Bagging and Boosting

Lecture 20

Some slides are due to Robin Dhamankar Vandi Verma & Sebastian Thrun

Ensemble Learning: Bagging and Boosting

- So far we have talked about design of a single classifier that generalizes well (want to "learn" f(x))
- From statistics, we know that it is good to average your predictions (reduces variance)
- Bagging
 - reshuffle your training data to create k different training sets and learn f₁(x),f₂(x),...,f_k(x)
 - Combine the k different classifiers by majority voting

 $f_{FINAL}(x) = sign[\Sigma 1/k f_i(x)]$

Boosting

- Assign different weights to training samples in a "smart" way so that different classifiers pay more attention to different samples
- Weighted majority voting, the weight of individual classifier is proportional to its accuracy
- Ada-boost (1996) was influenced by bagging, and it is superior to bagging

Bagging

- Generate a random sample from training set by selecting *I* elements (out of *n* elements available) with replacement
- Repeat the sampling procedure, getting a sequence of k independent training sets
- A corresponding sequence of classifiers f₁(x),f₂(x),...,f_k(x) is constructed for each of these training sets, using the same classification algorithm
- To classify an unknown sample x, let each classifier predict.
- The bagged classifier f_{FINAL}(x) then combines the predictions of the individual classifiers to generate the final outcome, frequently this combination is simple voting

Boosting: motivation

- It is usually hard to design an accurate classifier which generalizes well
- However it is usually easy to find many "rule of thumb" weak classifiers
 - A classifier is weak if it is only slightly better than random guessing
- Can we combine several weak classifiers to produce an accurate classifier?
 - Question people have been working on since 1980's

- Let's assume we have 2-class classification problem, with y_i∈ {-1,1}
- Ada boost will produce a discriminant function:

$$\boldsymbol{g}(\boldsymbol{x}) = \sum_{t=1}^{T} \alpha_t \boldsymbol{f}_t(\boldsymbol{x})$$

- where f_t(x) is the "weak" classifier
- As usual, the final classifier is the sign of the discriminant function, that is f_{final}(x) = sign[g(x)]

Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially distribution of weights is uniform
- At successive iterations, the weight of misclassified examples is increased, forcing the weak learner to focus on the hard examples in the training set

More Comments on Ada Boost

- Ada boost is very simple to implement, provided you have an implementation of a "weak learner"
- Will work as long as the "basic" classifier f_t(x) is at least slightly better than random
- Can be applied to boost any classifier, not necessarily weak

Ada Boost (slightly modified from the original version)

- d(x) is the distribution of weights over the N training points $\sum d(x_i)=1$
- Initially assign uniform weights $d_0(x_i) = 1/N$ for all x_i
- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute the error rate ε_t as $\varepsilon_t = \sum_{i=1...N} d_t(x_i) \cdot \mathbf{I}[y_i \neq f_t(x_i)]$
 - assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 - \varepsilon_t)/\varepsilon_t)$
 - For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
 - Normalize $d_{t+1}(x_i)$ so that $\sum_{i=1}^{n} d_{t+1}(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$

- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε_t the error rate as

 $\varepsilon_t = \sum d_t(x_i) \cdot \mathbf{I}[y_i \neq f_t(x_i)]$

- assign weight α_t the classifier f_t 's in the final hypothesis

 $\alpha_t = \log \left((1 - \varepsilon_t) / \varepsilon_t \right)$

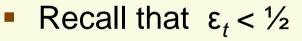
- For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
- Normalize $d_{t+1}(x_i)$ so that $\sum_{t+1} d(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$
- If the classifier does not take weighted samples, this step can be achieved by sampling from the training samples according to the distribution d_t(x)

- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε_t the error rate as

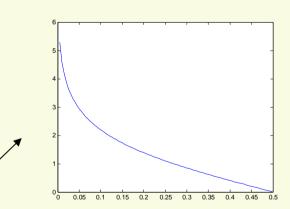
 $\varepsilon_t = \sum d_t(x_i) \cdot \mathbf{I}[y_i \neq f_t(x_i)]$

- assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 - \varepsilon_t)/\varepsilon_t)$
- For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
- Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$
- Since the weak classifier is better than random, we expect $\varepsilon_t < 1/2$

- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε_t the error rate as $\varepsilon_t = \sum d(x_i) \cdot I(y_i \neq f_t(x_i))$
 - assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 \varepsilon_t)/\varepsilon_t)$
 - For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
 - Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$



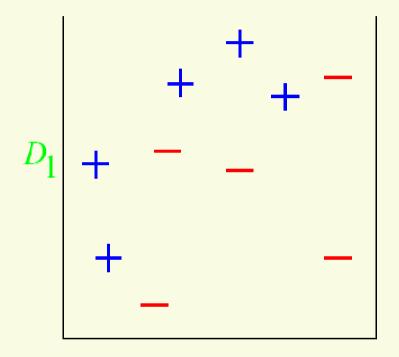
- Thus $(1 \varepsilon_t) / \varepsilon_t > 1 \implies \alpha_t > 0$
- The smaller is ε_t , the larger is α_t , and thus the more importance (weight) classifier $f_t(x)$ gets in the final classifier $f_{FINAL}(x) = \text{sign} [\sum \alpha_t f_t(x)]$



- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε_t the error rate as $\varepsilon_t = \sum d_t (x_i) \cdot I(y_i \neq f_t(x_i))$
 - assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 \varepsilon_t)/\varepsilon_t)$
 - For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
 - Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$
- Weight of misclassified examples is increased and the new d_{t+1}(x_i)'s are normalized to be a distribution again

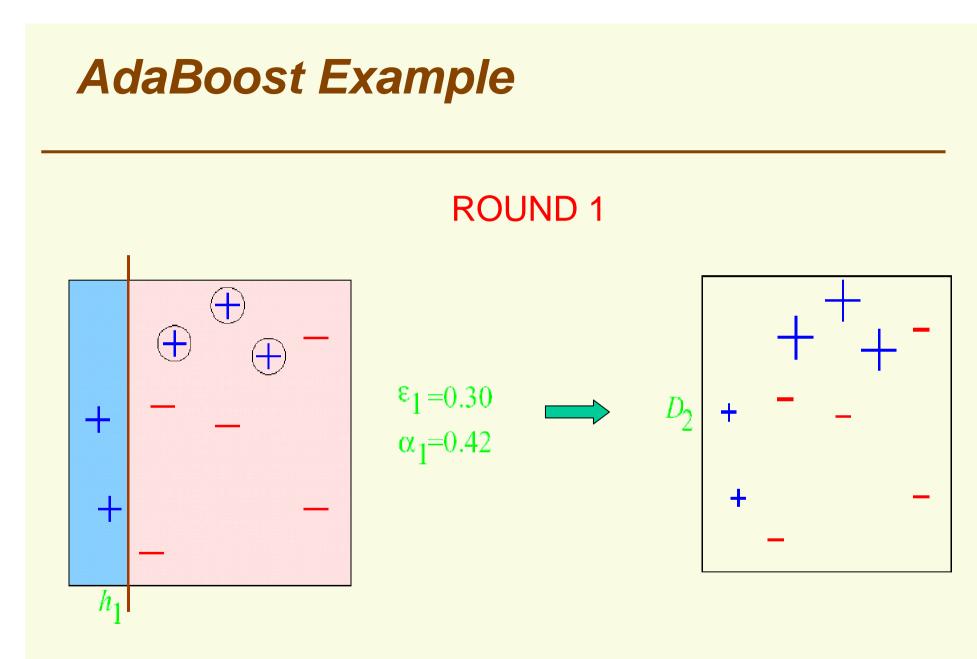
AdaBoost Example

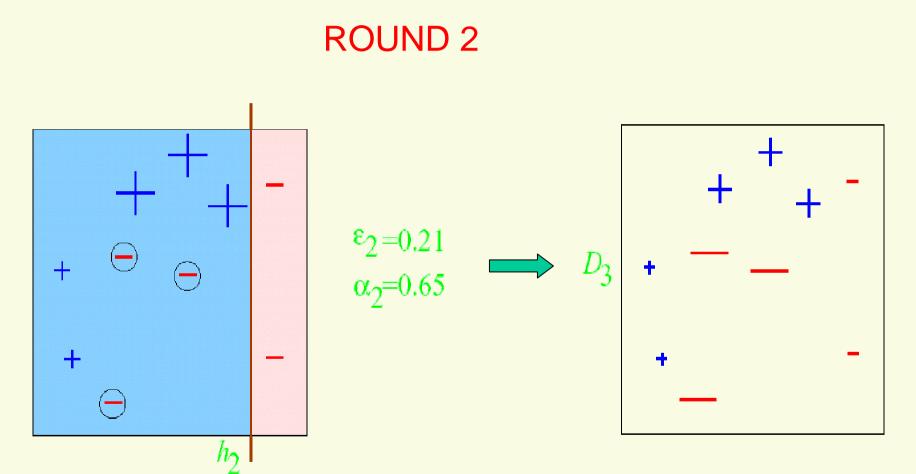
from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire



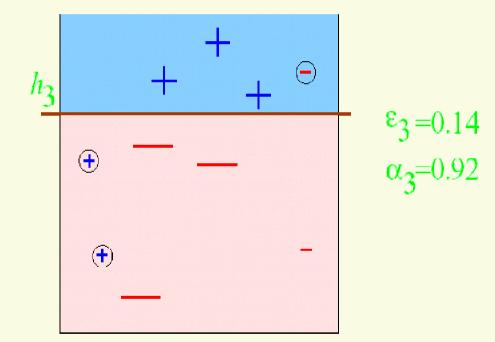
Original Training set : equal weights to all training samples

Note: in the following slides, $h_t(x)$ is used instead of $f_t(x)$, and D instead of d

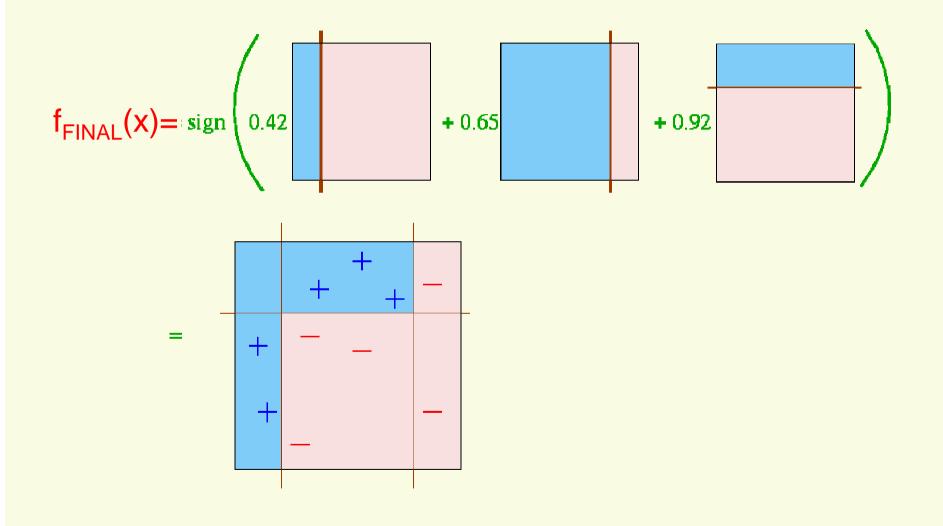




ROUND 3



AdaBoost Example



AdaBoost Comments

 It can be shown that the training error drops exponentially fast, if each weak classifier is slightly better than random

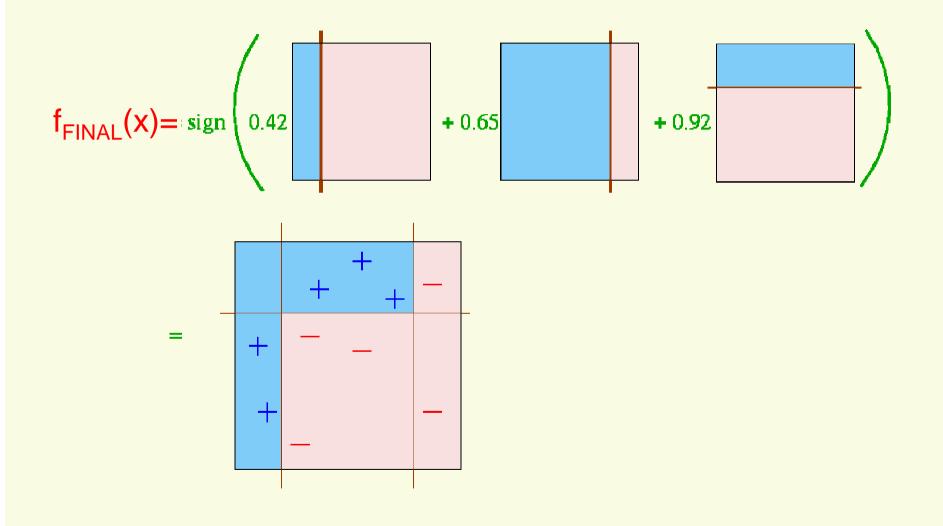
$$\textit{Err}_{train} \leq \exp\left(-2\sum_{t}\gamma_{t}^{2}
ight)$$

• Here $\gamma_t = \varepsilon_t - 1/2$, where ε_t is classification error at round t (weak classifier f_t)

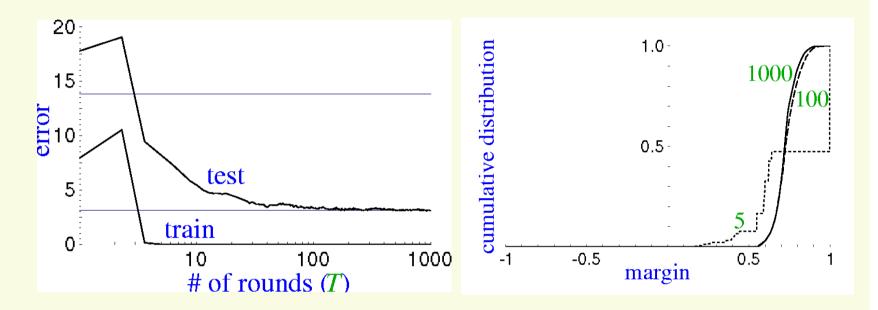
AdaBoost Comments

- But we are really interested in the generalization properties of f_{FINAL}(x), not the training error
- AdaBoost was shown to have excellent generalization properties in practice, in fact in the beginning researchers thought it does not overfit data
 - It turns out it does overfit data eventually, if you run it really long
- It can be shown that boosting "aggressively" increases the margins of training examples, as iterations proceed
 - margins continue to increase even when training error reaches zero
 - Helps to explain empirically observed phenomena: test error continues to drop even after training error reaches zero

AdaBoost Example



The Margin Distribution



epoch	5	100	1000
training error	0.0	0.0	0.0
test error	8.4	3.3	3.1
%margins≤0.5	7.7	0.0	0.0
Minimum margin	0.14	0.52	0.55

Practical Advantages of AdaBoost

- fast
- simple
- Has only one parameter to tune (T)
- flexible: can be combined with any classifier
- provably effective (assuming weak learner)
 - shift in mind set: goal now is merely to find hypotheses that are better than random guessing
- finds outliers
 - The hardest examples are frequently the "outliers"

Caveats

- performance depends on <u>data</u> & <u>weak learner</u>
- AdaBoost can <u>fail</u> if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak ($\gamma_t \rightarrow 0$ too quickly),
 - underfitting
 - Low margins \rightarrow overfitting
- empirically, AdaBoost seems especially susceptible to noise