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Abstract

The parallel repetition theorem states that for any two provers one round game with value
at most 1 − ε (for ε < 1/2), the value of the game repeated n times in parallel is at most
(1−ε3)Ω(n/ log s) where s is the size of the answers set [Raz98],[Hol07]. For Projection Games the
bound on the value of the game repeated n times in parallel was improved to (1−ε2)Ω(n) [Rao08]
and was shown to be tight [Raz08]. In this paper we show that if the questions are taken accord-
ing to a product distribution then the value of the repeated game is at most (1 − ε2)Ω(n/ log s)

and if in addition the game is a Projection Game we obtain a strong parallel repetition theorem,
i.e., a bound of (1− ε)Ω(n).

1 Introduction

In a two provers one round game there are two provers and a verifier. The verifier selects randomly
(x, y) ∈ X × Y , a question for each prover, according to some distribution PXY where X is the
questions set of prover 1 and Y is the questions set of prover 2. Each prover knows only the
question addressed to her, prover 1 knows only x and prover 2 knows only y. The provers cannot
communicate during the transaction. The provers send their answers to the verifier, a = a(x) ∈ A

and b = b(y) ∈ B where A is the answers set of the first prover and B is the answers set of the
second prover. The verifier evaluates an acceptance predicate V (x, y, a, b) and accepts or rejects
based on the outcome of the predicate. The acceptance predicate as well as the distribution of the
questions are known in advance to the provers. The provers answer the questions according to a
strategy which is a pair of functions fa : X → A, fb : Y → B. The strategy of the provers is also
called a protocol. If PXY = PX · PY , that is PXY is a product distribution, we say that the game
is a free game.

The value of the game is the maximum of the probability that the verifier accepts, where the
maximum is taken over all the provers strategies. More formally, the value of the game is:

max
fa,fb

Exy [V (x, y, fa(x), fb(y))]
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where the expectation is taken with respect to the distribution PXY .
Roughly speaking, the n-fold parallel repetition of a game G is a game in which the provers

try to win simultaneously n copies of G and it is denoted by G⊗n. More precisely, the verifier
sends n questions to each prover, (x1, x2 . . . , xn) to prover 1 and (y1, y2 . . . , yn) to prover 2 where
for all i, (xi, yi) is distributed according to PXY and is independent of the other questions. The
provers generate n answers, (a1, a2 . . . , an) by prover 1 and (b1, b2 . . . , bn) by prover 2. The verifier
evaluates the acceptance predicate on each coordinate and accepts if and only if all the predicates
accept, namely if and only if V ⊗n = ∧n

i=1V (xi, yi, ai, bi) = 1. Note that the verifier treats each of
the n games independently, but the provers may not; the answer of each question addressed to a
prover may depend on all the questions addressed to that prover. There are examples of games
where the value of the game repeated n times in parallel is strictly larger than the value of the
original game to the power of n [For89], [FV02], [Raz08].

The Parallel Repetition Theorem

A series of papers deal with the nature of the value decrease of games repeated n times in parallel.
The parallel repetition theorem of Raz [Raz98] states that for every game G with value at most
1 − ε where ε < 1/2, the value of G⊗n is at most (1 − ε32)Ω(n/ log s) where s is the size of the
answers support s = |A × B|. In a recent elegant result, Holenstein [Hol07] improved the bound
to (1− ε3)Ω(n/ log s) while simplifying the proof of [Raz98]. Subsequently, for the important special
type of games known as projection games, Rao [Rao08] proved a bound of (1− ε2)Ω(n) (for a special
type of projection games known as XOR games such a bound was previously proven by Feige,
Kindler and O’Donnell [FKO07]). Note that Rao’s [Rao08] bound does not depend on the size of
the answers set, s. In the general case, Feige and Verbitsky [FV02] showed that the dependency on
s is tight (up to loglog factors).

Many researchers studied the problem of whether there exists a strong parallel repetition the-
orem in the general case or at least in some important special cases. Namely, is it the case that
for a given game G of value 1 − ε, say, for ε < 1/2, the value of G⊗n is at most (1 − ε)Ω(n/ log s)?
This question was motivated by connections to hardness of approximation as well as connections
to problems in geometry [FKO07], [SS07]. A recent result of Raz [Raz08] showed a counterexample
for the general case, as well as for the case of projection games, unique games and XOR games. Raz
[Raz08] showed that there is an example of a XOR game (thus also projection game and unique
game) of value 1− ε such that for large enough n, the value of the game is at least (1− ε2)O(n). For
some extensions, generalization and applications see Barak, Hardt, Haviv, Rao, Regev and Steurer
[BHH+08], Kindler, O’Donnell, Rao and Wigderzon [KORW08] and Alon and Klartag [AK08].

Other related results: For the special case of unique games played on expander graphs Arora,
Khot, Kolla, Steurer, Tulsiani and Vishnoi [AKK+08] proved an “almost” strong parallel repetition
theorem (strong up to a polylogarithmic factor). For the special case of games where the roles of
the two players are symmetric and the game is played on an expander graph that contains a self
loop on every vertex, Safra and Schwartz [SS07] showed that O(1/ε) repetitions are sufficient to
reduce the value of the game from 1− ε to some constant.

In this paper we prove a strong parallel repetition theorem for free projection games and we
improve the known bound for every free game. More precisely:

1. For every Free game of value≤ (1−ε) for ε < 1/2, the value of G⊗n is at most (1−ε2)Ω(n/ log s)
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2. For every Free Projection game of value ≤ (1 − ε) for ε < 1/2, the value of G⊗n is at
most (1− ε)Ω(n)

Techniques

The main technical contribution of this paper is the ability to work throughout the whole proof
with relative entropy without the need to switch to `1 norm. In previous results [Raz98], [Hol07],
[Rao08] a bound on the distance between a distribution “generated by the provers’ strategies” and
the original distribution was derived using the relative entropy between the two distributions. This
bound was then used to obtain a bound on the `1 distance between those distributions. This was
done using the fact that ‖P−Q‖1 ≤ O(

√
D(P‖Q)) where D(P‖Q) is the relative entropy between

P and Q. Since the bound is quadratic, there is a loss when using the `1 norm instead of using
directly the relative entropy. We show that for the special case of free games one can redo the
whole proof using relative entropy, without switching to `1 norm. We bound the value of a game
by using our Corollary 3.4 (that might be useful for other applications). We note that since we are
only considering free games, the proof is simpler than the one for general games and we do not use
much of the machinery used in previous results, e.g., [Raz98], [Hol07], [Rao08].

2 Preliminaries

2.1 Notations

General Notations

We denote an n-dimensional vector by a superscript n, e.g., φn = (φ1, . . . , φn) where φi is the ith

coordinate. The function log(x) is the logarithm base 2 of x. We use the common notation [n] to
denote the set {1, . . . , n}.

Random Variables and Sets

By slightly abusing notations, we will use capital letters to denote both sets and random variables
distributed over these sets, and we will use lower case letters to denote values. For example, X, Y

will denote sets as well as random variables distributed over these sets, and x, y will denote values
in these sets that the random variables can take. Nevertheless, it will always be clear from the
context whether we are referring to sets or random variables. For a random variable Z it will be
convenient in some lemmas, such as Lemma 3.7, to think of Pr(Z) as a random variable.

Random Variables and their Distributions

For a random variable X, we denote by PX the distribution of X. For an event U we use the
notation PX|U to denote the distribution of X|U , that is, the distribution of X conditioned on the
event U . If Z is an additional random variable that is fixed (e.g., inside an expression where an
expectation over Z is taken), we denote by PX|Z the distribution of X conditioned on Z. In the
same way, for two (or more) random variables X, Y , we denote their joint distribution by PXY ,
and we use the same notations as above to denote conditional distributions. For example, for
an event U , we write PXY |U to denote the distribution of X,Y conditioned on the event U , i.e.,
PXY |U (x, y) = Pr(X = x, Y = y|U). For two (or more) random variables X, Y with distribution
PXY , we use the notation PX to denote the marginal distribution of X.

3



The Game G

We denote a game by G and define X to be the set of questions to prover 1, Y to be the set of
questions to prover 2 and PXY to be the joint distribution according to which the verifier chooses
a pair of questions to the provers. We denote by A the set of answers of prover 1 and by B the
set of answers of prover 2. We denote the acceptance predicate by V . A game G with acceptance
predicate V and questions distribution PXY is denoted by G(PXY , V ). As mentioned above, we also
denote by X, Y,A, B random variables distributed over X,Y, A,B respectively. X,Y will be the
questions addressed to the two provers, distributed over the question sets X and Y respectively.
Fixing a strategy fa, fb for the game G, we can also think of the answers A and B as random
variables distributed over the answer sets A and B respectively.

The Game G Repeated n Times

For the game G repeated n times in parallel, G⊗n = G(PXnY n , V ⊗n), the random variable Xi

denotes the question to prover 1 in coordinate i, and similarly, the random variable Yi denotes
the question to prover 2 in coordinate i. We denote by Xn the tuple (X1, . . . , Xn) and by Y n the
tuple (Y1, . . . , Yn). Fixing a strategy fa, fb for G⊗n, the random variable Ai denotes the answer of
prover 1 in coordinate i, and similarly, the random variable Bi denotes the answer of prover 2 in
coordinate i. We denote by An the tuple (A1, . . . , An) and by Bn the tuple (B1, . . . , Bn). It will
be convenient in some lemmas to denote Xk = (Xn−k+1, . . . , Xn), i.e., the last k coordinates of Xn

and in the same way, Y k = (Yn−k+1, . . . , Yn), Ak = (An−k+1, . . . , An) and Bk = (Bn−k+1, . . . , Bn).
We also denote Xn−k = (X1, . . . , Xn−k), i.e., the first n − k coordinates of Xn, and similarly,
Y n−k = (Y1, . . . , Yn−k). For fixed i ∈ [n−k], we denote Xm = (X1, . . . , Xi−1, Xi+1, . . . , Xn−k), i.e.,
Xn−k without Xi, and similarly, Y m = (Y1, . . . , Yi−1, Yi+1, . . . , Yn−k).

The Event Wi

For the game G⊗n = G(PXnY n , V ⊗n) and a strategy fa : Xn → An, fb : Y n → Bn we can consider
the joint distribution:

PXn,Y n,An,Bn(xn, yn, an, bn) =

{
PXn,Y n(xn, yn) if an = fa(xn) and bn = fb(yn)

0 otherwise

We define the event Wi to be the event of winning the game in coordinate i, i.e., the event that the
verifier accepts on coordinate i. Since the random variables An and Bn are functions of Xn and
Y n respectively, we can think of Wi as an event in the random variables Xn, Y n.

2.2 Special Types of Games

Definition 2.1 (Free Games) A game is Free if the distribution of the questions is a product
distribution, i.e., PXY = PX × PY

Definition 2.2 (Projection Games) A Projection game is a game where for each pair of ques-
tions x, y there is a function fxy : B → A such that V (x, y, a, b) is satisfied if and only if fxy(b) = a.
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2.3 Entropy and Relative Entropy

Definition 2.3 (Entropy) For a probability distribution φ over a sample space Ω we define the
entropy of φ to be H(φ) = −∑

x∈Ω φ(x) log φ(x) = −Ex∼φ log φ(x) = Ex∼φ log
(

1
φ(x)

)

By applying Jensen’s inequality on the concave function log(·) one can derive the following fact:

Fact 2.4 For every distribution φ over Ω, H(φ) ≤ log(|supp(φ)|) where

supp(φ) = {x ∈ Ω|φ(x) > 0}

Definition 2.5 (Relative Entropy) We define Relative Entropy, also called the Kullback-Leibler
Divergence or simply divergence. Let P and Q be two probability distributions defined on the same
sample space Ω. The relative entropy of P with respect to Q is:

D(P‖Q) =
∑

x∈Ω

P(x) log
P(x)
Q(x)

where 0 log 0
0 is defined to be 0 and p log p

0 where p 6= 0 is defined to be ∞.

Vaguely speaking, we could think of the relative entropy as a way to measure the information we
gained by learning that a random variable is distributed according to P when apriority we thought
that it was distributed according to Q. This indicates how far Q is from P; if we don’t gain much
information then the two distributions are very close in some sense. Note that the relative entropy
is not symmetric (and therefore is not a metric).

Fact 2.6 Let Φn = Φ1 × Φ2 × · · · × Φn and let µn be any distribution over the same sample space
(not necessarily a product distribution) then

∑n
i=1 D(µi‖Φi) ≤ D(µn‖Φn) thus Ei∈[n]D(µi‖Φi) =

1
n

∑

i∈[n]

D(µi‖Φi) ≤ D(µn‖Φn)
n

3 Our Results

We prove the following theorems:

Theorem 3.1 (Parallel Repetition For Free Games) For every game G with value 1−ε where
ε < 1/2 and PXY = PX×PY (the questions are distributed according to some product distribution),
the value of G⊗n is at most (1− ε2/9)n/(18 log s+3)

Theorem 3.2 (Strong Parallel Repetition For Free Projection Games) For every projec-
tion game G with value 1 − ε where ε < 1/2 and PXY = PX × PY (the questions are distributed
according to some product distribution), the value of G⊗n is at most (1− ε/9)(n/33)−1

3.1 Technical Lemma

Lemma 3.3 For every 0 ≤ p, q ≤ 1 define binary distributions P = (p, 1 − p) and Q = (q, 1 − q),
over {0, 1}, if D(P‖Q) ≤ δ and p < δ then

q ≤ 4δ
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Proof: If δ ≥ 1
4 then the statement is obviously true. For the case that δ < 1

4 , assume by way of
contradiction that q > 4δ. Since for q > p, D(P‖Q) is decreasing in p and increasing in q,

D(P‖Q) = p log
p

q
+ (1− p) log

1− p

1− q

> δ log(
δ

4δ
) + (1− δ) log

1− δ

1− 4δ

= −2δ + (1− δ) log
(

1 +
3δ

1− 4δ

)
(1)

If δ ≥ 1/7 then log
(
1 + 3δ

1−4δ

)
≥ 1. Thus,

(1) ≥ −2δ + (1− δ) > δ

where the last inequality follows since δ < 1/4.
If δ < 1/7 then 3δ

1−4δ < 1. Using the inequality log2(1 + x) ≥ x for every 0 ≤ x ≤ 1 we obtain,

(1) ≥ −2δ + (1− δ)
3δ

1− 4δ
≥ −2δ + 3δ = δ

where the last inequality follows since 1−δ
1−4δ > 1. Since we obtained a contradiction in both cases,

the lemma holds.

Corollary 3.4 For every probability distributions P,Q over the same sample space Ω and for every
T ⊆ Ω, if D(P‖Q) ≤ δ and P(T ) ≤ δ then Q(T ) ≤ 4δ

Proof: Denote p = P(T ) and q = Q(T ) and let P′ = (p, 1 − p), Q′ = (q, 1 − q). By the data
processing inequality for mutual information D(P‖Q) ≥ D(P′‖Q′) and the corollary follows.

3.2 Main Lemmas

We now state the main lemmas for general product distribution games.
Recall that for a coordinate i, Wi is the event of the provers winning the game played in this
coordinate.

Lemma 3.5 (Main Lemma For General Free Games) Let G be a free game with value 1− ε.
For any set T of k coordinates, (T ⊆ [n] and |T | = k), let W be the event of the provers winning
the games in those k coordinates. If Pr(W ) ≥ 2−ε(n−k)/9+k log s where s is the size of the answers
set, then there is i /∈ T for which

Pr(Wi|W ) ≤ 1− ε

9

Lemma 3.6 (Main Lemma For Free Projection Games) Let G be a free projection game
with value 1 − ε. For any set T of k coordinates, (T ⊆ [n] and |T | = k), let W be the event
of the provers winning the games in those k coordinates. If Pr(W ) ≥ 2−ε(n−k)/144 and n − k ≥
(48/ε) log(8/ε) then there is i /∈ T for which

Pr(Wi|W ) ≤ 1− ε

9
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In the lemmas below we assume without loss of generality that the set T of k coordinates is the
set of the last k coordinates. Recall that PXnY n = PXY × · · · × PXY n-times. Recall that Xk =
(Xn−k+1, . . . , Xn), i.e., the last k coordinates of Xn and in the same way, Y k = (Yn−k+1, . . . , Yn),
Ak = (An−k+1, . . . , An) and Bk = (Bn−k+1, . . . , Bn). Recall that Xn−k = (X1, . . . , Xn−k), i.e., the
first n− k coordinates of Xn, and similarly, Y n−k = (Y1, . . . , Yn−k).

Lemma 3.7 For any event1 U , the following holds:

EXk,Y k,Ak|UD
(
PXn−k,Y n−k|Xk,Y k,Ak,U‖PXn−k,Y n−k

)
≤ log

(
1

Pr(U)

)
+ EXk,Y k|UH(PAk|Xk,Y k,U )

Proof: Since PXnY n = PXY × · · · × PXY n-times,

EXk,Y k,Ak|UD
(
PXn−k,Y n−k|Xk,Y k,Ak,U‖PXn−k,Y n−k

)

= EXk,Y k,Ak|UD
(
PXn−k,Y n−k|Xk,Y k,Ak,U‖PXn−k,Y n−k|Xk,Y k

)

= EXk,Y k,Ak|UEXn−k,Y n−k|Xk,Y k,Ak,U log
(

Pr(Xn−k, Y n−k|Xk, Y k, Ak, U)
Pr(Xn−k, Y n−k|Xk, Y k)

)

= EXk,Y k,Ak|UEXn−k,Y n−k|Xk,Y k,Ak,U log
(

Pr(Xn−k, Y n−k, Xk, Y k, Ak, U) Pr(Xk, Y k)
Pr(Xk, Y k, Ak, U) Pr(Xn−k, Y n−k, Xk, Y k)

)

= EXk,Y k,Ak,Xn−k,Y n−k|U log
(

Pr(Xn−k, Y n−k, Xk, Y k, Ak, U)
Pr(Xn−k, Y n−k, Xk, Y k)

)

+ EXk,Y k,Ak,Xn−k,Y n−k|U log
(

Pr(Xk, Y k)
Pr(Xk, Y k, Ak, U)

)

(2)

Since Pr(Xn−k, Y n−k, Xk, Y k, Ak, U) ≤ Pr(Xn−k, Y n−k, Xk, Y k) the term

log
(

Pr(Xn−k, Y n−k, Xk, Y k, Ak, U)
Pr(Xn−k, Y n−k, Xk, Y k)

)
≤ 0

Therefore,

(2) ≤ EXk,Y k,Ak,Xn−k,Y n−k|U log
(

Pr(Xk, Y k)
Pr(Xk, Y k, Ak, U)

)

= EXk,Y k,Ak,Xn−k,Y n−k|U log
(

1
Pr(Ak, U |Xk, Y k)

)
(3)

1We will use the lemma for events that depend only on Xk, Y k, Ak, Bk, e.g., we will use it for the event W , see

definition in Lemma 3.5
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Since Pr(Ak = ak, U |Xk = xk, Y k = yk) is a function of only ak, xk, yk (and not of xn−k, yn−k) we
obtain:

(3) =EXk,Y k,Ak|U log
(

1
Pr(U |Xk, Y k)

)
+ EXk,Y k,Ak|U log

(
1

Pr(Ak|Xk, Y k, U)

)
(4)

In the same way,

(4) =EXk,Y k|U log
(

1
Pr(U |Xk, Y k)

)
+ EXk,Y k|UEAk|Xk,Y k,U log

(
1

Pr(Ak|Xk, Y k, U)

)

=
∑

xk,yk∈supp(P
Xk,Y k|U )

Pr(Xk = xk, Y k = yk|U) log
(

1
Pr(U |Xk = xk, Y k = yk)

)
+ EXk,Y k|UH(PAk|Xk,Y k,U )

(5)

By the concavity of log(·),

(5) ≤ log




∑

xk,yk∈supp(P
Xk,Y k|U )

Pr(Xk = xk, Y k = yk|U)
Pr(U |Xk = xk, Y k = yk)


 + EXk,Y k|UH(PAk|Xk,Y k,U )

= log




∑

xk,yk∈supp(P
Xk,Y k|U )

Pr(Xk = xk, Y k = yk)
Pr(U)


 + EXk,Y k|UH(PAk|Xk,Y k,U )

≤ log
(

1
Pr(U)

)
+ EXk,Y k|UH(PAk|Xk,Y k,U )

We define W to be the event that the provers win all the games in the last k coordinates and
define E to be

{
(ak, xk, yk) ∈ Ak ×Xk × Y k

∣∣ Pr(Ak = ak|Xk = xk, Y k = yk) ≥ 2−ε(n−k)/16)
}
.

The event W ′ is defined as W ∧ [(Ak, Xk, Y k) ∈ E]

Proposition 3.8 For W and W ′, the events defined above, the following holds:

1. For general games and the event W

EXk,Y k|W H
(
PAk|Xk,Y k,W

)
≤ k log s [Raz98],[Hol07]

2. For projection games and the event W ′

EXk,Y k|W ′H
(
PAk|Xk,Y k,W ′

)
≤ ε(n− k)/16 [Rao08]

Proof for general games: We use the trivial bound on the size of the support, namely, for every
xk, yk we can bound |supp(PAk|Xk=xk,Y k=yk,W )| ≤ |supp(PAk)| ≤ sk where s is the size of the
answers set. Using Fact 2.4 we obtain:

EXk,Y k|W H
(
PAk|Xk,Y k,W

)
≤ EXk,Y k|W log(|supp(PAk|Xk,Y k,W )|) ≤ log sk = k log s
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Proof for projection games: Using Fact 2.4 we can trivially bound:

EXk,Y k|W ′H
(
PAk|Xk,Y k,W ′

)
≤ EXk,Y k|W ′ log(|supp(PAk|Xk,Y k,W ′)|) (6)

Since for every xk, yk and ak ∈ supp(PAk|Xk=xk,Y k=yk,W ′),

Pr(Ak = ak|Xk = xk, Y k = yk) ≥ 2−ε(n−k)/16,

there are at most 2ε(n−k)/16 such ak. Hence,

(6) ≤ EXk,Y k|W ′ log
(
2ε(n−k)/16

)
= ε(n− k)/16

Corollary 3.9 For the events W , W ′ the following holds:

1. For general games and the event W

Ei∈[n−k]EXk,Y k,Ak|W D
(
PXi,Yi|Xk,Y k,Ak,W ‖PXi,Yi

)
≤ 1

n− k
(k log s− log(Pr(W )))

2. For projection games and the event W ′

Ei∈[n−k]EXk,Y k,Ak|W ′D
(
PXi,Yi|Xk,Y k,Ak,W ′‖PXi,Yi

)

≤ 1
n− k

(
ε(n− k)/16− log

(
Pr(W )− 2−ε(n−k)/16

) )

(for z < 0 we define log(z) = −∞.)

Proof: For the general case, fixing U = W in Lemma 3.7 and using the bound on EXk,Y k|W H
(
PAk|Xk,Y k,W

)

from Proposition 3.8 we obtain:

EXk,Y k,Ak|W D
(
PXn−k,Y n−k|Xk,Y k,Ak,W ‖PXn−k,Y n−k

)
≤ k log s− log(Pr(W ))

To complete the proof apply Fact 2.6.
For the projection game case, fix U = W ′ in Lemma 3.7 and use the bound on EXk,Y k|W ′H

(
PAk|Xk,Y k,W ′

)

from Proposition 3.8 to obtain:

EXk,Y k,Ak|W ′D
(
PXn−k,Y n−k|Xk,Y k,Ak,W ′‖PXn−k,Y n−k

)
≤ ε(n− k)/16− log(Pr(W ′))

We bound Pr(W ′) in the following way:

Pr(W ′) = Pr(W ∧ [(Ak, Xk, Y k) ∈ E]) = Pr(W )− Pr(W ∧ [(Ak, Xk, Y k) /∈ E])

We now bound the term Pr(W ∧ [(Ak, Xk, Y k) /∈ E]). For every game G and strategy fa, fb, the
probability of winning the game played with strategy fa, fb is

EX,Y

∑

b∈B

Pr(B = b|Y )
∑

a∈A

Pr(A = a|X)V (X,Y, a, b).
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Recall that for every projection game G and every x ∈ X, y ∈ Y, b ∈ B there is only one a ∈ A for
which V (x, y, a, b) = 1, this a is fxy(b) (recall that fxy is the projection function, see Definition 2.2).
Thus for every projection game G and strategy fa, fb, the probability of winning the game played
according to fa, fb is:

EXY

∑

(b,fXY (b))∈B×A

Pr(B = b|Y ) Pr(A = a|X).

For xk, yk we define fxk,yk : Bk → Ak by [fxk,yk(bk)]i = fxi,yi(bi). We want to bound the probability
of winning in the last k coordinates and that (Ak, Xk, Y k) /∈ E. Thus, for every xk, yk we want to
sum Pr(Bk = bk|Y k = yk) Pr(Ak = ak|Xk = xk), only over (bk, fxk,yk(bk)) ∈ Bk × Ak for which
(fxk,yk(bk), xk, yk) /∈ E. Thus

Pr(W ∧ [(Ak, Xk, Y k) /∈ E])

= EXk,Y k

∑

(bk,f
Xk,Y k (bk)) s.t. (f

Xk,Y k (bk),Xk,Y k)/∈E

Pr(Bk = bk|Y k) Pr(Ak = fXk,Y k(bk)|Xk, Y k)

< 2−ε(n−k)/16 (7)

where the last inequality follows since if (ak, xk, yk) /∈ E then

Pr(Ak = ak|Xk = xk) = Pr(Ak = ak|Xk = xk, Y k = yk) < 2−ε(n−k)/16.

Thus Pr(W ′) > Pr(W )− 2−ε(n−k)/16. We now conclude that

EXk,Y k,Ak|W ′D
(
PXn−k,Y n−k|Xk,Y k,Ak,W ′‖PXn−k,Y n−k

)
≤ ε(n− k)/16− log

(
Pr(W )− 2−ε(n−k)/16

)

The corollary follows by using Fact 2.6.

Observation 3.10 For any product distribution Pα,β = Pα×Pβ and any event τ that is determined
only by α (or only by β) Pα,β|τ is a product distribution

Pα,β|τ = Pα|τ × Pβ|τ = Pα|τ × Pβ

(or Pα,β|τ = Pα × Pβ|τ )

Proposition 3.11 For a free game G, an event U that is determined by Xk, Y k, Ak, Bk and for
every xk, yk, ak the following holds:

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U = PXn−k|Xk=xk,Y k=yk,Ak=ak,U × PY n−k|Xk=xk,Y k=yk,Ak=ak,U

That is PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U is a product distribution.

Proof: By applying Observation 3.10 three times on the events Xk = xk, Y k = yk, Ak = ak, we
obtain that

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak

is a product distribution. Since after we fixed xk, yk, ak, the event U only depends on Bk, which is
only a function of Y n−k, we can apply Observation 3.10 one more time to obtain the proposition.
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Corollary 3.12 For a free game G, any event U that is determined by Xk, Y k, Ak, Bk and for
every xk, yk, ak, x, y and every i ∈ [n− k] the following holds:

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x,Yi=y

= PXn−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x × PY n−k|Xk=xk,Y k=yk,Ak=ak,U,Yi=y

Proof: From Proposition 3.11 we obtain that:

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U

is a product distribution

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U

= PXn−k|Xk=xk,Y k=yk,Ak=ak,U × PY n−k|Xk=xk,Y k=yk,Ak=ak,U

Applying Observation 3.10 on the event Xi = x we obtain that

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x

= PXn−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x × PY n−k|Xk=xk,Y k=yk,Ak=ak,U

Applying Observation 3.10 on the event Yi = y we obtain that

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x,Yi=y

= PXn−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x × PY n−k|Xk=xk,Y k=yk,Ak=ak,U,Yi=y

Recall that for fixed i ∈ [n − k], we denote Xm = (X1, . . . , Xi−1, Xi+1, . . . , Xn−k), i.e., Xn−k

without Xi, and similarly, Y m = (Y1, . . . , Yi−1, Yi+1, . . . , Yn−k).

Proof of Lemma 3.5 and Lemma 3.6: For both U = W and U = W ′ and for every xk, yk, ak

and i ∈ [n − k], we will use a strategy for the game G(PXn,Y n , V ⊗n) to obtain a strategy for the
game G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V ). Fix any strategy, fa, fb, for the game G(PXnY n , V ⊗n), and
apply the following to obtain a strategy for G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V ):

Algorithm 3.13 Protocol for G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V ) for fixed xk, yk, ak, i

1. When the game starts, prover 1 receives a question x and prover 2 receives a question y

according to PXiYi|Xk=xk,Y k=yk,Ak=ak,U . Define Xi = x, Yi = y (the provers will play this
game in coordinate i).

2. Prover 1 randomly chooses
xm = (x1, . . . , xi−1, xi+1, . . . , xn−k) according to PXn−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x

and Prover 2 randomly chooses
ym = (y1, . . . , yi−1, yi+1, . . . , yn−k) according to PY n−k|Xk=xk,Y k=yk,Ak=ak,U,Yi=y

3. Prover 1 answers [fa(xn)]i and prove 2 answers [fb(yn)]i.

11



Remark 1 Notice that in step 2, since both events U = W and U = W ′ are determined by
Xk, Y k, Ak, Bk, the joint distribution of xm, ym is PXm,Y m|Xk=xk,Y k=yk,Ak=ak,Xi=x,Yi=y,U which fol-
lows from Corollary 3.12.

Remark 2 Notice that since Remark 1 holds, the probability of winning the game

G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V )

is exactly
Pr(Wi|Xk = xk, Y k = yk, Ak = ak, U).

Remark 3 Notice that this is a randomized algorithm. However, it is well known that since any
randomized algorithm is a convex combination of deterministic algorithms, there is a deterministic
algorithm that achieves the same value as the randomized algorithm. Namely, there is a determin-
istic protocol for which the probability of winning the game

G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V )

is exactly
Pr(Wi|Xk = xk, Y k = yk, Ak = ak, U).

Using this remark we will think of this algorithm as a deterministic algorithm.

Proof for General Games

By Corollary 3.9 for a fixed strategy fa, fb for G(PXnY n , V ⊗n),

Ei∈[n−k]EXk,Y k,Ak|W D
(
PXi,Yi|Xk,Y k,Ak,W ‖PXi,Yi

)
≤ 1

n− k
(k log s− log(Pr(W )))

By the assumption in the lemma, Pr(W ) ≥ 2−ε(n−k)/9+k log s. Therefore, it follows that:

Ei∈[n−k]EXk,Y k,Ak|W D
(
PXi,Yi|Xk,Y k,Ak,W ‖PXi,Yi

)
≤ ε/9

Assume by way of contradiction that for all i ∈ [n− k], Pr(Wi|W ) > 1− ε/9. Notice that since

Pr(Wi|W ) = EXk,Y k,Ak|W Pr(Wi|Xk, Y k, Ak,W ),

an equivalent assumption is that for all i ∈ [n− k],

EXk,Y k,Ak|W Pr(¬Wi|Xk, Y k, Ak,W ) < ε/9.

By a simple averaging argument, there are xk, yk, ak and i ∈ [n− k] for which both equations hold:

D
(
PXi,Yi|Xk=xk,Y k=yk,Ak=ak,W ‖PXi,Yi

)
≤ ε/4 (8)

Pr(¬Wi|Xk = xk, Y k = yk, Ak = ak,W ) < ε/4 (9)
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For the strategy fa, fb and for xk, yk, ak, i for which both Equation (8) and Equation (9) hold
consider the protocol suggested in Algorithm 3.13. Recall that by Remark 3 there is a deterministic
protocol for which the provers win on coordinate i with probability

Pr(Wi|Xk = xk, Y k = yk, Ak = ak,W ).

Denote this deterministic protocol by ha, hb. For ha, hb, denote by R the set of all questions on
which the provers err when playing according to this protocol. By the assumption in Equation (9)

PXi,Yi|Xk=xk,Y k=yk,Ak=ak,W (R) < ε/4. (10)

Combining Equation (10) with Equation (8), we can apply Corollary 3.4 to obtain PXi,Yi(R) < ε.
The provers can play ha, hb as a strategy for G(PXi,Yi , V ) and err only on questions in R. Since
PXi,Yi(R) < ε, the value of G(PXi,Yi , V ) > 1− ε and since PXi,Yi = PXY , the value of G(PXY , V ) >

1− ε which is a contradiction.

Proof for Projection Games

The proof is very similar to the general case. From Corollary 3.9 we obtain:

Ei∈[n−k]EXk,Y k,Ak|W ′D
(
PXi,Yi|Xk,Y k,Ak,W ′‖PXi,Yi

)
(11)

≤ 1
n− k

(
ε(n− k)/16− log

(
Pr(W )− 2−ε(n−k)/16

) )
(12)

By the assumption in the lemma, Pr(W ) ≥ 2−ε(n−k)/144 thus,

Ei∈[n−k]EXk,Y k,Ak|W ′D
(
PXi,Yi|Xk,Y k,Ak,W ′‖PXi,Yi

)

≤ ε/16− 1
n− k

log
(
2−ε(n−k)/144 − 2−ε(n−k)/16

)

= ε/16− 1
n− k

log
(
2−ε(n−k)/16

(
2ε(n−k)/18 − 1

))

= ε/16 + ε/16− 1
n− k

log
(
2ε(n−k)/18 − 1

)

≤ ε/8 (13)

where the last inequality is due to the bound on n − k. Assume by way of contradiction that for
all i ∈ [n− k], Pr(Wi|W ′) > 1− ε/8. Notice that since

Pr(Wi|W ′) = EXk,Y k,Ak|W ′ Pr(Wi|Xk, Y k, Ak,W ′),

an equivalent assumption is that for all i ∈ [n− k],

EXk,Y k,Ak|W ′ Pr(¬Wi|Xk, Y k, Ak,W ′) < ε/8.

By a simple averaging argument, there are xk, yk, ak and i ∈ [n− k] for which both equations hold:

D
(
PXi,Yi|Xk=xk,Y k=yk,Ak=ak,W ′‖PXi,Yi

)
≤ ε/4 (14)

Pr(¬Wi|Xk = xk, Y k = yk, Ak = ak, W ′) < ε/4 (15)
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For the strategy fa, fb, and for xk, yk, ak, i for which both Equation (14) and Equation (15) hold
consider the protocol suggested in Algorithm 3.13. Recall that by Remark 3 there is a deterministic
protocol for which the provers win on coordinate i with probability

Pr(Wi|Xk = xk, Y k = yk, Ak = ak,W ′).

Denote this deterministic protocol by ha, hb. For ha, hb, denote by R the set of all questions on
which the provers err when playing according to this protocol. By our assumption

PXi,Yi|Xk=xk,Y k=yk,Ak=ak,W ′(R) < ε/4. (16)

Combining Equation (16) with Equation (14), we can apply Corollary 3.4 to obtain PXi,Yi(R) < ε.
The provers can play ha, hb as a strategy for G(PXi,Yi , V ) and err only on questions in R. Since
PXi,Yi(R) < ε, the value of G(PXi,Yi , V ) > 1−ε. Since PXi,Yi = PXY the value of G(PXY , V ) > 1−ε

which is a contradiction.
We showed that there is i ∈ [n− k] for which

Pr(Wi|W ′) ≤ 1− ε/8

but we need to show that there is i ∈ [n − k] for which Pr(Wi|W ) ≤ 1 − ε/9. This is done in the
following way: Since W ′ ⊆ W

Pr(Wi|W ) = Pr(Wi|W ′) Pr(W ′|W ) + Pr(Wi|¬W ′) Pr(¬W ′|W ) ≤ Pr(Wi|W ′) + Pr(¬W ′|W ).

Thus for all i ∈ [n− k],

Pr(Wi|W ) ≤ Pr(Wi|W ′) + Pr((Ak, Xk, Y k) /∈ E|W ).

Since Pr((Ak, Xk, Y k) /∈ E|W ) = Pr(W ∧ [(Ak, Xk, Y k) /∈ E])/Pr(W ) we can use the bound in
Equation (7), Pr(W ∧ [(Ak, Xk, Y k) /∈ E]) < 2−ε(n−k)/16 and obtain that

Pr(Wi|W ) ≤ Pr(Wi|W ′) + 2−ε(n−k)/16/Pr(W ).

Therefore:

Pr(Wi|W ) ≤ 1− ε/8 + 2−ε(n−k)/16/2−ε(n−k)/144

≤ 1− ε/8 + 2−ε(n−k)/18

≤ 1− ε/9

where the last inequality follows from the bound on n− k

Proof Of Theorem 3.1: We first show by induction that for every k ≤ εn
18 log s+3 there is a set

T ⊆ [n] of k coordinates (|T | = k) for which Pr(W ) ≤ (1− ε/9)k where W is the event of winning
on all the coordinates in T . For k = 0 the statement trivially holds. Assume by induction that
there is a set T of size k for which Pr(W ) ≤ (1− ε/9)k. If Pr(W ) ≤ (1− ε/9)k+1 then we are done.
Otherwise

Pr(W ) > (1− ε/9)k+1 ≥ 2−ε(k+1)/4.5

where we used the inequality (1− x) ≥ 2−2x for 0 ≤ x ≤ 1/2. In order to use Lemma 3.5 we need
to make sure that Pr(W ) ≥ 2−ε(n−k)/9+k log s. It is enough to show that

2−ε(k+1)/4.5 ≥ 2−ε(n−k)/9+k log s

14



or alternatively,
ε(k + 1)/4.5 ≤ ε(n− k)/9− k log s

After rearranging we obtain

k ≤ εn− 2ε

9 log s + 3ε
.

For n > 2 and ε ≤ 1/2 it is enough that2

k ≤ εn

18 log s + 3
.

Thus, for k ≤ εn
18 log s+3 we can apply Lemma 3.5 to obtain that there is i /∈ T for which Pr(Wi|W ) ≤

1− ε/9 therefore,

Pr(Wi ∧W ) = Pr(W ) · Pr(Wi|W ) ≤ (1− ε/9)k(1− ε/9) = (1− ε/9)k+1

To complete the proof, set k = εn
18 log s+3 then as we showed, there is a set T ⊆ [n], |T | = k for

which:

Pr(W1 ∧ . . . ∧Wn) ≤ Pr(
∧

i∈T

Wi) ≤ (1− ε/9)εn/(18 log s+3) ≤ (1− ε2/9)n/(18 log s+3).

where the last inequality follows by the use of the inequality (1− x)y ≤ 1− xy for every 0 ≤ y ≤ 1
and x ≤ 1

Proof Of Theorem 3.2: For the case of n ≥ (50/ε) log(8/ε), the proof is very similar to the last
theorem: We first show by induction, for every k ≤ (n/33)−1 there is a set T ⊆ [n] of k coordinates
(|T | = k) for which Pr(W ) ≤ (1 − ε/9)k where the event W is winning on all the coordinates in
T . For k = 0 the statement trivially holds. Assume by induction that there is a set T of size k for
which Pr(W ) ≤ (1− ε/9)k. If Pr(W ) ≤ (1− ε/9)k+1 then we are done, else

Pr(W ) ≥ (1− ε/9)k+1 ≥ 2−ε(k+1)/4.5.

In order to use Lemma 3.6 we need to make sure that

Pr(W ) ≥ 2−ε(n−k)/144

and that
n− k ≥ (48/ε) log(8/ε)

Since k ≤ (n/33)− 1,

if Pr(W ) ≥ 2−ε(k+1)/4.5 then Pr(W ) ≥ 2−ε(n−k)/144

Since k ≤ (n/33)− 1 then n− k ≥ 32n/33 + 1. Since n ≥ 50/ε log(8/ε) then

32n/33 + 1 ≥ (48/ε) log(8/ε) + 1.

Therefore,
n− k ≥ (48/ε) log(8/ε)

2We may assume that n > 2 since for n ≤ 2 the theorem trivially holds. We also assume that the game is not

trivial, i.e., the value of the game is not 0 or 1, thus s > 1.
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Now we can apply Lemma 3.6 to obtain that there is i /∈ T for which Pr(Wi|W ) ≤ 1 − ε/9.
Therefore,

Pr(Wi ∧W ) = Pr(W ) · Pr(Wi|W ) ≤ (1− ε/9)k(1− ε/9) = (1− ε/9)k+1

For k = (n/33)− 1 there is a set T ⊆ [n], |T | = k for which:

Pr(W1 ∧ . . . ∧Wn) ≤ Pr(
∧

i∈T

Wi) ≤ (1− ε/9)(n/33)−1

For the case of n < (50/ε) log(8/ε), as suggested in [Rao08], it can be shown that if the theorem was
false for small n it would not hold for big n. If there was a strategy with success probability greater
than (1− ε/9)(n/33)−1 then for the same game played on m · n coordinates the success probability
was at least (1− ε/9)m((n/33)−1) and for large enough m, this yield a contradiction.
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