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Abstract

Raz’s parallel repetition theorem [24] together with improvements of Holenstein [14] shows that for
any two-prover one-round game with value at most 1− ϵ (for ϵ ≤ 1/2), the value of the game repeated n

times in parallel on independent inputs is at most (1−ϵ)Ω( ϵ2n
ℓ ) where ℓ is the answer length of the game.

For free games (which are games in which the inputs to the two players are uniform and independent) the
constant 2 can be replaced with 1 by a result of Barak, Rao, Raz, Rosen and Shaltiel [2]. Consequently,
n = O( tℓϵ ) repetitions suffice to reduce the value of a free game from 1 − ϵ to (1 − ϵ)t, and denoting
the input length of the game by m, it follows that nm = O( tℓmϵ ) random bits can be used to prepare n
independent inputs for the parallel repetition game.

In this paper we prove a derandomized version of the parallel repetition theorem for free games and
show that O(t(m + ℓ)) random bits can be used to generate correlated inputs such that the value of the
parallel repetition game on these inputs has the same behavior. That is, it is possible to reduce the value
from 1− ϵ to (1− ϵ)t while only multiplying the randomness complexity by O(t) when m = O(ℓ).

Our technique uses strong extractors to “derandomize” a lemma of [24], and can be also used to de-
randomize a parallel repetition theorem of Parnafes, Raz and Wigderson [22] for communication games
in the special case that the game is free.

∗A preliminary version of this paper appeared in CCC 2010.
†This research was supported by BSF grant 2004329 and ISF grant 686/07.
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1 Introduction

A fundamental question in complexity theory is to what extent is it harder to solve many independent random
instances of the same problem compared to solving a single random instance. This question is sometimes
referred to as the “direct product question” or “parallel repetition question” and is studied in many algorith-
mic settings. Parallel repetition theorems are results that relate the hardness of solving many independent
instances to that of solving a single random instance. In cases where “parallel repetition theorems” are
known, the next step is often to “derandomize” them. That is, to design a sampling procedure that uses
few random bits to sample many correlated instances such that solving these instances is as hard as solving
independent instances. When measuring complexity as a function of the input length, “derandomized par-
allel repetition” produces problems that are harder than “independent parallel repetition”. This is because
the input length (which is often the number of random bits used) is shorter in the derandomized version. A
well known example of a direct product theorem is Yao’s XOR Lemma [28] which is a “parallel repetition
theorem” for circuit complexity (see [12] for a survey). Derandomized versions of variants of this lemma
[11, 15, 17, 16] play a key role in Complexity Theory and Cryptography, and also provide more insight on
the parallel repetition question.

In this paper we prove derandomized versions of Raz’s parallel repetition theorems for 2-prover 1-round
games [24] and of the parallel repetition theorem of Parnafes, Raz and Wigderson [22] for communication
games. In both settings we can only handle a subfamily of games called “free games”.

1.1 2-prover 1-round games

2-prover 1-round proof systems were introduced by Ben-Or, Goldwasser, Kilian and Wigderson [4]. Such
proofs play an important role in Complexity Theory and Cryptography. The notion of 2P1R-games defined
below was introduced to capture the interplay between two cheating provers and an honest verifier on a fixed
false statement and is extensively studied.

A 2P1R-game G is a game between two cooperating players. The game is administered by a referee that
samples a pair of inputs (x, y) ∈ ({0, 1}m)2 according to some distribution µ on ({0, 1}m)2 (that is known
in advance to both players). We use the notation (x, y)← µ to denote the experiment in which the pair (x, y)
is chosen according to µ. The randomness complexity of G denoted by rand(G) is the number of random
coins used by the referee to sample the pair (x, y). The first player receives input x and responds with an
answer a(x) ∈ {0, 1}ℓ. The second player receives input y and responds with an answer b(y) ∈ {0, 1}ℓ. The
players cannot communicate and their goal is to satisfy a predicate V (x, y, a, b) (that is known in advance
to both players). The value of G denoted by val(G) is the success probability of the best strategy of the
players. A formal definition follows:

Definition 1.1. A 2P1R-game G is defined by a distribution µ over ({0, 1}m)2 and a predicate V over
({0, 1}m)2 × ({0, 1}ℓ)2. We refer to m as the input length and to ℓ as the answer length. A strategy Π
in G is a pair Π = (a, b) of functions a, b : {0, 1}m → {0, 1}ℓ and Π wins on (x, y) ∈ ({0, 1}m)2

if V (x, y, a(x), b(y)) = 1. The value of G denoted by val(G) is the maximum over all strategies Π of
Pr(X,Y )←µ[Π wins on (X,Y )]. The game is free if µ is the uniform distribution over ({0, 1}m)2 and for
free games we define rand(G) = 2m.1

1One can also consider games in which the input length or answer length of the two players are different. All the results in this
paper also hold for such games taking m, ℓ to be the average of input lengths and answer lengths respectively. In some previous
work the term “free game” is used to describe games where (X,Y )← µ are independent but not necessarily uniformly distributed.
Such games can be converted to our definition (while preserving their value and randomness complexity) by having the referee
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Parallel repetition of 2P1R-games The n-fold parallel repetition of a 2P1R-game G is a 2P1R-game
Gn in which the referee samples n independent pairs (x1, y1), . . . , (xn, yn) where each pair is sampled
according to µ. The first player receives the input (x1, . . . , xn) and responds with an answer (a1, . . . , an) ∈
({0, 1}ℓ)n. It is important to note that the rules of 2P1R-games allow each ai to be a function of the
entire input (x1, . . . , xn). Similarly, the second player receives (y1, . . . , yn) and responds with answers
(b1, . . . , bn) ∈ ({0, 1}ℓ)n. The predicate V n of game Gn checks that for every 1 ≤ i ≤ n, V (xi, yi, ai, bi) =
1. A formal definition follows:

Definition 1.2 (The n-fold repetition game Gn). For a 2P1R-game G we define a 2P1R-game Gn with input
length nm and answer length nℓ. We think of inputs as elements in ({0, 1}m)n and of answers as elements
in ({0, 1}ℓ)n. Gn is defined by the distribution µn (that is the n-fold product of µ) and the predicate

V n
(
(x1, . . . , xn), (y1, . . . , yn), (a1, . . . , an), (b1, . . . , bn)

)
=

∧
1≤i≤n

V (xi, yi, ai, bi).

Note that rand(Gn) = n · rand(G) and that Gn is free if G is free.

Reducing the value by parallel repetition It is natural to expect that parallel repetition of a 2P1R-game
G reduces its value. Indeed, Verbitsky [27] showed that for any game G with val(G) < 1, val(Gn) tends
to zero as n tends to infinity. A lot of research addresses the rate at which the value goes down in various
sub-families of games. See [6] for a survey article. This question can be naturally phrased as follows:

Question 1.1. Let 0 < ϵ ≤ 1/2, let G be a 2P1R-game with val(G) ≤ 1 − ϵ and let t be an integer. How
large should n be so that val(Gn) ≤ (1− ϵ)t?

One may expect that n = t repetitions suffice (or more generally that val(Gn) = val(G)n). However,
Fortnow [9] and subsequently, Lapidot and Shamir [19], and Feige [5] gave counterexamples. Specifically,
there are free games in which val(G2) = val(G) = 1/2. Moreover, Feige and Verbitsky [8] showed that
one cannot answer the question above with a number of repetitions n that depends only on ϵ and t. More
specifically, that for every n there is a free game G such that val(G) ≤ 3/4 and yet val(Gn) ≥ 1/8.

In a celebrated result, Raz [24] proved that for every game G with val(G) ≤ 1− ϵ and ϵ ≤ 1/2, it holds
that val(Gn) ≤ (1 − ϵ)Ω( ϵ

cn
ℓ

) where c > 0 is a universal constant and recall that ℓ measures the answer
length of the game. Holenstein [14] simplified parts of the proof and improved the constant c from 31 to 2.
In the special case that G is free, Barak, Rao, Raz, Rosen and Shaltiel [2] further improve the constant c to
1.2 Improvements were also obtained for other special families of games such as “projection games” and
games played on expander graphs. The reader is referred to [2] and the references therein for a discussion.

It is not known whether the results mentioned above are tight. However, it is known that the dependence
of n on ℓ in the results mentioned above is optimal up to polylogarithmic factors. This follows from the
aforementioned results of [8]. It is also known that for general games the constant c has to be at least 1.
This follows from Raz’s “counterexample to strong parallel repetition theorems” [25]. It is open whether the
constant c can be improved from 2 to 1 for general games. It is also open whether c can be improved from

send a pair of independent and uniformly distributed “seeds” (X ′, Y ′) using which each player privately generates his own input.
Another standard comment is that we could have allowed the strategy Π to be randomized (either with private coins or shared coins)
without affecting the value of the game.

2In some of the previous work the bound on val(Gn) is presented in the form (1−ϵc
′
)Ω(n

ℓ
) in contrast to the form (1−ϵ)Ω( ϵcn

ℓ
)

that we use in this paper. Note that the two forms are essentially the same under the translation c = c′ − 1.
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1 to 0 for free games. We remark that for ”projection games” there are matching upper and lower bounds
[23, 1] and that that this is also the case for free projection games [2].

Summing up this discussion we note that parallel repetition of 2P1R-games is a striking example where
the answer to the parallel repetition question is unintuitive and complex (and this is the case even if we only
consider free games).

The randomness complexity of parallel repetition The previous discussion is focused on the relation-
ship between the number of repetitions and the value of the game. In this paper we are interested in the
relationship between the randomness complexity and the value of the game. This question was studied by
Bellare, Goldreich and Goldwasser [3] in a related context of single prover interactive proofs. In this paper
we focus on free games as we do not know how to handle general games (in Section 5 we discuss what parts
of our techniques apply for general games).

Let G be a free game with val(G) ≤ 1− ϵ for ϵ ≤ 1/2. By the best known parallel repetition theorems,
n = O( tℓϵ ) repetitions suffice to reduce the value to (1 − ϵ)t. Note that the game Gn has randomness
complexity

rand(Gn) = n · rand(G) = 2 · nm = O(
tℓm

ϵ
).

In this paper we introduce a “derandomized parallel repetition game” which achieves the same effect using
randomness complexity O(t · (m + ℓ)). More precisely, we show that the referee can use O(t · (m + ℓ))
random bits to sample inputs (x1, . . . , xn) and (y1, . . . , yn) so that when the players play the game Gn

on these inputs, the value is bounded by (1 − ϵ)t. For ℓ = O(m) the randomness complexity used is
O(tm) which is asymptotically the same as the randomness complexity of a t-fold parallel repetition. In
other words, the value of such games can be decreased from 1 − ϵ to (1 − ϵ)t while only multiplying the
randomness complexity a factor of O(t) independent of ℓ and ϵ. We now describe the derandomized game.

The derandomized game Given a free game G, the derandomized game GE is a free game defined given
a function E : {0, 1}r × [n] → {0, 1}m. GE has input length r and answer length nℓ. We denote the
inputs to GE by (x̄, ȳ) ∈ ({0, 1}r)2. The first player receives input x̄ ∈ {0, 1}r and computes an input
(x̄1, . . . , x̄n) to Gn by x̄i = E(x̄, i). The second player uses ȳ to compute an input (ȳ1, . . . , ȳn) to Gn by
ȳi = E(ȳ, i). The outcome of the game GE is the outcome of Gn on inputs

(
(x̄1, . . . , x̄n), (ȳ1, . . . , ȳn)

)
. A

formal definition follows:

Definition 1.3. Let E : {0, 1}r × [n] → {0, 1}m be a function. For a string x̄ ∈ {0, 1}r and i ∈ [n] we
define x̄i = E(x̄, i).

Definition 1.4 (Derandomized 2P1R-game). Let G be a free 2P1R-game with input length m and answer
length ℓ. Let E : {0, 1}r × [n]→ {0, 1}m be a function. We define a free 2P1R-game GE with input length
r and answer length nℓ. The game GE is defined by the predicate

V E(x̄, ȳ, (a1, . . . , an), (b1, . . . , bn)) = V n((x̄1, . . . , x̄n), (ȳ1, . . . , ȳn), (a1, . . . , an), (b1, . . . , bn)).

Parallel repetition can be seen as a special case in which r = nm and E((x1, . . . , xn), i) = xi and
in this case GE coincides with the game Gn. In general, the derandomized game has rand(GE) = 2r
and by choosing E to be a strong extractor (to be defined later) with suitable parameters we can achieve
rand(GE)≪ rand(Gn) = 2nm. We state our result informally below:
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Theorem 1.5. (informal) Let t be an integer, let 0 ≤ ϵ ≤ 1/2 and let G be a free 2P1R-game with val(G) ≤
1 − ϵ. Let E : {0, 1}r × [n] → {0, 1}m be a strong extractor with appropriate parameters, then the
derandomized game GE satisfies val(GE) ≤ (1− ϵ)t, rand(GE) = O(t · (m+ ℓ)) = O(t · (rand(G) + ℓ))
and n = poly(m, t, ℓ). Moreover, there is such an extractor that can be computed in time poly(m, t, ℓ).

We define strong extractors in Section 2 and restate Theorem 1.5 formally in Section 4.
Feige and Kilian [7] prove impossibility results for derandomizing Raz’s parallel repetition theorem. Our

result does not contradict theirs because of two reasons. First, their impossibility result does not apply to free
games but rather to a subfamily of “constant degree games”. The latter are games in which after revealing
the input of one player, there are only a constant number of possible values for the input of the other player.
Note that free games are very far from having this property. Second, the impossibility results of [7] rule
out a much more ambitious derandomization than the one presented here. Namely, a derandomization that
reduces the randomness complexity to o(t · rand(G)). Following [7] we remark that when making analogies
to other settings of “derandomized parallel repetition” (for example “derandomized versions of Yao’s XOR-
Lemma” [11, 15, 17, 16] or “averaging samplers” [30, 10]) one can hope to construct a derandomized
game with randomness complexity O(t+ rand(G)). It is open whether it is possible to obtain randomness
complexity o(t · rand(G)) for free games.

1.2 Communication games

Communication complexity introduced by Yao [29] considers two cooperating players who receive a pair of
inputs (x, y) ∈ ({0, 1}m)2 and want to compute a function f(x, y). The computation is carried out using a
communication protocol P (x, y). The reader is referred to [18] for a definition of communication protocols
and a comprehensive treatment of communication complexity. A communication protocol is called a c-bit
communication protocol if for every input (x, y) no more than c bits are exchanged. The setup we consider
below is “distributional communication complexity” where the inputs are chosen at random.

In a communication game G a referee samples a pair of inputs (x, y) ∈ ({0, 1}m)2 according to some
distribution µ (that is known to in advance to both players). The randomness complexity of G denoted
by rand(G) is the number of random coins used by the referee to sample the pair (x, y). The first player
receives input x and the second player receives input y. The two players can run a c-bit communication
protocol (where c is a parameter of the game) and their goal is to correctly compute some function f(x, y)
(that is known in advance to both players). A formal definition follows:

Definition 1.6. A communication game G is defined by a distribution µ over ({0, 1}m)2, a function f
over ({0, 1}m)2) and an integer c ≥ 0. We refer to m as the input length and to c as the communi-
cation complexity. A strategy in G is a c-bit communication protocol P (x, y) and P wins on (x, y) ∈
({0, 1}m)2 if P (x, y) = f(x, y). The value of G denoted by val(G) is the maximum over all strategies P
of Pr(X,Y )←µ[P wins on (X,Y )]. The game is free if µ is the uniform distribution over ({0, 1}m)2 and for
free games we define rand(G) = 2m.

Parallel repetition of communication games We now define the n-fold parallel repetition of a com-
munication game G. Similar to 2P1R games we consider a referee that samples n independent pairs
(x1, y1), . . . , (xn, yn) where each pair (xi, yi) ∈ ({0, 1}m)2 is sampled according to µ and each player
gets an n-tuple of inputs. The goal of the players is to correctly compute f(xi, yi) for all 1 ≤ i ≤ n simulta-
neously. We want to define a communication game corresponding to parallel repetition of n original games.
In contrast to 2P1R-games, there are subtleties as to how to formally define this concept. A natural attempt is
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to allow the players to use an (nc)-bit protocol on the input ((x1, . . . , xn), (y1, . . . , yn)). However, Shaltiel
[26] shows that with this definition there are examples where the value of the n-fold game is in fact larger
than the value of the original game. Parnafes, Raz and Wigderson [22] suggested the following definition: In
the game Gn the two players are allowed to run n c-bit communication protocols P1, . . . , Pn “in parallel”.
The goal of the i’th protocol is to compute f(xi, yi) and the input to Pi is

(
(x1, . . . , xn), (y1, . . . , yn)

)
and

not just (xi, yi). (This model was initially suggested by Nisan, Rudich and Saks [20] in a related context
of “parallel repetition of decision trees” and is called the “forest model”). Note that such a game cannot be
described as a single communication game. A formal definition of Gn follows:

Definition 1.7 (The n-fold repetition game Gn). For a communication game G with input length m and
communication complexity c we define a game Gn. A strategy in Gn is a collection Π = (P1, . . . , Pn) of c-bit
communication protocols where each protocol receives input

(
(x1, . . . , xn), (y1, . . . , yn)

)
∈ ({0, 1}mn)2.

Π wins on
(
(x1, . . . , xn), (y1, . . . , yn)

)
∈ ({0, 1}mn)2 if Pi

(
(x1, . . . , xn), (y1, . . . , yn)

)
= f(xi, yi) for

every 1 ≤ i ≤ n. The value of Gn denoted by val(Gn) is the maximum over strategies Π of
Pr(

(X1,...,Xn),(Y1,...,Yn)
)
←µn

[Π wins on
(
(X1, . . . , Xn), (Y1, . . . , Yn)

)
].

Reducing the value by parallel repetition Parnafes, Raz and Wigderson [22] proved a parallel repetition
theorem for communication games. The proof is a reduction to an “enhanced version” of Raz’s parallel
repetition theorem. Specifically, it follows that for 0 < ϵ ≤ 1/2 and a communication game G with
val(G) ≤ 1−ϵ, taking n = O( tc

ϵ31
) repetitions guarantees that val(Gn) ≤ (1−ϵ)t. Using the aforementioned

improvements to the parallel repetition theorem the constant 31 can be reduced to 2 for general games and
to 1 in free games. Note that the setting here is analogous to that in 2P1R-games with communication
complexity c playing the role of answer length ℓ. (One difference is that in communication games it is
unknown whether the dependence of n on c is necessary).

Reducing the randomness complexity of parallel repetition Continuing the analogy, when we want to
reduce the value of a free game from 1 − ϵ to (1 − ϵ)t we use a game Gn with randomness complexity
nm = Ω( tcmϵ ). Using a derandomized game GE we can achieve the same effect using randomness com-
plexity O(tm). The construction of GE is similar to that used in 2P1R-games. Namely, when given inputs
(x̄, ȳ) ∈ ({0, 1}r)2 the two players use a function E : {0, 1}r × [n]→ {0, 1}m to privately compute inputs
(x̄1, . . . , x̄n) and (ȳ1, . . . , ȳn) for Gn and the outcome of GE is the outcome of Gn on this pair of inputs. A
formal definition follows:

Definition 1.8 (Derandomized communication game). For a communication game G with input length
m and communication complexity c, and a function E : {0, 1}r × [n] → {0, 1}m we define a game
GE . A strategy in GE is a collection Π = (P1, . . . , Pn) of c-bit communication protocols where each
protocol receives input (x̄, ȳ) ∈ ({0, 1}r)2 and Π wins on (x̄, ȳ) ∈ ({0, 1}r)2 if for every 1 ≤ i ≤
n, Pi(x̄, ȳ) = f(x̄i, ȳi). The value of Gn denoted by val(Gn) is the maximum over strategies Π of
Pr(x̄,ȳ)←U2r

[Π wins on
(
(X1, . . . , Xn), (Y1, . . . , Yn)

)
] where U2r denotes the uniform distribution over ({0, 1}r)2.

In this setting we prove the following theorem (that is analogous to Theorem 1.5):

Theorem 1.9. (informal) Let t be an integer, let 0 ≤ ϵ ≤ 1/2 and let G be a free communication game with
1/2 ≤ val(G) ≤ 1− ϵ. Let E : {0, 1}r× [n]→ {0, 1}m be a strong extractor with appropriate parameters,
then the derandomized game GE satisfies val(GE) ≤ (1− ϵ)t, rand(GE) = O(tm) = O(t · rand(G)) and
n = poly(m, t). Moreover, there is such an extractor that can be computed in time poly(m, t).
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Similar to 2P1R games, the value of a free game goes down from 1−ϵ to (1−ϵ)t while only multiplying
the randomness complexity by O(t). Note that in the setting of communication games the randomness com-
plexity of GE is independent of the communication complexity c (whereas in 2P1R-games the randomness
complexity depends on the answer length ℓ). This is because a protocol with communication complexity
c = m+ 1 can compute any function f on ({0, 1}m)2). Thus, the assumption that val(G) < 1 implies that
c ≤ m. Using our techniques for 2P1R games we can construct a game GE with randomness complexity
O(t · (m+ c)), and by the previous discussion this is O(tm) independent of c.

2 Preliminaries

We use [n] to denote {1, . . . , n}.

2.1 Probability distributions

For a distribution P , x ← P denotes the experiment in which x is chosen according to P , and Prx←P [T ]
denotes the probability of event T under this experiment. We often define a probability space by explicitly
specifying the random experiments and variables in the probability space and in this case we use Pr[T ] to
denote the probability of event T in the probability space. For a random variable Z and an event T with
positive probability in the underlying probability space (Z|T ) denotes the probability distribution obtained
by conditioning Z on T . More precisely, for a in the support of Z, Prx←(Z|T )[x = a] = Pr[Z = a|T ]. Um

denotes the uniform distribution on {0, 1}m. For a set S, US denotes the uniform distribution on S and x←
S is a shorthand for x← US . The min-entropy of a random variable X denoted H∞(X) is the minimum of
log(1/Pr[X = x]) where the minimum is over all x in the support of X . The statistical distance between
two distributions P and Q over the same domain S is defined by SD(P ;Q) = maxT⊆S |Prx←P [x ∈
T ]− Prx←Q[x ∈ T ]|.

2.2 Strong extractors

Our derandomized games make use of strong extractors [21]. Preparing for our application, the definition
below is phrased in a non-standard way.

Definition 2.1 (Strong extractors [21]). A function E : {0, 1}r × [n]→ {0, 1}m is a strong (k, ϵ)-extractor
if for every random variable X over {0, 1}r with H∞(X) ≥ k, Ei←[n][SD(E(X, i);Um)] ≤ ϵ.

We stress that Definition 2.1 it is equivalent to the more standard definition which requires that the
distribution (E(X, I), I) where I ← [n] is of statistical distance at most ϵ from the uniform distribution
over {0, 1}m × [n].

3 Technique

Our results follow by showing that extractors can derandomize (part of) the proof of Raz’s parallel repetition
theorem. While we do not know how to handle general games, our techniques suffice to deramndomize Raz’s
parallel repetition theorem for free games.
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3.1 Where extractors come in

Raz’s parallel repetition theorem makes use of a simple lemma that states that if we condition i.i.d. random
variables Z1, . . . , Zn on an event T of not too small probability, then for a randomly chosen i ← [n], the
conditioned random variable (Zi|T ) has small statistical distance from the unconditioned variable Zi. We
state the Lemma precisely below.3

Lemma 3.1. [24] Consider a probability space that consists of independent variables Z1, . . . , Zn where
each variable is uniformly distributed over {0, 1}v. Let T be an event with Pr[T ] ≥ 2−∆ and let ϵ > 0. If
n ≥ c∆/ϵ2 for some universal constant c then

Ei←[n][SD((Zi|T );Zi)] ≤ ϵ

It is known that Lemma 3.1 is tight in the sense that the Lemma does not hold for n = o(∆/ϵ2).
A key observation that we make in this paper is that one can interpret this Lemma as a strong extractor.
More precisely, let r = nv and identify strings z ∈ {0, 1}r with tuples (z1, . . . , zn) ∈ ({0, 1}v)n. Let
E : {0, 1}r × [n] → {0, 1}v be the function E(z, i) = zi and assume (as in the lemma) that n ≥ c∆/ϵ2.
We notice that the lemma is equivalent to the statement that E is a strong (r −∆, ϵ)-extractor.

We now explain this relationship more precisely. It should be noted that the proof does not explicitly
make use of this relationship and that the explanation below is given mainly for intuition. We first note that
Lemma 3.1 follows if E(z, i) = zi is a strong (r −∆, ϵ)-extractor (which is the more interesting direction
for the purpose of this paper as we plan to replace the use of Lemma 3.1 with some “off the shelf” extractor).
For any event T with Pr[T ] ≥ 2−∆ in the probability space of choosing uniform Z = (Z1, . . . , Zn), we
define a random variable X = (Z|T ). To bound the min-entropy of X we note that for every element a in
the support of X ,

Pr[X = a] = Pr[Z = a|T ] ≤ Pr[Z = a]

Pr[T ]
≤ 2−(r−∆).

Thus, H∞(X) ≥ r −∆ and if E is a strong (r −∆, ϵ)-extractor then

Ei←[n][SD((Zi|T );Zi)] = Ei←[n][SD(E(X, i);Uv)] ≤ ϵ.

For completeness we also note that Lemma 3.1 implies the fact that E is a strong (r −∆, ϵ)-extractor.
It is standard that in order to prove that a function is a strong (r −∆, ϵ)-extractor it is sufficient to consider
only distributions X that are uniformly distributed over a subset T ⊆ {0, 1}r of size 2r−∆. Each such subset
T is an event with Pr[T ] ≥ 2−∆ in the probability space of Lemma 3.1, and therefore the conclusion of the
Lemma implies that E is an extractor.

The observation that Lemma 3.1 follows from strong extractors can be seen as saying that strong extrac-
tors “derandomize” Lemma 3.1. That is, given any strong (r −∆, ϵ)-extractor E : {0, 1}r × [n]→ {0, 1}v
one can sample random variables Z̄1, . . . , Z̄n by uniformly choosing a string Z̄ ← {0, 1}r and setting
Z̄i = E(Z̄, i). The (possibly correlated) random variables Z̄1, . . . , Z̄n chosen this way satisfy the guaran-
tee in the conclusion of the Lemma. Namely, for every event T with PrZ̄←{0,1}r [T ] ≥ 2−∆ we have that
Ei←[n][SD((Z̄i|T );Uv)] ≤ ϵ. The advantage is that there exist strong extractors with which this sampling
process requires only r = v +∆+O(log(1/ϵ)) random bits compared to the nv = Ω(∆v/ϵ2) bits used to
sample independent Z1, . . . , Zn.

3We remark that in [24] the lemma is stated for general i.i.d. variables without the additional requirement that each Zi is
uniformly distributed. Nevertheless, we can imagine that each Zi is sampled by choosing a uniformly chosen Z′

i and setting
Zi = g(Z′

i) for some function g, and the general formulation follows by applying the weaker formulation on Z′
1, . . . , Z

′
n.
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3.2 The role of Lemma 3.1 in Raz’s proof of the parallel repetition theorem

Let G be a (not necessarily free) 2P1R-game and let v denote the randomness complexity of G. The referee
samples z ← {0, 1}m and uses some function g : {0, 1}v → ({0, 1}m)2 to prepare inputs x, y to the
game G by computing (x, y) = g(z). In the parallel repetition game Gn the referee samples n independent
variables z1, . . . , zn and prepares inputs for n games. Let Π be the best strategy for the players. Let Wi

denote the event that Π wins on the i’th repetition and let W = ∩Wi denote the event that the players win
all repetitions. The goal of the parallel repetition theorem is to bound Pr[W ]. At a high level, the proof of
the parallel repetition works as follows: Let S ⊆ [n] be a set of distinct indices (initially, S = ∅) and let
T = ∩i∈SWi. We want to add a new index i to S while preserving the invariant that Pr[T ] ≤ (1− ϵ/2)|S|.
The theorem will then follow by applying this process sufficiently many times and noting that as W ⊆ T ,
Pr[W ] ≤ Pr[T ]. Let i′ ̸∈ S be an index that we can add. Let S′ = S ∪ {i′} and T ′ = ∩i∈S′Wi be the new
values for S and T if we choose to add i′. Note that Pr[T ′] = Pr[T ] · Pr[Wi′ |T ]. Thus, if we can find an i′

such that Pr[Wi′ |T ] ≤ (1− ϵ/2) then we can add i′ to S and maintain the invariant.
In order to analyze Pr[Wi′ |T ] we need to understand the success probability of the players at index

i′ when the probability space is conditioned on event T . Initially, (before conditioning) we know that the
players can win on every index with probability at most 1 − ϵ and our hope is that there exists i′ ̸∈ S on
which the success probability is bounded by 1− ϵ/2 even when conditioning on T . Note that conditioning
on T may skew the distribution of the pair of inputs given to the players. In particular, it could be that for
some i′ the distribution of pairs (xi′ , yi′) that the players see on repetition i′ when conditioned on T is very
different from the original distribution µ. This is where Lemma 3.1 comes in. It says that for a uniformly
chosen i′ ∈ [n] the distribution of zi′ is close to its initial value after conditioning which in turn means that
conditioning does not significantly affect the distribution of the pair (xi′ , yi′) by much.

It is tempting to use this observation to define a derandomized game that we will denote by GE
s (to

distinguish it from the game GE from definition 1.4 that only applies to free games). In GE
s the referee

will sample z1, . . . , zn using a strong extractor as explained in Section 3.2. The properties of extractors can
replace Lemma 3.1 and argue that for a random i′, the distribution of (xi′ , yi′) is not significantly affected
by conditioning on T .

Unfortunately, this does not suffice to bound Pr[Wi′ |T ]. This is because conditioned on T it could be
the case that xi′ and yj may become correlated for j ̸= i. For example, it could be that yj = xi′ giving the
second player knowledge that he does not posses in the original game G. It may become much easier for
the players to win on repetition i′ when given this additional knowledge, and thus we cannot hope to bound
Pr[Wi′ |T ] by val(G). (We remark that this phenomenon occurs in some of the examples mentioned in the
introduction for parallel repetition of free games).

Indeed, Lemma 3.1 does not suffice and the proof of the parallel repetition theorem uses a much more
delicate argument in order to show that on a random i′ the inputs that the players see on indices different than
i′ do not help them to win the index i′. We do not know how to imitate this argument in the derandomized
version. However, for free games and using definition 1.4 we can imitate the argument of the parallel
repetition theorem (with some modifications) and bound the value of the derandomized game. It is open
whether the same can be done for general games and we discuss this problem in Section 5.

3.3 Extractors and averaging samplers

We use extractors to sample correlated random variables Z1, . . . , Zn with certain properties (as explained in
Section 3.2). It was observed by Zuckerman [30] that the sample space that we use is an averaging sampler.
More precisely, that choosing Z̄ ← Ur and applying an extractor E : {0, 1}r × [n] → {0, 1}v to generate
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Z̄1, . . . , Z̄n by Z̄i = E(Z̄, i) produces a sample space with the property that for every set A ⊆ {0, 1}v,
the random variable |

{
i : Z̄i ∈ A

}
| is with high probability close to the expectation of | {i : Zi ∈ A} | for

independently chosen Z1, . . . , Zn. The reader is referred to Goldreich’s survey [10] for more details on
averaging samplers. Averaging samplers are often useful in direct product theorems and in some sense
averaging samplers (or more precisely “hitters”) are necessary to achieve derandomized parallel repetition
theorems.4 The derandomization of this paper does not argue using averaging samplers or hitters. Instead,
we use a seemingly different property of the sample space Z̄1, . . . , Z̄n which may be useful in other settings.

4 A derandomized parallel repetition theorem for free games

In this section we state and prove our main results. Our approach for 2P1R-games and communication
games is very similar and therefore within this section we will refer to both as “games” and mention the
precise type of the game (2P1R-game or communication game) only when it makes a difference.

When given a free game G with input length m and a function E : {0, 1}r × [n] → {0, 1}m we
use Definitions 1.3,1.4,1.8 to consider the game GE . The following theorem (that is the main technical
contribution of this paper) bounds the value of GE in case E is a strong extractor with suitable parameters.

Theorem 4.1 (main theorem). Let 0 ≤ ϵ ≤ 1, let t ≥ 0 be an integer and let E : {0, 1}r × [n] → {0, 1}m
be a strong (r −∆, ϵ/8)-extractor.

• If G is a free 2P1R-game with val(G) ≤ 1 − ϵ, input length m and answer length ℓ, and ∆ =
t(2m+ 2ℓ+ 1) + log(1/ϵ) + 2 then val(GE) ≤ (1− ϵ

2)
t.

• If G is a free communication game with val(G) ≤ 1−ϵ, input length m and communication complexity
c, and ∆ = t(2m+ c+ 1) + log(1/ϵ) + 2 then val(GE) ≤ (1− ϵ

2)
t.

Theorem 4.1 formalizes the statement of both informal theorems (Theorems 1.5 and Theorem 1.9) stated
in the introduction. Below we explain that the parameters guaranteed by the two informal theorems indeed
follow by plugging known explicit constructions of extractors.

We start by observing that some of the quantities in Theorem 4.1 can be simplified if we are less picky:
Note that the theorem is trivial when ϵ = 0 and val(G) = 1 and so we can assume that ϵ > 0. In a free
game G with input length m we have rand(G) = 2m and therefore if val(G) ≤ 1− ϵ < 1 then ϵ ≥ 2−2m.
Thus, the term log(1/ϵ) in Theorem 4.1 can be replaced by 2m. In the case of communication games,
a game with communication complexity c = m + 1 has value 1 (as any function can be computed with
communication complexity c = m+1). Therefore, the assumption that val(G) ≤ 1− ϵ < 1, implies c ≤ m
and we can replace c with m in the definition of ∆ in Theorem 4.1. In summary, for 2P1R games we can
set ∆ = O(t(m + ℓ)) and for communication games we can set ∆ = O(tm). We now consider specific
choices of extractors.

Parallel repetition as a strong extractor One possible choice for E is “independent parallel repetition”.
Namely r = nm and for x̄ = (x̄1, . . . , x̄n) ∈ ({0, 1}m)n ∼= {0, 1}r we define E((x̄1, . . . , x̄n), i) = x̄i. By

4More precisely, let G be a free game in which whether or not the players win depends only on whether the input of the first
player lands in some set A. To derandomize the parallel repetition Gn of such a game we must use a sample space in which the
n inputs x1, . . . , xn of the first player have the property that with high probability there exist i ∈ [n] such that xi ∈ A (which is
precisely the guarantee of hitters).
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Lemma 3.1, E is a (r −∆, ϵ)-extractor for n = O(∆/ϵ2). Plugging this extractor into Theorem 4.1 gives a
proof of the parallel repetition theorem for free games.5

Using strong extractors to obtain the parameters guaranteed in Theorems 1.5,1.9 We can reduce the
randomness complexity of GE by plugging in better extractors. Specifically, by the probabilistic method
there exist (r − ∆, ϵ)-extractors E : {0, 1}r × [n] → {0, 1}m with r = ∆ + m + O(log(1/ϵ)) and
n = O(∆/ϵ2). Recent explicit (that is polynomial time computable) constructions of extractors come
close to these parameters and achieve r = O(∆ + m + log(1/ϵ)) and n = poly(∆/ϵ) [30, 13]. (We can
say more about some of the constants hidden in the last statement, but this is insignificant for our final
results).Plugging these extractors into Theorem 4.1 and using the simplifications explained above gives the
parameters guaranteed in Theorems 1.5,1.9. More specifically, when starting with a free game G with
val(G) ≤ 1− ϵ we construct a game GE with val(GE) ≤ (1− ϵ/2)t. For a 2P1R-game G, the randomness
complexity of GE is rand(GE) = O(t(m + ℓ)) and it uses n = poly(t,m, ℓ) repetitions. This should be
compared to independent parallel repetition that uses n = O(tℓ/ϵ) repetitions and randomness complexity
rand(Gn) = O(tmℓ/ϵ) for the same goal. For a communication game G, the randomness complexity of
GE is rand(GE) = O(tm) and it uses n = poly(t,m) repetitions. This should be compared to independent
parallel repetition that uses n = O(tc/ϵ) repetitions and randomness complexity rand(Gn) = O(tmc/ϵ)
for the same goal.

Derandomized parallel repetition of games with value approaching zero Theorem 4.1 is tailored to
handle games with value approaching 1. We remark that we can also tailor it for games with value ap-
proaching zero. Specifically, if we assume that val(G) ≤ ϵ and replace the term “1” in the definition of ∆
with log(1/ϵ) then the proof gives that val(Gt) ≤ (2ϵ)t.

4.1 The analysis

We are given a free game G with val(G) ≤ 1− ϵ. Throughout the section we assume that the conditions of
Theorem 4.1 are met and consider a probability space consisting of two independent random variables X̄, Ȳ
that are uniformly distributed over {0, 1}r. Note that events in this probability space correspond to subsets
T ⊆ ({0, 1}r)2.

Let ΠE be some strategy of the two players in GE . For i ∈ [n], let Wi denote the event “ΠE wins
the i’th repetition in GE”. More formally, for 2P1R-games ΠE consists of two functions a, b : {0, 1}r →
({0, 1}ℓ)n and Wi =

{
V (X̄i, Ȳi, a(X̄)i, b(Ȳ )i) = 1

}
. For communication games the strategy ΠE consists

of n c-bit communication protocols (P1, . . . , Pn) and Wi =
{
Pi(X̄, Ȳ ) = f(X̄i, Ȳi)

}
. For S ⊆ [n] let

WS = ∩i∈SWi. Our goal is to show that Pr[W[n]] ≤ (1− ϵ
2)

t.

4.1.1 The high level strategy

A natural approach to bound Pr[W[n]] = Pr[W1] · Pr[W2|W1] · . . . · Pr[Wn|W1 ∩ . . . ∩Wn−1] is to try
and bound each of the terms by 1 − ϵ

2 . However, as noted in the introduction there are counterexamples
to this approach in the case of 2P1R games. Specifically, there are examples of free 2P1R-games with

5We remark that the the proof of [2] for free 2P1R-games uses a smaller number n = O(tℓ/ϵ) of repetitions, compared to
n = O(t(ℓ+m)/ϵ2) that are obtained using Theorem 4.1. Loosely speaking, the proof of [2] exploits some additional properties
of independent repetitions. These properties can be abstracted and incorporated into our framework. We avoid this as this does not
help in reducing the randomness complexity.
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val(G) = 1/2 and strategies with Pr[W1] = 1/2, but Pr[W2|W1] = 1 [9, 19, 5]. We follow the strategy
suggested in [24] and prove the following lemma.

Lemma 4.2. Let S ⊆ [n] with |S| ≤ t and Pr[WS ] ≥ (1− ϵ
2)

t. There exists i ̸∈ S such that Pr[Wi|WS ] ≤
1− ϵ

2 .

Proof of Theorem 4.1 using Lemma 4.2 Note that for every set S ⊆ [n], Pr[W[n]] ≤ Pr[WS ]. Thus, it
suffices to find an S with Pr[WS ] ≤ (1− ϵ

2)
t. We show the existence of such a set by the following iterative

process: We start with S = ∅, k = 0 and maintain the invariant that S is of size k with Pr[WS ] ≤ (1− ϵ
2)

k.
At each step, if Pr[WS ] ≤ (1 − ϵ

2)
t then we are done. Otherwise, Lemma 4.2 gives an i ̸∈ S such that

Pr[Wi|WS ] ≤ 1− ϵ
2 . This implies that

Pr[WS∪{i}] = Pr[WS ] · Pr[Wi|WS ] ≤ (1− ϵ

2
)k · (1− ϵ

2
) = (1− ϵ

2
)k+1

Thus, adding i to S maintains the invariant. If we did not stop in the first t steps then Pr[WS ] ≤ (1 − ϵ
2)

t

and we are done.
In the remainder of the section we prove Lemma 4.2.

4.1.2 The value of conditioned games

Lemma 4.2 considers a “conditioned game” in which the players receive the inputs (X̄, Ȳ ) conditioned on
an event T = WS and their goal is to win the i’th repetition. We will try to understand such games for
arbitrary events T and i ∈ [n]. We want to know when is the value of such games bounded by the value of
the original game G. This motivates the following definition.

Definition 4.3 (error of a conditioned game). Let T be an event, i ∈ [n] and let (X ′, Y ′) = ((X̄, Ȳ )|T ).
We define error(T, i) to be the statistical distance between (X ′i, Y

′
i ) and the uniform distribution over

({0, 1}m)2.

If error(T, i) is large then conditioned on T , the pair (X̄i, Ȳi) has a significantly different distribution
than a pair of inputs (X,Y ) in the original game G. It may be the case that G becomes easy to win under
this distribution and we cannot hope to approximate Pr[Wi|T ] by val(G).

Following the discussion above, one may expect that Pr[Wi|T ] ≤ val(G) + error(T, i). However, this
is not true in general. The reason is that when the players play the conditioned game, they are not forced to
play as a function of (x̄i, ȳi) and are allowed to use all of (x̄, ȳ). It could be the case that conditioned on
T , (X̄i, Ȳi) are uniformly distributed and independent, and yet X̄ is correlated with Ȳi. The scenario above
gives the player holding X̄ information about Ȳi that he does not receive in the original game. For example,
it could be the case that X̄j = Ȳi for some j ̸= i and then the player holding X̄ knows the input Ȳi of the
other player. We stress that this scenario actually happens in the “counterexamples” of [5, 8] mentioned
in the introduction. Nevertheless, the problem above is avoided in the case where X̄, Ȳ are independent
conditioned on T . This leads to the following definition and lemma.

Definition 4.4 (Rectangles). Let T ⊆ ({0, 1}r)2 be an event. We say that T is a rectangle if there exist
T1, T2 ∈ {0, 1}r such that T = T1 × T2. We say that a rectangle T has deficiency ∆ if |T1| ≥ 2r−∆ and
|T2| ≥ 2r−∆.

Lemma 4.5. If T is a rectangle then for every i ∈ [n], Pr[Wi|T ] ≤ val(G) + error(T, i).
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Proof. We show how to use the strategy ΠE in GE to define a strategy Π in G that wins with probability
Pr[Wi|T ]− error(T, i). The Lemma will follow as the latter probability is bounded from above by val(G).

Let (X ′, Y ′) = ((X̄, Ȳ )|T ). As T is a rectangle we have that X ′, Y ′ are independent. We will construct
a strategy Π for G in which the players are randomized and use private coins. This strategy can be converted
into a standard (deterministic) strategy by fixing the coins of the players to the best possible choice and this
transformation does not reduce the success probability. The strategy Π receives a pair of inputs (x, y) ∈
({0, 1}m)2 for G and works as follows:

• The first player samples x̄ ← (X ′|X ′i = x) and the second player samples ȳ ← (Y ′|Y ′i = y). Note
that as X ′, Y ′ are independent, the distribution (X ′|X ′i = x) = (X ′|X ′i = x, Y ′i = y) and similarly
(Y ′|Y ′i = y) = (Y ′|Y ′i = y,X ′i = x). Thus, this sampling process can be described as choosing
(x̄, ȳ) ← ((X ′, Y ′)|X ′i = x, Y ′i = y). (Note that here we are critically using the fact that T is a
rectangle. Recall that the first player does not receive y and the second player does not receive x.
Thus, if the random variables X ′, Y ′ are correlated, the two players may not be able jointly sample
from ((X ′, Y ′)|X ′i = x, Y ′i = y) without communicating).

• The two players simulate the strategy ΠE on the pair (x̄, ȳ) ∈ ({0, 1}r)2 and use the simulation to
determine their actions on (x, y) by “restricting” the strategy ΠE to the i’th repetition. Specifically,
if G is a 2P1R-game then given (x̄, ȳ) the strategy ΠE defines answers (a1, . . . , an) and (b1, . . . , bn)
and the strategy Π will output answers ai and bi on (x, y). If G is a communication game then the
strategy ΠE applies the communication protocols P1, . . . , Pn on inputs (x̄, ȳ) and the strategy Π given
(x, y) applies the protocol Pi(x̄, ȳ) and uses its output. (We remark that the fact that restricting ΠE

induces a strategy for G follows because the choice of the “forest model” in the definition of GE).

Let (X̂, Ŷ ) be the distribution of x̄, ȳ induced by applying the strategy Π to (x, y)← U2r. We claim that

SD((X̂, Ŷ ), (X ′, Y ′)) ≤ SD((X ′i, Y
′
i ), U2r)

and recall that the latter expression is the definition of error(T, i). The inequality follows because the
distribution (X ′, Y ′) can also be described as applying the strategy Π to (x, y)← (X ′i, Y

′
i ). This means that

the distribution (X̂, Ŷ ) of the pair (x̄, ȳ) obtained when playing the strategy Π in G has distance at most
error(T, i) from the distribution (X ′, Y ′) obtained when playing the strategy ΠE in GE conditioned on T .
In particular, Pr[Wi|T ] and the success probability of the strategy Π in G differ by at most error(T, i).

4.1.3 The role of extractors

We have that for a rectangle T and i ∈ [n], Pr[Wi|T ] ≤ val(G) + error(T, i). The use of extractors
guarantees that if the rectangle is not too small then for a random i← [n], error(T, i) is small.

Lemma 4.6. If T is a rectangle with deficiency ∆ then Ei←[n][error(T, i)] ≤ ϵ
4

Proof. Let (X ′, Y ′) = ((X̄, Ȳ )|T ). Recall that X ′i = E(X ′, i) and Y ′i = E(Y ′, i) and thus

error(T, i) = SD
(
(E(X ′, i), E(Y ′, i));U2r

)
Our goal is to show that:

Ei←[n][SD
(
(E(X ′, i), E(Y ′, i));U2r

)
] ≤ ϵ

4
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As T is a rectangle with deficiency ∆ we have that X ′, Y ′ are independent and H∞(X ′),H∞(Y ′) ≥ r−∆.
As E is a strong (r −∆, ϵ/8)-extractor we have that:

Ei←[n][SD
(
E(X ′, i);Ur

)
] ≤ ϵ

8

Ei←[n][SD
(
E(Y ′, i);Ur

)
] ≤ ϵ

8

For a fixed i ∈ [n] the variables E(X ′, i), E(Y ′, i) are independent and therefore their joint distance from
the uniform distribution is the sum of the individual distances. That is,

SD
(
(E(X ′, i), E(Y ′, i));U2r

)
≤ SD(E(X ′, i);Ur) + SD(E(Y ′, i);Ur).

The claim follows by the taking the expectation over i← [n] and using the linearity of expectation.

In particular, for a rectangle T with deficiency ∆ combining Lemma 4.5 and Lemma 4.6 gives that there
exists an i such that Pr[Wi|T ] ≤ val(G) + ϵ/4 ≤ 1− ϵ/2.

4.1.4 Proof of Lemma 4.2

We have developed machinery that for a rectangle T with deficiency ∆ allows us to find an i such that
Pr[Wi|T ] ≤ 1 − ϵ/2. To prove Lemma 4.2 we need to handle events of the form WS which may not be
rectangles. The following Lemma shows that each such event WS is essentially a disjoint union of rectangles
with deficiency ∆. This holds both for 2P1R-games and communication games (using the appropriate choice
of ∆ in Theorem 4.1).

Lemma 4.7. Let S ⊆ [n] such that |S| ≤ t and Pr[WS ] ≥ (1− ϵ
2)

t. There exist disjoint events T0, . . . , TL

such that:

• ∪0≤j≤LTj = WS .

• Pr[T0|WS ] ≤ ϵ/4.

• For every 1 ≤ j ≤ L, Tj is a rectangle of deficiency ∆.

The proof of Lemma 4.7 appears in Section 4.1.5. We are now ready to prove Lemma 4.2 and conclude
the proof of Theorem 4.1.

Proof. (of Lemma 4.2) Given a set S that satisfies the requirements of Lemma 4.2 we can apply Lemma
4.7 and let T0, . . . , TL be the events that are guaranteed by Lemma 4.7. We first use Lemma 4.5 to estimate
Pr[Wi|WS ] for a fixed i ∈ [n].

Pr[Wi|WS ] =
∑

0≤j≤L
Pr[Wi|Tj ] · Pr[Tj |WS ]

≤ Pr[T0|WS ] +
∑

1≤j≤L
Pr[Tj |WS ] · (val(G) + error(Tj , i))

≤ ϵ

4
+ val(G) +

∑
1≤j≤L

Pr[Tj |WS ] · error(Tj , i)
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We now use the bound above, Lemma 4.6 and the linearity of expectation to estimate Ei←[n]

[
Pr[Wi|WS ]

]
.

Ei←[n]

[
Pr[Wi|WS ]

]
≤ ϵ

4
+ val(G) +

∑
1≤j≤L

Pr[Tj |WS ] · Ei←[n][error(Tj , i)]

≤ ϵ

4
+ val(G) +

∑
1≤j≤L

Pr[Tj |WS ] ·
ϵ

4

≤ ϵ

2
+ val(G)

Therefore, there exists i ∈ [n] such that Pr[Wi|WS ] ≤ ϵ
2 + val(G) ≤ 1 − ϵ

2 and note that such an i must
satisfy i ̸∈ S.

4.1.5 Proof of Lemma 4.7

The proof uses the same outline as the initial proof of Raz. Let k = |S|. Throughout this proof we use
the following notation: Given a sequence R1, . . . , Rn of random variables we define RS = (Ri)i∈S (the
concatenation of Ri for i ∈ S).

For every possible value x̂ of X̄S we define the event Ex̂
1 =

{
X̄S = x̂

}
. Similarly, for every possible

value ŷ of ȲS we define the event Eŷ
2 =

{
ȲS = ŷ

}
. We also define the event Ex̂,ŷ = Ex̂

1 ∩E
ŷ
2 . Note that the

latter event is a rectangle by definition. Conditioning on such an event fixes all the input pairs in S. There
are at most 22km ≤ 22tm such events.

At this point, we distinguish between the case that G is a 2P1R-game and the case that G is a communi-
cation game.

The case of 2P1R-games Given inputs X̄, Ȳ the strategy ΠE = (a, b) defines answers (Ā, B̄) ∈ ({0, 1}nℓ)2
by Ā = a(X̄) and B̄ = a(Ȳ ). For every possible value â of ĀS we define the event F â

1 =
{
ĀS = â

}
. For

every possible value b̂ of B̄S we define the event F b̂
2 =

{
B̄S = b̂

}
. We also define the event F â,b̂ = F â

1 ∩F b̂
2 .

Note that the latter event is a rectangle because Ā is a function of X̄ and B̄ is a function of Ȳ . Conditioning
on such an event fixes the answers of the repetitions in S and there are at most 22kℓ ≤ 22tℓ such events.
For every x̂, ŷ, â, b̂ we define the event

T x̂,ŷ,â,b̂ = Ex̂,ŷ ∩ F â,b̂

and note that it is a rectangle as the intersection of rectangles is a rectangle. Furthermore, conditioning on
this event determines the outcome of the repetitions in S. We define p = t(2m+ 2ℓ) so that the number of
such events is bounded by 2p.

The case of communication games Given inputs X̄, Ȳ the strategy ΠE consists of n communication
protocols P1, . . . , Pn each over input pair (X̄, Ȳ ). For every such protocol let Q̄i denote the transcript of
the protocol Pi(X̄, Ȳ ) (that is the concatenation of all exchanged messages). For every possible value q̂ of
Q̄S we define the event F q̂ =

{
Q̄S = q̂

}
. Note that this event is a rectangle by properties of communication

protocols. More precisely, for every i and every possible transcript q ∈ {0, 1}c of the protocol Pi, the set
of inputs (X̄, Ȳ ) on which the transcript Q̄i = q is a rectangle. Conditioning on such an event fixes the
transcripts of the protocols in S and there are at most 2kc ≤ 2tc such events.
For every x̂, ŷ, q̂ we define the event

T x̂,ŷ,q̂ = Ex̂,ŷ ∩ F q̂
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and note that it is a rectangle as the intersection of rectangles is a rectangle. Furthermore, conditioning on
this event determines the outcome of the repetitions in S. We define p = t(2m + c) so that the number of
such events is bounded by 2p.

Continuing the proof in both cases In both cases, we have a partition of the probability space to at most
2p disjoint events. Furthermore, conditioning on each such event completely describes the outcome of the
repetitions in S. In particular, such an event determines whether or not WS occurs. More formally, each
such event is either contained in WS or disjoint to WS . Let Γ denote the set of all such events that are
contained in WS . We have that

WS =
∪
T∈Γ

T.

At this point, we expressed WS as a disjoint union of rectangles. However, some of these rectangles
may not have deficiency ∆. Let T0 be the union of all rectangles that do not have deficiency ∆ and let
T1, . . . , TL denote all the rectangles in Γ that have deficiency ∆. Indeed, WS = ∪0≤j≤LTj and for j ≥ 1,
Tj is a rectangle with deficiency ∆.

It is left to bound Pr[T0|WS ]. Every rectangle T that does not have deficiency ∆ satisfies Pr[T ] ≤ 2−∆.
We have that T0 contains at most 2p such rectangles and therefore

Pr[T0|WS ] =
Pr[T0]

Pr[WS ]
≤ 2p · 2−∆

(1− ϵ
2)

t
≤ ϵ

4

where the last inequality follows by our choice of ∆ and the guarantee that ϵ ≤ 1.

Remark 4.8. Lemma 4.7 shows that we can split the set WS into “relatively large” rectangles. The proof
partitions WS into many rectangles and as a result the average size of a rectangle may be small. The number
of rectangles depends on ℓ in the case of 2P1R-games, and on c in the case of communication games. For
some games G it may be possible to use fewer rectangles and improve the parameters. This idea was used in
[22] to prove versions of the parallel repetition theorem that replace the answer length ℓ (or communication
complexity c) with other parameters of the game. This idea can also be applied in our setting. However, the
low level details are different.

5 Discussion and Open problems

We believe that recasting the proof of the parallel repetition theorem as using strong extractors gives in-
sight on the structure of the overall argument. It is plausible that the same high level idea can be used to
derandomize parallel repetition in other settings.

A natural open problem is to extend our results to general games. It may be easier to start with sub-
families of games such as “projection games”.

We now explain which parts of the proof of Theorem 4.1 extend to general games. The presentation
of our construction GE is tailored to free games. In the case of general games it makes sense to use the
construction GE

s outlined in Section 3. Namely, the referee chooses a uniform string Z̄ ∈ {0, 1}r and
uses it to generate variables Z̄1, . . . , Z̄n ∈ {0, 1}rand(G) by Z̄i = E(Z̄, i) where E : {0, 1}r × [n] →
{0, 1}rand(G) is a strong (r −∆, ϵ/8)-extractor. For each i the referee prepares the pair of inputs (X̄i, Ȳi)
by applying the sampling procedure g(z) = (x, y) of the game G on Z̄i. As a sanity check, note that
standard parallel repetition can be expressed as GE

s where E((Z̄1, . . . , Z̄n), i) = Z̄i.
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When considering GE
s we also need to reconsider our notion of rectangles. We say that an event T is a

rectangle if T = T1 ∩T2 where T1 is determined by X̄1, . . . , X̄n and T2 is determined by Ȳ1, . . . , Ȳn. Some
parts of the proof of Theorem 4.1 work for general games. Specifically, Lemma 4.6 and Lemma 4.7 follow
exactly as stated with the modified definitions explained above.

The difficulty is in extending Lemma 4.5. Our proof for free games can be seen as solving this problem
using a specific choice of extractor (which in turn leads to the definition of GE). The proof of the parallel
repetition theorem for general games can be viewed as using a weaker formulation of Lemma 4.5 in which
the conclusion is only guaranteed for a rectangle with deficiency ∆ and a random i. The original proof of the
latter statement also relies on Lemma 3.1 and this suggests that it may be possible to derandomize it using
strong extractors. However, it seems to us that these extractors will need to have many additional properties
to make the argument go through.
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