
Lecture 20
Some slides are due to Robin Dhamankar

Vandi Verma & Sebastian Thrun

Bagging and Boosting

Ensemble Learning: Bagging and Boosting
� So far we have talked about design of a single classifier

that generalizes well (want to “learn” f(x))
� From statistics, we know that it is good to average your

predictions (reduces variance)
� Bagging

� reshuffle your training data to create k different training sets and
learn f1(x),f2(x),…,fk(x)

� Combine the k different classifiers by majority voting
fFINAL(x) =sign[Σ 1/k fi(x)]

� Boosting
� Assign different weights to training samples in a “smart” way so

that different classifiers pay more attention to different samples
� Weighted majority voting, the weight of individual classifier is

proportional to its accuracy
� Ada-boost (1996) was influenced by bagging, and it is superior

to bagging

Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is
constructed for each of these training sets, using the same
classification algorithm

� To classify an unknown sample x, let each classifier predict.
� The bagged classifier fFINAL(x) then combines the predictions

of the individual classifiers to generate the final outcome,
frequently this combination is simple voting

Boosting: motivation

� It is usually hard to design an accurate classifier which
generalizes well

� However it is usually easy to find many “rule of thumb”
weak classifiers
� A classifier is weak if it is only slightly better than random

guessing

� Can we combine several weak classifiers to produce an
accurate classifier?
� Question people have been working on since 1980’s

Ada Boost

� Let’s assume we have 2-class classification
problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function:

(((()))) (((())))∑∑∑∑
====

====
T

t
tt xfxg

1

αααα

� where ft(x) is the “weak” classifier

� As usual, the final classifier is the sign of the
discriminant function, that is ffinal(x) = sign[g(x)]

Idea Behind Ada Boost

� Algorithm is iterative

� Maintains distribution of weights over the training
examples

� Initially distribution of weights is uniform
� At successive iterations, the weight of misclassified

examples is increased, forcing the weak learner to
focus on the hard examples in the training set

More Comments on Ada Boost

� Ada boost is very simple to implement, provided you
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at
least slightly better than random

� Can be applied to boost any classifier, not
necessarily weak

Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training
points ∑ d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute the error rate εt as
εt= ∑i=1…N dt(xi) · I[yi ≠ ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis
αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]
� Normalize dt+1(xi) so that ∑i=1 dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as
εt= ∑ dt(xi) · I[yi ≠ ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)
� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]
� Normalize dt+1(xi) so that ∑t+1d(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� If the classifier does not take weighted samples, this
step can be achieved by sampling from the training
samples according to the distribution dt(x)

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ dt(xi) · I[yi ≠ ft(xi)]
� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)
� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]
� Normalize dt+1(xi) so that ∑ dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� Since the weak classifier is better than random, we
expect εt < 1/2

Ada Boost
� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as
εt= ∑ d(xi) · I(yi ≠ ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis
αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]
� Normalize dt+1(xi) so that ∑ dt+1(xi) = 1

� fFINAL(x) =sign [∑ αtft (x)]

� Recall that εt < ½
� Thus (1- εt)/ εt > 1 ⇒ αt > 0
� The smaller is εt, the larger is αt, and thus the more

importance (weight) classifier ft(x) gets in the final classifier
fFINAL(x) =sign [∑ αt ft (x)]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as
εt= ∑ dt (xi) · I(yi ≠ ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]
� Normalize dt+1(xi) so that ∑dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� Weight of misclassified examples is increased and the
new dt+1(xi)’s are normalized to be a distribution again

AdaBoost Example
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training
samples

Note: in the following slides, ht(x) is used instead of ft(x),
and D instead of d

AdaBoost Example

ROUND 1

AdaBoost Example

ROUND 2

AdaBoost Example

ROUND 3

AdaBoost Example

fFINAL(x)=

AdaBoost Comments

� It can be shown that the training error drops
exponentially fast, if each weak classifier is slightly
better than random

(((())))∑∑∑∑−−−−≤≤≤≤
t ttrainErr 22exp γγγγ

� Here γγγγt = εεεεt – 1/2, where εεεεt is classification error at
round t (weak classifier ft)

AdaBoost Comments

� But we are really interested in the generalization
properties of fFINAL(x), not the training error

� AdaBoost was shown to have excellent generalization
properties in practice, in fact in the beginning
researchers thought it does not overfit data
� It turns out it does overfit data eventually, if you run it really

long

� It can be shown that boosting “aggressively”
increases the margins of training examples, as
iterations proceed
� margins continue to increase even when training error

reaches zero
� Helps to explain empirically observed phenomena: test error

continues to drop even after training error reaches zero

AdaBoost Example

fFINAL(x)=

The Margin Distribution

0.550.520.14Minimum margin

0.00.07.7%margins≤0.5

3.13.38.4test error

0.00.00.0training error

10001005epoch

Practical Advantages of AdaBoost

� fast

� simple
� Has only one parameter to tune (T)

� flexible: can be combined with any classifier
� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses
that are better than random guessing

� finds outliers
� The hardest examples are frequently the “outliers”

Caveats

� performance depends on data & weak learner
� AdaBoost can fail if

� weak hypothesis too complex (overfitting)
� weak hypothesis too weak (γt→0 too quickly),

� underfitting
� Low margins → overfitting

� empirically, AdaBoost seems especially
susceptible to noise

