the
protocolπ runs in timehO(d logd r). Recall thatd = O(1), h = mΘ(1) andr = O(v(`)/ log h). It follows
that the running time is bounded bymO(log v(`)−log log m). The instance checker runs in time`O(1) ≤ mO(1)

and therefore the number of queries (which controls the number of invocations ofπcommit is bounded by
mO(1). Overall, the running time ofτ is indeedmO(log v(`)−log log m) as required. All the invocations ofπeval

are done in parallel and thereforeτ has only two additional rounds overπeval and the total number of rounds
is O(logd r) = O(log v(`)− log log m).

7.4 Putting everything together

We are finally ready to prove Theorems 2.4, 2.5, and 2.6. The setup and parameter choice for the three
theorems is very similar so we will start by describing the common part of the three proofs.

The setup and parameters: Let s(`) be an integer function satisfying the requirements of Theorems 2.4,
2.5, and 2.6. LetL be a language in AM. Letf be a characteristic function of a problem in E (resp. EXP)
that has an instance checkerIC that makes queries of lengthv(`) = O(`) (resp.v(`) = `O(1))). Note that
the existence of such a functionf is guaranteed by Theorem 4.5. LetML be the nondeterministic machine
defined in Figure 4. We first verify that the relationship between the parametersn, ` ands(`) are exactly as
specified in the theorems.

Recall thatML receives inputs of lengthn and the description ofML fixes the parameterm = nc (where
c is a constant that depends only on the AM languageL). Also recall thatML chooses̀ as a function of
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m. More precisely, we choosèto be the smallest integer suchs(`)c′/(log v(`)−log log s(`))2 ≥ m where the
constantc′ > 0 is a parameter. Thus, we have thatn = s(`)Θ(1/(log v(`)−log log s(`))2) as required (where the
constants hidden inside theΘ depend only on the constantsc, c′). Note that by Lemma 7.4 the machineML

runs in nondeterministic time2O(`) (resp.2`O(1)
) on inputs of lengthn. Thus, our choice of parameters is as

promised in Theorems 2.4, 2.5, and 2.6.
In the proofs of the three Theorems we need to show that ifML fails to decideL (where the meaning

of this statement differs in the different theorems) then there is an AM protocol that computesf and runs in
time s(`). Let τ be the Arthur-Merlin protocol defined in Figure 5. The high level idea is that by Theorem
7.5 we are guaranteed thatτ indeed computesf when it is given an auxiliary inputx on whichL andL(ML)
disagree. The difference between the three proofs is in how this stringx is obtained. Before going into this
issue let us first observe that the running time ofτ is indeed smaller thans(`) for our choice of parameters.

By Theorem 7.5 protocolτ runs in timemO(log v(`)−log log m) and hasO(log v(`) − log log m) rounds.
Given an Arthur-Merlin protocol that runs in timeT and hasR rounds it is possible to collapse it into a
two round protocol that runs in timeTO(R) [BM88]. Thus we can get a two round protocol with running
time tomO(log v(`)−log log m)2 . Recall that in the definition ofML we chosè to be the smallest integer such
s(`)c′/(log v(`)−log log s(`))2 ≥ m. Therefore we have:

mO(log v(`)−log log m)2 ≤
(

s(`)
c′

(log v(`)−log log s(`))2

)O(log v(`)−log log m)2

≤ s(`)O(1) (1)

where we are using the fact that(log v(`)− log log m) = O(log v(`)− log log s(`)) which follows because
by the definition ofm:

(log v(`)− log log m) = (log v(`)− log log s(`)) + 2 log (log v(`)− log log s(`)) + O(1)
≤ (1 + o(1))(log v(`)− log log s(`)) + O(1).

We observe that theO(1) in the exponent ons(`) in Equation 1 (which depends onc′, c and the hidden
constants in Lemma 7.3 and Theorem 4.5) can be made to be any positive constant by choosingc′ to be a
sufficiently small constant.

We now split the proof into the cases of the three different theorems. We begin with the proof of Theorem
2.4. In this case there is an external machineR (the refuter) that supplies the auxiliary inputx.

Proof. (of Theorem 2.4) Assume thatML fails on feasibly generated inputs, and letR be a nondeterministic
machine as in Definition 2.2. We are guaranteed that for all but finitely many input lengthsn and for every
accepting computation path,R(1n) outputs a stringx of lengthn such thatL andL(ML) disagree onx. We
will show thatf has a two round Arthur-Merlin protocol running in times(`) that computesf on inputs of
length`. This will prove Theorem 2.4.

Consider the following Arthur-Merlin protocol: When given inputy ∈ {0, 1}`, Arthur and Merlin
compute an integern so that̀ is the integer chosen by the nondeterministic machineML when given inputs
x of lengthn. Merlin then sends a stringx of lengthn with an accepting computation path ofR(1n) that
outputsx. The two parties then run the protocolτ on inputy and auxiliary inputx.

By the properties of the refuterR we have thatL andL(ML) disagree onx. By Lemma 7.4 we have
thatx 6∈ L. By Theorem 7.5 this gives us the completeness and soundness properties of protocolτ with
auxiliary inputx. We conclude that the protocol above computesf on all but finitely many input lengths̀.

The running time of the Arthur-Merlin protocol above is dominated by the running time ofτ which is
bounded bys(`)1/100. Thus, the entire protocol runs in time smaller thans(`) as required.
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In the case of Theorems 2.4 and 2.5 we have additionally thatL is in coAM. When giveny ∈ {0, 1}`

we will now rely entirely on Merlin to send a stringx of lengthn that will be used as auxiliary input for the
protocolτ . Unlike the case of Theorem 2.4, we do not have the refuter to ensure that Merlin indeed sends
anx 6∈ L. We will therefore ask Merlin to also prove to Arthur thatx 6∈ L – which Merlin can do in this
case becauseL is in coAM.

Proof. (of Theorem 2.5) We assume thatL is also incoAM. We will show that ifL andL(ML) disagree
for all but finitely many input lengthsn thenf has a two round Arthur-Merlin protocol running in times(`)
that computesf . This will prove Theorem 2.5.

Consider the following Arthur Merlin protocol: When given inputy ∈ {0, 1}`, Arthur and Merlin
compute an integern so that̀ is the integer chosen by the nondeterministic machineM when given inputs
x of lengthn. Merlin sends a stringx of lengthn (that is supposed to be a string on whichL andL(ML)
disagree). Arthur and Merlin then play the AM protocol for the complement ofL on the inputx (note that
such a protocol exists as we are assuming thatL ∈ coAM and we can assume without loss of generality that
it has perfect completeness). By the completeness and soundness of this protocol at the end of this protocol
Arthur is convinced with high probability thatx 6∈ L. At this point Arthur and Merlin play protocolτ on
inputy using auxiliary inputx.

An honest Merlin can indeed follow the protocol described above and using Theorem 7.5 it follows that
Arthur will outputf(y) with probability one in this case. Furthermore, no matter how Merlin plays, Arthur
will reject (with high probability) unless Merlin sendsx 6∈ L, in which case the soundness of the protocol
follows by Theorem 7.5.

The running time of this protocol is dominated by the running time ofτ . Thus, the protocol can be
collapsed into a two round protocol that runs in times(`) as required.

For Theorem 2.6 we are interested in the case thatML only fails on infinitely many input lengthsn. In
this case we would like the protocol forf to succeed on infinitely many input lengths`. However, there is
a subtle point here. In both protocols above we instructed Arthur and Merlin to computen as a function
of `. Note however, that there are many lengthsn which satisfy the relationship “n is an integer so that
` is the integer chosen by the nondeterministic machineML when given inputsx of lengthn”. We were
not concerned with this previously because all lengthsn were good for our purposes. However, now only
infinitely many lengthsn are good. For this approach to work we need that for any length` such that there
is a good lengthn that satisfies the relation above, we can actually come up with such a lengthn.

We do not know how to do this in the setup of Theorem 2.4 (i.e., when the refuter only succeeds on
infinitely many input lengths). However, we can do it in the setup of Theorem 2.5. We will now rely on
Merlin to send such a lengthn. The soundness of the protocol forf still follows using Theorem 7.5 as
Merlin still has to send anx that is not inL. However, the completeness is no longer guaranteed on all
lengths̀ as it is not necessarily the case that Merlin can come up with ann and anx such thatL andL(ML)
disagree onx. The formal proof appears below:

Proof. (of Theorem 2.6) We assume thatL is also incoAM. We will show that ifL andL(ML) disagree
on infinitely many input lengthsn thenf has a two round Arthur-Merlin protocol running in times(`) such
that on infinitely many input lengths the protocol computesf . This will prove Theorem 2.5. Note that there
is no guarantee that there is a gap between completeness and soundness on “incorrect” lengths`.

Consider the following Arthur Merlin protocol: When given inputy ∈ {0, 1}`, Merlin sends an integer
n and Arthur checks that̀ is the integer chosen by the nondeterministic machineML when given inputsx
of lengthn. Merlin then sends a stringx of lengthn (that is supposed to be a string on whichL andL(ML)

31



disagree). From here on the proof is similar to that of Theorem 2.5; namely: Arthur and Merlin play the AM
protocol for the complement ofL on the inputx. By the completeness and soundness of this protocol at the
end of the protocol Arthur is convinced with high probability thatx 6∈ L. At this point Arthur and Merlin
play protocolτ on inputy using advicex.

An honest Merlin can indeed follow the protocol described above (on infinitely many input lengths`)
and using Theorem 7.5 it follows that Arthur will outputf(y) with probability one in this case. Furthermore,
no matter how Merlin plays Arthur will reject (with high probability) unless Merlin sendsx 6∈ L and the
soundness of the protocol follows by Theorem 7.5. In fact, soundness is guaranteed on all lengths`.

Again, the running time of this protocol is dominated by the running time ofτ . Thus, the protocol can
be collapsed into a two round protocol that runs in times(`) as required.

8 Conclusions and open problems

In this paper we give improved uniform hardness versus randomness tradeoffs for Arthur-Merlin games that
come very close to the “absolute low-end”. A very natural open problem is to give a tradeoff that achieves
the absolute low-end, namely, one that achievesn = s(`)Ω(1) in Theorems 2.4, 2.5, and 2.6 rather than the

current bound which givesn = s(`)Θ(1/(log `−log log s(`))2) for E andn = s(`)Θ((1/ log `)2) for EXP. Our
current results are suboptimal because of the following losses accumulated in the recursion:

• In the recursive AM protocol that is constructed in the proof of Theorem 6.1 every instantiation of the
protocol at one level triggers poly(m) instantiations at the next level. As there areΘ (log `− log log s(`))
levels we get that the running time of the protocol ismΘ(log `−log log s(`)) rather than poly(m).

• Each recursive call also adds an additional round to the Arthur-Merlin protocol. At the end we also
need to pay a penalty in the running time when collapsing the rounds to give a standard two round
Arthur-Merlin protocol.

Another important open problem is to improve Theorem 2.4 so that the result holds for all inputs, rather
than only inputs that are feasibly generated. Following [GSTS03] we already achieve such a clean statement
for AM ∩ coAM. We remark that this can also be done for MA. As explained in [GSTS03], achieving this
goal for AM, for the absolute low-end, will give an unconditional (although weak) derandomization of AM,
placing it in a subexponential version ofΣP

2.
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