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Abstract

Consider a ppt two-party protocol Π = (A,B) in which the parties get no private inputs
and obtain outputs OA, OB ∈ {0, 1}, and let V A and V B denote the parties’ individual views.
Protocol Π has α-agreement if Pr[OA = OB] = 1

2 + α. The leakage of Π is the amount of
information a party obtains about the event

{
OA = OB

}
; that is, the leakage ε is the maximum,

over P ∈ {A,B}, of the distance between V P|OA=OB and V P|OA 6=OB . Typically, this distance
is measured in statistical distance, or, in the computational setting, in computational indistin-
guishability. For this choice, Wullschleger [TCC ’09] showed that if ε� α then the protocol can
be transformed into an OT protocol.

We consider measuring the protocol leakage by the log-ratio distance (which was popular-
ized by its use in the differential privacy framework). The log-ratio distance between X,Y over

domain Ω is the minimal ε ≥ 0 for which, for every v ∈ Ω, log Pr[X=v]
Pr[Y=v] ∈ [−ε, ε]. In the com-

putational setting, we use computational indistinguishability from having log-ratio distance ε.
We show that a protocol with (noticeable) accuracy α ∈ Ω(ε2) can be transformed into an OT
protocol (note that this allows ε� α). We complete the picture, in this respect, showing that a
protocol with α ∈ o(ε2) does not necessarily imply OT. Our results hold for both the information
theoretic and the computational settings, and can be viewed as a “fine grained” approach to
“weak OT amplification”.

We then use the above result to fully characterize the complexity of differentially private two-
party computation for the XOR function, answering the open question put by Goyal, Khurana,
Mironov, Pandey, and Sahai [ICALP ’16] and Haitner, Nissim, Omri, Shaltiel, and Silbak [FOCS
’18]. Specifically, we show that for any (noticeable) α ∈ Ω(ε2), a two-party protocol that
computes the XOR function with α-accuracy and ε-differential privacy can be transformed into
an OT protocol. This improves upon Goyal et al. that only handle α ∈ Ω(ε), and upon Haitner
et al. who showed that such a protocol implies (infinitely-often) key agreement (and not OT).
Our characterization is tight since OT does not follow from protocols in which α ∈ o(ε2), and
extends to functions (over many bits) that “contain” an “embedded copy” of the XOR function.
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1 Introduction

Oblivious transfer (OT), introduced by Rabin [39], is one of the most fundamental primitives in
cryptography and a complete primitive for secure multi-party computation [45, 14]. Oblivious
transfer protocols are known to exist assuming (several types of) families of trapdoor permutations
[12, 18], learning with errors [37], decisional Diffie-Hellman [35, 1],computational Diffie-Hellman
[4] and quadratic residuosity [30]. While in some of the constructions of OT in the literature, the
construction immediately yields a full-fledged OT, in others it only yields a “weak” form of OT,
that is later “amplified” into a full-fledged one.

In this paper we introduce a new notion for a “weak form of OT”, and show how to amplify this
“weak OT” into full-fledged OT. This notion is more “fine grained” than some previously suggested
notions, which allows us to obtain OT in scenarios that could not be handled by previous works.
Our approach is suitable for the computational and for the information theoretic settings (i.e., the
dishonest parties are assumed to be computationally bounded or not).

1.1 Our Results

We start with presenting our results in the information theoretic setting, and then move to the
computation one.

1.1.1 The Information Theoretic Setting

The information theoretic analogue of a two-party protocol between parties A and B, is a “channel”:
namely, a quadruple of random variables C = ((V A, OA), (V B, OB)), with the interpretation that
when “activating” (or “calling”) the channel C, party P ∈ {A,B} receives his “output” OP and his
“view” V P. In other words, “activating a channel” is analogous to running a two-party protocol
with fresh randomness. (We assume that the view V P contains the output OP).

Log-ratio leakage (channels). We are interested in the special case where the channel C =
((V A, OA), (V B, OB)) has Boolean outputs (i.e., OA, OB ∈ {0, 1}), and assume for simplicity that
the channel is balanced, meaning that for both P ∈ {A,B}, OP is uniformly distributed. Such
channels are parameterized by their agreement and leakage:

• A channel C has α-agreement if Pr[OA = OB] = 1
2 +α. (Without loss of generality, α ≥ 0, as

otherwise one of the parties can flip his output).

• The leakage of party B in C is the distance between the distributions V A|OA=OB and V A|OA 6=OB .

(Note that these two distributions are well defined if α ∈ [0, 1
2)). The leakage of party A is

defined in an analogous way, and the leakage of C is the maximum of the two leakages.

This approach (with somewhat different notation) was taken by past work [43, 42], using sta-
tistical distance as the distance measure.

Loosely speaking, leakage measures how well can a party distinguish the case
{
OA = OB

}
from

the case
{
OA 6= OB

}
. As each party knows his output, this can be thought of as the “amount of

information” on the input of one party that leaks to the other party.1

1We remark that one should be careful with this intuition. Consider a “binary symmetric channel”: a channel
in which V A = OA and V B = OB (i.e., the parties receive no additional view except their outputs), OA is uniformly



We will measure leakage using a different distance measure, which we refer to as “log-ratio
distance”.

Definition 1.1 (Log-Ratio distance). Two numbers p0, p1 ∈ [0, 1] satisfy

p0
R
≈ε,δ p1 if for both b ∈ {0, 1}: pb ≤ eε · p1−b + δ. Two distributions D0, D1 over the same domain

Ω, are (ε, δ)-log-ratio-close (denoted D0
R
≈ε,δ D1) if for every A ⊆ Ω:

Pr[D0 ∈ A]
R
≈ε,δ Pr[D1 ∈ A].

We use the notation D0
S
≈δ D1 to say that the statistical distance between D0 and D1 is at

most δ. Log-ratio distance is a generalization of statistical distance as
S
≈δ is the same as

R
≈0,δ. This

measure of distance was popularized by its use in the differential privacy framework [10] (that we
discuss in Section 1.1.3).

Loosely speaking, log-ratio distance considers the “log-ratio function” LD0||D1
(x) := log Pr[D0=x]

Pr[D1=x] ,

and the two distribution are (ε, δ)-log-ratio-close if this function is in the interval [−ε, ε] with proba-
bility 1−δ. As such, it can be seen as a “cousin” of relative entropy (also known as, Kullback–Leibler
(KL) divergence) that measures the expectation of the log-ratio function.

Note that for ε ∈ [0, 1], D0
R
≈ε,0 D1 implies D0

R
≈0,2ε D1, but the converse is not true, and

the condition (D0
R
≈ε,0 D1) gives tighter handle on the distance between independent samples of

distributions (as we explain in detail in Section 2.1).
We use the log-ratio distance to measure leakage in channels. This leads to the following

definition (in which we substitute “log-ratio distance” as a distance measure).

Definition 1.2 (Log-ratio leakage, channels, informal). A channel C = ((V A, OA), (V B, OB)) has
log-ratio leakage (ε, δ), denoted (ε, δ)-leakage if for both P ∈ {A,B}:

V P|OA=OB

R
≈ε,δ V P|OA 6=OB .

This definition is related (and inspired by) the differential privacy framework [10]. In the
terminology of differential privacy, this can be restated as follows: let E be the indicator variable
for the event

{
OA = OB

}
. For both P ∈ {A,B}, the “mechanism” V P is (ε, δ)-differentially private

with regards to the “secret”/“database” E.

Channels of small log-ratio leakage imply OT. Wullschleger [43] considered channels with
small leakage (measured by statistical distance). Using our terminology, he showed for α ∈ [0, 1

2)
and ε ∈ [0, 1] with ε “sufficiently smaller than” α2, a channel with α-agreement and (0, ε)-leakage
yields OT. This can be interpreted as saying that if the leakage ε is sufficiently smaller than the
agreement α, then the channel yields OT. We prove the following “fine grained” amplification
result, which is restated with precise notation in Theorem 4.2.

Theorem 1.3 (Channels of small log-ratio leakage imply OT, infromal). There exists a constants
c1 > 0 such that the following holds for every ε, δ, α with c1 · ε2 ≤ α < 1/8 and δ ≤ ε2: a channel
C that has α-agreement and (ε, δ)-leakage yields OT (of statistical security).

distributed, and OB = OA ⊕ Up (where Up is an independent biased coin which is one with probability p). The
leakage of this channel is zero, for every choice of p, whereas each party can predict the output of the other party
with probability 1− p by using his own output as a prediction.
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For simplicity, let us focus on Theorem 1.3 in the case that δ = 0. Two distributions that are
(ε, 0)-log-ratio close, may have statistical distance ε, and so, a channel with (ε, 0)-leakage, can only
be assumed to have (0, ε)-leakage (when measuring leakage in statistical distance). Nevertheless,
in contrast to [43], Theorem 1.3 allows the leakage parameter ε to be larger than the agreement
parameter α.2

The above can be interpreted as saying that when the leakage is “well behaved” (that is the δ
parameter in log-ratio distance is sufficiently small), OT can be obtained even from a channel whose
leakage ε is much larger than the agreement α. This property will be the key for our applications
in Section 1.1.3.

Triviality of channels with large leakage. We now observe that the relationship between ε
and α in Theorem 1.3 is best possible (up to constants). Namely, a channel with agreement that
is asymptotically smaller than the one allowed in Theorem 1.3 does not necessarily yield OT.

Theorem 1.4 (Triviality of channels with large leakage, informal). There exists a constant c2 > 0,
such that the following holds for every ε > 0: there exists a two-party protocol (with no inputs)
that when it ends, party P ∈ {A,B} outputs OP and sees view V P, and the induced channel C =
((V A, OA), (V B, OB)) has (c2 · ε2)-agreement and (ε, 0)-leakage.

Together, the two theorems say that our characterization of “weak-OT” using agreement α and
(ε, 0)-log-ratio leakage has a “threshold behavior” at α ≈ ε2: if α ≥ c1 · ε2 then the channel yields
OT, and if α ≤ c2 · ε2 then such a channel can be simulated by a two-party protocol with no inputs
(and thus cannot yield OT with information theoretic security). The proof of Theorem 1.4 uses a
variant of the well-known randomized response approach of Warner [40].

1.1.2 The Computational Setting

We consider a no-input, Boolean output, two-party protocol Π = (A,B). Namely, both parties
receive a security parameter 1κ as a common input, get no private input, and both output one bit.
We denote the output of party P by OP

κ , and its view by V P
κ . In other words, an instantiation

of Π(1κ) can be thought of as inducing a channel Cκ = ((V A
κ , O

A
κ ), (V B

κ , O
B
κ )). Similar to the

information theoretic setting, protocol Π has α-agreement if for every κ ∈ N: Pr
[
OA
κ = OB

κ

]
=

1/2 + α(κ).

Log-ratio leakage (protocols). We extend the definition of log-ratio leakage to the computa-
tional setting (where adversaries are ppt machines). We will use the simulation paradigm to extend
the information theoretic definition to the computational setting.

Definition 1.5 (Log-ratio leakage, protocols, informal). A two-party no-input Boolean output pro-
tocol Π = (A,B) has Comp-log-ratio leakage (ε, δ), denoted (ε, δ)-comp-leakage, if there exists an

“ideal channel” ensemble C̃ =
{
C̃κ = ((V Ã

κ , O
Ã
κ ), (V B̃

κ , O
B̃
κ ))
}
κ∈N

such that the following holds:

2To make this more concrete, consider the following channel C = ((V A, OA), (V B, OB)): OA ← U1/2, OB ←
OA⊕U1/2−α, V A ← OB⊕U1/2−ε, V

B ← OA⊕U1/2−ε (where Up denotes a biased coin which is one with probability p,
and the three “noise variables” are independent). This channel is balanced, has α-agreement, and (O(ε), 0)-leakage.
However, if we were to measure leakage using statistical distance, then we would report that it has (0, O(ε))-leakage.
We are assuming that ε > α, and it will be critical that leakage is measured by log-ratio distance, as we do not know
how to amplify leakage that is measured by statistical distance in this range.
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• For every κ ∈ N: the channel C̃κ has (ε(κ), δ(κ))-leakage.

• For every P ∈ {A,B}: the ensembles
{
V P
κ , O

A
κ , O

B
κ

}
κ∈N and

{
V P̃
κ , O

Ã
κ , O

B̃
κ

}
κ∈N

are computa-

tionally indistinguishable.3

Protocols of small log-ratio leakage imply OT. We prove the following computational ana-
logue of Theorem 1.3 (the next Theorem is restated with precise notation in Theorem 4.24).

Theorem 1.6 (Amplification of protocols with small log-ratio leakage, informal). There exists a
constant c1 > 0 such that the following holds for every function ε, δ, α with c1 · ε(κ)2 ≤ α(κ) < 1/8,
δ(κ) ≤ ε(κ)2 and 1/α(κ) ∈ poly(κ): a ppt protocol that has α-agreement and (ε, δ)-comp-leakage
yields OT (of computational security).

Triviality of protocols with large leakage. An immediate corollary of Theorem 1.4 is the
relationship between ε and α in Theorem 1.6 is best possible (up to constants).

Corollary 1.7 (Triviality of protocols with large leakage, informal). There exists a constant c2 > 0,
such that the following holds for every function ε with ε(κ) > 0: there exists a ppt protocol that
has (c2 · ε2)-agreement and (ε, 0)-leakage.

1.1.3 Application: Characterization of Two-Party Differentially Private Computa-
tion.

We use our results to characterize the complexity of differentially private two-party computation
for the XOR function, answering the open question put by [17, 23]. The framework of differential
privacy typically studies a “one-party” setup, where a “curator” wants to answer statistical queries
on a database without compromising the privacy of individual users whose information is recorded
as rows in the database [10]. In this paper, we are interested in two-party differentially-private com-
putation (defined in [34]). This setting is closely related to the setting of secure function evaluation:
the parties A and B have private inputs x and y, and wish to compute some functionality f(x, y)
without compromising the privacy of their inputs. In secure function evaluation, this intuitively
means that parties do not learn any information about the other party’s input, that cannot be
inferred from their own inputs and outputs. This guarantee is sometimes very weak: For example,
for the XOR function f(x, y) = x ⊕ y, secure function evaluation completely reveals the inputs
of the parties (as a party that knows x and f(x, y) can infer y). Differentially private two-party
computation aims to give some nontrivial security even in such cases (at the cost of compromising
the accuracy of the outputs).

Definition 1.8 (Differentially private computation [34]). A ppt two-party
protocol Π = (A,B) over input domain {0, 1}n × {0, 1}n is ε-DP, if for every ppt nonuniform
machines B∗ and D, and every x, x′ ∈ {0, 1}n with Ham(x, x′) = 1: let V B∗

κ (x) be the view of B∗ in
a random execution of (A(x),B∗)(1κ)), then

Pr
[
D(V B∗

κ (x)) = 1
]
≤ eε(κ) · Pr

[
D(V B∗

κ (x′)) = 1
]

+ neg(κ),

3In the technical section, we consider computational indistinguishability by both uniform and nonuniform ppt
machines. We ignore this issue in the introduction.
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and the same hold for the secrecy of B.
Such a protocol is semi-honest ε-DP, if the above is only guaranteed for semi-honest adversaries

(i.e., for B∗ = B).

In this paper, we are interested in functionalities f , in which outputs are single bits (as in the
case of the XOR function). In this special case, the accuracy of a protocol can be measured as
follows:

Definition 1.9 (accuracy). A ppt two-party protocol Π = (A,B) over input domain {0, 1}n×{0, 1}n
with outputs OA(x, y), OB(x, y) ∈ {0, 1} has perfect agreement if for every x, y ∈ {0, 1}n × {0, 1}n,
and every κ ∈ N, in a random execution of the protocol (A(x),B(y))(1κ), it holds that Pr[OA(x, y) =
OB(x, y)] = 1.

The protocol implements a functionality f over input domain {0, 1}n×{0, 1}n with α-accuracy,
if for κ ∈ N, every P ∈ {A,B}, and every x, y ∈ {0, 1}n × {0, 1}n, in a random execution of the
protocol (A(x),B(y))(1κ), it holds that Pr[OP(x, y) = fP(x, y)] = 1

2 + α(κ).

A natural question is what assumptions are needed for two-party differentially private computa-
tion achieving a certain level of accuracy/privacy (for various functionalities). A sequence of works
showed that for certain tasks, achieving high accuracy requires one-way functions [3, 6, 33, 16];
some cannot even be instantiated in the random-oracle model [22]; and some cannot be black-box
reduced to key agreement [31]. See Section 1.2 for more details on these results. In this work we
fully answer the above question for the XOR function.

Consider the functionality fα(x, y) which outputs x⊕y⊕U1/2−α (where U1/2−α is an independent
biased coin which is one with probability 1/2−α). Assuming OT, there exists a two-party protocol
that securely implement fα, and this protocol is ε-DP, for ε = Θ(α). This is the best possible
differential privacy that can be achieved for accuracy α. On the other extreme, an Θ(ε2)-accurate,
ε-differential private, protocol for computing XOR can be constructed (with information theoretic
security) using the so-called randomized response approach of Warner [40], as shown in [16]. Thus, it
is natural to ask whether OT follows from α-accurate, ε-DP computation of XOR, for intermediate
choices of ε2 � α � ε. In this paper, we completely resolve this problem and prove that OT is
implied for any intermediate ε2 � α� ε.

Differentially private XOR to OT, a tight characterization.

Theorem 1.10. [Differentially private XOR to OT, informal] There exists a constant c1 > 0 such
that the following holds for every function ε, α with α ≥ c1 · ε2 such that 1/α ∈ poly: the existence
of a perfect agreement, α-accurate, semi-honest ε-DP ppt protocol for computing XOR implies OT
(of computational security).

The above improves upon Goyal et al. [17], who gave a positive answer if the accuracy α is the
best possible: if α ≥ c · ε for a constant c. It also improves (in the implication) upon Haitner et al.
[23], who showed that c · ε2-correct ε-DP XOR implies (infinitely-often) key agreement. Finally,
our result allows ε and α to be function of the security parameter (and furthermore, allow α and ε
to be polynomially small in the security parameter) whereas previous reductions [17, 23] only hold
for constant values of ε and α. Our characterization is tight as OT does not follow from protocols
with α ∈ o(ε2).
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Theorem 1.11 (Triviality of differentially private XOR with large leakage. Folklore, see [16]).
There exists a constant c2 > 0 such that for every functions ε there exists a ppt protocol for
computing XOR with information-theoretic ε-DP, perfect agreement and accuracy c2 · ε2. 4

Perspective. Most of the work in differentially private mechanisms/protocols is in the informa-
tion theoretic setting (using the addition of random noise). There are, however, examples where
using computational definitions of differential privacy together with cryptographic assumptions,
yield significantly improved accuracy and privacy compared to those that can be achieved in the
information theoretic setting (e.g., the inner product and the Hamming distance functionalities [33],
see more references in the related work section below). Understanding the minimal assumptions
required in this setting is a fundamental open problem. In this paper, we completely resolve this
problem for the special case of the XOR function. We stress that the XOR function is the canonical
example of a function f(x, y) where the security guarantee given by secure function evaluation is
very weak. More precisely, for f(x, y) = x⊕ y, the security guaranteed by secure function evalua-
tion is meaningless, and the protocol in which both parties reveal their private inputs is considered
secure. Differential privacy can be used to provide a meaningful definition of security in such cases,
and we believe that the tools that we developed for the XOR function, can be useful to argue about
the minimal assumptions required for other functionalities. As a first step, we provide a sufficient
condition under which our approach applies to other functionalities g : {0, 1}n × {0, 1}n → {0, 1}.

Extending the result to any function that is not monotone under relabeling. We can
use our results on the XOR function to achieve OT from differentially private, and sufficiently
accurate computation of a wide class of functions that are not “monotone under relabeling”. A
function g : {0, 1}n × {0, 1}n → {0, 1} is monotone under relabeling if there exist two bijective
functions σx, σy : [2n]→ {0, 1}n such that for every x ∈ {0, 1}n and i ≤ j ∈ [2n]:

g(x, σy(i)) ≤ g(x, σy(j)),

and, for every y ∈ {0, 1}n and i ≤ j ∈ [2n]:

g(σx(i), y) ≤ g(σx(j), y).

We observe that every function g that is not monotone under relabeling has an “embedded XOR”,
meaning that there exist x0, x1, y0, y1 ∈ {0, 1}n such that for every b, c ∈ {0, 1}, g(xb, yc) = b ⊕ c.
This gives that a two-party protocol that computes g can be used to give a two-party protocol that
computes XOR (with some losses in privacy) and these yield OT by our earlier results. Precise
details are given in Section 5.

1.2 Related Work

Information-theoretic OT. Oblivious transfer protocols are also widely studies in their in-
formation theoretic forms [38, 8, 7, 36, 41]. In this form, and OT is simply a pair of jointly
distributed random variable (VA, VB) (a “channel”). A pair of unbounded parties (A,B), having
access to independent samples from this pair (from each sample (vA, vB), party P gets the value
vP). Interestingly, in the information theoretic form, we do have a “simple” notion of weak OT,

4The protocol is the randomized response one, and the proof is very similar to that of Theorem 1.4 (see Section 4).
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that is complete: such a pair can either be used to construct full-fledged (information theoretically
secure) OT, or is trivial—there exists a protocol that generates these views. Unfortunately, these
reductions are inherently inefficient: the parties wait till an event that might be of arbitrary small
probability to occur, and thus, at least not in the most general form, cannot be translated into the
computational setting.

Hardness amplification. Amplifying the security of weak primitives into “fully secure” ones is
an important paradigm in cryptography as well as other key fields in theoretical computer science.
Most notable such works in cryptography are amplification of one-way functions [44, 15, 20], key-
agreement protocols [27], and interactive arguments [25, 19]. Among the above, amplification of
key-agreement protocols (KA) is the most similar to the OT amplification we consider in this paper.
In particular, we do have a “simple” (non distributional) notion of weak KA [27]. This is done by
reduction to the information theoretic notion of key-agreement. What enables this reduction to go
through, is that unlike the case of the information theoretic OT, the amplification of information
theoretic KA is efficient, since it only use the designated output of the (weak) KA (and not the
parties’ view).

Minimal assumptions for differentially private symmetric computation. An accuracy
parameter α is trivial with respect to a given functionality f and differential privacy parameter ε,
if a protocol computing f with such accuracy and privacy exists information theoretically (i.e., with
no computational assumptions). The accuracy parameter is called optimal, if it matches the bound
achieved in the client-server model. Gaps between the trivial and optimal accuracy parameters
have been shown in the multiparty case for count queries [3, 6] and in the two-party case for inner
product and Hamming distance functionalities [33]. [22] showed that the same holds also when a
random oracle is available to the parties, implying that non-trivial protocols (achieving non-trivial
accuracy) for computing these functionalities cannot be black-box reduced to one-way functions.

[16] initiated the study of Boolean functions, showing a gap between the optimal and trivial
accuracy for the XOR or the AND functionalities, and that non-trivial protocols imply one-way
functions. [29] showed that non-interactive randomised response is optimal among all the informa-
tion theoretic protocols. [31] have shown that optimal protocols for computing the XOR or AND,
cannot be black-box reduced to key agreement.

[17] showed that an optimal protocol (with best possible parameters) computing the XOR can
be viewed as a form of weak OT, which according to Wullschleger [43] yields full fledged OT.
Whereas for our choice of parameters the security guarantee is too weak, and it is essential that we
correctly amplify the security.

Very recently, [23] showed that a non-trivial protocol for computing XOR (i.e., accuracy better
than ε2) implies infinitely often key-agreement protocols. Their reduction, however, only holds for
constant value of ε, and is non black box. Finally, [2, 24] gave a criteria that proved the necessity
of OT for computationally secure function evaluation, for a select class of functions.

Paper Organization

Due to space limitations, some of the technical details appear in the full version of this paper.
In Section 2 we give an overview of the main ideas used in the proof. In Section 3 we give some
preliminaries and state some earlier work that we use. In Section 4 we give our amplification results,

7



that convert protocols with small log-ratio leakage into OT. The proofs of our results on two-party
differentially private computation of the XOR function, and on functions that are not monotone
under relabeling omitted from this version.

2 Our Technique

In this section we give a high level overview of our main ideas and technique.

2.1 Usefulness of Log-Ratio Distance

Recall that the leakage we considered is measured using log-ratio distance, and not statistical dis-
tance. We survey some advantages of log-ratio distance over statistical distance.

As is common in “hardness amplification”, our construction will apply the original chan-
nel/protocol many times (using fresh randomness). Given a distribution X, let X` denote the
distribution of ` independent samples from X. A natural question is how does the distance between
X` and Y ` relate to the distance between X and Y . For concreteness, assume that SD(X,Y ) = ε
(where SD denotes statistical distance) and that we are interested in taking ` = c/ε2 repetitions
where c > 0 is a very small constant. Consider the following two examples (in the following we use
Up to denote a coin which is one with probability p):

• X1 = U0 and Y1 = Uε. In this case, SD(X`
1, Y

`
1 ) = 1− (1− ε)` ≈ 1− e−c/ε which approaches

one for small ε.

• X2 = U1/2 and Y2 = U1/2+ε, in this case SD(X`
2, Y

`
2 ) = η, where η ≈

√
c is a small constant

that is independent of ε, and can be made as small as we want by decreasing c.

There is a large gap in the behavior of the two examples. In the first, the distance is very close
to one, while in the second it is very close to zero. This means that when we estimate SD(X`, Y `)
in terms of SD(X,Y ), we have to take a pessimistic bound corresponding to the first example,
which is far from the truth in case our distributions behave like in the second example.

Loosely speaking, log-ratio distance provides a “fine grained” view that distinguishes the above

two cases. Note that X2
R
≈O(ε),0 Y2, whereas there is no finite c for which X1

R
≈c,0 Y1. For X,Y such

that X
R
≈ε,δ Y for δ = 0 (or more generally, for δ � ε) we get the behavior of the second example

under repetitions, yielding a better control on the resulting statistical distance. More precisely, it

is not hard to show that if X
R
≈ε Y then for ` = c/ε2 it holds that X` S

≈
O(
√
c·ln(1/c))

Y `.5 A more

5Let us explain the intuition behind the above phenomenon. The maximum value of both LX||Y (s) = log Pr[X=s]
Pr[Y=s]

and LY ||X(s) = log Pr[Y=s]
Pr[X=s]

, is at most ε. The relative entropy (also known as, KL divergence) D(X||Y ) measures

the expectation of LX||Y (s) according to s ← X, and is therefore smaller than ε. But in fact it is easy to show
that both D(X||Y ) and D(Y ||X) are bounded by ε · (eε − 1) which is approximately ε2 for small ε. It follows that
D(X`||Y `) = ` · D(X||Y ) ≈ `ε2 = c. In other words, the expectation of LX`||Y ` = D(X`||Y `) = c. The random
variable LX`||Y ` can be seen as the sum of ` independent copies of LX||Y , and we know that each of these variables
lies in the interval [−ε, ε]. By a standard Hoeffding bound it follows that the probability that LX||Y deviates from

the expectation c, by say some quantity η is at most e
−Ω( η

2

`ε2
)

= e−Ω(η2/c) and this means that we can choose η
to be roughly

√
c · ln(1/c) and obtain that the probability of deviation is bounded by η. Overall, this gives that

X` R
≈ η + c, ηY `, meaning that except for an η fraction of the space, the ratio is bounded by η+ c, and therefore, the

statistical distance is also bounded by O(η + c) = O(
√
c · ln(1/c)).
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precise statement and proof are given in Theorem 3.5.6

2.2 The Amplification Protocol

In this section we give a high level overview of the proof of Theorem 1.3. The starting point is a
channel C = ((V A, OA), (V B, OB)) that has α-agreement, and (ε, δ)-leakage. (A good example to
keep in mind is the channel from Footnote 2). For simplicity of exposition, let us assume that δ = 0
(the same proof will go through if δ is sufficiently small). Our goal is to obtain OT if α ≥ c1 · ε2
for some constant c1, which we will choose to be sufficiently large.

Wullschleger [43] showed that a balanced channel with α′-agreement, and (0, ε′)-leakage (that
is ε′ leakage in statistical distance) implies OT if ε′ ≤ cWul · (α′)2 for some constant cWul > 0. Thus,
we are looking for a protocol, that starts with a channel that has (ε, 0)-leakage and α-agreement,
where ε is larger than α, and produces a channel with (0, ε′)-leakage, and α′-agreement where ε′

is smaller than α′. We will use the following protocol achieving α′ ≥ 1/5 and an arbitrarily small
constant ε′ > 0.7

Protocol 2.1 (∆C
` = (Ã, B̃), amplification of log-ratio leakage).

Channel: C = ((V A, OA), (V B, OB)).

Prameter: Number of samples `.

Operation: Do until the protocol produces output:

1. The parties activate the channel C for ` times. Let O
A

and O
B

be the (`-bit) outputs.

2. Ã sends the (unordered) set S = {OA
, O

A ⊕ 1`} to B̃.

3. B̃ informs Ã whether O
B ∈ S.

If positive, party Ã outputs zero if O
A

is the (lex.) smallest element in S, and one otherwise.

Party B̃ does the same with respect to O
B

. (And the protocol halts.)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let ∆ = ∆C
` for ` = 1/4α. We first observe that ∆ halts in a given iteration iff the event

E =
{
O

A ⊕OB ∈
{

0`, 1`
}}

occurs. Note that Pr[E] ≥ 2−`, and thus the expected running time of

∆ is O(2`) = 2O(1/α) (jumping ahead, the expected running time can be improved to poly(1/α),
see Section 2.2.1).

We also observe that the outputs of the two parties agree, iff in the final (halting) iteration it

holds that O
A

= O
B

. Thus, the agreement of ∆ is given by:

Pr[O
A

= O
B|E] =

(1
2 + α)`

(1
2 + α)` + (1

2 − α)`
=

1 +

(
1
2 − α
1
2 + α

)`−1

≈ 1

1 + e−4α`
≥ 1

1 + e−1
≥ 1

2 + α′,

6This phenomenon is the rationale behind the differential privacy boosting result of [9], and can be derived from
the proof in that paper. In our setting, however, the proof is straightforward as outlined here, and shown in the proof
of Theorem 3.5.

7Similar protocols were used in the context of key-agreement amplification [5, 32].
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for α′ ≥ 1/5.
In order to understand the leakage of ∆, we examine the views of the parties in the final

iteration of ∆ (it is clear that the views of the previous iteration yields no information). Let us
denote these part of a view v by final(v). We are interested in understanding the log-ratio distance

between final(V Ã|
OÃ=OB̃) and final(V Ã|

OÃ 6=OB̃). Observe that final(V Ã|
OÃ=OB̃) is a (deterministic)

function of ` independent samples from V A|OA=OB (i.e., the function that appends {OA
, O

A⊕1`} to

the view), and final(V Ã|
OÃ 6=OB̃) is the same deterministic function of ` independent samples from

V A|OA 6=OB . Thus, by data processing, it suffices to bound the distance of ` independent samples

from V A|OA=OB from ` independent samples from V A|OA 6=OB . By assumption, C has (ε, 0)-leakage,
which means that

V A|OA=OB

R
≈ε,0 V A|OA 6=OB .

In the previous section we showed that by choosing a sufficiently small constant c > 0 and taking ` =
c/ε2 repetitions of a pair of distributions with (ε, 0)-log ratio distance, we obtain two distributions
with statistical distance that is an arbitrary small constant ε′ > 0. Here we consider ` = 1/(4α) =
1/(4c1 · ε2) repetitions, and therefore

final(V Ã|
OÃ=OB̃)

S
≈ε′ final(V Ã|

OÃ 6=OB̃).

By picking c1 to be sufficiently large, we can obtain that the leakage in ∆ is ε′ ≤ cWul · (α′)2 as
required.

2.2.1 Efficient Amplification

The (expected) running time of ∆` is 2O(`) that for the above choice of ` = Θ(1/α) equals 2O(1/α).
To be useful in a setting when the running time is limited, e.g., in the computational setting, this
dependency restricts us to “large“ values of α. Fortunately, Protocol 2.1 can be modified so that
its (expected) running time is only polynomial in 1/α.

Intuitively, rather than making ` invocations of C at once, and hope that the tuple of invocations

happens to be useful : O
A ⊕ OB ∈

{
0`, 1`

}
, the efficient protocol combines smaller tuples of useful

invocations, i.e., O
A ⊕ OB ∈

{
0`
′
, 1`
′
}

, for some `′ < `, into a useful tuple of ` invocations. The

advantage is that failing to generate the smaller useful tuples, only “wastes” `′ invocations of C.
By recursively sampling the `′ tuples via the same approach, we get a protocol whose expected
running time is O(`2) (rather than 2O(`)).

The actual protocol implements the above intuition in the following way: on parameter d,
protocol Λd mimics the interaction of the inefficient protocol ∆2d (i.e., the inefficient protocols with
sample parameter 2d). It does so by using ∆2 to combines the outputs of two of execution of Λd−1.
Effectively, this call to ∆2 combines the two 2d−1 useful tuples produced by Λd−1, into a single 2d

useful tuple.
Let ΛC0 = C, and recursively define Λd, for d > 0, as follows:

Protocol 2.2 (ΛCd = (Â, B̂), efficient amplification of log-ratio leakage).

Channel: C.

Prameter: log number of sample d.

10



Operation: The parties interact in ∆
(ΛCd−1)

2 .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By induction, the expected running time of ΛCd is 4d. A more careful analysis yields that the
view of ΛCd can be simulated by the view of ∆C

2d
. Indeed, there are exactly 2d useful invocations

of C in an execution of ΛCd : invocations whose value was not ignored by the parties, and their
distribution is exactly the same as the 2d useful invocations of C in ∆C

2d
. Hence, using ΛCd with

d = log 1/4α, we get a protocol whose expected running time is polynomial in 1/α and guarantees
the same level of agreement and security as of ∆1/4α.

2.3 The Computational Case

So far, we considered information theoretic security. In order to prove Theorem 1.6 (that considers
security against ppt adversaries) we note that Definition 1.5 (of computational leakage) is carefully
set up to allow the argument of the previous section to be extended to the computational setting.
Using the efficient protocol above, the reduction goes through as long as α is a noticeable function
of the security parameter.

2.4 Two-Party Differentially Private XOR Implies OT

In this section we explain the main ideas that are used in the proof of Theorem 1.10. Our goal is
to show that a perfect completeness, α-accurate, semi-honest ε-DP protocol for computing XOR,
implies OT, if α ≥ c · ε2 for a sufficiently large constant c. In order to prove this, we will show that
such a protocol can be used to give a two-party protocol that has α-agreement and (computational)
(ε, 0)-leakage. Such a protocol yields OT by our earlier results.8

We remark that there are two natural definitions of “computational differential privacy” in
the literature using either computational indistinguishability or simulation [34]. Definition 1.8 is
using indistinguishability, while for our purposes, it is more natural to work with simulation (as
using simulation enables us to “‘switch back and forth” between the information theoretic setting
and the computational setting). In general, these two definitions are not known to be equivalent.
For functionalities like XOR, where the inputs of both parties are single bits, however, the two
definitions are equivalent by the work of [34]. This means that when considering differential privacy
of the XOR function, we can imagine that we are working in an information theoretic setting, in
which there is a trusted party, that upon receiving the inputs x, y of the parties, provides party P,
with its output OP and view V P. We will use the following protocol to obtain a “channel” with
α-agreement and (ε, 0)-leakage.

Protocol 2.3 (DP-XOR to channel).

1. A samples X ← {0, 1} and B samples Y ← {0, 1}.

2. The parties apply the differentially private protocol for computing XOR, using inputs X and
Y respectively, and receive outputs OA

DP , O
B
DP respectively.

3. A sends R← {0, 1} to B.

8We believe that our results extend to the case of (ε, δ)-differential privacy, as long as δ = o(ε2), and then we obtain
(ε, δ)-leakage, which is sufficient to yield OT. Proving this requires a careful examination of some of the previous
work (which was stated for δ = 0) and extending it to nonzero δ, as well as a more careful analysis on our part. We
will not do this in this paper.
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4. A outputs OA = X ⊕R and B outputs OB
DP ⊕ Y ⊕R.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The intuition behind this protocol is that if OB
DP = X ⊕ Y , then OB = (X ⊕ Y ) ⊕ Y ⊕ R =

X ⊕ R = OA. This means that the channel induced by this protocol inherits α-agreement from
the α-accuracy of the original protocol. In Section 4 we show that this channel “inherits” log-ratio
leakage of (ε, 0) from the fact that the original protocol is ε-DP.

3 Preliminaries

3.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables and functions, lowercase
for values. For a, b ∈ R, let a ± b stand for the interval [a − b, a + b]. For n ∈ N, let [n] =
{1, . . . , n} and (n) = {0, . . . , n}. The Hamming distance between two strings x, y ∈ {0, 1}n, is
defined by Ham(x, y) =

∑
i∈[n] xi 6= yi. Let poly denote the set of all polynomials, let ppt stand for

probabilistic polynomial time and pptm denote a ppt TM (Turing machine) and let pptNUstands for
a non-uniform pptm. A function ν : N→ [0, 1] is negligible, denoted ν(n) = neg(n), if ν(n) < 1/p(n)
for every p ∈ poly and large enough n.

3.2 Distributions and Random Variables

Given a distribution, or random variable, D, we write x← D to indicate that x is selected according
to D. Given a finite set S, let s← S denote that s is selected according to the uniform distribution
over S. The support of D, denoted Supp(D), be defined as {u ∈ U : D(u) > 0}. We will use the
following distance measures.

Statistical distance.

Definition 3.1 (statistical distance). The statistical distance between two distributions P,Q over
the same domain U , (denote by SD(P,Q)) is defined to be:

SD(P,Q) = maxA⊆U |Pr[P ∈ A]− Pr[Q ∈ A]|.

We say that P,Q are ε-close (denoted by P
S
≈ε Q) if SD(P,Q) ≤ ε.

We use the following fact, proof given in the appendix.

Proposition 3.2. Let 0 < ε < µ < 1, and let (X,Y ), (X̃, Ỹ ) be two pairs of random variables
over the same domain X × Y, such that SD((X,Y ), (X̃, Ỹ )) ≤ ε. Let E0, E1 ⊆ X × Y be two
sets such that for every b ∈ {0, 1}, Pr [(X,Y ) ∈ Eb] ≥ µ. Then SD(X̃|{(X̃,Ỹ )∈E0}, X̃|{(X̃,Ỹ )∈E1}) ≤
SD(X|{(X,Y )∈E0}, X|{(X,Y )∈E1}) + 4ε/µ.

Log-Ratio distance. We will also be interested in the following natural notion of “log-ratio
distance” which was popularized by the literature on differential privacy.
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Definition 3.3 (Log-Ratio distance). Two numbers p0, p1 ≥ 0 satisfy p0
R
≈ε,δp1 if for both b ∈ {0, 1}:

pb ≤ eε ·p1−b+δ. Two distributions P,Q over the same domain U , are (ε, δ)-log-ratio-close (denoted

P
R
≈ε,δ Q) if for every A ⊆ U :

Pr[P ∈ A]
R
≈ε,δ Pr[Q ∈ A].

We let
R
≈ε stands for

R
≈ε,0.

It is immediate that D0
S
≈δD1 iff D0

R
≈0,δD1, and that D0

R
≈ε,δD1 implies D0

S
≈(eε−1)+δD1, and

note that for ε ∈ [0, 1], eε− 1 = O(ε). It is also immediate that the log-ratio distance respects data
processing.

Fact 3.4. Assume P
R
≈ε,δ Q, then f(P )

R
≈ε,δ f(Q) for any (possibly randomized) function f .

Log-Ratio distance under independent repetitions. As demonstrated by the framework of
differential privacy, working with this notion of “relative distance” is often a very convenient dis-
tance measure between distributions, as it behaves nicely when considering independent executions.
Specifically, let D` denote ` independent copies from D, the following follows:

Theorem 3.5 (Relative distance under independent repetitions).

If D0
R
≈ε,δ D1 then for every ` ≥ 1, and every δ′ ∈ (0, 1)

D`
0

R
≈(η(ε,`,δ′),`δ+δ′) D

`
1,

where η(ε, `, δ′) = ` · ε(eε − 1) + ε ·
√

2` · ln(1/δ′).

We remark that Theorem 3.5 can also be derived by the (much more complex) result on “boost-
ing differential privacy” [11]. However, it can be easily derived directly by a Hoeffding bound, as
is done in the next two lemmata.

Lemma 3.6. If D0
R
≈ε D1 then for each b ∈ {0, 1}, Ex←Db

[
log

PrDb [x]

PrD1−b [x]

]
≤ ε(eε − 1).

The term Ex←Db

[
log

PrDb [x]

PrD1−b [x]

]
is also known as the KL-divergence between Db and D1−b, which

is known to be non-negative for every two distribution D0, D1.
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Proof.

E
x←Db

[
log

PrDb [x]

PrD1−b [x]

]
≤ E

x←Db

[
log

PrDb [x]

PrD1−b [x]

]
+ E
x←D1−b

[
log

PrD1−b [x]

PrDb [x]

]
=
∑
x∈U

Pr
Db

[x] (log
PrDb [x]

PrD1−b [x]
+ log

PrD1−b [x]

PrDb [x]
) +

∑
x∈U

( Pr
D1−b

[x]− Pr
Db

[x]) log
PrD1−b [x]

PrDb [x]

=
∑
x∈U

( Pr
D1−b

[x]− Pr
Db

[x]) log
PrD1−b [x]

PrDb [x]

≤ ε ·
∑
x∈U

∣∣∣∣ Pr
D1−b

[x]− Pr
Db

[x]

∣∣∣∣
≤ ε ·

∑
x∈U

(eε − 1) min( Pr
D1−b

[x] ,Pr
Db

[x])

= ε · (eε − 1)
∑
x∈U

min( Pr
D1−b

[x] ,Pr
Db

[x]) ≤ ε · (eε − 1).

Where the first inequality holds since KL-divergence is non-negative, and the second and third
inequalities holds from the definition of Log-Ratio distance. �

Lemma 3.7. If D0
R
≈ε,δD1, then for each b ∈ {0, 1} there exist distributions D′b such that D′b

R
≈εD1−b,

and, D′b
S
≈δ Db.

Proof. Fix b ∈ {0, 1}, and let S+ ⊆ U be the set of all x such that PrDb [x] > eε · PrD1−b [x], and
S− be the set of all x with PrDb [x] < e−ε · PrD1−b [x]. First, notice that

Pr
Db

[
S+
]
− eε · Pr

D1−b

[
S+
]
≤ δ, e−ε · Pr

D1−b

[
S−
]
− Pr

Db

[
S−
]
≤ δ (1)

Indeed, by the log-ration distance between D0 and D1, we get that PrDb [S+] ≤ eε ·PrD1−b [S+] + δ,
and PrD1−b [S−] ≤ eε · PrDb [S−] + δ.

In the following we assume for simplicity that PrDb [S+]− eε ·PrD1−b [S+] ≥ e−ε ·PrD1−b [S−]−
PrDb [S−], as the other case symmetrically follows.

In the following, it is shown how to modify Db to construct D′b. This is done by reducing the
probability of every x ∈ S+, and increasing the probability of every x ∈ S−, to keep it inside the
range [e−ε PrD1−b [x] , eε PrD1−b [x]]. To make sure that the resulting D′b is a probability distribution
(
∑

x PrD′b [x] = 1), the probability of other elements may have to be changed. For this purpose,

consider the set A =
{
x : PrD1−b [x] > PrDb [x]

}
. Notice that S− ⊆ A, and it holds that

Pr
D1−b

[A]− Pr
Db

[A] =
∑
x∈A

Pr
D1−b

[x]− Pr
Db

[x] (2)

=
∑
x/∈A

Pr
Db

[x]− Pr
D1−b

[x] ≥ Pr
Db

[
S+
]
− eε · Pr

D1−b

[
S+
]

Where the second equality holds since
∑

x PrDb [x] =
∑

x PrD1−b [x] = 1.
We get that

Pr
D1−b

[A]− Pr
Db

[A] ≥ Pr
Db

[
S+
]
− eε · Pr

D1−b

[
S+
]
≥ e−ε · Pr

D1−b

[
S−
]
− Pr

Db

[
S−
]

(3)
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Thus, we can define D′b as following:

• For every x ∈ S+, PrD′b [x] = eε · PrD1−b [x].

• For every x /∈ A ∪ S+, PrD′b [x] = PrDb [x].

• For every x ∈ A, max(PrDb [x] , e−ε·PrD1−b [x]) ≤ PrD′b [x] ≤ PrD1−b [x], such that
∑

x∈U PrD′b [x] =
1.

It is clear from Equation (1) that D′b
S
≈δ Db. Also, from definition it holds that for every x,

PrD′b [x]
R
≈ε PrD1−b [x]. �

Theorem 3.8 (Hoeffding bound [26]). Let A1, ..., A` be independent random variables s.t. Ai ∈
[−c, c] and let Â = Σ`

i=1Ai. It holds that:

Pr
[
Â− E

[
Â
]
≥ t
]
≤ e−t2/2`c2 .

Proof of Theorem 3.5. First, we show the proof for the case that δ = 0. Later it is shown how to
use Lemma 3.7 in order to reduce the general case to this one.

For δ = 0, fix b ∈ {0, 1}, and let A ⊆ U ` be some set. It suffices to show that Pr
[
D`
b ∈ A

]
≤

eη(ε,`,δ′) · Pr
[
D`

1−b ∈ A
]

+ δ′.

Consider the set S :=

{
y | log

D`b(y)

D`1−b(y)
≥ η(ε, `, δ′)

}
. It holds that:

Pr
[
D`
b ∈ A

]
= Pr

[
D`
b ∈ A \ S

]
+ Pr

[
D`
b ∈ A ∩ S

]
(4)

≤ eη(ε,`,δ′) · Pr
[
D`

1−b ∈ A \ S
]

+ Pr
[
D`
b ∈ A ∩ S

]
≤ eη(ε,`,δ′) · Pr

[
D`

1−b ∈ A
]

+ Pr
[
D`
b ∈ S

]
.

It therefore enough to show that Pr
[
D`
b ∈ S

]
≤ δ′. For this goal, consider the random variable Â =

log
Pr
D`
b
[X1,...,X`]

Pr
D`

1−b
[X1,...,X`]

, where X1, . . . , X` are independent samples from Db. Let Ai := log
PrDb [Xi]

PrD1−b [Xi]
.

Then it holds that Â =
∑`

i=1Ai, where for every i, Ai ∈ [−ε, ε]. By Lemma 3.6, it holds that for
every i, E[Ai] ≤ ε · (eε − 1). Therefore, by the Hoeffding bound,

Pr
[
D`
b ∈ S

]
≤ Pr

[
Â ≥ ` · ε(eε − 1) + ε ·

√
2` · ln(1/δ′)

]
≤ e−(ε·

√
2`·ln(1/δ′))2/2`ε2 = δ′. (5)

In the general case, for δ > 0, let D′b be the distribution promised in Lemma 3.7. By applying
the above on D′b, D1−b, we get that for every set A ⊆ U `, it holds that

Pr
D′`b

[A] ≤ eη(ε,`,δ′) Pr
D′`1−b

[A] + δ′. (6)

Using the triangle inequality for statistical distance, it follows that:

Pr
D`b

[A] ≤ Pr
D′`b

[A] + `δ ≤ eη(ε,`,δ′) Pr
D`1−b

[A] + δ′ + `δ. (7)

�
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Computational indistinguishability.

Definition 3.9 (Computational indistinguishability). Two distribution ensembles X = {Xκ}κ∈N,

Y = {Yκ}κ∈N are [resp., non-uniformly] computationally indistinguishable, denoted X
C
≈ Y [resp.,

X
nuC
≈ Y ] if for every ppt [resp., pptNU] D:

|Pr[D(1κ, Xκ) = 1]− Pr[D(1κ, Yκ) = 1]| ≤ neg(κ).

3.3 Protocols

Let Π = (A,B) be a two-party protocol. Protocol Π is ppt if both A and B running time is
polynomial in their input length. We denote by (A(xA),B(xB))(z) a random execution of Π with
private inputs (xA, yA), and common input z. At the end of such an execution, party P ∈ {A,B}
obtains his view V P(xA, xB, z), which may also contain a “designated output” OP(xA, xB, z) (if the
protocol specifies such an output). A protocol has Boolean output, if each party outputs a bit.

3.4 Two-Output Functionalities and Channels

A two-output functionality is just a random function that outputs a tuple of two values in a
predefined domain. In the following we omit the two-output term from the notation.

Channels. A channel is simply a no-input functionality with designated output bits. We natu-
rally identify channels with the random variable characterizes their output.

Definition 3.10 (Channels). A channel is a no-input Boolean functionality whose output pair is
of the from ((V A, OA), (V B, OB)) and for both P ∈ {A,B}, OP is Boolean and determined by V P.
A channel has agreement α if Pr

[
OA = OB

]
= 1

2 +α. A channel ensemble {Cκ}κ∈N has agreement
α if Cκ has agreement α(κ) for every κ.

It is convenient to view a channel as the experiment in which there are two parties A and B.
Party A receives “output” OA and “view” V A, and party B receives “output” OB and “view” V B.

We identify a no-input Boolean output protocol with the channel “induced” by its semi-honest
execution.

Definition 3.11 (The protocol’s channel). For a no-input Boolean output protocol Π, we define the
channel CHN(Π) by CHN(Π) = ((V A, OA), (V B, OB)), for V P and OP being the view and output
of party P in a random execution of Π. Similarly, for protocol Π whose only input is a security
parameter, let CHN(Π) = {CHN(Π)κ = CHN(Π(1κ))}κ∈N.

All protocols we construct in this work are oblivious, in the sense that given oracle access to a
channel, the parties only make use of the channel output (though the channel’s view becomes part
of the party view).9

9This is in accordance with definition of channels in the literature in which the view component of the channel is
only accessible to the eavesdropper (and not to the honest parties using the channel).
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3.5 Secure Computation

We use the standard notion of securely computing a functionality, cf., [13].

Definition 3.12 (Secure computation). A two-party protocol securely computes a functionality f , if
it does so according to the real/ideal paradigm. We add the term perfectly/statistically/computationally/non-
uniform computationally, if the the simulator output is perfect/statistical/computationally indistin-
guishable/ non-uniformly indistinguishable from the real distribution. The protocol have the above
notions of security against semi-honest adversaries, if its security only guaranteed to holds against an
adversary that follows the prescribed protocol. Finally, for the case of perfectly secure computation,
we naturally apply the above notion also to the non-asymptotic case: the protocol with no security
parameter perfectly compute a functionality f .

A two-party protocol securely computes a functionality ensemble f in the g-hybrid model, if it does
so according to the above definition when the parties have access to a trusted party computing g.
All the above adjectives naturally extend to this setting.

3.6 Oblivious Transfer

The (one-out-of-two) oblivious transfer functionality is defined as follows.

Definition 3.13 (oblivious transfer functionality fOT). The oblivious transfer functionality over
{0, 1} × ({0, 1}∗)2 is defined by fOT(i, (σ0, σ1)) = (⊥, σi).

A protocol is ∗ secure OT, for
∗ ∈ {semi-honest statistically/computationally/computationally non-uniform}, if it compute the
fOT functionality with ∗ security.

3.7 Two-Party Differential Privacy

We consider differential privacy in the 2-party setting.

Definition 3.14 (Differentially private functionality). A functionality f over input domain {0, 1}n×
{0, 1}n is ε-DP, if the following holds: let (V A

x,y, V
B
x,y) = f(x, y), then for every x, x′ with Ham(x, x′) =

1, y ∈ {0, 1}n and v ∈ Supp(V B
x,y):

Pr
[
V B
x,y = v

]
≤ eε · Pr

[
V B
x′,y = v

]
,

and the for every y, y′ with Ham(y, y′) = 1, x ∈ {0, 1}n and v ∈ Supp(V A
x,y):

Pr
[
V A
x,y = v

]
≤ eε · Pr

[
V A
x,y′ = v

]
.

Note that the above definition is equivalence to asking that V B
x,y

R
≈ε V B

x′,y for any x, x′ with

Ham(x, x′) = 1 and y, and analogously for the view of A, for
R
≈ε being the log-ratio according to

Definition 3.3.
We also remark that a more general definition allows also an additive error δ in the above,

making the functionality (ε, δ)-DP. However, for the sake simplicity, we focus on the simpler
notion of ε-DP stated above.
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Definition 3.15 (Differentially private computation). A ppt two-output protocol Π = (A,B) over
input domain {0, 1}n×{0, 1}n is ε-IND-DP if the following holds for every pptNU B∗, D and x, x′ ∈
{0, 1}n with Ham(x, x′) = 1: let V B∗

x be the view of B∗ in a random execution of (A(x),B∗)(1κ),
then

Pr
[
D(V B∗

x) = 1
]
≤ eε(κ) · Pr

[
D(V B∗

x′) = 1
]

+ neg(κ),

and the same hold for the secrecy of B.
Such a protocol is semi-honest ε-IND-DP, if the above is only guaranteed to hold for semi-honest

adversaries (i.e., for B∗ = B).

3.8 Passive Weak Binary Symmetric Channels

We rely on the work of Wullschleger [43] that shows that certain channels imply oblivious transfer.
The following notion, adjusted to our formulation, of a “Passive weak binary symmetric channel”
was studied in [43].

Definition 3.16 (Passive weak binary symmetric channels, WBSC, [43]). An (µ, ε0, ε1, p, q)-WBSC
is a channel C = ((V A, OA), (V B, OB)) such that the following holds:

• Correctness: Pr
[
OA = 0

]
∈ [1

2 − µ/2,
1
2 + µ/2]

and for every bA ∈ {0, 1}, Pr
[
OB 6= OA | OA = bA

]
∈ [ε0, ε1].

• Receiver security: (V A, OA)|OB=OA

S
≈p (V A, OA)|OB 6=OA.10

• Sender security: for every bB ∈ {0, 1}, V B|OB=bB,OA=0

S
≈q V B|OB=bB,OA=1.

The following was proven in [43].

Theorem 3.17 (WBSC implies oblivious transfer). There exist a protocol ∆ such that the following

holds. Let ε, ε0 ∈ (0, 1/2), p ∈ (0, 1) be such that 150(1 − (1 − p)2) < (1 − 2ε2

ε2+(1−ε)2 )2, and ε0 ≤ ε.

Let C be a (0, ε0, ε0, p, p)-WBSC. Then ∆(1κ, ε) is a semi-honest statistically secure OT in the
C-hybrid model, and its running time is polynomial in κ, 1/ε and 1/(1 − 2ε). Furthermore, the
parties in ∆ only makes use of the output bits of the channel.

Theorem 3.17 considers channels with µ = 0, and ε0 = ε1. This is equivalent to saying that the
channel is balanced (i.e., each of the output bits is uniform) and has α-agreement, for α = 1

2 − ε0.
When stated in this form, Theorem 3.17 says that such a channel implies OT if p = O(α2), and in
particular, it is required that p < α.

3.8.1 Specialized Passive Weak Binary Symmetric Channels

We will be interested in a specific choice of parameters for passive WBSC’s, and for this choice, it
will be more convenient to work with the following stronger notion of a channel (that is easier to
state and argue about, as security is defined in the same terms for both parties).

10In the requirement above, one can replace (V A, OA) with V A (as by our conventions the latter determines the
former). We remark that [43] does not use this convention, and this is why we explicitly include the random variable
OA.
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Definition 3.18 (Specialized passive weak binary symmetric channels). An (ε0, p)-SWBSC is a
channel C = ((V A, OA), (V B, OB)) such that the following holds:

• Correctness: Pr
[
OA = 0

]
= 1

2 , and for every bA ∈ {0, 1},
Pr
[
OB 6= OA | OA = bA

]
= ε0.

• Receiver security: V A|OA=OB

S
≈p V A|OA 6=OB.

• Sender security: V B|OB=OA

S
≈p V B|OB 6=OA.

Proposition 3.19. An (ε0, p)-SWBSC is a (0, ε0, ε0, 2p, 2p)-WBSC.

The proof for Proposition 3.19 appears in Appendix A.

3.9 Additional Inequalities

The following fact is proven in Appendix A.

Proposition 3.20. The following holds for every b ∈ (0, 1/2) and ` ∈ N such that b` < 1/4.

(1/2 + b)`

(1/2 + b)` + (1/2− b)`
∈ [1

2(1 + b`), 1
2(1 + 3b`)].

4 Amplification of Channels with Small Log-Ratio Leakage

In this section we formally define log-ratio leakage and prove our amplification results. We start in
Section 4.1 with the information theoretic setting, in which we restate and prove Theorem 1.3 and
Theorem 1.4. In the full version of this paper we extend our result to the computational setting,
restating and proving Theorem 1.6.

4.1 The Information Theoretic Setting

We start with a definition of log-ratio leakage (restating Definition 1.2 with more formal notation).

Definition 4.1 (Log-ratio leakage). A channel ((OA, V A), (OB, V B)) has (ε, δ)-leakage if

• Receiver security: V A|OA=OB

R
≈ε,δ V A|OA 6=OB.

• Sender security: V B|OA=OB

R
≈ε,δ V B|OA 6=OB.

The following theorem is a formal restatement of Theorem 1.3

Theorem 4.2 (Small log-ratio leakage implies OT). There exists an (oblivious) ppt protocol ∆
and constant c1 > 0 such that the following holds. Let ε, δ ∈ [0, 1] be such that δ ≤ ε2, and let
α ≤ αmax < 1/8 be such that α ≥ max

{
c1 · ε2, αmax/2

}
. Then for any channel C with (ε, δ)-

leakage and α-agreement, protocol ∆C(1κ, 1b1/αmaxc) is a semi-honest statistically secure OT in the
C-hybrid model.

Before proving Theorem 4.2, we first show that it is tight. The proof of the following theorem
is given in the full paper.
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Theorem 4.3 (Triviality of channels with large leakage). There exists a constant c2 > 0, such
that for every ε > 0 there is a two-party protocol (with no inputs) where at the end of the
protocol, every party P ∈ {A,B} has output OP and view V P. Moreover, the induced channel
C = ((V A, OA), (V B, OB)) has α-agreement,and (ε, 0)-leakage, for α ≥ c2 · ε2.

Together, the two theorems show that if α ≥ c1 ·ε2 then the channel yields OT, and if α ≤ c2 ·ε2
then such a channel can be simulated by a two-party protocol with no inputs (and thus cannot
yield OT with information theoretic security).

The proof of Theorem 4.2 is an immediate consequence of the following two lemmata.
Recall (Definition 3.11) that CHN(Π) denotes the channel induced by a random execution of

the no-input, Boolean output protocol Π.

Lemma 4.4 (Gap amplification). There exists an (oblivious) ppt protocol ∆ and constant c1 > 0
such that the following holds. Let ε, δ, α, αmax be parameters satisfying requirements in Theorem 4.2
with respect to c1. Let C be a channel with (ε, δ)-leakage and α-agreement, let ` = 2(blog 1/αmaxc−2)

and let C̃ = CHN(∆C(1`)). Then

• C̃ has α̃ ∈ [1/32, 3/8]-agreement.

• For any δ′ ∈ (0, 1): C̃ has (ε̃, δ̃)-leakage for ε̃ = 2`ε2 + ε
√

2` ln(1/δ′) and δ̃ = δ′ + `δ.

Definition 4.5 (Bounded execution). Given Boolean output protocol Π and n ∈ N, let boundn(Π)
be the variant of Π that if the protocol does not halt after n steps, it halts and the parties output
uniform independent bits.

Lemma 4.6 (Large Gap to OT). There exist an (oblivious) ppt protocol ∆ and constants n, c > 0
such that the following holds: let Π be a protocol of expected running time at most t that induces a
channel C with α ∈ [1/32, 3/8]-agreement, and (ε, δ)-leakage for ε, δ ≤ c.

Then ∆C′(1κ) is a semi-honest statistically secure OT in the C ′ =
CHN(boundn·t(Π)) hybrid model.

We prove the above two Lemmas in the following subsections, but first we will prove Theo-
rem 4.2.

Proof of Theorem 4.2. Let ` = 2(blog 1/αmaxc−2). By Lemma 4.4, there exists an expected polyno-
mially time protocol Λ such that ΛC(1`) induces a channel C̃ of α̃ ∈ [1/32, 3/8]-agreement, and
(ε̃, δ̃)-leakage for ε̃ = 2`ε2 + ε

√
2` ln(1/δ′) and δ̃ = δ′ + `δ, for any δ′ ∈ (0, 1).

Let t ∈ poly be a polynomial that bounds the expected running time of Λ. By Lemma 4.6,
there exist universal constants n, c and ppt protocol ∆, such that if

ε̃ = 2`ε2 + ε
√

2` ln(1/δ′) ≤ c and δ̃ = δ′ + `δ ≤ c (8)

then the protocol Γ, defined by ΓC(1κ, 1b1/αmaxc) = ∆C′(1κ) for
C ′ = CHN(boundn·t(`)(Λ

C(1`))), is a semi-honest statistically secure OT. Hence, we conclude the
proof noting that Equation (8) holds by setting δ′ = `δ and choosing c1 (the constant in Theo-
rem 4.2) to be sufficiently large.

�

Lemma 4.6 is proved in Section 4.1.3 using the amplification result of [43]. Toward proving
Lemma 4.4, our main technical contribution, we start in Section 4.1.1 by presenting an inefficient
protocol implementing the desired channel. In Section 4.1.2 we show how to bootstrap the the
above protocol into an efficient one.
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4.1.1 Inefficient Amplification

The following protocol implements the channel stated in Lemma 4.4, but its running time is expo-
nential in 1/αmax.

Protocol 4.7. [Protocol ∆C = (Ã, B̃)]

Oracle: channel C = ((V A, OA), (V B, OB)).

Input: 1`.

Operation: The parties repeat the following process until it produces outputs:

1. The parties (jointly) call the channel C for ` times. Let oA = (oA1 , . . . , o
A
` ), oB = (oB1 , ..., o

B
` )

be the outputs.

2. Ã computes and sends S =
{
oA, 1` ⊕ oA

}
according to their lexical order to B̃.

3. B̃ inform Ã whether oB ∈ S.

If positive, both parties output the index of their tuple in S (and the protocol ends).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We show that the channel induced by protocol ∆C(1`) satisfies all the requirement of Lemma 4.4
apart from its expected running time (which is exponential in `).

Let C̃ = CHN(∆C(`)) = ((V Ã, OÃ), ((V B̃, OB̃)). The following function outputs the calls to C
made in the final iteration in C̃.

Definition 4.8 (Final calls). For c ∈ Supp(C̃) let final(c) denote the output of the ` calls to C
made in the final iteration in c.

We make the following observation about the final calls.

Claim 4.9. The following holds for ((·, OA
), (·, OB

)) = final(C̃ = ((·, OÃ), (·, OB̃))).

• OÃ = OB̃ iff O
A

= O
B

.

• Let C` = ((·, (OA)`), (·, (OB)`)) be the random variable induced by taking ` copies of C and
let E be the event that (OB)` ∈

{
(OA)`, (OA)` ⊕ 1`

}
. Then final(C̃) ≡ C`|E.

Proof. Immediate by construction. �

Agreement.

Claim 4.10 (Agreement). Pr
[
OÃ = OB̃

]
∈ [17/32, 7/8].

Proof. By Claim 4.9,

Pr
[
OÃ = OB̃

]
=

Pr
[
(OA)` = (OB)` | E

]
Pr [(OA)` = (OB)` | E] + Pr [(OA)` ⊕ (OB)` = 1` | E]

(9)

=
Pr
[
(OA)` = (OB)`

]
Pr [(OA)` = (OB)`] + Pr [(OA)` ⊕ (OB)` = 1`]

=
(1/2 + α)`

(1/2 + α)` + (1/2− α)`
.
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Since, ` = 2(blog 1/αmaxc−2) and αmax/2 ≤ α ≤ αmax, we get that 1/4 ≥ ` · α ≥ 1/16. By Proposi-
tion 3.20,

(1/2 + α)`

(1/2 + α)` + (1/2− α)`
∈ [1

2(1 + α`), 1
2(1 + 3α`)] (10)

Thus, Pr
[
OÃ = OB̃

]
∈ [17/32, 7/8], which concludes the proof. �

Leakage.

Claim 4.11 (Leakage). C̃ has (ε̃, δ̃)-leakage, where ε̃ = 2`ε2 + ε
√

2` ln(1/δ′) and δ̃ = δ′ + `δ for
every δ′ ∈ (0, 1).

Proof. We need to prove that for both P ∈ {A,B}:

V P̃|
OÃ=OB̃

R
≈

(ε̃,δ̃)
V P̃|

OÃ 6=OB̃ (11)

By assumption C has (ε, δ)-leakage. Thus, by Theorem 3.5,

(V P)`|(OA)`=(OB)`
R
≈

(ε̃,δ̃)
(V P)`|(OA)`=(OB)`⊕1` (12)

Let ((V
A
, O

A
), (V

B
, O

B
) = final(C̃). By the above and Claim 4.9,

V
P|
OÃ=OB̃

R
≈

(ε̃,δ̃)
V

P|
OÃ 6=OB̃ (13)

Equation (11) now follows by a data processing argument: let f be the randomized function

that on input v ∈ Supp(V
P
) outputs a random sample from V P̃|

V
P
=v

. It easy to verify that

f(V
P|
OÃ=OB̃) = V P̃|

OÃ=OB̃ and f(V
P|
OÃ 6=OB̃) ≡ V P̃|

OÃ 6=OB̃ . Thus Equation (11) follows by Fact 3.4.
�

4.1.2 Efficient Amplification

We will show how to make Protocol 4.7 protocol more efficient in terms of α. The resulting protocol
will run in poly-time even if α is inverse polynomial. The efficient amplification protocol is defined
as follows. Let ∆ be the (inefficient) protocol from Protocol 4.7.

Protocol 4.12. [Protocol ΛC = (Â, B̂)]

Oracle: Channel C.

Prameter: Recursion depth d.

Operation: The parties interact in ∆ΛC(d−1)(2), letting ΛC(0) = C.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We show that the channel induced by protocol ΛC(d) satisfies all the requirement of Lemma 4.4.
But we first show that the expected running time of ΛC(d) is O(4d), and therefore, the protocol
that on input 1` invoke ΛC(log `), is ppt, as stated in Lemma 4.4.
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Running time.

Claim 4.13 (Expected running time). Let C be a channel, the for any d ∈ N the expected running
time of ΛC(d) is at most O(4d).

We will use the following claim:

Claim 4.14. For any channel C, ∆C(2) makes in expectation at most 4 calls to C.

Proof. Let C with a channel with agreement α ∈ [−1/2, 1/2]. Let O
A

= (OA
1 , O

A
2 ) and O

B
=

(OB
1 , O

B
2 ) denote the outputs of two invocations of C, respectively. By construction, ∆C(2) con-

cludes on the event E =
{

(OB
1 , O

B
2 ) ∈ {OA

, 12 ⊕OA}
}

. It is clear that Pr [E] = (1
2 +α)2+(1

2−α)2 =
1
2 + α2 ≥ 1

2 . Thus, the expected number of invocations preformed by ∆C(2) is bounded is 4. �

We now prove Claim 4.13 using the above claim.

Proof of Claim 4.13. For d ∈ N, let T (d) denote the expected runtime of ΛC(d). By Claim 4.14,

T (d) = 4 · T (d− 1) +O(1), (14)

letting T (0) = 1. Thus, T (d) ∈ O(4d). �

Let Ĉd = CHN(ΛC(d)) = ((V Â
d , O

Â
d ), ((V B̂

d , O
B̂
d )). The following function outputs the “impor-

tant’ calls of C made in Ĉd, the ones used to set the final outcome.
Let ◦ denote vectors concatenation.

Definition 4.15 (Important calls). For d ∈ N and c ∈ Supp(Ĉd), let final(c) = (c0, c1) be the two

calls to ΛC(d−1) done in final execution of ∆ΛC(d−1)(2) in c. Define important(c) = important(c0)◦
important(c1), letting important(c) = c for c ∈ Supp(Ĉ0).

Similarly to the analysis of inefficient protocol, the crux is the following observation about the
important calls.

Claim 4.16. Let d ∈ N and set ` = 2d. The following holds for ((·, OA
), (·, OB

)) = important(Ĉd =

((·, OÂ), (·, OB̂))).

• OÂ = OB̂ iff O
A

= O
B

.

• Let C` = ((·, (OA)`), (·, (OB)`)) be the random variable induced by taking ` copies of C and
let E be the event that (OB)` ∈

{
(OA)`, (OA)` ⊕ 1`

}
. Then

important(Ĉd) ≡ C`|E.

We prove Claim 4.16 below, but first use it for proving Lemma 4.4.

Agreement.

Claim 4.17 (Agreement). Pr
[
OÂ = OB̂

]
∈ [17/32, 7/8].

Proof. The proof follows by Claim 4.16, using the same lines as the proof that Claim 4.10 follows
from Claim 4.9. �
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Leakage.

Claim 4.18 (Leakage). Ĉ has (ε̃, δ̃)-leakage, where ε̃ = 2`ε2 + ε
√

2` ln(1/δ′) and δ̃ = δ′ + `δ for
every δ′ ∈ (0, 1).

Proof. The proof follows by Claim 4.16 and a data processing argument, using similar lines to the
proof that Claim 4.11 follows from Claim 4.9. �

Proving Lemma 4.4.

Proof of Lemma 4.4. Consider the protocol TC(1`) = ΛC(blog `c). The proof that T satisfies the
requirements of Lemma 4.4 immediately follows by Claims 4.13, 4.17 and 4.18. �

Proving Claim 4.16.

Proof of Claim 4.16. First note that the first item in the claim immediately follows by construction.
We now prove the second item.

Let d ∈ N and let ` = 2d. For C` = ((·, (OA)`), (·, (OB)`)), let D` be the distribution of
C`|{(OB)`∈{(OA)`,(OA)`⊕1`}}. We need to prove that

important(Ĉd) ≡ D`

We prove the claim by induction on d. The base case d = 1 follows by Claim 4.9.
Fix d > 1, for j ∈ {0, 1}, let Ĉd−1,j be an invocations of the channel on input d − 1 and let

((·, OA
j ), (·, OB

j )) = important(Ĉd−1,j). By the induction hypothesis,

important(Ĉd−1,j) ≡ D`/2 (15)

The key observation is that by construction, the event final(Ĉd) = Ĉd−1,0 ◦ Ĉd−1,1 occurs if and
only if,

O
B
0 ◦O

B
1 ∈

{
O

A
0 ◦O

A
1 , 1

` ⊕OA
0 ◦O

A
1

}
(16)

Recall this means that,

important(Ĉd) =
(

important(Ĉd−1,0) ◦ important(Ĉd−1,1)
)
|E

where E =
{
O

B
0 ◦O

B
1 ∈

{
O

A
0 ◦O

A
1 , 1

` ⊕OA
0 ◦O

A
1

}}
. The above observations yields that

important(Ĉd) ≡ D`. �

4.1.3 From Channels with Large Gap to OT

Definition 4.19. A channel C = ((V A, OA), (V B, OB)) is balanced if Pr
[
OA = 1

]
= Pr

[
OB = 1

]
=

1
2 .

We use the following claim.
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Claim 4.20. Let C = ((V A, OA), (V B, OB)) be a balanced channel that has α ∈ [αmin, αmax]-
agreement and (ε, δ)-leakage. Then C is a (ε0, p)-SWBSC for some ε0 ∈ [1

2 − αmax,
1
2 − αmin], and

p = 2ε+ δ.

Proof. For every P ∈ {A,B} we have that, V P̃|
OÃ=OB̃

R
≈(ε,δ) V

P̃|
OÃ 6=OB̃ , thus by definition it follows

that, V P̃|
OÃ=OB̃

S
≈(2ε+δ) V

P̃|
OÃ 6=OB̃ , and the claim holds. �

The following claim, states that a given a channel with bounded leakage and agreement we can
construct a new protocol using the olds one, that has the same leakage and agreement, while having
the additional property of being balanced.

Claim 4.21. There exists a constant-time single oracle call protocol ∆ such that for every channel
C, the channel C̃ induced by ∆C is balanced and has the same agreement and leakage as of C.

Protocol 4.22. [Protocol ∆ = (Ã, B̃)]

Oracle: Channel C.

Operation:

1. The parties (jointly) call the channel C. Let oA and oB denote their output respectively.

2. Ã sends r ← {0, 1} to B̃ .

3. Ã outputs oA ⊕ r and B̃ outputs oB ⊕ r.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof of Claim 4.21. Let C̃ = CHN(∆C). By construction C̃ is balanced and has α-agreement.
Finally, by a data processing argument, C̃ has the same leakage as C. �

Proving Lemma 4.6.

Proof of Lemma 4.6. Set n = 108, let C = CHN(Π), let Π′ = boundn·t(Π) and let C ′ = CHN(Π′).
By Markov inequality,

C ′
S
≈1/n C (17)

By Claim 4.21, there exist a protocol ∆ such that ∆C is balanced and has the same leakage
and agreement as C. Moreover, since ∆ only uses one call to the channel C, by data processing
argument,

CHN(∆C′)
S
≈1/n CHN(∆C) (18)

By Claim 4.21, ∆C′ is also balanced. Claim 4.20 yields that ∆C is a (15/32, p)-WBSC for
p = 2ε+ δ. Hence, using Proposition 3.2, we get that ∆C′ is (ε0, p)-WBSC, for ε0 = ε+ 1/108 and
p = p+ 4/107.

In the following we use Theorem 3.17 to show that ∆C′ can be used to construct semi-honest
statistically secure OT. To do this, we need to prove that

150(1− (1− 2p)2) < (1− 2ε20
ε20 + (1− ε0)2

)2 (19)
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Indeed, since (1− 2
ε20

ε20+(1−ε0)2 )2 ≥ 1/100, for δ′ = 1/107 it holds that, for small enough c,

(1− (1− 2p)2) ≤ 4p ≤ 4p+ 2/106 ≤ 2ε+ δ + 2/106 (20)

≤ 3c+ 2/106

< 1/(150 · 100).

And therefore ∆C′ satisfies the requirement of Theorem 3.17. Let Γ be the protocol guaranteed

in Theorem 3.17, and let Γ̃C
′
(1κ) = Γ∆C′

(1κ, 49/100). By Equation (19) and theorem 3.17, Γ̃C
′
(1κ)

is statistically secure semi-honest OT. Since ε0 is a bounded from 0 and 1/2 by constants, Γ̃ running
time in polynomial in κ. �

4.2 The Computational Setting

In this section we extend Theorem 4.2 to the computational setting. We start by defining the
computational analogue of log-ratio leakage. We give two such definition, for the uniform and
non-uniform settings. As in similar computational analogue of information measures [27, 21], for
the uniform version we need to give the uniform distinguisher the ability to sample from the
distributions in consideration,

Definition 4.23 (Computational log-ratio leakage).
A channel ensemble C =

{
Cκ = ((V A

κ , O
A
κ ), (V B

κ , O
B
κ ))
}
κ∈N has (ε, δ)-comp-leakage [resp., (ε, δ)-

nu-comp-leakage ] if there exists a channel ensemble C̃ =
{
C̃κ = ((V Ã

κ , O
Ã
κ ), (V B̃

κ , O
B̃
κ ))
}
κ∈N

such

that the following holds:

• For every κ ∈ N: the channel C̃κ has (ε(κ), δ(κ))-leakage (according to Definition 4.1).

• For every P ∈ {A,B} and ppt D:∣∣∣Pr
[
DCκ,C̃κ(1κ, V P

κ , O
A
κ , O

B
κ ) = 1

]
− Pr

[
DCκ,C̃κ(1κ, V P̃

κ , O
Ã
κ , O

B̃
κ ) = 1

]∣∣∣ ≤ neg(κ).

[ resp., for every P ∈ {A,B}: {V P
κ , O

A
κ , O

B
κ}κ∈N

nuC
≈ {V P̃

κ , O
Ã
κ , O

B̃
κ}κ∈N]

That is, the distinguisher D aiming to tell P’s view in C from its view in C̃ is equipped the
ability to oracle access to C and C̃. This ability is crucial when arguing about the leakage of many
samples of such channels. We note that typically, the channel C in consideration is a one induced
by an efficient protocol, and thus the oracle access to C given to D can be simulated efficiently.

Theorem 4.24 (Small computational log-ratio leakage implies OT). There exists constant c1 > 0
such that the following holds. Let ε, δ, α be functions such that for every κ ∈ N: ε(κ), δ(κ) ∈ [0, 1],
1/8 > α(κ) ≥ c1 · ε(κ)2 and δ(κ) ≤ ε(κ)2 and α(κ) > 1/p(κ) for some p ∈ poly. Let C be a channel
ensemble that has (ε, δ)-comp-leakage [resp., (ε, δ)-nu-comp-leakage ] and α-agreement. Then in
the C-hybrid model there exists a semi-honest [resp., non-uniform] computational OT.

Theorem 4.24 yields the following result.
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Corollary 4.25 (Protocols with small log-ration leakage implies OT). Let ε, δ, α be as in Theo-
rem 4.24. Assume there exists a ppt protocol that induces a channel ensemble that has α-agreement
and (ε, δ)-comp-leakage [resp., (ε, δ)-nu-comp-leakage ], then there exists a [resp., non-uniform]
computational OT.

Proof. We only prove the uniform security case, the non-uniform case follow analogously. By
Theorem 4.24, the existence of the guaranteed protocol yields a semi-honest computational OT
protocol Π. By [28], the existence of Π implies the existence of one-way functions. Finally, by [14],
using one-way functions we can compile Π into an OT secure against arbitrary adversaries. �

Proof of Theorem 4.24. Let ∆ = (A,B) be the protocol guaranteed by Theorem 4.2. Consider the
following protocol.

Protocol 4.26. [Protocol ∆̃ = (A,B)]

Oracle: channel C.

Parameter: security parameter 1κ.

Operation:

1. A samples t(κ) independent instances from Cκ, and sends the average agreement α̃ to B̃.

If α̃ < 1/p(κ), the two parties abort.

2. The parties interact in ∆Cκ(1κ, 1`), for ` = max(1, 2blog(2/(3·αmax))c−2) (and output the same
values as the parties in this interaction do).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is clear that ∆̃C runs in polynomial time. Let Ãκ be the value of α̃ in a random execution of
∆̃C(1κ). By Hoffeding bound,

Pr
[
Ãκ /∈ [α− 1/3α, α+ 1/3α]

]
≤ Pr

[
Ãκ /∈ [α− 1/3 · p(κ), α+ 1/3 · p(κ)]

]
≤ neg(κ),

which implies that α ∈ [3/4 · Ãκ, 3/2 · Ãκ]. The correctness of ∆̃ thus follows by Theorem 4.2.
We prove security only for the uniform security case, the non-uniform case follow analogously.

Let C̃ be the channel ensemble that realizes the (ε, δ)-comp-leakage of C. First note that the
correctness of C̃ is the same as C up to some negligible additive value, as otherwise it is easy to
distinguish between C and C̃. By the above observation about Ãk and Theorem 4.2, it follows

that ∆̃C̃ is a semi-honest secure OT in the C̃-hybrid model. Assume there exists a distinguisher
that violates the security of one of the parties in ∆̃C , a simple hybrid argument yields that a
distinguisher with the ability to sample from C and C̃ can exploit the above security breach to
violates the assumed indistinguishability of C and C̃. �

5 Characterization of Channel for Distributed Differentially Pri-
vate Computation

In this section we prove our results on 2-party differentially private computation. Our goal is to
show that a sufficiently accurate 2-party differentially private computation of the XOR function
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implies OT. In Section 5.1.1 we consider differential privacy in an information theoretic setting. In
Section 5.1.2 we consider the computational setting, giving formal definitions with which we restate
and prove Theorem 1.10. Finally, in Section 5.2 we extend our result to functions over many bits
that are not “monotone under relabeling”.

Throughout, we use the following notions of agreement and accuracy for functionalities. Since
we care about lower bounds, we only consider (a weaker) average-case variant of these notions.

Definition 5.1 (Accuracy and agreement, functionalities). Let f : X × Y → {0, 1}n be a Boolean
output functionality and let (OA

x,y, O
B
x,y) = f(x, y). We say that f has average agreement α if

Prx,y←X ,Y
[
OA
x,y = OB

x,y

]
= 1

2 + α. We say that f computes a Boolean function g with average

correctness β, if Pr
[
OA
x,y = OB

x,y = g(x, y)
]

= 1
2 + β.

A non-Boolean output functionality f has agreement α if the Boolean functionality f ′, defined
by f ′(x, y) = (oA1 , o

B
1 ) for (oA, oB) ← f(x, y), has agreement α. Similarly, f computes g with

correctness β, if the functionality f ′ does.

Namely, a non-Boolean functionality f has certain agreement and correctness (with respect to
Boolean function g) if this holds with respect to the first bits it outputs (i.e., its “designated output
bits”).

5.1 The XOR Functionality

5.1.1 The Information Theoretic Case

We prove the following characterization of differential private functionalities for computing XOR.

Theorem 5.2. There exists a ppt protocol ∆ and a constant c1 > 0 such that the following holds.
Let ε, β ∈ [0, 1] be such that β ≥ c1 · ε2. Let f = (fA, fB) be a functionality that is ε-DP, has perfect
agreement and computes the XOR function with average correctness β. Then ∆f (1κ, 1b1/βc) is a
semi-honest statistically secure OT in the f -hybrid model. Furthermore, the parties in ∆ only make
use of the first bit of the outputs of f .

We prove Theorem 5.2 by constructing in the f -hybrid model a balanced protocol that induced
balanced channel with β-agreement and that has (2ε, 0)-leakage.

Protocol 5.3 (Πf = (A,B)).

Oracle: f .

Operation:

1. A samples iA ← {0, 1} and B samples iB ← {0, 1}.

2. The parties make a joint call to f(iA, iB). Let outB be the first bit of the output given to B.

3. A sends r ← {0, 1} to B.

4. The parties output iA ⊕ r and outB⊕iB ⊕ r, respectively.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The proof of Theorem 5.2 immediately follows be the next lemma and the tools we devolved in
the previous section.
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Lemma 5.4. Let β, ε and f be as in Theorem 5.2, then in the f -hybrid model protocol Πf induces
a channel of (2ε, 0)-leakage and β-agreement.

We prove Lemma 5.4 below, but first use it for proving Theorem 5.2.

Proof of Theorem 5.2. The proof directly follows from Theorem 4.2 and Lemma 5.4. Note that, by
differential privacy properties, β is bounded. Specifically, for sufficiently large c1, β ≤ 1/8. �

Let C = ((OA, V A), (OB, V B)) denote the channel induces by a random execution of Πf .
Lemma 5.4 is an immediate consequence of the following three claims.

Claim 5.5. Pr
[
OA = OB

]
= 1/2 + β.

Proof. Follows by construction and the assumed accuracy of f . �

Claim 5.6. For both P ∈ {A,B}: (V P, OP) |OA=OB

R
≈2ε(V

P, OP) |OA 6=OB.

We use the following claim that states that we have bounded leakage with respect to the outputs
of protocol Π̃.

Claim 5.7. For every a, b ∈ {0, 1} it holds that,

• (V A, OA) |OB=b

R
≈ε(V A, OA) |OB=b

• (V B, OB) |OA=a

R
≈ε(V B, OB) |OA=a

We now prove Claim 5.6 using the above claim. We prove for P = A, where the case P = B
follows analogously.

Proof of Claim 5.6. For v ∈ Supp(V A) and a ∈ {0, 1}, let Hv,a =
{

(V A, OA) = (v, a)
}

. We need to
show that for every v, a:

Pr
V A|OA=OB

[Hv,a]
R
≈2ε Pr

V A|OA 6=OB
[Hv,a] (21)

Compute,

Pr
V A|OA=OB

[Hv,a] = Pr
V A|OA=OB,OA=a

[Hv,a] · Pr
[
OA = a | OA = OB

]
= Pr

V A|OA=a,OB=a
[Hv,a] · Pr

[
OA = a | OA = OB

]
= Pr

V A|OB=a
[Hv,a] ·

Pr
[
OA = a | OA = OB

]
Pr [OA = a | OB = a]

.

(22)

In the same way,

Pr
V A|OA 6=OB

[Hv,a] = Pr
V A|OB=a

[Hv,a] ·
Pr
[
OA = a | OA 6= OB

]
Pr [OA = a | OB = a]

(23)
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By construction,

Pr
[
OA = a | OA = OB

]
= Pr

[
OA = a | OA 6= OB

]
= 1/2 (24)

We conclude that

Pr
V A|OA=OB

[Hv,a] = Pr
V A|OB=a

[Hv,a] ·
Pr
[
OA = a | OA = OB

]
Pr [OA = a | OB = a]

(by Equation (22))

≤ eε · Pr
V A|OB=a

[Hv,a] ·
Pr
[
OA = a | OA = OB

]
Pr [OA = a | OB = a]

(by Claim 5.7)

= eε · Pr
V A|OB=a

[Hv,a] ·
Pr
[
OA = a | OA 6= OB

]
Pr [OA = a | OB = a]

(by Equation (24))

≤ e2ε · Pr
V A|OB=a

[Hv,a] ·
Pr
[
OA = a | OA 6= OB

]
Pr [OA = a | OB = a]

= e2ε · Pr
V A|OA 6=OB

[Hv,a] . (by Equation (23))

The last inequality holds since by Claim 5.7,
Pr[OA=a|OB=a]
Pr[OA=a|OB=a]

≤ eε.

The proof that PrV A|OA=OB [Hv,a] ≥ e2ε ·PrV A|OA 6=OB [Hv,a] is identical, thus the claim holds. �

Proving Claim 5.7.

Proof of Claim 5.7. We write f = (fA, fB). Let IA and IB be the values of the inputs of the
parties, and let Out be the (common) values of the output fP(IA, IB)1 and the random bit r in V P

respectively. Fix o ∈ {0, 1} and v ∈ sup(V B), and let b, r be the values of IB and R according to
v. Since R and IA are uniform bits, the value of R is independent from IA, and independent from
OA = IA ⊕R (separately). Thus,

Pr
[
V B = v | OA = o

]
= Pr

[
V B = v, IB = b, R = r | OA = o

]
(25)

= Pr
[
V B = v, IB = b | OA = o,R = r

]
· Pr

[
R = r | OA = o

]
= Pr

[
V B = v, IB = b | IA = o⊕ r,R = r

]
· Pr

[
R = r | OA = o

]
= Pr

[
V B = v, IB = b, R = r | IA = o⊕ r

]
·

Pr
[
R = r | OA = o

]
Pr [R = r | IA = o⊕ r]

= Pr
[
V B = v, IB = b, R = r | IA = o⊕ r

]
= 1/2 · Pr

[
V B = v | IA = o⊕ r, IB = b

]
.

Since Equation (25) holds for every o ∈ {0, 1}, and since

1/2 · Pr
[
V B = v | IA = r, IB = b

]
R
≈ε 1/2 · Pr

[
V B = v | IA = r, IB = b

]
,

we conclude that Pr
[
V B = v | OA = 0

] R
≈ε Pr

[
V B = v | OA = 1

]
.

30



The proof of the second item follows in by a similar argument. For every o ∈ {0, 1} and
v ∈ sup(V A), let a, r′ be the values of IA and R⊕Out according to v respectively. Since the value
of R⊕Out is independent from IB, and independent from OB (separately), we conclude that

Pr
[
V A = v | OB = o

]
= Pr

[
V A = v, IA = a,R⊕Out = r′ | OB = o

]
= Pr

[
V A = v, IA = a | OB = o,R⊕Out = r′

]
· Pr

[
R⊕Out = r′ | OB = o

]
= Pr

[
V A = v, IA = a | IB = o⊕ r′, R⊕Out = r′

]
· Pr

[
R⊕Out = r′ | OB = o

]
= Pr

[
V A = v, IA = a,R⊕Out = r′ | IB = o⊕ r′

]
·

Pr
[
R⊕Out = r′ | OB = o

]
Pr [R⊕Out = r′ | IB = o⊕ r′]

= Pr
[
V A = v, IA = a,R⊕Out = r′ | IB = o⊕ r′

]
= 1/2 · Pr

[
V A = v | IB = o⊕ r′, IA = a

]
.

�

Proving Lemma 5.4.

Proof of Lemma 5.4. Let C = (OA, OB, V A, V B) denotes the channel induces by Πf . Claim 5.5
yields that C has β-agreement, and Claim 5.6 yields that C has (2ε, 0)-leakage. �

5.1.2 The Computational Case

In this section we restate and prove Theorem 1.10. We will use the following definition.

Definition 5.8 (Accuracy and agreement, protocols). Let Π be a Boolean output protocol and let
(OA

x,y, O
B
x,y) = Π(x, y). We say that Π has average agreement α if, Prx,y←X ,Y

[
OA
x,y = OB

x,y

]
= 1

2 +α.
We say that Π computes a Boolean function g : X × Y → {0, 1}n with average correctness β, if
Prx,y←X ,Y

[
OA
x,y = OB

x,y = g(x, y)
]

= 1
2 + β. Similarly, we say that Π computes g with worst-case

correctness β, if for every inputs x, y ∈ X ,Y,
Pr
[
OA
x,y = OB

x,y = g(x, y)
]
≥ 1

2 + β.

The following is a restatement of Theorem 1.10.

Theorem 5.9. There exists a constant c > 0 such that the following holds. Let ε, β be functions
such that for every κ ∈ N: ε(κ), β(κ) ∈ [0, 1], β(κ) ≥ c · ε(κ)2 and β(κ) ≥ 1/p(κ) for some p ∈ poly.
Assume there exist a ppt Boolean output protocol that is semi-honest ε-IND-DP and computes the
XOR functionality with perfect agreement and average correctness at least β(κ). Then there exists
a computationally non-uniform secure OT.

We make use of the following notion of simulation based computational differential privacy, in
the spirit of [34].

Definition 5.10 (Simulation based computational differential privacy). A two-output functionality
ensemble

{
fκ = (fAκ , f

B
κ )
}
κ∈N over input domain {0, 1}n×{0, 1}n is ε-SIM-DP if the there exists a

functionality ensemble{
f̃κ = (f̃Aκ , f̃

B
κ )
}
κ∈N

such that the following holds:
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• For every κ ∈ N: the functionality f̃κ is ε(κ)-DP (according to Definition 3.14).

• For both P ∈ {A,B} and every x, y ∈ {0, 1}n:

{
fPκ (x, y)

}
κ∈N

nuC
≈
{
f̃Pκ (x, y)

}
κ∈N

As Lemma 5.11 (give below) shows, for Boolean inputs, the above functionality (Definition 5.10)
is closely related to the more standard ε-IND-DP (Definition 3.15).

The proof of Theorem 5.9 immediately follows by the next two lemmata.

Lemma 5.11. For any ε-IND-DP protocol Π = (A,B), the functionality ensemble
{
fκ = (fAκ (x, y), fBκ (x, y)

}
κ∈N

defined by fκ(x, y) outputting the parties’ views in a random execution of (A(x),B(y))(1κ), is ε-
SIM-DP.

Lemma 5.12. Let ε, β be functions satisfying the requirements of Theorem 5.9. Let f be a func-
tionality ensemble that is ε-SIM-DP, has perfect agreement and computes the XOR function with
average correctness at least β(κ). Then in the f -hybrid model there exists a semi-honest secure OT.

Proving Theorem 5.9.

Proof of Theorem 5.9. Let Π be a protocol satisfying the requirements in Theorem 5.9, and let f
be the functionality ensemble guaranteed by Lemma 5.11 for Π. By construction, f has perfect
agreement and computes the XOR function with correctness β. Thus, the theorem proof follows
by Lemma 5.12. �

Proving Lemma 5.11.

Proof of Lemma 5.11. Let MA
x (1κ, y) = fAκ (x, y) and MB

y (1κ, x) = fBκ (x, y). Fix P ∈ {A,B}. Since

Π is ε-IND-DP, it is clear that MP
b is ε-IND-DP mechanism for every b ∈ {0, 1}. From [34], for

every b ∈ {0, 1} there exists distributions ensembles
{
DP,b,0
κ

}
κ∈N

,
{
DP,b,1
κ

}
κ∈N

, such that

1. for every κ ∈ N: DP,b,0
κ

R
≈ε DP,b,1

κ , and

2. for every c ∈ {0, 1}:
{
DP,b,c
κ

}
κ∈N

nuC
≈
{

MP
b (1κ, c)

}
κ∈N

Consider the functionality ensemble
{
f̃κ

}
κ∈N

defined by

f̃κ(x, y) = (f̃Aκ (x, y), f̃Bκ (x, y)) outputting a random sample from (DA,x,y
κ , DB,y,x

κ ). By definition, for
every P ∈ {A,B} it holds that {

f̃Pκ (x, y)
}
κ∈N

nuC
≈
{
fPκ (x, y)

}
κ∈N

.

Thus, f̃ realizes the ε-IND-DP functionality of f . �
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Proving Lemma 5.12. The proof immediately follows by the next claim.

Claim 5.13. Let f =
{
fκ = (fAκ , f

B
κ )
}
κ∈N be a functionality ensemble that is ε-SIM-DP, and has

perfect agreement. Then f is ε-SIM-DP with respect to a ε-DP functionality ensemble
{
f̃κ = (f̃Aκ , f̃

B
κ )
}
κ∈N

that satisfies that for every x, y ∈ {0, 1}n:{
(vA, vB1 )(vA,vB)←fκ(x,y)

}
κ∈N

nuC
≈
{

(vA, vB1 )(vA,vB)←f̃κ(x,y)

}
κ∈N

, (26)

and the same holds for or the view of B.

That is, the above claim states that if a functionality is ε-SIM-DP and has perfect agreement,
then the view of each party is indistinguishable from the view in an ε-DP functionality, even when
adding the output of the other party.

Proof. The straightforward proof replaces an arbitrary functionality realizing the ε-SIM-DP of f
with one that has (almost) perfect agreement.

By Lemma 5.11, there exists functionality ensemble f̂ =
{
f̂κ = (f̂Aκ , f̂

B
κ )
}
κ∈N

that realizes the

ε-IND-DP of f . We show there exists a functionality ensemble
{
f̃κ = (f̃Aκ , f̃

B
κ )
}
κ∈N

such that

1. f̃Pκ (x, y) and f̂Pκ (x, y) are the same for every x, y ∈ {0, 1}, κ ∈ N and P ∈ {A,B}, and

2. Pr
[
f̃Aκ (x, y)1 = f̃Bκ (x, y)1

]
≥ 1− neg(κ).

Namely, f̃ also realizes the ε-IND-DP of f and has an almost perfect agreement. Since f has perfect
agreement, f̃ satisfies Equation (26).

In the rest of the proof we construct the desired f̃ . Since f has perfect agreement, and since
f̂P is computationally close to fP, for every x, y ∈ {0, 1} it holds that∣∣∣Pr

[
f̂Aκ (x, y)1 = 1

]
− Pr

[
f̂Bκ (x, y)1 = 1

]∣∣∣ ≤ neg(κ) (27)

Therefore, for every x, y {0, 1} there exists ensembles of Boolean random variables pairs
{

(RA
x,y,κ, R

B
x,y,κ)

}
κ∈N

such that for any κ:

RP
x,y,κ ≡ f̂Pκ (x, y)1 (28)

and

Pr
[
RA
x,y,κ = RB

x,y,κ

]
≥ 1− neg(κ) (29)

For r ∈ {0, 1}, define f̃Pκ (x, y, r) := f̂Pκ (x, y)|
f̂Pκ (x,y)=r

, and let f̃Pκ (x, y) = f̃Pκ (x, y,RP
x,y,κ). By

construction, the distributions f̃Pκ (x, y) and f̂Pκ (x, y) are the same and f̃ has almost perfect agree-
ment. �

Proof of Lemma 5.12. The proof follows Theorem 5.2 and Claim 5.13, using a similar hybrid ar-
gument as in the proof of Theorem 4.24. �
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5.2 Extension to Functions that are not Monotone under Relabeling

We now extend our results to a large class of functions: functions that are not “monotone under
relabeling”.

Definition 5.14 (Monotone under relabeling). A function g : {0, 1}n × {0, 1}n → {0, 1} is
monotone under relabeling if there exists bijective functions σx, σy : [2n] → {0, 1}n such that for
every x ∈ {0, 1}n and i ≤ j ∈ [2n]:

g(x, σy(i)) ≤ g(x, σy(j)),

and, for every y ∈ {0, 1}n and i ≤ j ∈ [2n]:

g(σx(i), y) ≤ g(σx(j), y).

Theorem 5.15. There exists a constant c > 0 such that the following holds for every n ∈ N.
Let ε, β be functions such that for every κ ∈ N : ε(κ), β(κ) ∈ [0, 1], 1/2 ≥ β(κ) ≥ c · n2 · ε(κ)2

and β(κ) ≥ 1/p(κ) for some p ∈ poly. Let Π be a ppt two-party protocol that is ε-IND-DP, and
computes a function g over {0, 1}n×{0, 1}n that is not monotone under relabeling, with worst-case
correctness at least β(κ) and perfect agreement, then there exists a non-uniform computationally
secure OT.

We will show that every function that is not monotone under relabeling, has a copy of the XOR
function that is “embedded” in it.

Definition 5.16 (Embedded XOR). A function g : {0, 1}n × {0, 1}n → {0, 1} has embedded XOR
if there exists x0, x1 ∈ {0, 1}n and y0, y1 ∈ {0, 1}n such that for every b, c ∈ {0, 1}, g(xb, yc) = b⊕ c.

For example the Hamming distance function Ham(x, y) over {0, 1}n×{0, 1}n has an embedded
XOR, by using the inputs xb = b ◦ 0n−1 and yc = c ◦ 0n−1.

It is clear that a function that is monotone under relabeling does not have an embedded XOR. In
the following we show the opposite direction: every function g that is not monotone under relabeling
has an embedded XOR. Moreover, we show that if Π is a ε-IND-DP protocol that computes function
g with worst-case correctness β, then there exists a n · ε-IND-DP protocol Π̃ that compute XOR
with the same correctness. Theorem 5.15 then follows by Theorem 5.9.

Lemma 5.17. A function that is not monotone under relabeling, has an embedded XOR.

Proof. Let g : {0, 1}n × {0, 1}n → {0, 1} be a function that has no embedded XOR. We show that
g is monotone under relabeling.

For input x ∈ {0, 1}n, let Zx = {y | g(x, y) = 0}. We claim that for any x0 and x1 in {0, 1},
it must hold that either Zx0 ⊆ Zx1 , or, Zx1 ⊆ Zx0 . Indeed, otherwise there is y0, y1 such that
y0 ∈ Zx0 \ Zx1 and y1 ∈ Zx1 \ Zx0 , and therefore, for b, c ∈ {0, 1}, g(xb, yc) = b⊕ c.

Let σx : [2n] → {0, 1}n be a bijective function such that for every i ≤ j,
∣∣Zσx(i)

∣∣ ≥ ∣∣Zσx(j)

∣∣.
Then it must hold that Zσx(j) ⊆ Zσx(i), and therefore for every y ∈ {0, 1}n, g(σx(i), y) ≤ g(σx(j), y).

Repeating this argument to construct σy ends the proof. �

Lemma 5.18. Let ε be a function with ε(κ) ∈ [0, 1] and let Π = (A,B) be a ε-IND-DP proto-
col. Then for every x0, x1, y0, y1 ∈ {0, 1}n, the protocol Π̃ = (Ã, B̃) defined by (Ã(b), B̃(c))(1κ) =
(A(xb),B(yc))(1

κ) is (nε)-IND-DP.
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Proof. For x, y ∈ {0, 1}n and κ ∈ N, let V B
x,y,κ be the view of B in a random execution of

(A(x),B(y))(1κ). Let D be a pptNU. Since Π is ε-IND-DP, for every x, x′ ∈ {0, 1}n with Ham(x, x′) =
1 it hold that

Pr
[
D(V B

x,y,κ, 1
κ) = 1

]
≤ eε(κ) · Pr

[
D(V B

x′,y,κ, 1
κ) = 1

]
+ neg(κ) (30)

A simple calculation (known as “singleton privacy implies group privacy”) shows that for every
x, x′ ∈ {0, 1}n with Ham(x, x′) = d:

Pr
[
D(V B

x,y,κ, 1
κ) = 1

]
≤ ed·ε(κ) · Pr

[
D(V B

x′,y,κ, 1
κ) = 1

]
+ neg(κ).

The proof for A’s privacy thus followed by the fact that for any x0, x1 ∈ {0, 1}n, the Hamming
distance Ham(x, x′) is at most n. The proof for the privacy of B follows similar lines. �

We remark that the loss incurred in Lemma 5.18 is sometimes unnecessary. For example, in the
XOR-embedding of the Hamming distance function that we considered above, the distance between
x0 and x1 (and also between y0 and y1) is only one, and therefore, no losses in privacy are incurred
in this case, and Theorem 5.15 holds for g(x, y) = Ham(x, y) without the loss of n2 factor, in the
privacy.

Proving Theorem 5.15. We now ready to prove Theorem 5.15.

Proof of Theorem 5.15. Let Π be a protocol that satisfies the requirements of Theorem 5.15 with
respect to a function g that is not monotone under relabeling. By Lemma 5.17, there exist
x0, x1, y0, y1 ∈ {0, 1}n such that for every b, c ∈ {0, 1}, g(xb, yc) = b ⊕ c. Therefore, the proto-
col defined by (Ã(b), B̃(c))(1κ) := (A(xb),B(yc))(1

κ) computes the XOR functionality with average
correctness at least β(κ), and by Lemma 5.18 this protocol is (nε)-IND-DP. Thus, the theorem
follows by Theorem 5.9. �

Conclusion and Open Problems

A natural open problem is to characterize the (Boolean) AND differentially private functionality.
That is, show a similar dichotomy that characterizes which accuracy and leakage require OT.

More generally, the task of understanding and characterizing other (non Boolean) differentially
private functionalities like hamming distance and inner product remains open.
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[7] C. Crépeau. Efficient cryptographic protocols based on noisy channels. In International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 306–317. Springer,
1997. 6
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A Missing Proofs

Proving Proposition 3.2

Proposition A.1 (Proposition 3.2, recited). Let 0 < ε < µ < 1, and let (X,Y ), (X̃, Ỹ ) be
two pairs of random variables over the same domain X × Y, such that SD((X,Y ), (X̃, Ỹ )) ≤ ε.
Let E0, E1 ⊆ X × Y be two sets such that for every b ∈ {0, 1}, Pr [(X,Y ) ∈ Eb] ≥ µ. Then
SD(X̃|{(X̃,Ỹ )∈E0}, X̃|{(X̃,Ỹ )∈E1}) ≤ SD(X|{(X,Y )∈E0}, X|{(X,Y )∈E1}) + 4ε/µ.

Proof. In the following we show that for every b ∈ {0, 1},
SD(X̃|{(X̃,Ỹ )∈Eb}, X|{(X,Y )∈Eb}) ≤ 2ε/µ. The proof then follows using the triangle inequality.

Note that, by data processing,
SD(X̃|{(X̃,Ỹ )∈Eb}, X|{(X,Y )∈Eb}) ≤ SD((X̃, Ỹ )|{(X̃,Ỹ )∈Eb}, (X,Y )|{(X,Y )∈Eb})

For every set A ⊆ X × Y, and b ∈ {0, 1}, we want to bound

Pr [(X,Y ) ∈ A | (X,Y ) ∈ Eb]− Pr
[
(X̃, Ỹ ) ∈ A | (X̃, Ỹ ) ∈ Eb

]
.

It holds that,

Pr [(X,Y ) ∈ A | (X,Y ) ∈ Eb]− Pr
[
(X̃, Ỹ ) ∈ A | (X̃, Ỹ ) ∈ Eb

]
(31)

=
Pr [(X,Y ) ∈ A ∩ Eb]

Pr [(X,Y ) ∈ Eb]
−

Pr
[
(X̃, Ỹ ) ∈ A ∩ Eb

]
Pr
[
(X̃, Ỹ ) ∈ Eb

]
≤ Pr [(X,Y ) ∈ A ∩ Eb]

Pr [(X,Y ) ∈ Eb]
− Pr [(X,Y ) ∈ A ∩ Eb]− ε

Pr [(X,Y ) ∈ Eb] + ε

=
ε · Pr [(X,Y ) ∈ A ∩ Eb] + ε · Pr [(X,Y ) ∈ Eb]

Pr [(X,Y ) ∈ Eb] (Pr [(X,Y ) ∈ Eb] + ε)

≤ 2ε · Pr [(X,Y ) ∈ Eb]
(Pr [(X,Y ) ∈ Eb])2

≤ 2ε

µ

Where the last equality follows because A
B −

A−ε
B+ε = ε(A+B)

B(B+ε) . Since Equation (31) holds for every
set A ⊆ X × Y, we get that

(X,Y )|{(X,Y )∈Eb}
S
≈2ε/µ (X,Y )|{(X̃,Ỹ )∈Eb}, for every b ∈ {0, 1}. �

Proving Proposition 3.19

Proposition A.2 (Proposition 3.19, recited). An (ε0, p)-SWBSC is a (0, ε0, ε0, 2p, 2p)-WBSC.

Proof. The correctness and the receiver security properties hold from the definition.
For sender security, first notice that for every bB, we get from the symmetry of SWBSC that:

Pr
[
OB = bB | OA = OB

]
=

Pr
[
OA = OB | OB = bB

]
Pr
[
OB = bB

]
Pr [OA = OB]

= 1/2,
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and

Pr
[
OB = bB | OA 6= OB

]
=

Pr
[
OA 6= OB | OB = bB

]
Pr
[
OB = bB

]
Pr [OA 6= OB]

= 1/2

Now, assume for contradiction that, for some b ∈ {0, 1}, a distinguisher Db breaks the sender
security in the WBSC definition. That is,
Pr
[
Db(V

B) = 1|OB = b,OA = 0
]
− Pr

[
Db(V

B) = 1|OB = b,OA = 1
]
> 2p. Then, we can construct

a distinguisher that breaks the specialized sender security: Let D1−b be an algorithm such that
Pr
[
D1−b(V

B) = 1|OB = 1− b,OA = 0
]
−Pr

[
D1−b(V

B) = 1|OB = 1− b,OA = 1
]
≥ 0, and consider

the following algorithm:

Algorithm A.3 (D′).

Input: (v, y) ∈ Supp(V B, OB).

Operation: Output Dy(v).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It holds that:

p ≥ Pr
[
D′(V B, OB) = 1|OA = OB

]
− Pr

[
D′(V B, OB) = 1|OA 6= OB

]
=1/2 · [Pr

[
D′(V B, 0) = 1|OA = OB, OB = 0

]
− Pr

[
D′(V B, 0) = 1|OA 6= OB, OB = 0

]
]

+ 1/2 · [Pr
[
D′(V B, 1) = 1|OA = OB, OB = 1

]
− Pr

[
D′(V B, 1) = 1|OA 6= OB, OB = 1

]
]

=1/2 · [Pr
[
D0(V B) = 1|OA = OB, OB = 0

]
− Pr

[
D0(V B) = 1|OA 6= OB, OB = 0

]
]

+ 1/2 · [Pr
[
D1(V B) = 1|OA = OB, OB = 1

]
− Pr

[
D1(V B) = 1|OA 6= OB, OB = 1

]
]

=1/2 · [Pr
[
D0(V B) = 1|OA = 0, OB = 0

]
− Pr

[
D0(V B) = 1|OA = 1, OB = 0

]
]

+ 1/2 · [Pr
[
D1(V B) = 1|OA = 0, OB = 1

]
− Pr

[
D1(V B) = 1|OA = 1, OB = 1

]
]

> p.

�

Proving Proposition 3.20

Proposition A.4 (Proposition 3.20, recited). The following holds for every b ∈ (0, 1/2) and ` ∈ N
such that b` < 1/4.

(1/2 + b)`

(1/2 + b)` + (1/2− b)`
∈ [1

2(1 + b`), 1
2(1 + 3b`)].
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Proof. We start with the lower bound,

(1/2 + b)`

(1/2 + b)` + (1/2− b)`
=

(1 + 2b)`

(1 + 2b)` + (1− 2b)`

=

∑`
i=0

(
`
i

)
(2b)i

2
∑b`/2c

i=0

(
`
2i

)
(2b)2i

.

=

∑b`/2c
i=0

(
`
2i

)
(2b)2i +

∑b(`−1)/2c
i=0

(
`

2i+1

)
(2b)2i+1

2
∑b`/2c

i=0

(
`
2i

)
(2b)2i

= 1/2 +

∑b(`−1)/2c
i=0

(
`

2i+1

)
(2b)2i+1

2
∑b`/2c

i=0

(
`
2i

)
(2b)2i

= 1/2 +
2b`

2
∑b`/2c

i=0

(
`
2i

)
(2b)2i

+

∑b(`−1)/2c
i=1

(
`

2i+1

)
(2b)2i+1

2
∑b`/2c

i=0

(
`
2i

)
(2b)2i

= 1/2 +
b`

1 +
∑b`/2c

i=1

(
`
2i

)
(2b)2i

+

∑b(`−1)/2c
i=1

(
`

2i+1

)
(2b)2i+1

2 + 2
∑b`/2c

i=1

(
`
2i

)
(2b)2i

≥ 1/2 +
b`∑b`/2c

i=0

(
`
2i

)
(2b)2i

= 1/2 +
b`

1 +
∑b`/2c

i=1

(
`
2i

)
(2b)2i

≥ 1/2 +
b`

1 +
∑b`/2c

i=1 (2b`)2i

≥ 1/2 + b`/2 = 1
2(1 + b`)

Finally a similar calculation yields the following upper bound,

(1/2 + b)`

(1/2 + b)` + (1/2− b)`
≤ 1/2 + b`+

∑b(`−1)/2c
i=1

(
`

2i+1

)
(2b)2i+1

2 + 2
∑b`/2c

i=1

(
`
2i

)
(2b)2i

≤ 1/2 + b`+

∑b(`−1)/2c
i=1 (2b`)2i+1

2
≤ 1

2(1 + 3b`)

�
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