Complexity Theory: Exercise 1

Not for submission

March 10, 2015

1. (Reminder of NP and NP completeness) Consider the languages:

```
Clique = \{(G, k) : G \text{ is a graph that has a clique of size } k\}
Half - Clique = \{G : G \text{ is a graph that has a clique of size } |V|/2\}
```

- (a) Show that $Half Clique \in NP$.
- (b) Show that $Clique \leq_L Half Clique$.
- 2. (Composition of logspace functions).
 - (a) Let M_1, M_2 be machines that run in space $O(\log n)$ and compute functions f_1 and f_2 respectively. Consider the function $f(x) = f_2(f_1(x))$. Show that this function is computable by a machine that runs in space $O(\log n)$.
 - (b) Show that if $L_1 \leq_L L_2$ and $L_2 \leq_L L_3$ then $L_1 \leq_L L_3$.
 - (c) Show that if $L_1 \leq_L L_2$ and $L_2 \in L$ then $L_1 \in L$.
 - (d) Show that if $L_1 \leq_L L_2$ and $L_2 \in NL$ then $L_1 \in NL$.
- 3. Let $dPATH = \{G, s, t : G \text{ is a directed graph, } s, t \text{ are vertices and there is a path from } s \text{ to } t\}$. In class we showed that $dPATH \in NL$. Show that dPATH is NL complete. (Hint: we explained this proof informally in class and the purpose of this exercise is for you to go over it and make sure you understand the details).
- 4. Show that $TQBF \in PSPACE$. (Recall that TQBF is the set of all true quantified boolean formulae). (Hint: we explained this proof informally in class and the purpose of this exercise is for you to go over it and make sure you understand the details.
- 5. (2-SAT) is NL complete) Consider the language $2-SAT = \{\phi : \phi \text{ is a satisfiable 2-CNF formula}\}$. (Reminder: a 2-CNF formula is a conjunction of clauses where each clause is the disjunction of two literals).

In class we showed that $2 - SAT \in NL$. (Recall that we actually showed that $2 - SAT \in co - NL$ and used the fact that NL = co - NL). Our goal is to show that 2 - SAT is NL complete.

- (a) Show that $co-dPATH = \{G, s, t : G \text{ is a directed graph, } s, t \text{ are vertices and there is no path from } s \text{ to } t\}$ is NL complete.
- (b) Show that $co dPATH \le_L 2 SAT$. (Hint: use the ideas we used in class to relate 2 SAT to connectivity in graphs).
- (c) Conclude that 2 SAT is NL complete.