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Abstract

Consider a PPT two-party protocol II = (A,B) in which the parties get no private inputs
and obtain outputs OA, OB € {0,1}, and let VA and VB denote the parties’ individual views.
Protocol II has a-agreement if Pr[O* = OB] = % + . The leakage of II is the amount of
information a party obtains about the event {OA = OB}; that is, the leakage € is the maximum,
over P € {A,B}, of the distance between VP|oa_pe and VP|pa,oe. Typically, this distance
is measured in statistical distance, or, in the computational setting, in computational indistin-
guishability. For this choice, Wullschleger [TCC ’09] showed that if € < « then the protocol can
be transformed into an OT protocol.

We consider measuring the protocol leakage by the log-ratio distance (which was popular-
ized by its use in the differential privacy framework). The log-ratio distance between X,Y over
domain € is the minimal ¢ > 0 for which, for every v € Q, log % € [—€,¢]. In the com-
putational setting, we use computational indistinguishability from having log-ratio distance e.
We show that a protocol with (noticeable) accuracy o € Q(€?) can be transformed into an OT
protocol (note that this allows € > «). We complete the picture, in this respect, showing that a
protocol with a € o(€?) does not necessarily imply OT. Our results hold for both the information
theoretic and the computational settings, and can be viewed as a “fine grained” approach to
“weak OT amplification”.

We then use the above result to fully characterize the complexity of differentially private two-
party computation for the XOR function, answering the open question put by Goyal, Khurana,
Mironov, Pandey, and Sahai [[CALP ’16] and Haitner, Nissim, Omri, Shaltiel, and Silbak [FOCS
"18]. Specifically, we show that for any (noticeable) a@ € €(e?), a two-party protocol that
computes the XOR function with a-accuracy and e-differential privacy can be transformed into
an OT protocol. This improves upon Goyal et al. that only handle o € Q(e), and upon Haitner
et al. who showed that such a protocol implies (infinitely-often) key agreement (and not OT).
Our characterization is tight since OT does not follow from protocols in which a € o(€?), and
extends to functions (over many bits) that “contain” an “embedded copy” of the XOR, function.
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1 Introduction

Oblivious transfer (OT), introduced by Rabin [39], is one of the most fundamental primitives in
cryptography and a complete primitive for secure multi-party computation [45, 14]. Oblivious
transfer protocols are known to exist assuming (several types of) families of trapdoor permutations
[12, 18], learning with errors [37], decisional Diffie-Hellman [35, 1],computational Diffie-Hellman
[4] and quadratic residuosity [30]. While in some of the constructions of OT in the literature, the
construction immediately yields a full-fledged OT, in others it only yields a “weak” form of OT,
that is later “amplified” into a full-fledged one.

In this paper we introduce a new notion for a “weak form of OT”, and show how to amplify this
“weak OT” into full-fledged OT. This notion is more “fine grained” than some previously suggested
notions, which allows us to obtain OT in scenarios that could not be handled by previous works.
Our approach is suitable for the computational and for the information theoretic settings (i.e., the
dishonest parties are assumed to be computationally bounded or not).

1.1 Our Results

We start with presenting our results in the information theoretic setting, and then move to the
computation one.

1.1.1 The Information Theoretic Setting

The information theoretic analogue of a two-party protocol between parties A and B, is a “channel”:
namely, a quadruple of random variables C = ((VA,0"), (VB OB)), with the interpretation that
when “activating” (or “calling”) the channel C, party P € {A, B} receives his “output” O and his
“view” VP. In other words, “activating a channel” is analogous to running a two-party protocol
with fresh randomness. (We assume that the view VP contains the output OF).

Log-ratio leakage (channels). We are interested in the special case where the channel C' =
((VA,OM), (VB ,0B)) has Boolean outputs (i.e., O* OB € {0,1}), and assume for simplicity that
the channel is balanced, meaning that for both P € {A, B}, OF is uniformly distributed. Such
channels are parameterized by their agreement and leakage:

e A channel C has a-agreement if Pr[O” = OB] = % + a. (Without loss of generality, o > 0, as
otherwise one of the parties can flip his output).

e The leakage of party B in C is the distance between the distributions V| a_os and VA]OA#)B.
(Note that these two distributions are well defined if o € [0, %)). The leakage of party A is
defined in an analogous way, and the leakage of C' is the maximum of the two leakages.

This approach (with somewhat different notation) was taken by past work [43, 42], using sta-

tistical distance as the distance measure.

Loosely speaking, leakage measures how well can a party distinguish the case {OA = OB} from

the case {OA # OB}. As each party knows his output, this can be thought of as the “amount of
information” on the input of one party that leaks to the other party.!

We remark that one should be careful with this intuition. Consider a “binary symmetric channel”: a channel
in which VA = O* and V& = 0" (i.e., the parties receive no additional view except their outputs), O* is uniformly



We will measure leakage using a different distance measure, which we refer to as “log-ratio
distance”.

Definition 1.1 (Log-Ratio distance). Two numbers py,p1 € [0,1] satisfy
R
Do Res p1 if for both b € {0,1}: pp <€ -p1_p + 9. Two distributions Dy, D1 over the same domain
. R .
Q, are (¢,0)-log-ratio-close (denoted Dy =5 D1) if for every A C §Q2:

Pr[Dy € A] ~. 5 Pr[D € Al.

S
We use the notation Dy ~5 D1 to say that the statistical distance between Dy and D; is at

S R
most ¢. Log-ratio distance is a generalization of statistical distance as ~s is the same as ~ 5. This
measure of distance was popularized by its use in the differential privacy framework [10] (that we

discuss in Section 1.1.3).

Pr[Do=x]
Pr[Di=1]"
and the two distribution are (e, §)-log-ratio-close if this function is in the interval [—e, €] with proba-
bility 1—4. As such, it can be seen as a “cousin” of relative entropy (also known as, Kullback—Leibler

(KL) divergence) that measures the expectation of the log-ratio function.

Loosely speaking, log-ratio distance considers the “log-ratio function” Lp| p, (z) :=log

R R
Note that for € € [0,1], Dy =co D; implies Dy ~g2c D1, but the converse is not true, and

the condition (Dg ge,o Dy) gives tighter handle on the distance between independent samples of
distributions (as we explain in detail in Section 2.1).

We use the log-ratio distance to measure leakage in channels. This leads to the following
definition (in which we substitute “log-ratio distance” as a distance measure).

Definition 1.2 (Log-ratio leakage, channels, informal). A channel C = (VA O?), (VB OB)) has
log-ratio leakage (¢,¢), denoted (e, §)-leakage if for both P € {A,B}:

R
VP ’0A203 Re,d VP ‘OA#OB .

This definition is related (and inspired by) the differential privacy framework [10]. In the
terminology of differential privacy, this can be restated as follows: let £ be the indicator variable
for the event {O* = OB}. For both P € {A, B}, the “mechanism” V" is (e, §)-differentially private
with regards to the “secret” /“database” FE.

Channels of small log-ratio leakage imply OT. Wullschleger [43] considered channels with
small leakage (measured by statistical distance). Using our terminology, he showed for a € [0, %)
and € € [0,1] with e “sufficiently smaller than” a?, a channel with a-agreement and (0, ¢)-leakage
yields OT. This can be interpreted as saying that if the leakage € is sufficiently smaller than the
agreement «, then the channel yields OT. We prove the following “fine grained” amplification
result, which is restated with precise notation in Theorem 4.2.

Theorem 1.3 (Channels of small log-ratio leakage imply OT, infromal). There ezists a constants
c1 > 0 such that the following holds for every €,d, o with c1 - €2 < a < 1/8 and § < €%: a channel
C' that has a-agreement and (€, 9)-leakage yields OT (of statistical security).

distributed, and O® = O* ® U, (where U, is an independent biased coin which is one with probability p). The
leakage of this channel is zero, for every choice of p, whereas each party can predict the output of the other party
with probability 1 — p by using his own output as a prediction.



For simplicity, let us focus on Theorem 1.3 in the case that § = 0. Two distributions that are
(e,0)-log-ratio close, may have statistical distance €, and so, a channel with (e, 0)-leakage, can only
be assumed to have (0, €)-leakage (when measuring leakage in statistical distance). Nevertheless,
in contrast to [43], Theorem 1.3 allows the leakage parameter € to be larger than the agreement
parameter a.?

The above can be interpreted as saying that when the leakage is “well behaved” (that is the ¢§
parameter in log-ratio distance is sufficiently small), OT can be obtained even from a channel whose
leakage € is much larger than the agreement «. This property will be the key for our applications
in Section 1.1.3.

Triviality of channels with large leakage. We now observe that the relationship between €
and « in Theorem 1.3 is best possible (up to constants). Namely, a channel with agreement that
is asymptotically smaller than the one allowed in Theorem 1.3 does not necessarily yield OT.

Theorem 1.4 (Triviality of channels with large leakage, informal). There exists a constant ca > 0,
such that the following holds for every e > 0: there exists a two-party protocol (with no inputs)
that when it ends, party P € {A,B} outputs OF and sees view V¥, and the induced channel C =
(VA,OM), (VB ,0B)) has (cz - €2)-agreement and (e, 0)-leakage.

Together, the two theorems say that our characterization of “weak-OT” using agreement o and
(¢,0)-log-ratio leakage has a “threshold behavior” at a = €2: if a > ¢1 - €2 then the channel yields
OT, and if a < ¢ - €2 then such a channel can be simulated by a two-party protocol with no inputs
(and thus cannot yield OT with information theoretic security). The proof of Theorem 1.4 uses a
variant of the well-known randomized response approach of Warner [40].

1.1.2 The Computational Setting

We consider a no-input, Boolean output, two-party protocol IT = (A, B). Namely, both parties
receive a security parameter 1% as a common input, get no private input, and both output one bit.
We denote the output of party P by OF, and its view by VP, In other words, an instantiation
of TI(1%) can be thought of as inducing a channel C, = ((VA,0%),(VE 08)). Similar to the
information theoretic setting, protocol 1I has a-agreement if for every k € N: Pr [O@ = OE’} =

1/2 4+ a(k).

Log-ratio leakage (protocols). We extend the definition of log-ratio leakage to the computa-
tional setting (where adversaries are PPT machines). We will use the simulation paradigm to extend
the information theoretic definition to the computational setting.

Definition 1.5 (Log-ratio leakage, protocols, informal). A two-party no-input Boolean output pro-
tocol II = (A, B) has Comp-log-ratio leakage (¢,0), denoted (e,d)-comp-leakage, if there exists an
“ideal channel” ensemble C = {CN’,{ = ((VA,0%),(VE, OE’))} N such that the following holds:

KE

>To make this more concrete, consider the following channel C' = ((V*,0"),(V®, 0®)): O* «+ Uy, OF <+
e Uij2—a, VA OB Uija—e, VB — O*g Uy /2— (where U, denotes a biased coin which is one with probability p,
and the three “noise variables” are independent). This channel is balanced, has a-agreement, and (O(¢), 0)-leakage.
However, if we were to measure leakage using statistical distance, then we would report that it has (0, O(e))-leakage.
We are assuming that € > «, and it will be critical that leakage is measured by log-ratio distance, as we do not know
how to amplify leakage that is measured by statistical distance in this range.



e For every € N: the channel Cy has (e(k), 8(k))-leakage.

o For every P € {A,B}: the ensembles {VRP,OQ,OE}%N and {VE,O%, OE} N e computa-
KE
tionally indistinguishable.3

Protocols of small log-ratio leakage imply OT. We prove the following computational ana-
logue of Theorem 1.3 (the next Theorem is restated with precise notation in Theorem 4.24).

Theorem 1.6 (Amplification of protocols with small log-ratio leakage, informal). There exists a
constant c; > 0 such that the following holds for every function €,d, o with c1 - e(k)? < a(k) < 1/8,
§(k) < e(r)? and 1/a(k) € poly(k): a PPT protocol that has a-agreement and (e, §)-comp-leakage
yields OT (of computational security).

Triviality of protocols with large leakage. An immediate corollary of Theorem 1.4 is the
relationship between € and « in Theorem 1.6 is best possible (up to constants).

Corollary 1.7 (Triviality of protocols with large leakage, informal). There exists a constant ca > 0,
such that the following holds for every function € with e(k) > 0: there exists a PPT protocol that
has (c - €2)-agreement and (e, 0)-leakage.

1.1.3 Application: Characterization of Two-Party Differentially Private Computa-
tion.

We use our results to characterize the complexity of differentially private two-party computation
for the XOR function, answering the open question put by [17, 23]. The framework of differential
privacy typically studies a “one-party” setup, where a “curator” wants to answer statistical queries
on a database without compromising the privacy of individual users whose information is recorded
as rows in the database [10]. In this paper, we are interested in two-party differentially-private com-
putation (defined in [34]). This setting is closely related to the setting of secure function evaluation:
the parties A and B have private inputs z and y, and wish to compute some functionality f(z,y)
without compromising the privacy of their inputs. In secure function evaluation, this intuitively
means that parties do not learn any information about the other party’s input, that cannot be
inferred from their own inputs and outputs. This guarantee is sometimes very weak: For example,
for the XOR function f(x,y) = x @ y, secure function evaluation completely reveals the inputs
of the parties (as a party that knows xz and f(z,y) can infer y). Differentially private two-party
computation aims to give some nontrivial security even in such cases (at the cost of compromising
the accuracy of the outputs).

Definition 1.8 (Differentially private computation [34]). A PPT two-party

protocol TI = (A, B) over input domain {0,1}" x {0,1}" is e-DP, if for every PPT nonuniform
machines B* and D, and every z,x" € {0,1}" with Ham(z, ') = 1: let VB (z) be the view of B* in
a random ezecution of (A(x),B*)(1%)), then

Pr [D(VE (2)) = 1| < e®) . Pr [D(VE" (2')) = 1} + neg(k),

3In the technical section, we consider computational indistinguishability by both uniform and nonuniform PPT
machines. We ignore this issue in the introduction.



and the same hold for the secrecy of B.
Such a protocol is semi-honest e-DP, if the above is only guaranteed for semi-honest adversaries
(i.e., for B* =B).

In this paper, we are interested in functionalities f, in which outputs are single bits (as in the
case of the XOR function). In this special case, the accuracy of a protocol can be measured as
follows:

Definition 1.9 (accuracy). A PPT two-party protocol 11 = (A, B) over input domain {0,1}" x{0,1}"
with outputs OA(z,y), OB(x,y) € {0,1} has perfect agreement if for every z,y € {0,1}" x {0,1}",
and every k € N, in a random execution of the protocol (A(z), B(y))(1%), it holds that Pr[O*(x,y) =
OB(z,y)] = 1.

The protocol implements a functionality f over input domain {0,1}" x {0,1}" with a-accuracy,
if for k € N, every P € {A,B}, and every z,y € {0,1}" x {0,1}", in a random execution of the
protocol (A(z),B(y))(1%), it holds that Pr[OP(z,y) = fP(z,y)] = 1 + a(k).

A natural question is what assumptions are needed for two-party differentially private computa-
tion achieving a certain level of accuracy /privacy (for various functionalities). A sequence of works
showed that for certain tasks, achieving high accuracy requires one-way functions [3, 6, 33, 16];
some cannot even be instantiated in the random-oracle model [22]; and some cannot be black-box
reduced to key agreement [31]. See Section 1.2 for more details on these results. In this work we
fully answer the above question for the XOR function.

Consider the functionality fu(z,y) which outputs x@y®U, jo_, (where U; ;5_, is an independent
biased coin which is one with probability 1/2 —«). Assuming OT, there exists a two-party protocol
that securely implement f,, and this protocol is e-DP, for ¢ = O(«). This is the best possible
differential privacy that can be achieved for accuracy a. On the other extreme, an ©(e?)-accurate,
e-differential private, protocol for computing XOR can be constructed (with information theoretic
security) using the so-called randomized response approach of Warner [40], as shown in [16]. Thus, it
is natural to ask whether OT follows from a-accurate, e-DP computation of XOR, for intermediate
choices of €2 <« a < e. In this paper, we completely resolve this problem and prove that OT is
implied for any intermediate €2 < a < €.

Differentially private XOR to OT, a tight characterization.

Theorem 1.10. [Differentially private XOR to OT, informal] There exists a constant c; > 0 such
that the following holds for every function €, a with a > ¢y - €2 such that 1/a € poly: the existence
of a perfect agreement, a-accurate, semi-honest e-DP PPT protocol for computing XOR implies OT
(of computational security).

The above improves upon Goyal et al. [17], who gave a positive answer if the accuracy « is the
best possible: if a > ¢- € for a constant c. It also improves (in the implication) upon Haitner et al.
[23], who showed that c - €2-correct e-DP XOR implies (infinitely-often) key agreement. Finally,
our result allows e and « to be function of the security parameter (and furthermore, allow v and e
to be polynomially small in the security parameter) whereas previous reductions [17, 23] only hold
for constant values of € and «. Our characterization is tight as OT does not follow from protocols
with a € o(e?).



Theorem 1.11 (Triviality of differentially private XOR with large leakage. Folklore, see [16]).
There exists a constant co > 0 such that for every functions € there exists a PPT protocol for

computing XOR with information-theoretic e-DP, perfect agreement and accuracy co - €2. 4

Perspective. Most of the work in differentially private mechanisms/protocols is in the informa-
tion theoretic setting (using the addition of random noise). There are, however, examples where
using computational definitions of differential privacy together with cryptographic assumptions,
yield significantly improved accuracy and privacy compared to those that can be achieved in the
information theoretic setting (e.g., the inner product and the Hamming distance functionalities [33],
see more references in the related work section below). Understanding the minimal assumptions
required in this setting is a fundamental open problem. In this paper, we completely resolve this
problem for the special case of the XOR function. We stress that the XOR function is the canonical
example of a function f(z,y) where the security guarantee given by secure function evaluation is
very weak. More precisely, for f(x,y) = x @ y, the security guaranteed by secure function evalua-
tion is meaningless, and the protocol in which both parties reveal their private inputs is considered
secure. Differential privacy can be used to provide a meaningful definition of security in such cases,
and we believe that the tools that we developed for the XOR function, can be useful to argue about
the minimal assumptions required for other functionalities. As a first step, we provide a sufficient
condition under which our approach applies to other functionalities g : {0,1}" x {0,1}" — {0,1}.

Extending the result to any function that is not monotone under relabeling. We can
use our results on the XOR function to achieve OT from differentially private, and sufficiently
accurate computation of a wide class of functions that are not “monotone under relabeling”. A
function ¢ : {0,1}" x {0,1}" — {0,1} is monotone under relabeling if there exist two bijective
functions o4, oy : [2"] — {0,1}" such that for every z € {0,1}" and i < j € [2"]:

g9(z, Uy(i)) < g(x, Uy(j)),

and, for every y € {0,1}" and i < j € [2"]:

g(o—m(i)ay) < g(Ux(j)ay)'

We observe that every function g that is not monotone under relabeling has an “embedded XOR”,
meaning that there exist xo, z1,v0,y1 € {0,1}" such that for every b,c € {0,1}, g(xp,y:.) = b S c.
This gives that a two-party protocol that computes g can be used to give a two-party protocol that
computes XOR (with some losses in privacy) and these yield OT by our earlier results. Precise
details are given in Section 5.

1.2 Related Work

Information-theoretic OT. Oblivious transfer protocols are also widely studies in their in-
formation theoretic forms [38, 8, 7, 36, 41]. In this form, and OT is simply a pair of jointly
distributed random variable (Va, Vg) (a “channel”). A pair of unbounded parties (A, B), having
access to independent samples from this pair (from each sample (va,vg), party P gets the value
vp). Interestingly, in the information theoretic form, we do have a “simple” notion of weak OT,

4The protocol is the randomized response one, and the proof is very similar to that of Theorem 1.4 (see Section 4).



that is complete: such a pair can either be used to construct full-fledged (information theoretically
secure) OT, or is trivial—there exists a protocol that generates these views. Unfortunately, these
reductions are inherently inefficient: the parties wait till an event that might be of arbitrary small
probability to occur, and thus, at least not in the most general form, cannot be translated into the
computational setting.

Hardness amplification. Amplifying the security of weak primitives into “fully secure” ones is
an important paradigm in cryptography as well as other key fields in theoretical computer science.
Most notable such works in cryptography are amplification of one-way functions [44, 15, 20], key-
agreement protocols [27], and interactive arguments [25, 19]. Among the above, amplification of
key-agreement protocols (KA) is the most similar to the OT amplification we consider in this paper.
In particular, we do have a “simple” (non distributional) notion of weak KA [27]. This is done by
reduction to the information theoretic notion of key-agreement. What enables this reduction to go
through, is that unlike the case of the information theoretic OT, the amplification of information
theoretic KA is efficient, since it only use the designated output of the (weak) KA (and not the
parties’ view).

Minimal assumptions for differentially private symmetric computation. An accuracy
parameter « is trivial with respect to a given functionality f and differential privacy parameter e,
if a protocol computing f with such accuracy and privacy exists information theoretically (i.e., with
no computational assumptions). The accuracy parameter is called optimal, if it matches the bound
achieved in the client-server model. Gaps between the trivial and optimal accuracy parameters
have been shown in the multiparty case for count queries [3, 6] and in the two-party case for inner
product and Hamming distance functionalities [33]. [22] showed that the same holds also when a
random oracle is available to the parties, implying that non-trivial protocols (achieving non-trivial
accuracy) for computing these functionalities cannot be black-box reduced to one-way functions.

[16] initiated the study of Boolean functions, showing a gap between the optimal and trivial
accuracy for the XOR or the AND functionalities, and that non-trivial protocols imply one-way
functions. [29] showed that non-interactive randomised response is optimal among all the informa-
tion theoretic protocols. [31] have shown that optimal protocols for computing the XOR or AND,
cannot be black-box reduced to key agreement.

[17] showed that an optimal protocol (with best possible parameters) computing the XOR can
be viewed as a form of weak OT, which according to Wullschleger [43] yields full fledged OT.
Whereas for our choice of parameters the security guarantee is too weak, and it is essential that we
correctly amplify the security.

Very recently, [23] showed that a non-trivial protocol for computing XOR (i.e., accuracy better
than €2) implies infinitely often key-agreement protocols. Their reduction, however, only holds for
constant value of €, and is non black box. Finally, [2, 24] gave a criteria that proved the necessity
of OT for computationally secure function evaluation, for a select class of functions.

Paper Organization

Due to space limitations, some of the technical details appear in the full version of this paper.
In Section 2 we give an overview of the main ideas used in the proof. In Section 3 we give some
preliminaries and state some earlier work that we use. In Section 4 we give our amplification results,



that convert protocols with small log-ratio leakage into OT. The proofs of our results on two-party
differentially private computation of the XOR function, and on functions that are not monotone
under relabeling omitted from this version.

2  Owur Technique

In this section we give a high level overview of our main ideas and technique.

2.1 Usefulness of Log-Ratio Distance

Recall that the leakage we considered is measured using log-ratio distance, and not statistical dis-
tance. We survey some advantages of log-ratio distance over statistical distance.

As is common in “hardness amplification”, our construction will apply the original chan-
nel/protocol many times (using fresh randomness). Given a distribution X, let X* denote the
distribution of ¢ independent samples from X. A natural question is how does the distance between
X% and Y relate to the distance between X and Y. For concreteness, assume that SD(X,Y) = ¢
(where SD denotes statistical distance) and that we are interested in taking ¢ = c/€? repetitions
where ¢ > 0 is a very small constant. Consider the following two examples (in the following we use
Up to denote a coin which is one with probability p):

e X; =Upand Y] = U,. In this case, SD(X}],Y{) =1 — (1 — ¢)* = 1 — ¢~¢/¢ which approaches
one for small e.

o Xo ="Up and Y = U /94, in this case SD(X%,Yy) = n, where ) & /c is a small constant
that is independent of €, and can be made as small as we want by decreasing c.

There is a large gap in the behavior of the two examples. In the first, the distance is very close
to one, while in the second it is very close to zero. This means that when we estimate SD(X*, Y*)
in terms of SD(X,Y’), we have to take a pessimistic bound corresponding to the first example,
which is far from the truth in case our distributions behave like in the second example.

Loosely speaking, log-ratio distance provides a “fine grained” view that distinguishes the above

R R
two cases. Note that X2 ~¢() o Y2, whereas there is no finite ¢ for which X; =0 Y1. For X,Y such
R
that X ~.sY for § = 0 (or more generally, for § < €) we get the behavior of the second example
under repetitions, yielding a better control on the resulting statistical distance. More precisely, it

is not hard to show that if X ge Y then for £ = c/€? it holds that X* %O( In(1/9) Yt5 A more

5Let us explain the intuition behind the above phenomenon. The maximum value of both L x|y (s) =log 1;,‘;[[)}::]]
Pr[Y =s]

and Ly x(s) = log rix=s]> is at most e. The relative entropy (also known as, KL divergence) D(X||Y) measures

the expectation of Lx|y(s) according to s <— X, and is therefore smaller than e. But in fact it is easy to show
that both D(X||Y) and D(Y||X) are bounded by ¢ - (¢° — 1) which is approximately ¢* for small e. Tt follows that
D(X|Y*®) = £- D(X||Y) ~ £ = c. In other words, the expectation of Lyejye = D(X*Y|Y*?) = ¢. The random
variable L x¢||y¢ can be seen as the sum of £ independent copies of Lx |y, and we know that each of these variables
lies in the interval [—¢,€]. By a standard Hoeffding bound it follows that the probability that Lx|y deviates from

72
the expectation ¢, by say some quantity n is at most e~ G@) = ¢=2(?/9) and this means that we can choose n
to be roughly /c-In(1/c) and obtain that the probability of deviation is bounded by 7. Overall, this gives that

X* 2 n+ ¢, nY*, meaning that except for an 7 fraction of the space, the ratio is bounded by 7+ ¢, and therefore, the
statistical distance is also bounded by O(n+ ¢) = O(y/c-In(1/¢)).



precise statement and proof are given in Theorem 3.5.9

2.2 The Amplification Protocol

In this section we give a high level overview of the proof of Theorem 1.3. The starting point is a
channel C' = ((VA,0%),(VB, 0B)) that has a-agreement, and (e, §)-leakage. (A good example to
keep in mind is the channel from Footnote 2). For simplicity of exposition, let us assume that § = 0
(the same proof will go through if § is sufficiently small). Our goal is to obtain OT if a > ¢; - €
for some constant c1, which we will choose to be sufficiently large.

Waullschleger [43] showed that a balanced channel with o/-agreement, and (0, €')-leakage (that
is € leakage in statistical distance) implies OT if ¢ < ewy - (o/)? for some constant cyy > 0. Thus,
we are looking for a protocol, that starts with a channel that has (e, 0)-leakage and a-agreement,
where € is larger than «, and produces a channel with (0, ¢')-leakage, and «o'-agreement where ¢’
is smaller than o/. We will use the following protocol achieving o/ > 1/5 and an arbitrarily small
constant ¢ > 0.7

Protocol 2.1 (AY = (A, B), amplification of log-ratio leakage).
Channel: C = ((VA,0M), (VB OB)).
Prameter: Number of samples £.
Operation: Do until the protocol produces output:
1. The parties activate the channel C for £ times. Let 0" and O° be the (C-bit) outputs.
2. A sends the (unordered) set S = {5A,5A ® 1%} to B.

3. B informs A whether O° € S.

If positive, party A outputs zero if@A is the (lex.) smallest element in S, and one otherwise.
Party B does the same with respect to 0°. (And the protocol halts.)

Let A = AY for £ = 1/4a. We first observe that A halts in a given iteration iff the event
E = {5A 0 € {of, 1£}} occurs. Note that Pr[E] > 27¢, and thus the expected running time of

A is O(2%) = 200/®) (jumping ahead, the expected running time can be improved to poly(1/a),
see Section 2.2.1).
We also observe that the outputs of the two parties agree, iff in the final (halting) iteration it

holds that 0" = O". Thus, the agreement of A is given by:

L
(3 +a)f I i-a
+a)l+ (5 —a) 3 +o

! >14+d
14+e 1 =2 ’

-1

Pr[0" = 0°|E] = (

N[

~ 1+674af z

5This phenomenon is the rationale behind the differential privacy boosting result of [9], and can be derived from
the proof in that paper. In our setting, however, the proof is straightforward as outlined here, and shown in the proof
of Theorem 3.5.

"Similar protocols were used in the context of key-agreement amplification [5, 32].



for o/ > 1/5.

In order to understand the leakage of A, we examine the views of the parties in the final
iteration of A (it is clear that the views of the previous iteration yields no information). Let us
denote these part of a view v by final(v). We are interested in understanding the log-ratio distance

between ﬁnal(VK] oh_oE) and ﬁmal(VK . Observe that ﬁnal(V’K\ Oh_o8) 1s a (deterministic)

|OK7£OE)
function of ¢ independent samples from VAloa_oe (i-e., the function that appends {5A,6A ® 14 to
the view), and final(VA| OA oB) 1s the same deterministic function of £ independent samples from
VA]OA#)B. Thus, by data processing, it suffices to bound the distance of ¢ independent samples
from VA|pa_ps from ¢ independent samples from VA| orzo8- By assumption, C' has (e, 0)-leakage,
which means that

R
VA‘OAzoB Re,0 VA’OA;éOB.

In the previous section we showed that by choosing a sufficiently small constant ¢ > 0 and taking £ =
c/€? repetitions of a pair of distributions with (e, 0)-log ratio distance, we obtain two distributions
with statistical distance that is an arbitrary small constant €’ > 0. Here we consider £ = 1/(4a) =
1/(4c; - €2) repetitions, and therefore

. S .
final(VA| 5_8) Re final(VA| 5 L0B):

By picking ¢; to be sufficiently large, we can obtain that the leakage in A is € < cwy - (/)? as
required.

2.2.1 Efficient Amplification

The (expected) running time of Ay is 29 that for the above choice of £ = ©(1/a) equals 2011/,
To be useful in a setting when the running time is limited, e.g., in the computational setting, this
dependency restricts us to “large values of a. Fortunately, Protocol 2.1 can be modified so that
its (expected) running time is only polynomial in 1/c.

Intuitively, rather than making ¢ invocations of C' at once, and hope that the tuple of invocations
happens to be useful: o &) o° € {0z , 18}, the efficient protocol combines smaller tuples of useful
invocations, i.e., 5A @ 55 € {Oz/, 1”}, for some ¢/ < £, into a useful tuple of ¢ invocations. The
advantage is that failing to generate the smaller useful tuples, only “wastes” ¢ invocations of C.
By recursively sampling the ¢’ tuples via the same approach, we get a protocol whose expected
running time is O(¢?) (rather than 20().

The actual protocol implements the above intuition in the following way: on parameter d,
protocol Ay mimics the interaction of the inefficient protocol Aya (i.e., the inefficient protocols with
sample parameter 2¢). Tt does so by using Ay to combines the outputs of two of execution of Ag_1.
Effectively, this call to Ay combines the two 2471 useful tuples produced by Ag_1, into a single 2¢
useful tuple.

Let AS = C, and recursively define A4, for d > 0, as follows:

Protocol 2.2 (Ag = (,&, @), efficient amplification of log-ratio leakage).
Channel: C.

Prameter: log number of sample d.
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AC
Operation: The parties interact in Ag d_l).

By induction, the expected running time of Ag is 4. A more careful analysis yields that the
view of Ag can be simulated by the view of Ag’;. Indeed, there are exactly 2¢ useful invocations
of C in an execution of Ag: invocations whose value was not ignored by the parties, and their
distribution is exactly the same as the 2% useful invocations of C in Agi. Hence, using AdC with
d =log1/4a, we get a protocol whose expected running time is polynomial in 1/« and guarantees
the same level of agreement and security as of Aj/4,.

2.3 The Computational Case

So far, we considered information theoretic security. In order to prove Theorem 1.6 (that considers
security against PPT adversaries) we note that Definition 1.5 (of computational leakage) is carefully
set up to allow the argument of the previous section to be extended to the computational setting.
Using the efficient protocol above, the reduction goes through as long as « is a noticeable function
of the security parameter.

2.4 Two-Party Differentially 