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Ensemble Learning: Bagging and Boosting
� So far we have talked about design of a single classifier 

that generalizes well (want to “learn” f(x) )
� From statistics, we know that it is good to average your 

predictions (reduces variance)
� Bagging

� reshuffle your training data to create k different training sets and  
learn f1(x),f2(x),…,fk(x) 

� Combine the k different classifiers by majority voting
fFINAL(x) =sign[Σ 1/k fi(x) ]

� Boosting
� Assign different weights to training samples in a “smart” way so 

that different classifiers pay more attention to different samples
� Weighted majority voting, the weight of individual classifier is

proportional to its accuracy
� Ada-boost (1996) was influenced by bagging, and it is  superior 

to bagging



Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is 
constructed for each of these training sets, using the same 
classification algorithm 

� To classify an unknown sample x, let each classifier predict.  
� The bagged classifier fFINAL(x) then combines the predictions 

of the individual classifiers to generate the final outcome, 
frequently this combination is simple voting



Boosting: motivation

� It is usually hard to design an accurate classifier which 
generalizes well

� However it is usually easy to find many “rule of thumb”
weak classifiers
� A classifier is weak if it is only slightly better than random 

guessing

� Can we combine several weak classifiers to produce an 
accurate classifier?
� Question people have been working on since 1980’s



Ada Boost

� Let’s assume we have 2-class classification 
problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function: 

(((( )))) (((( ))))∑∑∑∑
====

====
T

t
tt xfxg

1

αααα

� where ft(x) is the “weak” classifier

� As usual, the final classifier is the sign of the 
discriminant function, that is ffinal(x) = sign[g(x)]



Idea Behind Ada Boost

� Algorithm is iterative

� Maintains distribution of weights over the training 
examples

� Initially distribution of weights is uniform
� At successive iterations, the weight of misclassified 

examples is increased, forcing the weak learner to 
focus on the hard examples in the training set



More Comments on Ada Boost

� Ada boost is very simple to implement, provided you 
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at 
least slightly better than random 

� Can be applied to boost any classifier, not 
necessarily weak



Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training 
points ∑ d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute the error rate  εt  as 
εt= ∑i=1…N dt(xi ) · I[yi ≠ ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis
αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]
� Normalize dt+1(xi ) so that ∑i=1 dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]



Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as 
εt= ∑ dt(xi ) · I[yi ≠ ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )
� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]
� Normalize dt+1(xi ) so that  ∑t+1d(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� If the classifier does not take weighted samples, this 
step can be achieved by sampling from the training 
samples according to the distribution dt(x)



Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt  the error rate as 

εt= ∑ dt(xi ) · I[yi ≠ ft(xi )]
� assign weight αt  the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )
� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]
� Normalize dt+1(xi ) so that  ∑ dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� Since the weak classifier is better than random, we 
expect εt < 1/2



Ada Boost
� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as 
εt= ∑ d(xi ) · I(yi ≠ ft(xi )

� assign weight αt  the classifier  ft‘s  in the final hypothesis
αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]
� Normalize dt+1(xi ) so that  ∑ dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αtft (x) ]

� Recall that  εt < ½
� Thus (1- εt)/ εt > 1  ⇒ αt > 0
� The smaller is εt, the larger is αt, and thus the more 

importance (weight) classifier ft(x) gets in the final classifier 
fFINAL(x) =sign [ ∑ αt ft (x) ]
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Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt   the error rate as 
εt= ∑ dt (xi ) · I(yi ≠ ft(xi )

� assign weight αt   the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]
� Normalize dt+1(xi ) so that  ∑dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� Weight of misclassified examples is increased and the 
new dt+1(xi)’s are normalized to be a distribution again



AdaBoost Example 
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training 
samples

Note: in the following slides, ht(x) is used instead of ft(x), 
and D instead of d



AdaBoost Example

ROUND 1



AdaBoost Example

ROUND 2



AdaBoost Example

ROUND 3



AdaBoost Example

fFINAL(x)=



AdaBoost Comments

� It can be shown that the training error drops 
exponentially fast, if each weak classifier is slightly 
better than random
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� Here γγγγt = εεεεt – 1/2, where εεεεt is classification error at 
round t (weak classifier ft ) 



AdaBoost Comments

� But we are really interested in the generalization 
properties of fFINAL(x), not the training error

� AdaBoost was shown to have excellent generalization 
properties in practice, in fact in the beginning 
researchers thought it does not overfit data
� It turns out it does overfit data eventually, if you run it really 

long

� It can be shown that boosting “aggressively”
increases the margins of training examples, as 
iterations proceed
� margins continue to increase even when training error 

reaches zero
� Helps to explain empirically observed phenomena: test error 

continues to drop even after training error reaches zero



AdaBoost Example

fFINAL(x)=



The Margin Distribution

0.550.520.14Minimum margin

0.00.07.7%margins≤0.5

3.13.38.4test error
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Practical Advantages of AdaBoost

� fast

� simple
� Has only one parameter to tune (T)

� flexible: can be combined with any classifier 
� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses 
that are better than random guessing

� finds outliers
� The hardest examples are frequently the “outliers”



Caveats

� performance depends on data & weak learner
� AdaBoost can fail if

� weak hypothesis too complex (overfitting)
� weak hypothesis too weak (γt→0 too quickly),

� underfitting
� Low margins → overfitting

� empirically, AdaBoost seems especially 
susceptible to noise


