
cvx Users’ Guide
version 1.0

Michael Grant

mcgrant@stanford.edu

Stephen Boyd

boyd@stanford.edu

Yinyu Ye
yyye@stanford.edu

January 14, 2007

1

Contents

1 Introduction 4
1.1 What is cvx? . 4
1.2 What is disciplined convex programming? 4
1.3 About this version . 5
1.4 Feedback . 5
1.5 What cvx is not . 6

2 A quick start 6
2.1 Least-squares . 7
2.2 Bound-constrained least-squares . 9
2.3 Other norms and functions . 10
2.4 Other constraints . 12
2.5 An optimal trade-off curve . 13

3 The basics 14
3.1 Data types for variables . 14
3.2 Objective functions . 16
3.3 Constraints . 16
3.4 Functions . 16
3.5 Sets . 17
3.6 Dual variables . 18

4 The DCP ruleset 20
4.1 A taxonomy of curvature . 21
4.2 Top-level rules . 21
4.3 Constraints . 22
4.4 Expression rules . 22
4.5 Functions . 24
4.6 Compositions . 25
4.7 Monotonicity in nonlinear compositions 27
4.8 Scalar quadratic forms . 28

5 Semidefinite programming using cvx 29

6 Geometric programming using cvx 31
6.1 Top-level rules . 32
6.2 Constraints . 32
6.3 Expressions . 33

7 Advanced topics 34
7.1 Adding new functions to the cvx atom library 34
7.2 Controlling solver precision . 38
7.3 Miscellaneous cvx commands . 39
7.4 Assignments versus equality constraints 40

2

7.5 Indexed dual variables . 42

A Installation and compatability 44
A.1 Basic instructions . 44
A.2 Unsupported platforms . 45
A.3 About SeDuMi . 46
A.4 A Matlab 7.0 issue . 46

B Operators, functions, and sets 47
B.1 Basic operators and linear functions 47
B.2 Standard Matlab nonlinear functions 48
B.3 New nonlinear functions . 49
B.4 Sets . 52

C cvx status messages 53

D The GP/SDP approximation 54

E The irrational power limitation 55

F Overdetermined problems 56

G Acknowledgements 57

3

1 Introduction

1.1 What is cvx?

cvx is a modeling system for disciplined convex programming. Disciplined convex
programs, or DCPs, are convex optimization problems that adhere to a limited set
of construction rules that enable them to be analyzed and solved efficiently. The
set of DCPs includes most well-known classes of convex programs, including linear
programs (LPs), quadratic programs (QPs), second-order cone programs (SOCPs),
and semidefinite programs (SDPs). cvx can solve problems from all of these problem
classes and others as well. For background on convex optimization, see the book
Convex Optimization [BV04].

cvx also provides special modes to simplify the construction of problems from
two specific problem classes. In SDP mode, cvx applies a matrix interpretation to
the inequality operator, so that linear matrix inequalities (LMIs) and SDPs may be
expressed in a more natural form. In GP mode, cvx accepts all of the special functions
and combination rules of geometric programming, including monomials, posynomials,
and generalized posynomials [BKVH05], and transforms such problems into convex
form so that they can be solved efficiently.

cvx is implemented in Matlab [Mat04], effectively turning Matlab into an op-
timization modeling language. Model specifications are constructed using common
Matlab operations and functions, and standard Matlab code can be freely mixed with
those specifications. This combination makes it simple to perform the calculations
needed to form optimization problems, or to process the results obtained from their
solution. For example, it is easy to compute an optimal trade-off curve by forming
and solving a family of optimization problems by varying the constraints. As another
example, cvx can be used as a component of a larger system that uses convex opti-
mization, such as a branch and bound method, or an engineering design framework.

cvx was designed and implemented by Michael Grant, with input from Stephen
Boyd and Yinyu Ye [GBY06]. It incorporates ideas from earlier work by Löfberg
[Löf05], Dahl and Vandenberghe [DV05], Crusius [Cru02], Wu and Boyd [WB00], and
many others. The modeling language follows the spirit of AMPL [FGK99] or GAMS
[BKMR98]; unlike these packages, however, cvx is designed to fully exploit convexity.
The specific method for implementing cvx in Matlab draws heavily from YALMIP
[Löf05]. We hope to implement a version of cvx in Python, as part of the CVXOPT
system [DV05], in the near future.

1.2 What is disciplined convex programming?

The term disciplined convex programming refers to a methodology for constructing
convex optimization problems proposed by Michael Grant, Stephen Boyd, and Yinyu
Ye [GBY06, Gra04]. The name was chosen to communicate the treatment of convex
programming as a distinct discipline, one in which convexity is an advance require-
ment. In other words, it is designed to support the formulation and construction of
optimization problems that the user intends from the outset to be convex.

4

Disciplined convex programming imposes a limited set of conventions or rules,
which we call the DCP ruleset. Problems which adhere to the ruleset can be rapidly
and automatically verified as convex and converted to solvable form. Problems that
violate the ruleset are rejected, even when convexity of the problem is obvious to the
user. That is not to say that such problems cannot be solved; they just need to be
rewritten in a conforming manner.

A detailed description of the DCP ruleset is given in §4, and it is important for
anyone who wishes to actively use cvx to understand it. The ruleset is simple to learn,
drawn from basic principles of convex analysis, and resembles the practices of those
who study and use convex optimization. In addition, the ruleset actually enables
considerable benefits, such as the automatic conversion of problems to solvable form
and full support for nondifferentiable functions. In practice, we have found that
disciplined convex programs closely resemble their natural mathematical forms.

1.3 About this version

In this version of cvx, SeDuMi [Stu99] is the only core solver supported. SeDuMi
is an open-source interior-point solver written in Matlab for LPs, SOCPs, SDPs,
and combinations thereof. Future versions of cvx will support other solvers, such as
MOSEK [MOS05], CVXOPT [DV05], and a general purpose solver we are developing.

Because SeDuMi supports only LPs, SOCPs, and SDPs, this version of cvx can
only handle functions and sets that can be represented using these problem types.
Despite this limitation, the current version of cvx includes a wide variety of func-
tions, such as minimums and maximums, absolute values and ℓp norms, quadratic
forms and square roots, forms of the power function xp, the minimum and maximum
eigenvalues of a symmetric matrix. A few obscure functions have also been included,
such as the sum of the k largest entries of a vector, and the convex envelopes of
nonconvex polynomials. For a full list of functions supported by cvx, see Appendix
B. Geometric programs and the related log-sum-exp function are handled through a
novel approximation method that is described briefly in Appendix D.

Some useful functions that are not supported in the current version include ex-
ponential, log, and entropy. Support for such functions will require the use of one of
the new solvers mentioned above.

1.4 Feedback

Any feedback and criticism you might have about this software would be greatly ap-
preciated. Please contact Michael Grant or Stephen Boyd (mcgrant@stanford.edu,
boyd@stanford.edu) with your comments. If you discover a bug, please include the
following in your communication:

• the cvx model and supporting data that caused the error;

• a copy of any error messages that it produced;

• the version number of Matlab that you are running; and

5

• the name and version of the operating system you are using.

Doing so will increase our chances of being able to reproduce and fix the problem.

1.5 What cvx is not

Our goal in the design of cvx is to greatly simplify the specification and solution
of convex optimization problems. One indication of the progress we have made to-
wards this goal is the ease with which some users have encountered the limits of the
software’s performance, by creating models that are too large for cvx to solve.

Such limits are unavoidable due to a number of factors, including the finite re-
sources of a typical PC, the overhead imposed by the Matlab environment, and the
general-purpose design of the underlying numerical solver. Thus while cvx should
perform well for medium scale problems and many structured large-scale problems,
it may encounter difficulties when scaling to large problem instances.

Despite this advance warning, we would still greatly appreciate if you would send
us feedback if you do encounter limits like these. In some cases, such reports have led
to genuine improvements in the implementation of cvx that have increased its capacity
or performance. In others, we have been able to suggest ways to find equivalent
formulations to problems that cvx is able to process more efficiently.

2 A quick start

Once you have installed cvx (see §A), you can start using cvx by entering a cvx

specification into a Matlab script or function, or directly from the command prompt.
To delineate cvx specifications from surrounding Matlab code, they are preceded with
the statement cvx_begin and followed with the statement cvx_end. A specification
can include any ordinary Matlab statements, as well as special cvx-specific commands
for declaring primal and dual optimization variables and specifying constraints and
objective functions.

Within a cvx specification, optimization variables have no numerical value, but
are special Matlab objects. This enables Matlab to distinguish between ordinary
commands and cvx objective functions and constraints. As Matlab reads a cvx

specification, it builds an internal representation of the optimization problem. If
it encounters a violation of the rules of disciplined convex programming (such as
an invalid use of a composition rule or an invalid constraint), an error message is
generated. When Matlab reaches the cvx_end command, it completes the conversion
of the cvx specification to a canonical form, and calls the underlying solver (which is
SeDuMi, in this first version).

If the optimization is successful, the optimization variables declared in the cvx

specification are converted from objects to ordinary Matlab numerical values that
can be used in any further Matlab calculations. In addition, cvx also assigns a few
other related Matlab variables. One, for example, gives the status of the problem
(i.e., whether an optimal solution was found, or the problem was determined to be

6

infeasible or unbounded). Another gives the optimal value of the problem. Dual
variables can also be assigned.

This processing flow will become more clear as we introduce a number of simple
examples. We invite the reader to actually follow along with these examples in Mat-
lab, by running the quickstart script found in the examples subdirectory of the cvx
distribution. For example, if you are on Windows, and you have installed the cvx

distribution in the directory D:\Matlab\cvx, then you would type

cd D:\Matlab\cvx\examples

quickstart

at the Matlab command prompt. The script will automatically print key excerpts of
its code, and pause periodically so you can examine its output. (Pressing “Enter” or
“Return” resumes progress.) The line numbers accompanying the code excerpts in
this document correspond to the line numbers in the file quickstart.m.

2.1 Least-squares

We first consider the most basic convex optimization problem, least-squares. In a
least-squares problem, we seek x ∈ Rn that minimizes ‖Ax − b‖2, where A ∈ Rm×n

is skinny and full rank (i.e., m ≥ n and Rank(A) = n). Let us create some test
problem data for m, n, A, and b in Matlab:

15 m = 16; n = 8;

16 A = randn(m,n);

17 b = randn(m,1);

(We chose small values of m and n to keep the output readable.) Then the least-
squares solution x = (AT A)−1AT b is easily computed using the backslash operator:

20 x_ls = A \ b;

Using cvx, the same problem can be solved as follows:

23 cvx_begin

24 variable x(n);

25 minimize(norm(A*x-b));

26 cvx_end

(The indentation is used for purely stylistic reasons and is optional.) Let us examine
this specification line by line:

• Line 23 creates a placeholder for the new cvx specification, and prepares Matlab
to accept variable declarations, constraints, an objective function, and so forth.

• Line 24 declares x to be an optimization variable of dimension n. cvx requires
that all problem variables be declared before they are used in an objective
function or constraints.

7

• Line 25 specifies an objective function to be minimized; in this case, the Eu-
clidean or ℓ2-norm of Ax − b.

• Line 26 signals the end of the cvx specification, and causes the problem to be
solved.

The backslash form is clearly simpler—there is no reason to use cvx to solve a simple
least-squares problem. But this example serves as sort of a “Hello world!” program
in cvx; i.e., the simplest code segment that actually does something useful.

If you were to type x at the Matlab prompt after line 24 but before the cvx_end

command, you would see something like this:

x =

cvx affine expression (8x1 vector)

That is because within a specification, variables have no numeric value; rather, they
are Matlab objects designed to represent problem variables and expressions involving
them. Similarly, because the objective function norm(A*x-b) involves a cvx variable,
it does not have a numeric value either; it is also represented by a Matlab object.

When Matlab reaches the cvx_end command, the least-squares problem is solved,
and the Matlab variable x is overwritten with the solution of the least-squares prob-
lem, i.e., (AT A)−1AT b. Now x is an ordinary length-n numerical vector, identical to
what would be obtained in the traditional approach, at least to within the accuracy
of the solver. In addition, two additional Matlab variables are created:

• cvx_optval, which contains the value of the objective function; i.e., ‖Ax− b‖2;

• cvx_status, which contains a string describing the status of the calculation. In
this case, cvx_status would contain the string Solved. See Appendix C for a
list of the possible values of cvx_status and their meaning.

All three of these quantities, x, cvx_optval, and cvx_status, may now be freely
used in other Matlab statements, just like any other numeric or string values.1

There is not much room for error in specifying a simple least-squares problem,
but if you make one, you will get an error or warning message. For example, if you
replace line 25 with

maximize(norm(A*x-b));

which asks for the norm to be maximized, you will get an error message stating that
a convex function cannot be maximized (at least in disciplined convex programming):

??? Error using ==> maximize

Disciplined convex programming error:

Objective function in a maximization must be concave.

1If you type who or whos at the command prompt, you may see other, unfamiliar variables as

well. Any variable that begins with the prefix cvx is reserved for internal use by cvx itself, and

should not be changed.

8

2.2 Bound-constrained least-squares

Suppose we wish to add some simple upper and lower bounds to the least-squares
problem above: i.e., we wish to solve

minimize ‖Ax − b‖2

subject to l � x � u,
(1)

where l and u are given data, vectors with the same dimension as the variable x. The
vector inequality u � v means componentwise, i.e., ui ≤ vi for all i. We can no longer
use the simple backslash notation to solve this problem, but it can be transformed
into a quadratic program (QP), which can be solved without difficulty if you have
some form of QP software available.

Let us provide some numeric values for l and u:

47 bnds = randn(n,2);

48 l = min(bnds, [], 2);

49 u = max(bnds, [], 2);

Then if you have the Matlab Optimization Toolbox [Mat05], you can use the quadprog
function to solve the problem as follows:

53 x_qp = quadprog(2*A’*A, -2*A’*b, [], [], [], [], l, u);

This actually minimizes the square of the norm, which is the same as minimizing the
norm itself. In contrast, the cvx specification is given by

59 cvx_begin

60 variable x(n);

61 minimize(norm(A*x-b));

62 subject to

63 x >= l;

64 x <= u;

65 cvx_end

Three new lines of cvx code have been added to the cvx specification:

• The subject to statement on line 62 does nothing—cvx provides this state-
ment simply to make specifications more readable. It is entirely optional.

• Lines 63 and 64 represent the 2n inequality constraints l � x � u.

As before, when the cvx_end command is reached, the problem is solved, and the
numerical solution is assigned to the variable x. Incidentally, cvx will not transform
this problem into a QP by squaring the objective; instead, it will transform it into an
SOCP. The result is the same, and the transformation is done automatically.

In this example, as in our first, the cvx specification is longer than the Matlab
alternative. On the other hand, it is easier to read the cvx version and relate it
to the original problem. In contrast, the quadprog version requires us to know in
advance the transformation to QP form, including the calculations such as 2*A’*A

and -2*A’*b. For all but the simplest cases, a cvx specification is simpler, more
readable, and more compact than equivalent Matlab code to solve the same problem.

9

2.3 Other norms and functions

Now let us consider some alternatives to the least-squares problem. Norm minimiza-
tion problems involving the ℓ∞ or ℓ1 norms can be reformulated as LPs, and solved
using a linear programming solver such as linprog in the Matlab Optimization Tool-
box (see, e.g., [BV04, §6.1]). However, because these norms are part of cvx’s base
library of functions, cvx can handle these problems directly.

For example, to find the value of x that minimizes the Chebyshev norm ‖Ax−b‖∞,
we can employ the linprog command from the Matlab Optimization Toolbox:

97 f = [zeros(n,1); 1];

98 Ane = [+A, -ones(m,1) ; ...

99 -A, -ones(m,1)];

100 bne = [+b; -b];

101 xt = linprog(f,Ane,bne);

102 x_cheb = xt(1:n,:);

With cvx, the same problem is specified as follows:

108 cvx_begin

109 variable x(n);

110 minimize(norm(A*x-b,Inf));

111 cvx_end

The code based on linprog, and the cvx specification above will both solve the
Chebyshev norm minimization problem, i.e., each will produce an x that minimizes
‖Ax−b‖∞. Chebyshev norm minimization problems can have multiple optimal points,
however, so the particular x’s produced by the two methods can be different. The
two points, however, must have the same value of ‖Ax − b‖∞.

Similarly, to minimize the ℓ1 norm ‖ · ‖1, we can use linprog as follows:

139 f = [zeros(n,1); ones(m,1); ones(m,1)];

140 Aeq = [A, eye(m), +eye(m)];

141 lb = [-Inf(n,1); zeros(m,1); zeros(m,1)];

142 xzz = linprog(f,[],[],Aeq,b,lb,[]);

143 x_l1 = xzz(1:n,:);

The cvx version is, not surprisingly,

149 cvx_begin

150 variable x(n);

151 minimize(norm(A*x-b,1));

152 cvx_end

cvx automatically transforms both of these problems into LPs, not unlike those gen-
erated manually for linprog.

10

The advantage that automatic transformation provides is magnified if we consider
functions (and their resulting transformations) that are less well-known than the ℓ∞
and ℓ1 norms. For example, consider the following norm

‖Ax − b‖lgst,k = |Ax − b|[1] + · · · + |Ax − b|[k],

where |Ax − b|[i] denotes the ith largest element of the absolute values of the entries
of Ax − b. This is indeed a norm, albeit a fairly esoteric one. (When k = 1, it
reduces to the ℓ∞ norm; when k = m, the dimension of Ax − b, it reduces to the ℓ1

norm.) The problem of minimizing ‖Ax − b‖lgst,k over x can be cast as an LP, but
the transformation is by no means obvious so we will omit it here. But this norm is
provided in the base cvx library, and has the name norm_largest, so to specify and
solve the problem using cvx is easy:

179 k = 5;

180 cvx_begin

181 variable x(n);

182 minimize(norm_largest(A*x-b,k));

183 cvx_end

Unlike the ℓ1, ℓ2, or ℓ∞ norms, this norm is not part of the standard Matlab distri-
bution. Once you have installed cvx, though, the norm is available as an ordinary
Matlab function outside a cvx specification. For example, once the code above is
processed, x is a numerical vector, so we can type

cvx_optval

norm_largest(A*x-b,k)

The first line displays the optimal value as determined by cvx; the second recomputes
the same value from the optimal vector x as determined by cvx.

The list of supported nonlinear functions in cvx goes beyond the norm command.
For example, consider the Huber penalty function minimization problem

minimize
∑m

i=1 φ((Ax − b)i), φ(z) =

{

|z|2 |z| ≤ 1

2|z| − 1 |z| ≥ 1
(2)

The Huber penalty function is convex, and has been provided in the cvx function
library. So solving the above problem in cvx is simple:

204 cvx_begin

205 variable x(n);

206 minimize(sum(huber(A*x-b)));

207 cvx_end

cvx transforms this problem automatically into a second-order cone problem (SOCP).

11

2.4 Other constraints

We hope that, by now, it is not surprising that adding the simple bounds l � x � u
to the problems in §2.3 above is as simple as inserting the lines

x >= l;

x <= u;

before the cvx_end statement in each cvx specification. In fact, cvx supports more
complex constraints as well. For example, let us define new matrices C and d in
Matlab as follows,

227 p = 4;

228 C = randn(p,n);

229 d = randn(p,1);

Now let us add an equality constraint and a nonlinear inequality constraint to the
original least-squares problem:

232 cvx_begin

233 variable x(n);

234 minimize(norm(A*x-b));

235 subject to

236 C*x == d;

237 norm(x,Inf) <= 1;

238 cvx_end

This problem can be solved using the quadprog function, but the transformation is
not straightforward, so we will omit it here.

Expressions using comparison operators (==, >=, etc.) behave quite differently
when they involve cvx optimization variables than when they involve simple numeric
values. For example, because x is a declared variable, the expression C*x==d in
line 236 above causes a constraint to be included in the cvx specification, and returns
no value at all. On the other hand, outside of a cvx specification, if x has an appropri-
ate numeric value—including immediately after the cvx_end command—that same
expression would return a vector of 1s and 0s, corresponding to the truth or falsity of
each equality.2 Likewise, within a cvx specification, the statement norm(x,Inf)<=1

adds a nonlinear constraint to the specification; outside of it, it returns a 1 or a 0

depending on the numeric value of x (specifically, whether its ℓ∞-norm is less than or
equal to, or more than, 1).

Because cvx is designed to support convex optimization, it must be able to verify
that problems are convex. To that end, cvx adopts certain construction rules that
govern how constraint and objective expressions are constructed. For example, cvx
requires that the left- and right- hand sides of an equality constraint be affine. So a
constraint such as

2In fact, immediately after the cvx end command above, you would likely find that most if not all

of the values returned would be 0. This is because, as is the case with many numerical algorithms,

solutions are determined to within a nonzero numeric tolerance. So the equality constraints will be

satisfied closely, but often not exactly.

12

norm(x,Inf) == 1;

results in the following error:

??? Error using ==> cvx.eq

Disciplined convex programming error:

Both sides of an equality constraint must be affine.

Inequality constraints of the form f(x) ≤ g(x) or g(x) ≥ f(x) are accepted only if f
can be verified as convex and g verified as concave. So a constraint such as

norm(x,Inf) >= 1;

results in the following error:

??? Error using ==> cvx.ge

Disciplined convex programming error:

The left-hand side of a ">=" inequality must be concave.

The specifics of the construction rules are discussed in more detail in §4 below. These
rules are relatively intuitive if you know the basics of convex analysis and convex
optimization.

2.5 An optimal trade-off curve

For our final example in this section, let us show how traditional Matlab code and cvx

specifications can be mixed to form and solve multiple optimization problems. The
following code solves the problem of minimizing ‖Ax − b‖2 + γ‖x‖1, for a logarith-
mically spaced vector of (positive) values of γ. This gives us points on the optimal
tradeoff curve between ‖Ax − b‖2 and ‖x‖1. An example of this curve is given in
Figure 1.

268 gamma = logspace(-2, 2, 20);

269 l2norm = zeros(size(gamma));

270 l1norm = zeros(size(gamma));

271 fprintf(1, ’ gamma norm(x,1) norm(A*x-b)\n’);

272 fprintf(1, ’---------------------------------------\n’);

273 for k = 1:length(gamma),

274 fprintf(1, ’%8.4e’, gamma(k));

275 cvx_begin

276 variable x(n);

277 minimize(norm(A*x-b)+gamma(k)*norm(x,1));

278 cvx_end

279 l1norm(k) = norm(x,1);

280 l2norm(k) = norm(A*x-b);

281 fprintf(1, ’ %8.4e %8.4e\n’, l1norm(k), l2norm(k));

282 end

283 plot(l1norm, l2norm);

13

0 0.5 1 1.5 2 2.5 3 3.5
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

norm(x,1)

no
rm

(A
*x

−
b)

Figure 1: An example tradeoff curve from the quickstart demo, lines 268-286.

284 xlabel(’norm(x,1)’);

285 ylabel(’norm(A*x-b)’);

286 grid

Line 277 of this code segment illustrates one of the construction rules to be dis-
cussed in §4 below. A basic principle of convex analysis is that a convex function
can be multiplied by a nonnegative scalar, or added to another convex function, and
the result is then convex. cvx recognizes such combinations and allows them to be
used anywhere a simple convex function can be—such as an objective function to be
minimized, or on the appropriate side of an inequality constraint. So in our example,
the expression

norm(A*x-b)+gamma(k)*norm(x,1)

on line 277 is recognized as convex by cvx, as long as gamma(k) is positive or zero. If
gamma(k) were negative, then this expression becomes the sum of a convex term and
a concave term, which causes cvx to generate the following error:

??? Error using ==> cvx.plus

Disciplined convex programming error:

Addition of convex and concave terms is forbidden.

3 The basics

3.1 Data types for variables

As mentioned above, all variables must be declared using the variable command
(or the variables command; see below) before they can be used in constraints or an

14

objective function.
Variables can be real or complex; and scalar, vector, matrix, or n-dimensional

arrays. In addition, matrices can have structure as well, such as symmetry or band-
edness. The structure of a variable is given by supplying a list of descriptive keywords
after the name and size of the variable. For example, the code segment

variable w(50) complex;

variable X(20,10);

variable Y(50,50) symmetric;

variable Z(100,100) hermitian toeplitz;

(inside a cvx specification) declares that w is a complex 50-element vector variable,
X is a real 20 × 10 matrix variable, Y is a real 50 × 50 symmetric matrix variable,
and Z is a complex 100×100 Hermitian matrix variable. The structure keywords can
be applied to n-dimensional arrays as well: each 2-dimensional “slice” of the array is
given the stated structure. The currently supported structure keywords are:

banded(lb,ub) complex diagonal hankel hermitian lower_bidiagonal

lower_hessenberg lower_triangular scaled_identity skew_symmetric

symmetric toeplitz tridiagonal upper_bidiagonal upper_hankel

upper_hessenberg upper_triangular

With a couple of exceptions, the structure keywords are self-explanatory:

• banded(lb,ub): the matrix is banded with a lower bandwidth lb and an upper
bandwidth ub. If both lb and ub are zero, then a diagonal matrix results. ub

can be omitted, in which case it is set equal to lb. For example, banded(1,1)
(or banded(1)) is a tridiagonal matrix.

• scaled_identity: the matrix is a (variable) multiple of the identity matrix.
This is the same as declaring it to be diagonal and Toeplitz.

• upper_hankel, hankel: An upper_hankel matrix is zero below the antidiago-
nal; a hankel matrix is not (necessarily).

When multiple keywords are supplied, the resulting matrix structure is determined
by intersection; if the keywords conflict, then an error will result.

A variable statement can be used to declare only a single variable, which can
be a bit inconvenient if you have a lot of variables to declare. For this reason, the
statement variables statement is provided which allows you to declare multiple
variables; i.e.,

variables x1 x2 x3 y1(10) y2(10,10,10);

The one limitation of the variables command is that it cannot declare complex or
structured arrays (e.g., symmetric, etc.). These must be declared one at a time, using
the singular variable command.

15

3.2 Objective functions

Declaring an objective function requires the use of the minimize or maximize func-
tion, as appropriate. The objective function in a call to minimize must be convex;
the objective function in a call to maximize must be concave. At most one objective
function may be declared in a given cvx specification, and the objective function must
have a scalar value. (For the only exception to this rule, see the section on defining
new functions in §7.1).

If no objective function is specified, the problem is interpreted as a feasibility
problem, which is the same as performing a minimization with the objective function
set to zero. In this case, cvx_optval is either 0, if a feasible point is found, or +Inf,
if the constraints are not feasible.

3.3 Constraints

The following constraint types are supported in cvx:

• Equality == constraints, where both the left- and right-hand sides are affine
functions of the optimization variables.

• Less-than <=, < inequality constraints, where the left-hand expression is convex,
and the right-hand expression is concave.

• Greater-than >=, > constraints, where the left-hand expression is concave, and
the right-hand expression is convex. In cvx, < is the same as <=, but we en-
courage you to use the longer form <=, since it is mathematically correct.

These equality and inequality operators work for arrays. When both sides of
the constraint are arrays of the same size, the constraint is imposed elementwise. For
example, if a and b are m×n matrices, then a<=b is interpreted by cvx as mn (scalar)
inequalities, i.e., each entry of a must be less than or equal to the corresponding entry
of b. cvx also handles cases where one side is a scalar and the other is an array. This
is interpreted as a constraint for each element of the array, with the (same) scalar
appearing on the other side. As an example, if a is an m × n matrix, then a>=0 is
interpreted as mn inequalities: each element of the matrix must be nonnegative.

Note also the important distinction between =, which is an assignment, and ==,
which imposes an equality constraint (inside a cvx specification); for more on this
distinction, see §7.4. Also note that the non-equality operator ~= may not be used in
a constraint, because such a constraint is rarely convex. Inequalities cannot be used
if either side is complex.

cvx also supports a set membership constraint; see §3.5.

3.4 Functions

The base cvx function library includes a variety of convex, concave, and affine func-
tions which accept cvx variables or expressions as arguments. Many are common
Matlab functions such as sum, trace, diag, sqrt, max, and min, re-implemented as

16

needed to support cvx; others are new functions not found in Matlab. A complete
list of the functions in the base library can be found in §B. It’s also possible to add
your own new functions; see §7.1.

An example of a function in the base library is quad_over_lin, which represents
the quadratic-over-linear function, defined as f(x, y) = xT x/y, with domain Rn ×
R++, i.e., x is an arbitrary vector in Rn, and y is a positive scalar. (The function also
accepts complex x, but we’ll consider real x to keep things simple.) The quadratic-
over-linear function is convex in x and y, and so can be used as an objective, in an
appropriate constraint, or in a more complicated expression. We can, for example,
minimize the quadratic-over-linear function of (Ax − b, cT x + d) using

minimize(quad_over_lin(A*x-b, c’*x+d));

inside a cvx specification, assuming x is a vector optimization variable, A is a matrix,
b and c are vectors, and d is a scalar. cvx recognizes this objective expression as a
convex function, since it is the composition of a convex function (the quadratic-over-
linear function) with an affine function. You can also use the function quad_over_lin

outside a cvx specification. In this case, it just computes its (numerical) value, given
(numerical) arguments.

3.5 Sets

cvx supports the definition and use of convex sets. The base library includes the cone
of positive semidefinite n×n matrices, the second-order or Lorentz cone, and various
norm balls. A complete list of sets supplied in the base library is given in §B.

Unfortunately, the Matlab language does not have a set membership operator,
such as x in S, to denote x ∈ S. So in cvx, we use a slightly different syntax to
require that an expression is in a set. To represent a set we use a function that returns
an unnamed variable that is required to be in the set. Consider, for example, Sn

+, the
cone of positive semidefinite n×n matrices. In cvx, we represent this by the function
semidefinite(n), which returns an unnamed new variable, that is constrained to be
positive semidefinite. To require that the matrix expression X be positive semidefinite,
we use the syntax X == semidefinite(n). The literal meaning of this is that X is
constrained to be equal to some unnamed variable, which is required to be an n × n
symmetric positive semidefinite matrix. This is, of course, equivalent to saying that
X must be symmetric positive semidefinite.

As an example, consider the constraint that a (matrix) variable X is a correlation
matrix, i.e., it is symmetric, has unit diagonal elements, and is positive semidefinite.
In cvx we can declare such a variable and constraints using

variable X(n,n) symmetric;

X == semidefinite(n);

diag(X) == ones(n,1);

The second line here imposes the constraint that X be positive semidefinite. (You can
read ‘==’ here as ‘is’, so the second line can be read as ‘X is positive semidefinite’.)

17

The lefthand side of the third line is a vector containing the diagonal elements of X,
whose elements we require to be equal to one. Incidentally, cvx allows us to simplify
the third line to

diag(X) == 1;

because cvx follows the Matlab convention of handling array/scalar comparisons by
comparing each element of the array independently with the scalar.

Sets can be combined in affine expressions, and we can constrain an affine expres-
sion to be in a convex set. For example, we can impose constraints of the form

A*X*A’-X == B*semidefinite(n)*B’;

where X is an n × n symmetric variable matrix, and A and B are n × n constant
matrices. This constraint requires that AXAT − X = BY BT , for some Y ∈ Sn

+.
cvx also supports sets whose elements are ordered lists of quantities. As an ex-

ample, consider the second-order or Lorentz cone,

Qm = { (x, y) ∈ Rm × R | ‖x‖2 ≤ y } = epi ‖ · ‖2, (3)

where epi denotes the epigraph of a function. An element of Qm is an ordered list,
with two elements: the first is an m-vector, and the second is a scalar. We can use this
cone to express the simple least-squares problem from §2.1 (in a fairly complicated
way) as follows:

minimize y
subject to (Ax − b, y) ∈ Qm.

(4)

cvx uses Matlab’s cell array facility to mimic this notation:

cvx_begin

variables x(n) y;

minimize(y);

subject to

{ A*x-b, y } == lorentz(m);

cvx_end

The function call lorentz(m) returns an unnamed variable (i.e., a pair consisting
of a vector and a scalar variable), constrained to lie in the Lorentz cone of length
m. So the constraint in this specification requires that the pair A*x-b, y lies in the
appropriately-sized Lorentz cone.

3.6 Dual variables

When a disciplined convex program is solved, the associated dual problem is also
solved. (In this context, the original problem is called the primal problem.) The
optimal dual variables, each of which is associated with a constraint in the original
problem, give valuable information about the original problem, such as the sensitiv-
ities with respect to perturbing the constraints [BV04, Ch.5]. To get access to the

18

optimal dual variables in cvx, you simply declare them, and associate them with the
constraints. Consider, for example, the LP

minimize cT x
subject to Ax � b

with variable x ∈ Rn, and m inequality constraints. The dual of this problem is

maximize −bT y
subject to c + AT y = 0

y � 0

The dual variable y is associated with the inequality constraint Ax � b. To represent
the primal problem and this dual variable in cvx, we use the following syntax:

n = size(A,2);

cvx_begin

variable x(n);

dual variable y;

minimize(c’ * x);

subject to

y : A * x <= b;

cvx_end

The line

dual variable y

tells cvx that y will represent the dual variable, and the line

y : A * x <= b;

associates it with the inequality constraint. Notice how the colon : operator is being
used in a different manner than in standard Matlab, where it is used to construct
numeric sequences like 1:10. This new behavior is in effect only when a dual variable
is present, so there should be no confusion or conflict. No dimensions are given for y,
because they are automatically determined from the constraint to which it is assigned.
For example, if m = 20, typing y at the Matlab command prompt immediately before
cvx_end yields

y =

cvx dual variable (20x1 vector)

It is not necessary to place the dual variable on the left side of the constraint; for
example, the line above can also be written in this way:

A * x <= b : y;

In addition, dual variables for inequality constraints will always be nonnegative, which
means that the sense of the inequality can be reversed without changing the dual
variable’s value; i.e.,

19

b >= A * x : y;

yields an identical result. For equality constraints, on the other hand, swapping the
left- and right- hand sides of an equality constraint will negate the optimal value of
the dual variable.

After the cvx_end statement is processed, and assuming the optimization was
sucessful, cvx assigns numerical values to x and y—the optimal primal and dual
variable values, respectively. Optimal primal and dual variables for this LP must
satisfy the complementary slackness conditions

yi(b − Ax)i = 0, i = 1, . . . , m. (5)

You can check this in Matlab with the line

y .* (b-A*x)

which prints out the products of the entries of y and b-A*x, which should be nearly
zero. This line must be executed after the cvx_end command (which assigns nu-
merical values to x and y); it will generate an error if it is executed inside the cvx

specification, where y and b-A*x are still just abstract expressions.
If the optimization is not successful, because either the problem is infeasible or

unbounded, then x and y will have different values. In the unbounded case, x will
contain an unbounded direction; i.e., a point x satisfying

cT x = −1, Ax ≤ 0, (6)

and y will be filled with NaN values, reflecting the fact that the dual problem is
infeasible. In the infeasible case, it will be x that is filled with NaN values, while y

will contain an unbounded dual direction; i.e., a point y satisfying

bT y = 1, AT y = 0, y ≥ 0 (7)

Of course, the precise interpretation of primal and dual points and/or directions
depends on the structure of the problem. See references such as [BV04] for more on
the interpretation of dual information.

The cvx language also supports the declaration of indexed dual variables. These
prove useful when the number of constraints in a model (and, therefore, the number
of dual variables) depends upon the parameters themselves. For more information on
indexed dual variables, see §7.5.

4 The DCP ruleset

cvx enforces the conventions dictated by the disciplined convex programming ruleset,
or DCP ruleset for short. cvx will issue an error message whenever it encounters
a violation of any of the rules, so it is important to understand them before begin-
ning to build models. The rules are drawn from basic principles of convex analysis,

20

and are easy to learn, once you’ve had an exposure to convex analysis and convex
optimization.

The DCP ruleset is a set of sufficient, but not necessary, conditions for convexity.
So it is possible to construct expressions that violate the ruleset but are in fact convex.
As an example consider the function

√
x2 + 1 = ‖[x 1]‖2, which is convex. If it is

written as

norm([x 1])

(assuming x is a scalar variable or affine expression) it will be recognized by cvx

as a convex expression, and therefore can be used in (appropriate) constraints and
objectives. But if it is written as

sqrt(x^2+1)

cvx will reject it, since convexity of this function does not follow from the cvx ruleset.
If a convex (or concave) function is not recognized as convex or concave by cvx,

it can be added as a new atom; see §7.1.

4.1 A taxonomy of curvature

In disciplined convex programming, a numeric expression is classified by its curvature.
There are four categories of curvature: constant, affine, convex, and concave. For a
function f : Rn → R defined on all Rn, the categories have the following meanings:

constant: f(αx + (1 − α)y)= f(x) ∀x, y ∈ Rn, α ∈ R
affine: f(αx + (1 − α)y)= αf(x) + (1 − α)f(y) ∀x, y ∈ Rn, α ∈ R
convex: f(αx + (1 − α)y)≤ αf(x) + (1 − α)f(y) ∀x, y ∈ Rn, α ∈ [0, 1]
concave: f(αx + (1 − α)y)≥ αf(x) + (1 − α)f(y) ∀x, y ∈ Rn, α ∈ [0, 1]

Of course, there is significant overlap in these categories. For example, constant
expressions are also affine, and (real) affine expressions are both convex and concave.

Convex and concave expressions are real by definition. Complex constant and
affine expressions can be constructed, but their usage is more limited; for example,
they cannot appear as the left- or right-hand side of an inequality constraint.

4.2 Top-level rules

cvx supports three different types of disciplined convex programs:

• A minimization problem, consisting of a convex objective function and zero or
more constraints.

• A maximization problem, consisting of a concave objective function and zero or
more constraints.

• A feasibility problem, consisting of one or more constraints.

21

The validity of each constraint is determined individually, so it is not sufficient for
the intersection of the constraints to be convex. For example, the set

{

x ∈ R | x2 ≥ 1, x ≥ 0
}

is convex (it is just the interval [1,∞)), but its description includes a nonconvex
constraint x2 ≥ 1.

4.3 Constraints

Three types of constraints may be specified in disciplined convex programs:

• An equality constraint == where both sides are affine.

• A less-than inequality constraint <=, < where the left side is convex and the
right side is concave.

• A greater-than inequality constraint >=, > where the left side is concave and the
right side is convex.

Deliberately omitted from this list are non-equality constraints; i.e., constraints using
the ~= (6=) operator. This is because, in general, such constraints are not convex.

One or both sides of an equality constraint may be complex; inequality constraints,
on the other hand, must be real. A complex equality constraint is equivalent to two
real equality constraints, one for the real part and one for the imaginary part. An
equality constraint with a real side and a complex side has the effect of constraining
the imaginary part of the complex side to be zero.

As discussed in §3.5 above, cvx enforces set membership constraints (e.g., x ∈ S)
using equality constraints. The rule that both sides of an equality constraint must
be affine applies to set membership constraints as well. In fact, the returned value of
set atoms like semidefinite() and lorentz() is affine, so it is sufficient to simply
verify the remaining portion of the set membership constraint. For composite values
like { x, y }, each element must be affine.

In this version, strict inequalities <, > are interpreted identically to nonstrict
inequalities >=, <=. Eventually cvx will flag strict inequalities so that they can be
verified after the optimization is carried out.

4.4 Expression rules

So far, the rules as stated are not particularly restrictive, in that all convex programs
(disciplined or otherwise) typically adhere to them. What distinguishes disciplined
convex programming from more general convex programming are the rules governing
the construction of the expressions used in objective functions and constraints.

Disciplined convex programming determines the curvature of numeric expressions
by recursively applying the following rules. While this list may seem long, it is for
the most part an enumeration of basic rules of convex analysis for combining convex,
concave, and affine forms: sums, multiplication by scalars, and so forth.

22

• A valid constant expression is

– any well-formed Matlab expression that evaluates to a finite value.

• A valid affine expression is

– a valid constant expression;

– a declared variable;

– a valid call to a function in the atom library with an affine result;

– the sums or difference of affine expressions;

– the product of an affine expression and a constant.

• A valid convex expression is

– a valid constant, affine, or log-convex expression (§6);

– a valid call to a function in the atom library with a convex result;

– an affine scalar raised to a power p = 2, 4, 6, 8, ...;

– a convex scalar quadratic form (§4.8);

– the sum of two or more convex expressions;

– the difference between a convex expression and a concave expression;

– the product of a convex expression and a nonnegative constant;

– the product of a concave expression and a nonpositive constant;

– the negation of a concave expression.

• A valid concave expression is

– a valid constant or affine expression;

– a valid call to a function in the atom library with a concave result;

– a concave scalar raised to a power p ∈ (0, 1);

– a concave scalar quadratic form (§4.8);

– the sum of two or more concave expressions;

– the difference between a concave expression and a convex expression;

– the product of a concave expression and a nonnegative constant;

– the product of a convex expression and a nonpositive constant;

– the negation of a convex expression.

If an expression cannot be categorized by this ruleset (or their geometric programming
counterparts described in §6.3), then it is rejected by cvx. For matrix and array
expressions, these rules are applied on an elementwise basis. We note that the set of
rules listed above is redundant; there are much smaller, equivalent sets of rules.

23

Of particular note is that these expression rules generally forbid products between
nonconstant expressions, with the exception of scalar quadratic forms (see §4.8 below).
For example, the expression x*sqrt(x) happens to be a convex function of x, but
its convexity cannot be verified using the cvx ruleset, so it is rejected by cvx. We
call this the no-product rule, and paying close attention to it will go a long way to
insuring that the expressions you construct are valid.

The function
√

x2 + 1, written as the expression sqrt(x^2+1), is another example
of a convex function that cannot be verified as convex using the cvx ruleset. (It is
recognized as convex when it is written as norm([x,1]), since norm is in the cvx base
library of convex functions.)

4.5 Functions

Because functions in the cvx atom library are created in the Matlab language, they
differ in certain ways from functions described in a formal mathematical sense, so let
us address these differences here.

Functions are categorized in two “dimensions”: curvature (constant, affine, con-
vex, or concave) and monotonicity (nondecreasing, nonincreasing, or nonmonotonic).
Curvature determines the conditions under which they can appear in expressions ac-
cording to the expression rules given in §4.4 above. Monotonicity determines how
they can be used in function compositions, as we shall see in §4.6 below.

For functions with only one argument, the categorization is straightforward. As
examples, we have:

sum(x)
∑

i xi affine, nondecreasing
abs(x) |x| convex, nonmonotonic
log(x) log x concave, nondecreasing

Convexity and monotonicity are always determined in an extended-valued sense. For
example, when its argument is a nonconstant cvx expression, the square root function
sqrt(x) is interpreted by cvx as follows:

sqrt(x)

{√
x x ≥ 0

−∞ x < 0
concave, nondecreasing

(This intepretation has the effect of constraining the argument x to be nonnegative.)
Furthermore, cvx does not consider a function to be convex or concave if it is so only
over a portion of its domain. For example, consider the function

1/x 1/x (x 6= 0) not convex/concave/affine, nonomonotonic

This function is convex if its argument is positive, and concave if its argument is
negative. Over its whole domain, though, it is neither convex nor concave; and in
cvx, of course, it is not recognized as either convex or concave. However, the function

inv_pos(x)

{

1/x x > 0

+∞ x ≤ 0
convex, nonincreasing

24

which is convex and nonincreasing, has been included in the atom library, so it can
be used freely in constraints and objective functions.

For functions that have multiple arguments, additional considerations must be
made. First of all, curvature is always considered jointly, but monotonicity can be
considered on an argument-by-argument basis. For example,

quad_over_lin(x, y)

{

|x|2/y y > 0

+∞ y ≤ 0
convex, nonincreasing in y

is jointly convex in both arguments, but it is monotonic only in its second argument.
In addition, some functions are convex, concave, or affine only for a subset of its

arguments. For example, the function

norm(x, p) ‖x‖p (1 < p < +∞) convex in x, nonmonotonic

is convex only in its first argument. Whenever this function is used in a cvx speci-
fication, then, the remaining arguments must be constant, or cvx will issue an error
message. Such arguments correspond to a function’s parameters in mathematical
terminology; e.g.,

fp(x) : Rn → R, fp(x) , ‖x‖
So it seems fitting that we should refer to such arguments as parameters in this
context as well. Henceforth, whenever we speak of a cvx function as being convex,
concave, or affine, we will assume that its parameters are known and have been given
appropriate, constant values.

4.6 Compositions

A basic rule of convex analysis is that convexity is closed under composition with an
affine mapping. This is part of the DCP ruleset as well:

• A convex, concave, or affine function may accept as an argument an affine
expression (assuming it is of compatible size).

(The result is convex, concave, or affine, respectively.) For example, consider the
function square(x), which is provided in the cvx atom library. This function
squares its argument; i.e., it computes x.*x. (For array arguments, it squares each
element independently.) It is in the cvx atom library, and known to be convex,
provided its argument is real. So if x is a real variable, then

square(x)

is accepted by cvx as a convex expression—and, thanks to the above rule, so is

square(A * x + b)

if A and b are constant matrices of compatible size.
DCP also allows nonlinear functions to be combined using more sophisticated

composition rules. The general rules that govern these compositions are as follows:

25

• If a function is convex and nondecreasing in a given argument, then that argu-
ment may be convex.

• If a function is convex and nonincreasing in a given argument, then that argu-
ment may be concave.

• If a function is concave and nondecreasing in a given argument, then that ar-
gument may be concave.

• If a function is concave and nonincreasing in a given argument, then that argu-
ment may be convex.

(In each case, we assume that the argument is of compatible size.) For more on
composition rules, see [BV04, §3.2.4]. In fact, with the exception of scalar quadratic
expressions, the entire DCP ruleset can be thought of as specific manifestations of
these four rules.

For example, the pointwise maximum of convex functions is convex, because the
maximum function is convex and nondecreasing. Thus if x is a vector variable then

max(abs(x))

obeys the first of the four composition rules and is therefore accepted by cvx. In
fact, the infinity-norm function norm(x, Inf) is defined in exactly this manner.
Affine functions must obey these composition rules as well; but because they are both
convex and concave, they prove a bit more flexible. So, for example, the expressions

sum(square(x))

sum(sqrt(x))

are both valid nonlinear compositions in cvx, according to the convex/nondecreasing
and concave/nondecreasing rules, respectively.

Let us consider a more complex example in depth. Suppose x is a vector vari-
able, and A, b, and f are constants with appropriate dimensions. cvx recognizes the
expression

sqrt(f’*x) + min(4,1.3-norm(A*x-b))

as concave. Consider the term sqrt(f’*x). cvx recognizes that sqrt is convex and
f’*x is affine, so it concludes that sqrt(f’*x) is concave. Now consider the second
term min(4,1.3-norm(A*x-b)). cvx recognizes that min is concave and nondecreas-
ing, so it can accept concave arguments. cvx recognizes that 1.3-norm(A*x-b) is
concave, since it is the negative of a convex function. So cvx concludes that the sec-
ond term is also concave. The whole expression is then recognized as concave, since
it is the sum of two concave functions.

As these composition rules are sufficient but not necessary, some expressions which
are obviously convex or concave will fail to satisfy them. For example, if x is a vector
variable, the expression

sqrt(sum(square(x)))

26

is rejected by cvx, because there is no rule governing the composition of a concave
nondecreasing function with a convex function. Of course, the workaround is simple
in this case: use norm(x) instead, since norm is in the atom library and known by
cvx to be convex.

4.7 Monotonicity in nonlinear compositions

Monotonicity is a critical aspect of the rules for nonlinear compositions. This has
some consequences that are not so obvious, as we shall demonstrate here by example.
Consider the expression

square(square(A * x + b))

where square(A * x + b) was defined in the previous section. This expression
effectively raises each element of A*x+b to the fourth power, and it is clearly elemen-
twise convex. But cvx will not recognize it as such, because a convex function of a
convex expression is not necessarily convex: for example,

square(square(A * x + b) - 1)

is not convex. The problem is that square is not monotonic, so the composition rules
cannot be applied.

Examination of these examples reveals a key difference: in the first, the argument
to the outer square is nonnegative; in the second, it is not. If cvx had access to this
information, it could indeed conclude that the first composition is convex by applying
a modified form of the first nonlinear composition rule. Alas, for now, cvx does not
have such access; so it cannot make such conclusions. It must instead require that
outer functions be globally monotonic.

There are many ways to modify this example that it complies with the ruleset. The
simplest is to take advantage of a recent addition to cvx that allows affine expressions
to be raised to a positive even integer power using the .^ operator:

(A * x + b).^4 <= 1

But let us look at some alternatives for further illustration. One is to recognize that
a constraint such as

square(square(A * x + b)) <= 1

is equivalent to

square(A * x + b) <= z

square(z) <= 1

where z is a new variable of the same size as A*x+b. The equivalence of this decom-
position is a direct consequence of the monotonicity of square when z is nonnegative.
In fact, cvx performs this decomposition itself for those nonlinear compositions that
it accepts; i.e., those that satisfy the DCP ruleset.

27

Another approach is to use an alternate outer function square_pos, which we
have included in the library to implement the following function f :

f(x) , (max{x, 0})2 =

{

x2 x ≥ 0

0 x ≤ 0

Obviously, square and square_pos coincide when their inputs are nonnegative. But
square_pos is globally nondecreasing, so it can be used as the outer function in a
nonlinear composition. Thus, the expression

square_pos(square(A * x + b))

is mathematically equivalent to the rejected version, but satisfies the DCP ruleset
and is therefore acceptable to cvx. This is the reason several functions in the cvx

atom library come in two forms: the “natural” form, and one that is modified in such
a way that it is monotonic, and can therefore be used in compositions. Other such
“monotonic extensions” include sum_square_pos and quad_pos_over_lin. If you
are implementing a new function yourself, you might wish to consider if a monotonic
extension of that function would be a useful addition as well.

Yet another approach is to use one of the above techniques within a new function,
say power4, that enables the original expression to be rewritten

power4(A * x + b)

and new expressions can now take advantage of the effort. In §7.1, we show how to
accomplish this. (Of course, in this particular case, it is no longer necessary, since
cvx supports positive even powers natively.)

4.8 Scalar quadratic forms

In its original form described in [Gra04, GBY06], the DCP ruleset forbids even the
use of simple quadratic expressions such as x * x (assuming x is a variable). For
practical reasons, we have chosen to make an exception to the ruleset to allow for the
recognition of certain specific quadratic forms that map directly to certain convex
quadratic functions (or their concave negatives) in the cvx atom library:

square(x) ⇐= conj(x) .* x

sum_square(y) ⇐= y’ * y

quad_form(A * x - b, Q) ⇐= (A*x-b)’*Q*(Ax-b)

In other words, cvx detects quadratic expressions such as those on the right above,
and determines whether or not they are convex or concave; and if so, translates them
to an equivalent function call, such as those on the left above.

When we say “single-term” above, we mean either a single product of affine ex-
pressions, or a single squaring of an affine expression. That is, cvx verifies each
quadratic term independently, not collectively. So, for example, given scalar variables
x and y, the expression

28

x ^ 2 + 2 * x * y + y ^2

will cause an error in cvx, because the second of the three terms 2 * x * y, is not
convex. But equivalent expressions

(x + y) ^ 2

(x + y) * (x + y)

will be accepted. cvx actually completes the square when it comes across a scalar
quadratic form, so the form need not be symmetric. For example, if z is a vector
variable, a, b are constants, and Q is positive definite, then

(z + a)’ * Q * (z + b)

will be recognized as convex. Once a quadratic form has been verified by cvx, it
can be freely used in any way that a normal convex or concave expression can be, as
described in §4.4.

Quadratic forms should actually be used less frequently in disciplined convex pro-
gramming than in a more traditional mathematical programming framework, where
a quadratic form is often a smooth substitute for a nonsmooth form that one truly
wishes to use. In cvx, such substitutions are rarely necessary, because of its support
for nonsmooth functions. For example, the constraint

sum((A * x - b) .^ 2) <= 1

is equivalently represented using the Euclidean norm:

norm(A * x - b) <= 1

With modern solvers, the second form can be represented using a second-order cone
constraint—so the second form may actually be more efficient. So we encourage you to
re-evaluate the use of quadratic forms in your models, in light of the new capabilities
afforded by disciplined convex programming.

5 Semidefinite programming using cvx

Those who are familiar with semidefinite programming (SDP) know that the con-
straints that utilize the set semidefinite(n) in §3.5 above are, in practice, typi-
cally expressed using linear matrix inequality (LMI) notation. For example, given
X = XT ∈ Rn×n, the constraint X � 0 denotes that X ∈ Sn

+; that is, that X is
positive semidefinite.

cvx provides a special SDP mode which allows this LMI convention to be employed
inside cvx models using Matlab’s standard inequality operators >=, <=, etc.In order
to use it, one must simply begin a model with the statement cvx_begin sdp or
cvx_begin SDP instead of simply cvx_begin. When SDP mode is engaged, cvx

interprets certain inequality constraints in a different manner. To be specific:

• Equality constraints are interpreted the same (i.e., elementwise).

29

• Inequality constraints involving vectors and scalars are interpreted the same;
i.e., elementwise.

• Inequality constraints involving non-square matrices are disallowed ; attempt-
ing to use them causes an error. If you wish to do true elementwise com-
parison of matrices X and Y, use a vectorization operation X(:) <= Y(:) or
vec(X) <= vec(Y). (vec is a function provided by cvx that is equivalent
to the colon operation.)

• Inequality constraints involving real, square matrices are interpreted as follows:

X >= Y and X > Y become X - Y == semidefinite(n)

X <= Y and X < Y become Y - X == semidefinite(n)

If either side is complex, then the inequalities are interpreted as follows:

X >= Y and X > Y become X - Y == hermitian_semidefinite(n)

X <= Y and X < Y become Y - X == hermitian_semidefinite(n)

In the above, n=max(size(X,1),size(Y,1)).

• There is one additional restriction: both X and Y must be the same size, or one
must be the scalar zero. For example, if X and Y are matrices of size n,

X >= 1 or 1 >= Y illegal
X >= ones(n,n) or ones(n,n) >= Y legal

X >= 0 or 0 >= Y legal

In effect, cvx enforces a stricter interpretation of the inequality operators for
LMI constraints.

• Note that LMI constraints enforce symmetry (real or Hermitian, as appropriate)
on their inputs. Unlike SDPSOL [WB00], cvx does not extract the symmetric
part for you: you must take care to insure symmetry yourself. Since cvx sup-
ports the declaration of symmetric matrices, this is reasonably straightforward.
If cvx cannot determine that an LMI is symmetric, a warning will be issued.

• A dual variable, if supplied, will be applied to the converted equality constraint.
It will be given a positive semidefinite value if an optimal point is found.

So, for example, the cvx model found in the file examples/closest_toeplitz_sdp.m,

cvx_begin

variable Z(n,n) hermitian toeplitz

dual variable Q

minimize(norm(Z - P, ’fro’))

Z == hermitian_semidefinite(n) : Q;

cvx_end

30

can also be written as follows:

cvx_begin sdp

variable Z(n,n) hermitian toeplitz

dual variable Q

minimize(norm(Z - P, ’fro’))

Z >= 0 : Q;

cvx_end

Many other examples in the cvx example library utilize semidefinite constraints; and
all of them use SDP mode. To find them, simply search for the text cvx_begin sdp

in the examples/ subdirectory tree using your favorite file search tool. One of these
examples is reproduced in §7.5.

Since semidefinite programming is popular, some may wonder why SDP mode is
not the default behavior. The reason for this is that we place a strong emphasis
on maintaining consistency between Matlab’s native behavior and that of cvx; and
the use of the >=, <=, >, < operators to create LMIs represents a deviation from
that ideal. For example, the expression Z >= 0 in the example above constrains
the variable Z to be positive semidefinite. But after the model has been solved and
Z has been replaced with a numeric value, the expression Z >= 0 will test for the
elementwise nonnegativity of Z. To verify that the numeric value of Z is, in fact,
positive semidefinite, you must perform a test like min(eig(Z)) >= 0.

6 Geometric programming using cvx

Geometric programs (GPs) are a special class mathematical programs that can be
converted to convex form using a change of variables. The convex form of GPs can
be expressed as DCPs, but cvx also provides a special mode that allows a GP to be
specified in its native form. cvx will automatically perform the necessary conversion,
compute a numerical solution, and translate the results back to the original problem.
A tutorial on geometric programming is beyond the scope of this document, so we
refer the reader to [BKVH05].

To use utilize this GP mode, you must begin your cvx specification with the com-
mand cvx_begin gp or cvx_begin GP instead of simply cvx_begin. For example,
the following code, found in the example library at gp/max_volume_box.m, deter-
mines the maximum volume box subject to various area and ratio constraints:

cvx_begin gp

variables w h d

maximize(w * h * d)

subject to

2*(h*w+h*d) <= Awall;

w*d <= Afloor;

h/w >= alpha;

h/w <= beta;

31

d/w >= gamma;

d/w <= delta;

cvx_end

As the example illustrates, cvx supports the construction of monomials and posyn-
omials using addition, multiplication, division (when appropriate), and powers. In
addition, cvx supports the construction of generalized geometric programs (GGPs),
by permitting the use of generalized posynomials wherever posynomials are permitted
in standard GP [BKVH05].

The solver used in this version of cvx, SeDuMi, does not support geometric pro-
gramming natively. Therefore, we have developed an approximation method which
allows cvx to use SeDuMi to solve GPs and related problems. The method converts
GPs to SDPs, and the approximation error can be bounded in advance. Details of the
method are outside of the scope of this document, but AppendixD provides a brief
introduction and describes how to control its accuracy. While this approach is ulti-
mately not suited for very large GPs, it has proven in practice to perform respectably
on small- and medium-scale problems.

In the remainder of this section, we will describe specific rules that apply when
constructing models in GP mode.

6.1 Top-level rules

cvx supports three types of geometric programs:

• A minimization problem, consisting of a generalized posynomial objective and
zero or more constraints.

• A maximization problem, consisting of a monomial objective and zero or more
constraints.

• A feasibility problem, consisting of one or more constraints.

The asymmetry between minimizations and maximizations—specifically, that only
monomial objectives are allowed in the latter—is an unavoidable artifact of the ge-
ometry of GPs and GGPs.

6.2 Constraints

Three types of constraints may be specified in geometric programs:

• An equality constraint == where both sides are monomials.

• A less-than inequality constraint <=, < where the left side is a generalized posyn-
omial and the right side is a monomial.

• A greater-than inequality constraint >=, > where the left side is a monomial and
the right side is a generalized posynomial.

As with DCPs, non-equality constraints are not permitted.

32

6.3 Expressions

The basic building blocks of generalized geometric programming are monomials,
posynomials, and generalized posynomials. A valid monomial is

• a declared variable;

• the product of two or more monomials;

• the ratio of two monomials;

• a monomial raised to a real power; or

• a call to one of the following functions with monomial arguments: prod, cumprod,
geomean, sqrt.

A valid posynomial expression is

• a valid monomial;

• the sum of two or more posynomials;

• the product of two or more posynomials;

• the ratio of a posynomial and a monomial;

• a posynomial raised to a positive integral power; or

• a call to one of the following functions with posynomial arguments: sum, cumsum,
mean, prod, cumprod.

A valid generalized posynomial expression is

• a valid posynomial;

• the sum of two or more generalized posynomials;

• the product of two or more generalized posynomials;

• the ratio of a generalized posynomial and a monomial;

• a generalized posynomial raised to a positive real power; or

• a call to one of the following functions with arguments that are generalized
posynomials: sum, cumsum, mean, prod, cumprod, geomean, sqrt, norm,
sum_largest, norm_largest.

It is entirely possible to create and manipulate arrays of monomials, posynomials,
and/or generalized posynomials in cvx, in which case these rules extend in an ob-
vious manner. For example, the product of two monomial matrices produces either
a posynomial matrix or a monomial matrix, depending upon the structure of said
matrices.

33

7 Advanced topics

In this section we describe a number of the more advanced capabilities of cvx. We
recommend that you skip this section at first, until you are comfortable with the basic
capabilities described above.

7.1 Adding new functions to the cvx atom library

The restrictions imposed by the DCP ruleset imply that, for a fixed atom library, the
variety of constraints and objective functions that can be constructed is limited. Thus
in order to preserve generality in disciplined convex programming, the atom library
must be extensible. cvx allows you to define new convex and concave functions that
can be used in cvx specifications. This can be accomplished in two ways, both of
which we describe in this section.

The simplest way to construct a new function that works within cvx is to construct
it using expressions that fully conform to the DCP ruleset. To illustrate this, consider
the convex deadzone function, defined as

f(x) = max{|x| − 1, 0} =







0 |x| ≤ 1
x − 1 x > 1
1 − x x < −1

To implement this function in cvx, simply create a file deadzone.m containing

function y = deadzone(x)

y = max(abs(x) - 1, 0)

This function works just as you expect it would outside of cvx—i.e., when its argu-
ment is numerical. But thanks to Matlab’s operator overloading capability, it will
also work within cvx if called with an affine argument. cvx will properly conclude
that the function is convex, because all of the operations carried out conform to the
rules of DCP: abs is recognized as a convex function; we can subtract a constant from
it, and we can take the maximum of the result and 0, which yields a convex function.
So we are free to use deadzone anywhere in a cvx specification that we might use
abs, for example, because cvx knows that it is a convex function.

Let us emphasize that when defining a function this way, the the expressions you
use must conform to the DCP ruleset, just as they would if they had been inserted
directly into a cvx model. For example, if we replace max with min above; e.g.,

function y = deadzone_bad(x)

y = min(abs(x) - 1, 0)

then the modified function fails to meet the DCP ruleset. The function will work
outside of a cvx specification, happily computing the min{|x| − 1, 0} for a numerical
argument x. But inside a cvx specification, invoked with a nonconstant argument, it
will not work, because it doesn’t follow the DCP composition rules.

34

A more advanced method for defining new functions in cvx is also possible, and
relies on the following basic result of conex analysis. Suppose that S ⊂ Rn × Rm is
a convex set and g : (Rn × Rm) → (R ∪ +∞) is a convex function; then

f : Rn → (R ∪ +∞), f(x) , inf { g(x, y) | (x, y) ∈ S } (8)

is also a convex function. In effect, f has been expressed in terms of a parameterized
family of convex optimization problems, where x is the family parameter. One special
case should be very familar: if n = 1 and g(x, y) , y, then

f(x) , inf { y | (x, y) ∈ S } (9)

gives the classic epigraph representation of f ; that is, S = epi f .
A key feature of cvx is the ability to define a convex function in this very manner:

that is, in terms of a parameterized family of disciplined convex programs. We call
the underlying convex program in such cases an incomplete specification—so names
because the parameters (that is, the function inputs) are unknown when the specifi-
cation is constructed. The concept of incomplete specifications can at first seem a bit
complicated, but it is quite powerful, allowing cvx to support a variety of functions
that cannot be employed in a traditional, derivative-based optimization framework.

Let us look at an example to see how this works. Consider the unit-halfwidth
Huber penalty function h(x):

h : R → R, h(x) ,

{

x2 |x| ≤ 1

2|x| − 1 |x| ≥ 1
(10)

The Huber penalty function cannot be used in an optimization algorithm utilizing
Newton’s method, because its Hessian is zero for |x| ≥ 1. However, it can be expressed
in terms of the following family of convex QPs, parameterized by x:

minimize 2v + w2

subject to |x| ≤ v + w
w ≤ 1

(11)

Specifically, the optimal value of the this QP is equal to the Huber penalty function.
We can implement the Huber penalty function in cvx as follows:

function cvx_optval = huber(x)

cvx_begin

variables w v;

minimize(w^2 + 2 * v);

subject to

abs(x) <= w + v;

w <= 1;

cvx_end

35

If huber is called with a numeric value of x, then upon reaching the cvx_end state-
ment, cvx will find a complete specification, and solve the problem to compute the
result. cvx places the optimal objective function value into the variable cvx_optval,
and function returns that value as its output.

What is most important, however, is that if huber is used within a cvx specifica-
tion, with an affine cvx expression for it argument, then cvx will do the right thing.
In this case, the function huber will contain a special Matlab object that represents
the function call in constraints and objectives. Thus huber can be used anywhere
a traditional convex function can be used, in constraints or objective functions, in
accordance with the DCP ruleset.

There is a corresponding development for concave functions as well. Given the set
S above and a concave function ḡ : (Rn ×Rm) → (R∪+∞) is concave, the function

f̄ : R → (R ∪ +∞), f̄(x) , sup { g(x, y) | (x, y) ∈ S } (12)

is also a concave function. If ḡ(x, y) , y, then

f̄(x) , sup { y | (x, y) ∈ S } (13)

gives the hypograph representation of f̄ ; that is, S = hypo f . In cvx, a concave
incomplete specification is simply one that uses a maximize objective instead of a
minimize objective; and if properly constructed, it can be used anywhere a traditional
concave function can be used within a cvx specification.

For an example of a concave incomplete specification, consider the function

f : Rn×n → R, f(X) = λmin(X + XT) (14)

Its hypograph can be represented using a single linear matrix inequality:

hypo f = { (X, t) | f(X) ≥ t } =
{

(X, t) | X + XT − tI � 0
}

(15)

So we can implement this function in cvx as follows:

function cvx_optval = lambda_min_symm(X)

n = size(X, 1);

cvx_begin

variable y;

maximize(y);

subject to

X + X’ - y * eye(n) == semidefinite(n);

cvx_end

If a numeric value of X is supplied, this function will return min(eig(X+X’)) (to within
numerical tolerances). However, this function can also be used in cvx constraints and
objectives, just like any other concave function in the atom library.

There are two practical issues that arise when defining functions using incomplete
specifications, both of which are illustrated well by our huber example above. First

36

of all, as written the function works only with scalar values. To apply it to a vector
requires that we iterate through the elements in a for loop—a very inefficient en-
terprise, particularly in cvx. A far better approach is to extend the huber function
to handle vector inputs. This is, in fact, rather simple to do: we simply create a
multiobjective version of the problem:

function cvx_optval = huber(x)

sx = size(x);

cvx_begin

variables w(sx) v(sx);

minimize(w .^ 2 + 2 * v);

subject to

abs(x) <= w + v;

w <= 1;

cvx_end

This version of huber will in effect create prod(sx) “instances” of the problem in
parallel; and when used in a cvx specification, cvx will do the right thing.

The second issue is that if the input to huber is numeric, then direct computation
is a far more efficient way to compute the result than solving a convex program.
(What is more, the multiobjective version cannot be used with numeric inputs.) One
solution is to place both versions in one file, with an appropriate test to select the
proper version to use:

function cvx_optval = huber(x)

if isnumeric(x),

xa = abs(x);

flag = xa < 1;

cvx_optval = flag .* xa.^2 + (~flag) * (2*xa-1);

else,

sx = size(x);

cvx_begin

variables w(sx) v(sx);

minimize(w .^ 2 + 2 * v);

subject to

abs(x) <= w + v;

w <= 1;

cvx_end

end

Alternatively, you can create two separate versions of the function, one for numeric
input and one for cvx expressions; and place the numeric version in a subdirectory
called @double. Matlab will call the @double version only when its arguments are
numeric, and it will call your cvx version in other cases. This is the approach taken
for the version of huber found in the cvx atom library.

One good way to learn more about using incomplete specifications is to examine
some of the examples already in the cvx atom library. Good choices include huber,

37

inv_pos, lambda_min, lambda_max, matrix_frac, quad_over_lin, sum_largest,
and others. Some are a bit difficult to read because of diagnostic or error-checking
code, but these are relatively simple.

7.2 Controlling solver precision

Numerical methods for convex optimization are not exact; they compute their results
to within a predefined numerical precision or tolerance. The precision chosen by de-
fault in cvx, which in turn is inherited from the defaults chosen by its solver SeDuMi,
should be entirely acceptable for most applications. Nevertheless, you may wish to
tighten or relax that precision in some applications.

There are several ways to call the cvx_precision command. If you call it with no
arguments, it simply returns a two-element vector of the current precision settings.
The first element in that vector is the standard precision; the precision the solver
must obtain to return Solved, Unbounded, or Infeasible. The second element in the
vector is the “reduced” precision, the precision that the solver must achieve in order
to return Solved/Inaccurate, Unbounded/Inaccurate, Infeasible/Inaccurate.

Calling cvx_precision with an argument allows you to actually change the pre-
cision level. One way is to supply a string as an argument, either in command mode
or function mode, chosen from one of five values:

• cvx_precision low: standard = reduced = ǫ1/4 ≈ 1.2 × 10−4.

• cvx_precision medium: standard = ǫ3/8 ≈ 1.3 × 10−6, reduced = ǫ1/4.

• cvx_precision default: standard = ǫ1/2 ≈ 1.5 × 10−8, reduced = ǫ1/4.

• cvx_precision high: standard = ǫ3/4 ≈ 1.1 × 10−11, reduced = ǫ3/8.

• cvx_precision best: standard = 0, “reduced” = ǫ1/2 (see below).

In function mode, these calls look like cvx_precision(’low’), etc. The best preci-
sion setting is special: it instructs the solver to continue until it is completely unable
to make progress. Then, as long as it reaches at least the “reduced” precision of
ǫ1/2, it may claim a successful solution; otherwise, it returns a cvx_status value of
Failed. An Inaccurate status value is not possible in best mode (nor, for that
matter, in low mode, which sets the standard and reduced precisions to be identical).

The cvx_precision command can also be called with either a scalar or a length-
two vector. If you pass it a scalar, it will assume that as the standard precision, and
it will compute a default reduced precision value for you. Roughly speaking, that
reduced precision will be the square root of the standard precision, with some bounds
imposed to make sure that it stays reasonable. If you supply a vector of values, then
the smallest value will be chosen as the standard precision, and the larger value as
the reduced precision.

The cvx_precision command can be used either within a cvx model or outside
of it; and its behavior differs in each case. If you call it from within a model, e.g.,

38

cvx_begin

cvx_precision high

...

cvx_end

then the setting you choose will apply only until cvx_end is reached. If you call it
outside a model, e.g.,

cvx_precision high

cvx_begin

...

cvx_end

then the setting you choose will apply globally ; that is, to any subsequent models
that are created and solved. The local approach should be preferred in an application
where multiple models are constructed and solved at different levels of precision. with
multiple precision

If you call cvx_precision in function mode, either with a string or a numeric
value, it will return as its output the previous precision vector—the same result you
would obtain if you called it with no arguments. This may seem confusing at first,
but this is done so that you can save the previous value in a variable, and restore it
at the end of your calcuations; e.g.,

cvxp = cvx_precision(’high’);

cvx_begin

...

cvx_end

cvx_precision(cvxp);

This is considered good coding etiquette in a larger application where multiple cvx

models at multiple precision levels may be employed. Of course, a simpler but equally
courteous approach is to call cvx_precision within the cvx model, as described
above, so that its effect lasts only for that model.

7.3 Miscellaneous cvx commands

• cvx_problem: typing this within a cvx specification provides a summary of the
current problem. Note that this will contain a lot of information that you may
not recognize—cvx performs its conversion to canonical form as the problem is
entered, generating extra temporary variables and constraints in the process.

• cvx_clear: typing this resets the cvx system, clearing any and all problems
from memory, but without erasing any of your numeric data. This is useful if
you make a mistake and need to start over. But note that in current versions
of cvx, you can simply start another model with cvx_begin, and the previous
model will be erased (with a warning).

39

• cvx_quiet: typing cvx_quiet(true) suppresses screen output from the solver.
Typing cvx_quiet(false) restores the screen output. In each case, it returns a
logical value representing the previous state of the quiet flag, so you can restore
that state later if you wish—which is good practice if you wish to share your
code with others.

• cvx_pause: typing cvx_pause(true) causes cvx to pause and wait for keyboard
input before and after the solver is called. Useful primarily for demo purposes.
Typing cvx_pause(false) resets the behavior. In each case, it returns a logical
value representing the previous state of the pause flag, so you can restore that
state later if you wish.

• cvx_where: returns the directory where the cvx distribution has been installed—
assuming that the Matlab path has been set to include that distribution. Useful
if you want to find certain helpful subdirectories, such as doc, examples, etc.

7.4 Assignments versus equality constraints

Anyone who has used the C or Matlab languages for a sufficiently long time un-
derstands the differences between assignments, which employ a single equals sign =

operator, and an equality, which employs the double equal == operator. In cvx, this
distinction is particularly important, so let us address it for a moment.

The consequences of using assignments within a cvx specification, whether acci-
dentally or inadvertently, can often cause subtle problems, so in certain instances,
cvx takes steps to prevent you from doing anything dangerous. For example, suppose
A, C ∈ Rn×n and b ∈ R are given, and consider the simple SDP

minimize TrCX
subject to TrAX = b

X � 0
(16)

Suppose that we tried to express this problem in cvx as follows:

1 n = 5;

2 A = randn(n,n); C = randn(n,n); b = randn;

3 cvx_begin

4 variable X(n,n) symmetric;

5 minimize(trace(C * X));

6 subject to

7 trace(A * X) == b;

8 X = semidefinite(n);

9 cvx_end

At first glance, line 8 looks like it constrains X to be positive semidefinite; but in fact,
it is an assignment, not an equality constraint. So it actually overwrites the variable
X with an anonymous, positive semidefinite variable; and X is not constrained to be
positive semidefinite. The numerical consequences are, of course, considerable—but

40

Matlab (and previous versions of cvx) would happily accept and process this problem
without complaint, leaving you (perhaps) mystified why the results are not what you
expect.

No longer. From now on, when cvx_end is reached, cvx will examine each declared
variable, primal and dual, and verify that it still points to the object it was originally
assigned upon declaration. If it does not, it will issue an error like this:

??? Error using ==> cvx_end

The following cvx variable(s) have been overwritten:

X

This is often an indication that an equality constraint was

written with one equals ’=’ instead of two ’==’. The model

must be rewritten before cvx can proceed.

We hope that this check will prevent at least some typographical errors from having
frustrating consequences in your models.

Of course, this single check does not prevent you from using all assignments inside
your cvx specifications, only those that overwrite formally declared variables. Other
kinds of assignments are still permitted; and in some cases, they may be genuinely
useful. For example, consider the following cvx excerpt:

variables x y

z = 2 * x - y;

square(z) <= 3;

quad_over_lin(x, z) <= 1;

This excerpt uses a Matlab variable z to hold an intermediate calculation 2 * x - y

so that it can be used in two different constraints. It is technically correct, and
cvx will do the right thing with it. In fact, if the value of z is not altered for the
remainder of the problem, cvx will actually replace it with its proper numerical value
(i.e., 2 * x - y) after solving the problem.

Having said that, the following alternative formulation, which declares z as a
formal variable, is numerically equivalent:

variables x y z

z == 2 * x - y;

square(z) <= 3;

quad_over_lin(x, z) <= 1;

This is the approach we would recommend that you adopt instead. Declaring interme-
diate calculations as variables provides an extra measure of clarity in your models, in
our opinion. You need not worry that these “extra” variables will make your models
slower. In fact, in many cases, this practice may improve performance by exposing
more of your problem’s structure. Even when this is not the case, cvx’s presolve
routine insures that it will perform no worse than the first form.

What about assignments involving purely constant expressions, such as a=2? We
would simply recommend that for style reasons they be placed before the cvx_begin

command, as we do in the examples presented in this document.

41

7.5 Indexed dual variables

In some models, the number of constraints depends on the model parameters—not
just their sizes. It is straightforward to build such models in cvx using, say, a Matlab
for loop. In order to assign each of these constraints a separate dual variable, we
must find a way to adjust the number of dual variables as well. For this reason,
cvx supports indexed dual variables. In reality, they are simply standard Matlab cell
arrays whose entries are cvx dual variable objects.

Let us illustrate by example how to declare and use indexed dual variables. Con-
sider the following semidefinite program:

minimize
∑n

i=1(n − i)Xii

subject to
∑n

i=1 Xi,i+k = bk, k = 1, 2, . . . , n
X � 0

(17)

([Stu99]). This problem minimizes a weighted sum of the main diagonal of a positive
semidefinite matrix, while holding the sums along each diagonal constant. The pa-
rameters of the problem are the elements of the vector b ∈ Rn, and the optimization
variable is a symmetric matrix X ∈ Rn×n. The cvx version of this model is

cvx_begin

variable X(n, n) symmetric

minimize((n - 1 : -1 : 0) * diag(X));

for k = 0 : n-1,

sum(diag(X, k)) == b(k+1);

end

X == semidefinite(n);

cvx_end

If we wish to obtain dual information for the n simple equality constraints, we need
a way to assign each constraint in the for loop a separate dual variable. This is
accomplished as follows:

cvx_begin

variable X(n, n) symmetric

dual variables y{n}

minimize((n - 1 : -1 : 0) * diag(X));

for k = 0 : n-1,

sum(diag(X, k)) == b(k+1) : y{k+1};

end

X == semidefinite(n);

cvx_end

The statement

dual variables y{n}

42

allocates a cell array n dual variables, and stores the result in the Matlab variable
Z. The equality constraint in the for loop has been augmented with a reference
to y{k+1}, so that each constraint is assigned a separate dual variable. When the
cvx_end command is issued, cvx will compute the optimal values of these dual vari-
ables, and deposit them into an n-element cell array y.

This example admittedly is a bit simplistic. With a bit of careful arrangement, it
is possible to rewrite this model so that the n equality constraints can be combined
into a single vector constraint, which in turn would require only a single vector dual
variable.3 For a more complex example that is not amenable to such a simplification,
see the file

examples/cvxbook/Ch07_statistical_estim/cheb.m

in the cvx distribution. In that problem, each constraint in the for loop is a linear
matrix inequality, not a scalar linear equation; so the indexed dual variables are
symmetric matrices, not scalars.

3Indeed, a future version of cvx will support the use of the Matlab function spdiags, which will

reduce the entire for loop to the single constraint spdiags(X,0:n-1)==b.

43

A Installation and compatability

cvx requires Matlab 6.1 or later.4 We are able to precompile and test the SeDuMi
and cvx MEX files on the following platforms and Matlab versions:

• Windows (32-bit): Matlab 6.1, 6.5.2, 7.0.4, 7.1, 7.2a, 7.3

• Linux (32-bit): Matlab 6.5, 7.0, 7.1

• Solaris 8: Matlab 6.5, 7.1

• Mac OS X (PowerPC only): Matlab 7.1

If you are running a different minor version of Matlab—for example, version 7.0.0
for Windows—then cvx should still work just fine. However, the unique design of
cvx seems to make it somewhat sensitive to bugs, quirks, and limitations of Matlab.
Therefore, we encourage you to upgrade to the latest version you are licensed to use.

For other platforms besides those listed above, see see §A.2 before proceeding.
We have identified an issue that occasionally causes problems using cvx with

Matlab 7.0.x (R14,R14SP1,R14SP2), on all platforms. Prior and subsequent versions
of Matlab are not affected. Fortunately, the workaround is simple; see §A.4 below for
more details.

A.1 Basic instructions

1. Retrieve the latest version of cvx from http://www.stanford.edu/∼boyd/cvx.
You can download the package as either a .zip file or a .tar.gz file.

2. If you have been running a previous version of cvx, remove it or move it out of
the way—say, by renaming it cvx_old—before proceeding.

3. Unpack the file anywhere you like; a directory called cvx will be created. There
is one important exception: do not place cvx in MATLAB’s own toolbox

directory. (If your previous installation of cvx was placed there, you’ll need to
move it out of there.)

4. Start Matlab.

5. Change the current directory to the location of cvx. For example, if you un-
packed cvx.zip on your Windows machine into the directory C:\Matlab\personal,
then you would type

cd C:\Matlab\personal\cvx

at the Matlab command prompt. Alternatively, if you unpacked cvx.tar.gz

into the directory ~/matlab on a Linux machine, then you would type

4Previous versions of this manual stated that cvx required Matlab 6.0 or later; we have since

discovered that version 6.0 is not sufficient.

44

cd ~/matlab/cvx

at the Matlab command prompt.

6. Type the command

cvx_setup

at the Matlab prompt. This does two things: it sets the Matlab search path
so it can find all of the cvx program files, and it runs a simple test problem to
verify the installation. If all goes well, the command will output the line

No errors! cvx has been successfully installed.

(among others). If this message is not displayed, or any warnings or errors are
generated, then there is a problem with the cvx installation. Try installing the
package again; and if that fails, send us a bug report and tell us about it.

7. If you plan to use cvx regularly, you will need to save the current Matlab path
for subsequent Matlab sessions. Follow the instructions provided by cvx_setup

to accomplish that.

A.2 Unsupported platforms

It may be possible to run cvx on other platforms that run MATLAB 6.1, but the
MEX files must be successfully compiled to do so. Therefore, before following the
instructions in §A.1 above, you must confirm that your MEX system has been set up
properly. If you have compiled MEX files before, this is likely the case; otherwise,
run the command

mex -setup

and answer the prompted questions. If necessary, consult the Matlab documentation
for details.

With the MEX system properly configured, following the instructions in §A.1
should work. The cvx_setup script will automatically compile the MEX files for
both SeDuMi and cvx. Unfortunately, the authors do not have ready access to these
platforms, so if you are unable to compile the MEX files for your platform, we may
not be able to help. Nevertheless, we have tried to make the installation process
simple, and want to hear from you if you run into problems, so please send us a note.
If you are successful, please consider sending us the MEX files produced, so that we
make consider including them in a future cvx distribution.

Important note: If you are using Linux, do not delete the MEX files and recompile
them again. Doing so can result in errors that prevent SeDuMi and cvx from running.
If you remove them inadvertently, just reinstall them from the distribution.

45

A.3 About SeDuMi

The cvx distribution includes a full copy of the SeDuMi package in the directory
cvx/sedumi. This version incorporates some bug fixes that are not currently found
in the versions fo SeDuMi available from the web. Therefore, we strongly recommend
that you use our version of SeDuMi, and remove any other versions that you may
have from your Matlab path.

A.4 A Matlab 7.0 issue

The techniques that cvx use to embed a new modeling language inside Matlab seem
to cause some confusion for Matlab 7.0, specifically version 7.0.4 (R14SP2). We are
reasonably confident that the issue is due to a bug in Matlab itself. It does not occur
in versions 6.5.2 and earlier, or 7.1 and later. It may occur in earlier versions of
Matlab 7.0 as well (R14,R14SP1).

The bug is this: in some circumstances, a .m-file containing a cvx model will cause
an error that looks like this:

??? Error: File: thrusters.m Line: 43 Column: 5

"p" was previously used as a variable,

conflicting with its use here as the name of a function.

The file name, line/column numbers, and variable name may differ, but the error
message remains the same. The example that produced this particular error is a
simple inequality constraint

p >= -5;

where p is a cvx variable previously declared with a variable statement. Interest-
ingly, a different inequality constraint

u >= 0

in the same model causes no complaint. So we cannot offer you a precise set of
circumstances that cause the error.

Fortunately, the workaround is very simple: simply remove all of the extra space
in the constraint. In this example, changing the constraint to

p>=-5;

eliminates the error. You may still indent the constraint as you wish—just remove
the intermediate spaces.

We have no idea why this workaround works, but it does—reliably.

46

B Operators, functions, and sets

B.1 Basic operators and linear functions

Matlab’s standard arithmetic operations for addition +, subtraction -, multiplication
* .*, division / \ ./ ./ .\, and exponentiation ^ .^ have been overloaded to work
in cvx whenever appropriate—that is, whenever their use is consistent with both
standard mathematical and Matlab conventions and the DCP ruleset. For example:

• Two cvx expressions can be added together if they are of the same dimension
(or one is scalar) and have the same curvature (i.e., both are convex, concave,
or affine).

• A cvx expression can be multiplied or divided by a scalar constant. If the
constant is positive, the curvature is preserved; if it is negative, curvature is
reversed.

• An affine, column vector cvx expression can be multiplied by a constant matrix
of appropriate dimensions; or it can be left-divided by a non-singular constant
matrix of appropriate dimension.

Numerious other combinations are possible, of course. For example, the use of the
exponentiation operators ^ .^ are somewhat limited; see §B.2 below.

Matlab’s basic matrix manipulation and arithmetic operations have been extended
to work with cvx expressions as well, including:

• Concatenation: [A, B ; C, D]

• Indexing: x(n+1:end), X([3,4],:), etc.

• Indexed assignment, including deletion: y(2:4) = 1, Z(1:4,:) = [], etc.

• Transpose and conjugate transpose: Z.’, y’

A number of Matlab’s basic functions have been extended to work with cvx expres-
sions as well:

conj cumsum diag dot find fliplr flipud flipdim horzcat hankel

ipermute kron permute repmat reshape rot90 sparse sum trace

tril triu toeplitz vertcat

Most should behave identically with cvx expressions as they do with numeric ex-
pressions. Those that perform some sort of summation, such as cumsum, sum, or
multiplication, such as dot or kron, can only be used in accordance with the disci-
plined convex programming rules. For example, kron(X,Y) is valid only if either X

or Y is constant; and trace(Z) is valid only if the elements along the diagonal have
the same curvature.

47

B.2 Standard Matlab nonlinear functions

The following standard Matlab nonlinear functions are overloaded to work in cvx:

• abs, elementwise absolute value for real and complex arrays. Convex.

• max, min, elementwise maximum and minimum, for real arrays only. The 1, 2,
and 3-argument syntaxes are all supported. max is convex and increasing; min
is concave and decreasing.

• norm(x) for real and complex affine vectors/matrices. Convex.

• norm(x, p) for real and complex affine vectors/matrices:

– For vectors, all valid values of p are accepted, but see Appendix E for more
details about how cvx handles values other than 1, 2, and Inf. Convex.

– For matrices, p must be 1, 2, Inf, and ’Fro’. Convex.

• sqrt, elementwise square root, for real arrays only. Adds the constraint that
entries of x are nonnegative. Concave and increasing.

• x^p and x.^p, where x is real and affine, and p is constant. For x^p, x and p

must be scalars. Valid values of p include:

– p ∈ {0, 1}. Constant and affine, respectively.

– 0 < p < 1. Concave, and constrains x to be nonnegative.

– p ∈ {2, 4, 6, 8, ...}. Convex.

Other values of p are not permitted, but see the function pow_pos in Appendix
E below for a useful alternative. Note also that irrational values of p are ap-
proximated by rational values; see Appendix E for detail on this issue as well.

• polyval(p, x), where p is a vector of length n, computes

p(1) * x.^(n-1) + p(2) * x.^(n-2) + ... + p(n-1) * x + p(n)

This function can be used in cvx variables in two ways:

– If p is a variable and x is a constant, then polyval(x,p) computes a linear
combination of the elements of p. The combination must satisfy the DCP
rules for addition and scaling.

– If p is a constant and x is a variable, then polyval(x,p) constructs a
polynomial function of the variable x. The polynomial must be affine,
convex, or concave, and x must be real and affine.

48

B.3 New nonlinear functions

The following functions are part of the base cvx library. These functions work both
inside a cvx specification, and outside a cvx specification (with numerical arguments).

• berhu(x,M): The reversed Huber function (hence, Berhu), defined as |x| for
|x| ≤ M , and (|x|2 + M2)/2M for |x| ≥ M . Convex. If M is omitted, M =
1 is assumed; but if supplied, it must be a positive constant. Also callable
as berhu(x,M,t), which computes t+t*berhu(x/t,M), useful for concomitant
scale estimation (see [Owe06]).

• geomean: the geometric mean of a vector, (
∏n

k=1 xk)
1/n

. When used inside a cvx

specification, geomean constrains the elements of the vector to be nonnegative.
When used with numerical arguments, geomean returns -Inf if any element is
negative. Concave and increasing.

• det_rootn: n-th root of the determinant of a semidefinite matrix, (det X)1/n.
When used inside a cvx specification, det_rootn constrains the matrix to be
symmetric (if real) or Hermitian (if complex) and positive semidefinite. When
used with numerical arguments, det_rootn returns -Inf if these constraints
are not met. Concave.

• det_root2n: the 2n-th root of the determinant of a semidefinite matrix; i.e.,
det_root2n(X)=sqrt(det_rootn(X)). Concave. Maintained solely for back-
compatibility purposes.

• huber(x,M), defined as 2M |x|−M2 for |x| ≥ M , and |x|2 for |x| ≤ M . Convex.
If M is omitted, then M = 1 is assumed; but if it supplied, it must be a positive
constant. Also callable as huber(x,M,t), which computes t+t*huber(x/t,M),
useful for concomitant scale estimation (see [Owe06]).

• inv_pos, inverse of the positive portion, 1/ max{x, 0}. Inside cvx specification,
imposes constraint that its argument is positive. Outside cvx specificatiom,
returns +∞ if x ≤ 0. Convex and decreasing.

• lambda_max: maximum eigenvalue of a real symmetric or complex Hermitian
matrix. Inside cvx, imposes constraint that its argument is symmetric (if real)
or Hermitian (if complex). Convex.

• lambda_min: minimum eigenvalue of a real symmetric or complex Hermitian
matrix. Inside cvx, imposes constraint that its argument is symmetric (if real)
or Hermitian (if complex). Concave.

• log(sum(exp(x))): the logarithm of the sum of the elementwise exponentials
of x. Convex and nondecreasing. This is used internally in GP mode, but can
also be used in standard DCPs. This function is actually approximated in the
current version of cvx; see §D for details.

49

−1.5 −1 −0.5 0 0.5 1 1.5

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(x2−1)2

envelope

Figure 2: The polynomial function p(x) = x4 − 2x2 + 1 and its convex envelope.

• matrix_frac(x,Y): matrix fractional function, xT Y −1x. In cvx, imposes con-
straint that Y is symmetric (or Hermitian) and positive definite; outside cvx,
returns +∞ unless Y = Y T ≻ 0. Convex.

• norm_largest(x, k), for real and complex vectors, returns the sum of the
largest k magnitudes in the vector x. Convex.

• norms(x, p, dim) and norms_largest(x, k, dim). Computes vector
norms along a specified dimension of a matrix or N-d array. Useful for sum-of-
norms and max-of-norms problems. Convex.

• polyenv(p, x). Computes the value of the convex or concave envelope of
the polynomial described by p (in the polyval sense). p must be a real constant
vector whose length n is 0, 1, 2, 3, or some other odd length; and x must be
real and affine. The sign of the first nonzero element of p determines whether a
convex (positive) or concave (negative) envelope is constructed. For example,
consider the function p(x) , (x2 − 1)2 = x4 − 2x2 + 1, depicted along with
its convex envelope in Figure 2. The two coincide when |x| ≥ 1, but deviate
when |x| < 1. Attempting to call polyval([1,0,2,0,1],x) in a cvx model
would yield an error, but a call to polyenv([1,0,2,0,1],x) yields a valid
representation of the envelope. For convex or concave polynomials, this function
produces the same result as polyval.

• pos: max{x, 0}, for real x. Convex and increasing.

• pow_abs(x,p): |x|p for x ∈ R or x ∈ C and p ≥ 1. Convex.

50

• pow_pos(x,p), for real x and real constant p, computes monotonic extensions
of certain convex and concave branches of the power function:

p ≤ 0 : fp(x) ,

{

xp x > 0

+∞ x ≤ 0
convex, nonincreasing

0 <p < 1 : fp(x) ,

{

xp x ≥ 0

−∞ x < 0
concave, nondecreasing

p ≥ 1 : fp(x) ,

{

xp x ≥ 0

0 x < 0
convex, nondecreasing

If p is irrational, a nearby rational value is chosen; see Appendix E for details.

• quad_form(x,P), xT Px for real x and symmetric P , and xHPx for complex x
and Hermitian P . Convex in x for P constant and positive semidefinite; concave
in x for P constant and negative semidefinite. This function is provided since
cvx will not recognize x’*P*x as convex (even when P is positive semidefinite).

• quad_over_lin, xT x/y for x ∈ Rn, y > 0; for x ∈ Cn, y > 0: x∗x/y. In cvx

specification, adds constraint that y > 0. Outside cvx specification, returns
+∞ if y ≤ 0. Convex, and decreasing in y.

• quad_pos_over_lin: sum_square_pos(x) / y for x ∈ Rn, y > 0. Convex,
increasing in x, and decreasing in y.

• sigma_max: maximum singular value of real or complex matrix. Same as norm.
Convex.

• square: x2 for x ∈ R. Convex.

• square_abs: |x|2 for x ∈ R or x ∈ C.

• square_pos: max{x, 0}2 for x ∈ R. Convex and increasing.

• sum_largest(x,k) sum of the largest k values, for real vector x. Convex and
increasing.

• sum_smallest(x,k), sum of the smallest k values, i.e., -sum_smallest(-x,k).
Concave and decreasing.

• sum_square: sum(square(x)). Convex.

• sum_square_abs: sum(square_abs(x)). Convex.

• sum_square_pos: sum(square_pos(x)); works only for real values. Con-
vex and increasing.

51

B.4 Sets

cvx currently supports the following sets; in each case, n is a positive integer constant:

• nonnegative(n):

Rn
+ , { x ∈ Rn | xi ≥ 0, i = 1, 2, . . . , n }

• simplex(n):

Rn
1+ , {x ∈ Rn | xi ≥ 0, i = 1, 2, . . . , n,

∑

i xi = 1 }

• lorentz(n):
Qn , { (x, y) ∈ Rn × R | ‖x‖2 ≤ y }

• rotated_lorentz(n):

Qn
r , { (x, y, z) ∈ Rn × R ×R | ‖x‖2 ≤ yz, y, z ≥ 0 }

• complex_lorentz(n):

Qn
c , { (x, y) ∈ Cn × R | ‖x‖2 ≤ y }

• rotated_complex_lorentz(n):

Qn
rc , { (x, y, z) ∈ Cn ×R × R | ‖x‖2 ≤ yz, y, z ≥ 0 }

• semidefinite(n):

Sn
+ ,

{

X ∈ Rn×n | X = XT , X � 0
}

• hermitian_semidefinite(n):

Hn
+ ,

{

Z ∈ Cn×n | Z = ZH , X � 0
}

• nonneg_poly_coeffs(n): The cone of all coefficients of nonnegative polyno-
mials of degree n; n must be even:

P+,n ,

{

p ∈ Rn+1 |
n

∑

i=0

pi+1x
n−i ≥ 0 ∀x ∈ R

}

• convex_poly_coeffs(n): The cone of all coefficients of convex polynomials of
degree n; n must be even:

P+,n ,

{

p ∈ Rn+1 |
n−2
∑

i=0

(n − i)(n − i − 1)pi+1x
n−i−2 ≥ 0 ∀x ∈ R

}

52

C cvx status messages

After a complete cvx specification has been entered and the cvx_end command issued,
the solver is called to generate a numerical result. The solver can produce one of five
exit conditions, which are indicated by the value of the string variable cvx_status.
The nominal values of cvx_status, and the resulting values of the other variables,
are as follows:

• Solved: A complementary solution has been found. The primal and dual vari-
ables are replaced with their computed values, and the the optimal value of
the problem is placed in cvx_optval (which, by convention, is 0 for feasibility
problems).

• Unbounded: The problem has been proven to be unbounded below through the
discovery of an unbounded primal direction. This direction is stored in the
primal variables. The value of cvx_optval is set to -Inf for minimizations,
and -Inf for maximizations. Feasibility problems by construction cannot be
unbounded below.

It is important to understand that the unbounded primal direction is very likely
not a feasible point. If a feasible point is required, the problem should be re-
solved as a feasibility problem by omitting the objective.

• Infeasible: The problem has been proven to be infeasible through the discov-
ery of an unbounded dual direction. Appropriate components of this direction
are stored in the dual variables. The values of the primal variables are filled with
NaNs. The value of cvx_optval is set to +Inf for minimizations and feasibility
problems, and -Inf for maximizations.

In some cases, SeDuMi is unable to achieve the numerical certainty it requires to make
one of the above determinations—but is able to draw a weaker conclusion by relaxing
those tolerances somewhat. In such cases, one of the following results is returned:

• Solved/Inaccurate: The problem is likely to have a complementary solution.

• Unbounded/Inaccurate: The problem is likely to be unbounded.

• Infeasible/Inaccurate: The problem is likely to be infeasible.

The values of the primal and dual variables, and of cvx_optval, are updated identi-
cally to the “accurate” cases. Two final results are also possible:

• Failed: The solver failed to make sufficient progress towards a solution. The
values of cvx_optval and primal and dual variables are filled with NaNs. This
result can occur because of numerical problems within SeDuMi, often because
the problem is particularly “nasty” in some way (e.g., a non-zero duality gap).

53

• Overdetermined: The presolver has determined that the problem has more
equality constraints than variables, which means that the coefficient matrix of
the equality constraints is singular. In practice, such problems are often, but not
necessarily, infeasible. Unfortunately, SeDuMi cannot handle such problems, so
a precise conclusion cannot be reached.

The situations that most commonly produce an Overdetermined result are discussed
in §F below.

D The GP/SDP approximation

The solver currently employed by cvx does not support geometric programs natively.
Instead, cvx approximates the convex form of a DGP in an SDP-representable man-
ner. Details of the approximation method will be published separately; but in short,
it replaces each posynomial constraint with a series of polynomial approximations.
(Equalities and monomial inequalities do not require approximation.)

A key feature of this approximation method is that the error introduced at each
posynomial can be bounded in advance. Specifically, given a constraint of the form

fi(x) ≤ hi(x) fi(x) posynomial, hi(x) monomial (18)

the approximation produced by cvx satisfies

fi(x) · (1 + δi) ≤ gi(x), δ ∈ [0, ǫGP] (19)

where δi is unknown but bounded as indicated. The approximation is applied to
posynomial objective functions as well. Thus if the objective function is a posynomial
f0(x), it will be perturbed to f0(x)(1 + δ0), where δ0 ∈ [0, ǫGP].

The approximations are conservative, in that any value of x that satisfies an ap-
proximated constraint (19) will, in fact, satisfy the original (18) as well. Applied to
an entire DGP, this means that if cvx locates a feasible point for the approximated
problem, that point is guaranteed to be feasible as well. Furthermore, if cvx success-
fully obtains an optimal value for the approximate problem, that value will serve as
an upper bound on the optimal value of the original problem (for a minimization; for
a maximization, it will serve as a lower bound).

In its default setting, cvx uses a tolerance value of ǫGP = 0.001. For most en-
gineering applications, this is likely to be quite sufficient. However, if you wish to
change it, you may do so using the command cvx_gp_precision(tol), where tol is
the new value of ǫGP . As with the command cvx_precision, you can place the call
either within a model,

cvx_begin gp

cvx_gp_precision(tol);
...

cvx_end

to change the approximation quality for a single model; or outside of a model,

54

cvx_gp_precision(tol);
cvx_begin gp

...

cvx_end

to make a global change. Consistent with cvx’s other control commands, the com-
mand returns the previous value of the ǫGP , so you can save it and restore it upon
completion of your model, if you wish. You can query the value of ǫGP at any time
by calling cvx_gp_precision with no arguments.

It is important to understand that the complexity of the approximation—the order
of the polynomials used, as well as the number of them—increases as the number of
terms in the posynomial increases, and as the value of ǫGP decreases. Therefore,
seeking high accuracies or solving problems involving posynomials with a vary large
number terms can easily produce very large, slow approximations.

This approximation can actually be used in DCPs as well. Specifically, the func-
tion logsumexp_sdp uses this approximation method to implement the function

f : Rn → R, f(x) , log(
∑n

i=1 exi) + [0, δ(x)], δ(x) ∈ [0, ǫ] (20)

If you call this function directly, it uses a default tolerance of ǫ = 0.001, regardless
of the value set in cvx_gp_precision. You can supply a different tolerance as a
second argument; i.e., logsumexp_sdp(x, tol). However, it turns out that cvx

admits a particular exception to the DCP nonlinear composition rules: it allows the
construction of expressions of the form log(sum(exp(x))). (This is not an exception
so much as it is a byproduct of the unified approach to verifying DCPs and GPs.)
Such constructions are automatically recognized by cvx, which utilizes the precision
value ǫGP in determining the accuracy of their approximation.

E The irrational power limitation

In order to implement power expressions like xp and p-norms ‖x‖p for 1 < p < ∞, cvx
uses an SDP-compatible method described in [AG01], and enhanced by the authors
of cvx. This approach is exact—as long as the exponent p is rational. To determine
integral values pn, pd such that pn/pd = p, cvx uses MATLAB’s rat function with its
default tolerance of 10−6. There is currently no way to change this tolerance. See the
documentation for rat for more details.

The complexity of the SDP implementation depends on roughly on the size of the
values pn and pd. Let us introduce a more precise measure of this complexity. For
p = 2, a constraint xp ≤ y can be represented with exactly one 2 × 2 LMI:

x2 ≤ y =⇒
[

y x
x 1

]

� 0.

For other values of p = pn/pd, cvx generates a number of 2×2 LMIs that depends on
both pn and pd; we denote this number by k(pn, pd). (A number of internal variables

55

and equality constraints are also generated, but we ignore them for this analysis.) An
empirical study has shown that for p = pn/pd > 1, cvx achieves

k(pn, pd) ≤ log2 pn + α(pn),

where the α(pn) term grows very slowly compared to the log2 term. Indeed, for
pn ≤ 4096, we have verified that α(pn) is usually 1 or 2, but occasionally 0 or 3.
Similar results are obtained for 0 < p < 1 and p < 0.

The cost of this SDP representation is relatively small for nearly all useful values of
p. Nevertheless, cvx issues a warning whenever k(pn, pd) > 10 to insure that the user is
not surprised by any unexpected slowdown. In the event that this threshold does not
suit you, you may change it using the command cvx_power_warning(thresh), where
thresh is the desired cutoff value. Setting the threshold to Inf disables it completely.
As with the command cvx_precision, you can place a call to cvx_power_warning

within a model to change the threshold for a single model; or outside of a model
to make a global change. The command always returns the previous value of the
threshold, so you can save it and restore it upon completion of your model, if you wish.
You can query the current value by calling cvx_power_warning with no arguments.

F Overdetermined problems

This status message Overdetermined commonly occurs when structure in a variable
or set is not properly recognized. For example, consider the problem of finding the
smallest diagonal addition to a matrix W ∈ Rn×n to make it positive semidefinite:

minimize Trace D
subject to W + D � 0

D diagonal
(21)

In cvx, this problem might be expressed as follows:

n = size(W,1);

cvx_begin

variable D(n,n) diagonal;

minimize(trace(D));

subject to

W + D == semidefinite(n);

cvx_end

If we apply this specification to the matrix W=randn(5,5), a warning is issued,

Warning: Overdetermined equality constraints;

problem is likely infeasible.

and the variable cvx_status is set to Overdetermined.
What has happened here is that the unnamed variable returned by statement

semidefinite(n) is symmetric, but W is fixed and unsymmetric. Thus the problem,

56

as stated, is infeasible. But there are also n2 equality constraints here, and only
n + n ∗ (n + 1)/2 unique degrees of freedom—thus the problem is overdetermined.
The following modified version of the specification corrects this problem by extracting
the symmetric part of W :

n = size(W,1);

cvx_begin

variable D(n,n) diagonal;

minimize(trace(D));

subject to

0.5 * (W + W’) + D == semidefinite(n);

cvx_end

G Acknowledgements

We wish to thank the following people for their contributions to the development
of cvx: Laurent El Ghaoui, Arpita Ghosh, Siddharth Joshi, Johan Löfberg, Almir
Mutapcic, Michael Overton and his students, Art Owen, Rahul Panicker, Imre Polik,
Joëlle Skaf, Lieven Vandenberghe, Argyris Zymnis. We are also grateful to the many
students in several universities who have (perhaps unwittingly) served as beta testers
by using cvx in their classwork.

57

References

[AG01] F. Alizadeh and D. Goldfarb. Second-order cone programming. Techni-
cal Report RRR 51-2001, RUTCOR, Rutgers University, November 2001.
Available at http://rutcor.rutgers.edu/pub/rrr/reports2001/51.ps.

[BKMR98] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS: A User’s
Guide. The Scientific Press, South San Francisco, 1998. Available at http:
//www.gams.com/docs/gams/GAMSUsersGuide.pdf.

[BKVH05] S. Boyd, S. J. Kim, L. Vandenberghe, and A. Hassibi. A tutorial on
geometric programming. Optimization and Engineering, 2005. Available at
http://www.stanford.edu/∼boyd/gp tutorial.html.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004. Available at http://www.stanford.edu/∼boyd/cvxbook.
html.

[Cru02] C. Crusius. A Parser/Solver for Convex Optimization Problems. PhD
thesis, Stanford University, 2002.

[DV05] J. Dahl and L. Vandenberghe. CVXOPT: A Python Package for Convex
Optimization. Available at http://www.ee.ucla.edu/∼vandenbe/cvxopt,
2005.

[FGK99] R. Fourer, D. Gay, and B. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Duxbury Press, December 1999.

[GBY06] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In L. Lib-
erti and N. Maculan, editors, Global Optimization: from Theory to Im-
plementation, Nonconvex Optimization and Its Applications, pages 155–
210. Springer Science+Business Media, Inc., New York, 2006. Available at
http://www.stanford.edu/∼boyd/disc cvx prog.html.

[Gra04] M. Grant. Disciplined Convex Programming. PhD thesis, Department of
Electrical Engineering, Stanford University, December 2004. See http:

//www.stanford.edu/∼boyd/disc cvx prog.html.

[Löf05] J. Löfberg. YALMIP version 3 (software package). http://control.ee.

ethz.ch/∼joloef/yalmip.php, September 2005.

[Mat04] The MathWorks, Inc. MATLAB (software package). http://www.

mathworks.com, 2004.

[Mat05] The MathWorks, Inc. MATLAB optimization toolbox (software package).
http://www.mathworks.com/products/optimization/, 2005.

[MOS05] MOSEK ApS. Mosek (software package). http://www.mosek.com, Febru-
ary 2005.

58

[Owe06] A. Owen. A robust hybrid of lasso and ridge regression. Technical report,
Department of Statistics, Stanford University, October 2006. Author’s in-
ternal draft.

[Stu99] J. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11:625–653, 1999.
Software available at http://sedumi.mcmaster.ca/.

[WB00] S.-P. Wu and S. Boyd. SDPSOL: A parser/solver for semidefinite programs
with matrix structure. In L. El Ghaoui and S.-I. Niculescu, editors, Recent
Advances in LMI Methods for Control, chapter 4, pages 79–91. SIAM, 2000.
Available at http://www.stanford.edu/∼boyd/sdpsol.html.

59

Index

affine function, 24
AMPL, 4
array variable, 15
assignment, 40

banded matrix variable, 15
bug report, 5

complex variable, 15
composition, 25
concave

function, 24
constraint, 9, 12, 16

bounds, 9, 12, 16
equality, 12, 16, 40
inequality, 12, 16
nonconvex, 12, 14
set, 17

convex
function, 24

cvx, 4
functions, 47
installing, 44
operators, 47
precision, 53
status messages, 53

cvx begin, 6
cvx clear, 39
cvx end, 6
cvx gp precision, 54
cvx optval, 8, 16
cvx pause, 39
cvx power warning, 55
cvx precision, 38
cvx problem, 39
cvx quiet, 39
cvx status, 8
cvx where, 39
CVXOPT, 5

DCP, 4
ruleset, 4, 20

deadzone function, 34

defining new function, 34
diagonal matrix variable, 15
disciplined convex programming, see DCP
dual variable, 18

epigraph, 35
equality constraint, 40
examples, 6

feasibility, 16, 21
feedback, 5
function, 16

cvx libary, 47
affine, 24
composition, 25
concave, 24
convex, 24
deadzone, 34
defining new, 34
epigraph, 35
generalized posynomial, 31
Huber, 35
hypograph, 36
monomial, 31
monotonicity, 24
objective, 7
posynomial, 31
quadratic, 28

GAMS, 4
generalized geometric programming, see

GGP
geometric program, see GP
geometric programming mode, 31
GGP, 31
GP, 4, 31

mode, 4, 31

Hermitian matrix variable, 15
Huber function, 35
hypograph, 36

inequality

60

constraint, 16
matrix, 29, 31

infeasible problem, 20
installing cvx, 44

Lagrange multipler, 18
least squares, 7
linear

matrix inequality, see LMI
program, see LP

linprog, 10
LMI, 29
Lorentz cone, see second-order cone
LP, 4, 5

Matlab, 4
maximize, 8, 16
minimize, 7, 16
mode

GP, 31
SDP, 29

monotonicity, 24
MOSEK, 5

nondecreasing, 24
nonincreasing, 24
norm, 7

norm(·,1), 10
norm(·,Inf), 10, 12

objective function, 7, 16
nonconvex, 8

operators, 47
output

suppressing, 39
overdetermined problem, 56

platforms, 44
posynomial, 31
powers, 55
precision, 53

changing, 38
for GPs, 54

problem
dual, 18
feasibility, 16, 21

infeasible, 20
overdetermined, 56

python, 4

QP, 4
quadratic form, 28
quadratic program, see QP

SDP, 4, 5, 17, 29
mode, 4, 29

second-order cone, 18
second-order cone program, see SOCP
SeDuMi, 5
semidefinite, 17
semidefinite program, see SDP
semidefinite programming mode, 29
set, 17
SOCP, 4, 5, 18
status messages, 53
symmetric matrix variable, 15

Toeplitz matrix variable, 15
tradeoff curve, 13

variable
array, 15
banded matrix, 15
complex, 15
declaring, 14
diagonal matrix, 15
Hermitian matrix, 15
structure, 15
symmetric matrix, 15
Toeplitz matrix, 15

variable, 7, 14
variables, 14, 15
version information, 5

YALMIP, 4

61

