Complexity Theory : Exercise 3

Submit until 8/6

May 25, 2009

Please write clear and precise answers. A 10 point bonus is given for printed solutions.

1. (Existence of functions that cannot be computed by small circuits)
 (a) Show that there are at most \(s^{3s} < 2^{s^2} \) circuits with fan-in 2 of size \(s \).
 (b) Conclude that for any \(n \) there are functions \(f : \{0, 1\}^n \rightarrow \{0, 1\} \) that cannot be computed by circuits of size \(2^n / 10n \). (In fact most functions cannot be computed by such circuits.)

2. (Directed connectivity in NC)
 (a) Show that given two \(n \times n \) matrices \(A \) and \(B \) the product \(AB \) can be computed in \(NC \).
 (b) Show that given an \(n \times n \) matrix \(A \) the matrix \(A^n \) can be computed in \(NC \).
 (c) Conclude that \(dPATH \) (which is complete for \(NL \)) is in \(NC \). (Hint: Consider the matrix \(A^n \) for the adjacency matrix \(A \) of the given graph).

3. (Amplification of RP)
 note: This is an easy question and you may skip it and go directly to the next question instead.
 Show that \(RP_{1/2^{2n}} = RP_{1/3} = RP_{1/2-1/n} \)

4. (Amplification of BPP using the Chernoff bound) Show that \(BPP_{1/2^{2n}} = BPP_{1/3} = BPP_{1/2-1/n} \).
 You probably want to use the following theorem:

 Theorem 1 (Additive version of Chernoff’s inequality). Let \(X_1, \ldots, X_n \) be independent random variables taking values in \(\{0, 1\} \). Let \(X = \sum X_i \), then for every \(0 \leq \delta \leq 1 \)

 \[\Pr[|X - E(X)| \geq \delta n] \leq 2e^{-\delta^2 n} \]

5. Show that \(ZPP = RP \cap coRP \).