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Abstract

We present a novel approach to pose estimation and model-based recognition of specular objects

in difficult viewing conditions, such as low illumination, cluttered background, large highlights and

shadows that appear on the object of interest. In such challenging conditions conventional features are

unreliable. We show that under the assumption of a dominant light source, specular highlights produced

by a known object can be used to establish correspondence between its image and the 3D model, and

to verify the hypothesized pose and the identity of the object. Previous methods that use highlights for

recognition make limiting assumptions such as known pose, scene-dependent calibration, simple shape,

etc. The proposed method can efficiently recognize free form specular objects in arbitrary pose and

under unknown lighting direction. It uses only a single image of the object as its input and outputs

object identity and the full pose. We have performed extensive experiments for both recognition and

pose estimation accuracy on synthetic images and on real indoor and outdoor images.

Index Terms

Object recognition, varying illumination, pose estimation, invariants, specularities.

I. INTRODUCTION

We present a model-based method for recognition of specular objects under arbitrary pose and

lighting direction. Given a database of predefined 3D object models, and a single 2D image of

one of the objects in the database, the task is to determine which object appears in the image.

Much work has been done on model-based recognition of Lambertian objects with prominent

texture or shape features (e.g, [28, 29, 22, 21, 38, 4, 9, 12, 11]). The Lambertian assumption

helps in dealing with illumination effects, while prominent texture and shape features allow

to find good correspondences or perform indexing. Very little of these is available in images
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of smooth, glossy, textureless objects with highlights and shadows, which are placed against

a cluttered scene. Figure 5 shows examples of such images. Glossy smooth objects produce

specular effects and unlike texture, specular highlights do not remain constant under changes of

viewpoint. Although not constant, the specular highlights obey, under certain assumptions, some

rules of consistency, which makes them useful for recognition. Specular highlights have several

advantages over conventional features: they are easy to detect even by simply thresholding

the image and they are robust to changes in background, texture variation, and occlusion of

non-highlighted parts. In addition, they can be used with transparent objects, where extracting

contours or similar features is very hard. Thus rather than filtering out specular highlights as was

done in most previous methods, we use the highlights produced by a known object, to extract

information that can assist in recognition. Specifically, we show that highlights produced by an

object in images that differ by lighting and viewing directions, are related by an approximately

affine transformation (Figure 1). We exploit this observation to establish correspondences between

an object’s image and the 3D model. We then use the correspondences to compute the pose of

the object and verify the pose and the identity by measuring the similarity between the specular

highlights extracted from the input image and the highlights predicted for the hypothesized pose

and identity, using a simple model of highlight formation proposed in [34].

Since many real objects have highlights, a practical recognition system should be robust to

these effects. Our method could be used in applications where objects are very specular and

conventual features are unreliable. When such features are available, they can be incorporated

as additional correspondences into the proposed framework. Examples of applications are mon-

itoring of manufacturing, defect detection, or domestic applications, such as vision systems for

assisted living. 3D models can be acquired using stereo or structured light systems, if shiny

objects are first covered with powder to reduce their shininess. In industrial applications (man-

ufacturing and inspection), CAD models of the objects are available. In domestic applications,

some objects such as kitchenware have a standard shape and are specular.

The main contributions of this work are:

• We show that highlights produced by a surface patch in images that differ by lighting and

viewing directions, are related by an approximately affine transformation.

• We use highlights to establish correspondences for pose estimation which is much more

efficient than a brute force search done by previous methods for pose estimation of specular
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objects (e.g.,[10]).

• We propose a method for recognition of specular objects under arbitrary pose and lighting

direction that requires only a single image and doesn’t require any calibration object or

procedure for estimating illumination in the scene.

• Our method can work with shapes that are much more complex than those used in previous

works ([10, 2]).

We make the following assumptions throughout this paper:

1) The scene is lit by a single, distant light source of unknown directions.

2) The input contains a single object to be recognized, of unknown position and orientation

in 3D-space.

3) The object of interest is relatively distant from the camera.

4) The object of interest has an approximately uniform reflectance.

5) At least 3 significant and distinct specular highlights are visible in the image.

The last assumption is relevant if the recognition is done using solely specular features. If

an image contains other more conventional features (contours, lines, etc.), but only one or two

highlights, our approach can easily incorporate correspondences obtained from the conventional

features for pose computation, while the verification phase remains unchanged.

The assumption of dominant light source holds for outdoor scenes. It doesn’t hold for indoor

scenes, which are illuminated by many sources or extended lights. However, in such conditions

the object is well illuminated and even if it has highlights, existing methods (e.g., contour

based methods [4, 23]) could work fairly well. Images taken with a directional light are poorly

illuminated and have large shadows, which makes recognition much more difficult.

Assumptions (2) and (3) usually hold or can be resolved by adding a preprocessing step to a

recognition system (e.g., a module for extracting a specular object from its background [13]).

Currently we do not explicitly model interreflections, cast shadows, and occlusions. However

when these effects are minor, we treat them as noise. We test our algorithm on real objects,

achieving good results even when the assumptions do not precisely hold.

The experiments presented in this paper are performed on synthetic and real objects. We

constructed a database of real, complex objects which includes CAD models and images of

these objects under variation of pose, background, and illumination direction (including indoor

and outdoor illumination). This data set is much more diverse than those used in previous papers.

May 16, 2012 DRAFT



4

Fig. 1. Left: offline-rendered frontal view of the object with frontal light, right: a given picture of the object in an unknown
view with unknown light direction. In both the highlights are produced by the same surface patches and thus highlights undergo
affine transformation and could be used for establishing correspondence.

The experiments (see Section V) show good performance considering that our method uses very

little information about the scene and only a few percents of the input image – the highlights.

The paper is organized as follows. Section II discusses previous work on specularity and

provides an overview of the methods that are used in our approach. Section III describes the

basic approach, including its theoretical background. Section IV shows an example of a system

for recognition of specular objects. Section V describes the new database of real and synthetic

images of specular objects and the experiments performed on this data base. Section VI concludes

the paper and discusses future directions.

II. RELATED WORK

In this section we first review the previous work on using specular cues for pose estimation

and object recognition and then we discuss several methods for specularity extraction and pose

estimation using correspondences, which can be integrated with the proposed approach.

A. Using Specular Cues

There has been much work aimed at analyzing specular effects in images, most of which

has been concerned with surface reconstruction [6, 7, 43, 32, 49, 41, 37, 47]. Recently, several

methods have been proposed for detecting specular surfaces in images [30, 13].

Specular highlights reveal accurate local information about the shape of the object. Thus a

natural idea is to use them for alignment. This idea was employed in [27], which showed very

impressive results.

Only very recently specular highlights have been used in pose estimation [2, 10]. The method

presented in [2] incorporates different channels of information, one of which is a polarization

angle of the light reflected from the object surface that provides information on the rotation of
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an object relative to the camera. The data acquisition process for this method is quite involved. It

includes taking many images with different shutter times to create a high dynamic range image,

two images for depth estimation, one with small aperture and another with large, and it also

needs a polarizer. Finally, all parts in this method require calibration. The method presented in

[10], addresses 3D pose estimation and segmentation of specular object. It proceeds by rendering

images of highlights for every viewing direction using the environmental mapping acquired by

placing a mirror ball in the scene. These images are used in a brute-force search for 5 pose

parameters (the distance to the camera is assumed known), producing a rendering that most

resembles the input image. The pose is found by first searching for the best translation for each

orientation using a standard optimization with an energy function based solely on highlights.

The translation is refined by removing the pixels with low elevation of incident light (to reduce

the effect of interreflections). The rotation with minimal cost is chosen and then all 5 parameters

are refined by maximizing the correlation of the input and rendered intensity images (excluding

pixels with low elevation of light). The experiments presented in [10] are done on simple objects

with complex illumination, which strongly constrains the appearance of highlights. The same

work [10] proposes to use specular flow instead of an environment map but still using a brute-

force search. In order to compute the specular flow they require angular motion of far-field

environment, which is also a limiting requirement.

Norman et. al. [31] showed empirically that specular highlights provide a significant aid in

human perception of 3D shape. Nevertheless, due to the difficulty of the task, very little work has

been done on recognition of specular objects [40, 18, 34]. In pioneering work on the recognition

of shiny objects [5, 15] the main theme has been to look for specularities with specific shapes that

are likely to appear on objects of interest. For example, cylinders were detected using elongated

specularities [5]. Another direction has been to use specularities to infer the 3D shape of the

corresponding regions and then match these region to a known 3D model. Such an approach was

taken by Koshikawa and Shirai [25] in their recognition system that uses polarized illumination

to estimate the surface normals of an object. Georghiades [16] used the Torrance-Sparrow model

to recover the shape and the non-Lambertian reflectance properties of faces. These were used to

model the appearance of each face under variable lighting and viewpoint. Sato et al.[39] employed

a physics-based simulator to predict specularities from which a set of aspects of the object was

generated. For each specular aspect they constructed deformable matching templates. At runtime,
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an input image was first classified into candidate aspects, then the deformable templates were

used to refine matching. The method proposed in [18] also operates on specular features and uses

multiple observations from different viewpoints for resolving an ambiguity in the recognition of

specular objects.

Model-based methods for recognition of Lambertian objects account for illumination effects

by building low dimensional representations of the set of images that a 3D object produces

under a large range of lighting conditions. Basri and Jacobs [3] and Ramamoorthi and Hanrahan

[36] showed how to analytically derive a 9D representation of an object’s image set from a

3D model. Light reflected by specular objects has a higher spatial frequency [48], implying

that modelling their appearance requires many more harmonics. Using more harmonics results

in heavy computations, noisy solutions, or even significant errors. Shirdhonkar and Jacobs [44]

approached these problems by enforcing the nonnegativity constraint of light in lighting recovery.

The method is based on the extension of Szegos eigenvalue distribution theorem to spherical

harmonics and is formulated as SDP. Osadchy et al [34] propose a very different approach for

recognition of specular objects in which they exploit Lambertian reflection and highlights as

separate cues. They used specular highlights to determine whether an image fits a given model

of a known pose, based on the observation that the normal vectors of specular points should

map to a small disk on the Gaussian sphere.

Both [44] and [34] assume that the image is aligned with the 3D model. Our method is a big

step forward in this respect because it could recognize objects under arbitrary pose and lighting

direction.

B. Detecting Specular Highlights

Our approach uses specular highlights as its input; this requires a method for separating the

specular component of the image. Much work has been done on separating highlights given

multiple images, but in our case, a single-image method is needed. The method proposed in

[17] first segments the image into color regions, and transforms the color of the regions into a

color space that is invariant to the spectrum of the illuminant. For each region, a least-square

approximation of the color values to a line in the 3D color space is performed, and then for

each adjacent pair of regions the color lines are compared. If the lines intersect, then the region

whose most color values lie beyond the point of intersection is labeled as a candidate highlight.
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Their method is limited to cases in which the color spectrum of the illuminant and that of the

object are different.

Klinker et al. [24] use a dichromatic reflection model which describes the color of every

pixel as a linear combination of object color and highlight color. They project the color pixels

into the color cube and then use PCA to approximate the projection by a plane. Their model

predicts a T-shape of the color on this plane where one line corresponds to object color and a

perpendicular line corresponds to the highlight color. They use an iterative process to separate the

two lines and thus separate the highlight color component. Their method is limited to dielectric

(non conductive) materials and also requires that the light and object colors are different.

In [50] the scene is captured with a polarizer at two linearly independent orientations. Then

the 2-D polarization space is formed by the two sampled images. The diffuse and specular

component can be separated in this space, since the polarization state of the diffuse component

is different from that of the specular components. The advantage of this method is that it works

for both dielectric and metal objects, and that it works regardless of the object and light colors.

The disadvantage is that it requires the images to be taken in a controlled setting.

Ortiz and Torres [33] create an Intensity-Saturation histogram of the image which is generated

from the Intensity-Saturation-Value color space. Then they detect the highlights as pixels of high

intensity and low saturation. They use a local contrast enhancement algorithm in a preprocessing

stage in order to normalize the dynamic range of the input.

In our tests a relatively simple two-step threshold on the intensity of the input pixels worked

quite well. However, the discussed methods should be considered by a practitioner in tailoring

the proposed recognition approach for a specific application.

C. Finding Correspondences between the Image and the Model

In our task, we have a database of 3D models. We are given an image which is acquired by

translating and rotating one of the models in 3D-space, and projecting the result into a plane.

Therefore, by determining the pose, one means finding the 6 parameters of the 3D translation

and rotation which align the projection of the model with the image. One way of finding these

parameters is by using correspondence pairs between the image and the 3D model which involves

the following steps: 1) detecting prominent features, 2) finding correspondences using these

features, and 3) finding the pose from correspondences.
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Features are detectable and well-defined parts of the image and the model. Correspondences,

in this context, can be defined as pairs of features, one from the 2D image and one from the 3D

model, which share common properties. The simplest form of correspondences are point pairs

(PI , PM), where PI is a point in the image space, PM is a point in the model space, and both

refer to the same point of the object. More complex examples are pairs of lines and pairs of

regions. An important problem in pose estimation is detecting the features, and then, finding the

correspondence between them. There exist many approaches for detecting features and finding

correspondences in the 2D-3D setting.

Schmid et al. [42] review and evaluate different feature detectors. They divide the features

into three types:

• Contour-based features: corners, junctions, endings, straight lines, high curvature points.

• Intensity-based features: points which ”stand out” on their background, regions of similar

color or brightness, extrema of color derivatives and certain values of second derivatives.

• Parametric models, which fit parametric intensity model to the signal.

The features that we use in this work are of a completely different nature. We use photometric

features, namely the centroids of specular highlights.

D. Pose from Correspondences

The problem of finding the pose from correspondences is widely studied in the literature.

Here, we use correspondences obtained from highlights produced by an object in the input

image and the number of highlights is usually small. Thus we need a method that finds pose

from point correspondences and uses the minimum number of points possible. Haralick et al. [19]

review solutions to the problem of finding the 6-parameter pose under perspective projection,

using correspondence between three pairs of points. Three pairs of points is the minimum

information which leads to a direct, closed-form solution to this problem. The direct three-points

solution has a 4-fold ambiguity in this case, meaning that up to 4 possible poses will satisfy the

correspondences. Over the years, approximations of the exact solution were proposed. Alter [1]

considers an approximation to the perspective projection, in order to simplify the computations

involved in computing the pose. He uses the weak perspective projection, which is equivalent to

an orthographic projection, followed by scaling of the entire scene. This approximation works

well in cases where the depth of the entire scene is small relative to the distance from the camera.
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The advantages of using this approximation are lower computational cost, and reduction of the

ambiguity of the solution to a 2-fold.

We employ the method from [1] for computation of the hypothesized poses as it satisfies

our requirements and it is very fast to compute. The weak perspective assumption used in this

method holds in our settings.

III. THE BASIC APPROACH

Our method attempts to recognize the object viewed in the scene, assuming it is one of the

models in the predefined database. Other outputs of the system are the pose of the object and the

direction of light in the input image. The general scheme follows the method of Huttenlocher

and Ullman [21], in which the objects to be recognized are first aligned with the image by

finding the transformation (pose) of the 3D object and then verified by comparing the aligned

models with the original image. The object with the highest verification score is the output of

the recognition system.

Here, we compute hypothesized pose of the object from point correspondences as in [1].

The correspondences are obtained from highlights produced by the object, using an efficient

algorithm (Section III-B) which builds upon the invariant properties of highlights, introduced in

the next section. The aligning step is followed by the verification, which measures the similarity

between the specular highlights extracted from the input image and the highlights predicted for

the hypothesized pose, using a simple model of highlight formation proposed in [34].

A. Geometric Model

We want to match a highlight in an image to its corresponding 3D patch. A naive approach is

to render highlights for all possible lighting and viewing directions and then apply a brute force

search to find the match. Even before considering the scale and rotation, this approach requires

rendering T 2 highlights, where T is the number of points in the tessellation of a viewing sphere.

After adding the scale and rotation, it becomes intractable. The following observation allows to

reduce drastically the hypothesis space, which improves both the complexity and accuracy of

the matching.

We introduce the basic idea on a simplified case and then we show how the same concept

can be applied to general objects under certain assumptions.
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Proposition 1. Assume that the scene is illuminated by a single, distant, compact light source

and the distance to the camera is large enough to assume weak perspective projection. A planar,

mirror patch with normal ~N will appear specular in all images with viewing direction ~V and

lighting direction ~L, such that ~N is a bisector of the angle between ~V and ~L (and ~N · ~L > 0).

Further, the shape of the highlights in all these images is approximately the same up to affine

transformation.

Proof. According to the law of reflection, a point with a normal ~N will appear specular in all

images with viewing direction ~V and lighting direction ~L, such that ~N is a bisector of the angle

between ~V and ~L (and ~N · ~L > 0). Since all points in the planar patch have the same normal
~N , the whole patch will appear specular in all these images. In other words each such image is

a different projection of the same planar patch, and the patch is highlighted in all of them (as

we just showed). Since different 2D orthogonal projections of a planar patch are related by an

affine transformation, the shape of the highlights corresponding to the planar patch in all these

images is the same up to affine transformation (assuming weak perspective projection).

Next we generalize these observations to a 3D specular object with non-mirror reflectance.

Proposition 2. Assume a 3D smooth object, with a uniform, specular, non-mirror reflectance,

illuminated by a single, distant, compact light source of an arbitrary direction ~L. Assume that ~N

is a surface normal that produces the highest specular reflection. Denote the set of highlighted

surface normals as

spec( ~N) =
{

~N ′|I( ~N ′) ≥ t
}

where I( ~N ′) denotes the specular component of the intensity at the point with the surface normal
~N ′ and t is a constant threshold. Given ~N , spec( ~N) doesn’t depend on ~L.

We use the Blinn-Phong model [8] to describe the specular component of the intensity of

points in spec( ~N). According to this model,

I( ~N ′) ∝ ( ~H · ~N ′)α,

where α is an exponent that depends on the glossiness of the surface and ~H =
~L+~V

‖~L+~V ‖ is a

vector in the direction halfway between ~L and ~V .

Since ~N is the surface normal that produces the highest specular reflection, ~N = ~H . Thus
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under the Blinn-Phong model,

spec( ~N) =
{

~N ′|( ~N · ~N ′)α ≥ t′
}

which doesn’t depend on ~L (t′ absorbs the additional constants).

According to Proposition 2, changing the lighting and viewing directions such that ~N remains

to be the normal with the highest specular reflection, doesn’t change spec( ~N). Note that for the

high values of t (which is usually the case with the glossy objects), normals in spec( ~N) are

very similar and thus the corresponding surface patch (patches) is (are) approximately planar.

Therefore, different orthogonal projections of a highlight are related by an approximately affine

transformation.

Now, instead of rendering all possible highlights, produced by a surface patch (as would be

done in the naive approach) we can render a single image, corresponding to ~L = ~V = ~N (we

choose this particular direction, since it minimizes the distortion) and use it as a reference for all

images in which this surface patch appears specular. Further, representing the highlights by their

affine invariant descriptors provides invariance to the transformations resulted from a change in

viewing direction, and to rotation and scale. This way we reduce the search for the best match

to linear in the tessellation size.

B. Finding Correspondences using Highlights

The centroid of a planar 3D region is viewpoint-invariant under weak perspective projection,

thus one can assume that the centroid of the highlight and the centroid of the 3D patch that

produced the highlight are approximately the same. Consequently, one can use its 2D coordinates

in the image and its 3D coordinates in the model as a correspondence pair. Having three such

pairs is theoretically enough to compute the pose parameters (up to 2-fold ambiguity). Since only

a single point – the centroid – is taken from each highlight for establishing the correspondence,

at least three highlights in the image are needed for finding the pose solely from specular

highlights. However, if other cues are available (prominent shape or texture features), one can

easily integrate the correspondences obtained from different sources to find the candidate pose.

Later on we show that the verification of the pose uses only the highlights and it has no limitation

on the number of highlights (even a single highlight could suffice for the verification).
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Fig. 2. Schematic overview of 2D-3D correspondence. C3D
i denotes the 3D centroid of a surface patch that produces a highlight,

C2D
i denotes the 2D centroid of a highlight in the input image, ~fi denotes an affine invariant descriptor of a highlight, N is

the tessellation point on the viewing sphere, L is the lighting and V is the viewing direction in the rendered image.

An efficient way of matching between a highlight in an image with unknown lighting and

pose and a 3D patch that produced it, includes an offline and online stages.

During the offline stage, we render the highlights as viewed from each point on the viewing

sphere (according to some tessellation) for the special case in which the lighting direction ~L

coincides with the viewing direction ~V . This is done by first identifying the specular normals

as { ~N ′| ~N ′ · ~N > t̃}, where ~N = ~L = ~V and t̃ = t′1/α (see the proof of the Proposition 2),

and then rendering these normals as specular. We find the highlights in the rendered image as

the connected components of white pixels. For each highlight we compute an affine invariant

descriptor and the 3D centroid of the the surface points that produced it (for each specular pixel

we know the 3D point that generated it) and we store the descriptors and the 3D centroids for

all highlights in the view, marked by the viewing direction.

The online stage consists of extracting the highlights from the input image, calculating the

affine invariant descriptor and the 2D centroid of each significant highlight, and then matching

the invariants in the given image to the precomputed invariants of the rendered highlights in the

stored views.

Matching all highlights that appear in a view as a set, as opposed to matching each highlight
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individually, has its positive and negative aspects. The advantage is that matching a set of

highlights has a lower chance of false matches compared to matching an individual highlight and

it’s computationally more efficient. On the other hand, a rendered view and an input image could

have different number of highlights due to self occlusions. The following matching procedure

allows for unmatched highlights. A schematic overview of the matching is shown in Figure 2.

For each viewing direction according to the tessellation, we construct a full bi-partite graph in

which one side corresponds to the highlights in the input image and the other to the rendered

highlights stored for that view. The weights on the edges are the Euclidian distances between the

affine invariant descriptors of the highlights, represented by vectors (Section III-C). Note that

the highlights in the real and the rendered images are not the same, but they are related by an

affine transformation (see Proposition 2), thus affine invariant descriptors of the highlights should

resolve the difference up to noise. We use Hungarian algorithm [26] to find the best maximum

match for the bi-partite graph. Matching also relates between the 2D centroids of the highlights

in the input image and the 3D centroids of the surface points (these have been stored with the

view), which provides the 2D-3D correspondences needed for the pose estimation algorithm.

The number of highlights in every view is usually small, which makes the matching very fast.

The proposed matching process chooses a subset of views, which we call candidate views, that

best match the invariants computed from the input image. Only the candidate views are used for

pose estimation, and verification. The exact number of candidate views needed for correct pose

estimation depends on the object. If the object has a very complex shape and most of its local

parts differ from one another, the highlights are distinctive enough and the number of candidates

could be rather small. For more symmetric objects, the number of candidate matches could be

high. Nevertheless, the method remains efficient: first, because sets of highlights are matched

instead of individual highlights, which decreases the number of false matches; second, for every

candidate view, polynomial matching is applied in order to establish correspondence between

the highlights in this view to the highlights in the image, and up to two hypothesized poses1 are

computed for the view, as opposed to computing poses for all possible correspondences of the

highlights.

1Two poses are computed due to the 2-fold ambiguity of the 3-point pose estimation algorithm.
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C. Affine Invariants

We choose Affine Moment Invariants as descriptors of highlights [14, 46] due to computational

efficiency and low storage requirements. Given a binary image of a highlight, cropped from the

image of the object, we compute 34 independent invariants up to weight 10 polynomials [46]

as in the central moments of the image and combine them into a single vector, which we use

as an affine invariant descriptor of the highlight.

Computing and storing affine invariant descriptors for every direction on the viewing sphere

is the most computationally expensive part of the proposed method. Fortunately, it can be done

in an offline phase.

D. Pose from Correspondences

Specular highlights produced by a single light source are sparse for most real objects, thus

we need a method for pose computation that works with a minimal number of correspondences.

We choose [1] as it needs only three correspondences and it is computationally efficient. This

algorithm, however, has 2-fold ambiguity of the solution, thus when the image contains three

highlights, two hypothesized poses are computed per view. In practice, there are not many cases

with more than three significant highlights. In such cases, the same algorithm is applied for all

possible triplets of correspondences, and the correspondence which gives the lowest error on the

rest of the points is then used as hypothesized pose of the view.

E. Verification

The purpose of the verification step is to quantify the resemblance between the highlights

extracted from an input image and the highlights predicted for a hypothesized pose and identity

of the object. The hypothesized pose allows one to match image pixels to corresponding surface

normals on the model. We map each highlighted pixel from the input image to a point on a

Gaussian sphere having the same surface normal and label this point as specular. According

to the model introduced in [34], if the pose and the model are chosen correctly, the normals

corresponding to the specular pixels must form a cap on a Gaussian sphere. The size of the

cap is determined by the material properties of the object. Since these are known (or can be

estimated), we could adjust the labelling on the sphere such that the specular normals form a cap

of the correct size. The size of the cap can be controlled by t̃, which is the threshold on the dot
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product between the central normal and the most peripheral normal within the cap. In practice,

we search for a normal ~N , for which the set of specular normals { ~N ′ | ~N ′ · ~N > t̃} is the largest.
~N is chosen to be the center of the cap and the set of all normals ~N ′ satisfying ~N ′ · ~N > t̃ to

be specular. The updated labelling is then mapped back to the image plane and compared with

the original highlights. This process relies on the assumption that if the hypothesized pose and

identity are correct, the updated highlights will be similar to the original, but if the hypothesized

pose or identity are wrong, the updated highlights will be inconsistent with the original (Figure

3).

The overlap measure used in Osadchy et al. [34] is defined as

overlap =
size(BI ∧B′

I)

size(BI ∨B′
I)

(1)

where BI is the binary image of the original highlights and B′
I is the binary image of highlights

mapped back from the Gaussian sphere. We found that this measure is not robust to small shifts,

caused by the errors in pose. To overcome this, a robust variant of Hausdorff distance [45] is

applied to compare the binary images:

H(BI , B
′
I) = h(BI , B

′
I) + h(B′

I , BI),

h(A,B) =
1

|A|
∑
a∈A

min{α, min
b∈B

‖a− b‖}

where |A| is the number of non-zero pixels in A, ‖a− b‖ is the normalized Euclidean distance

between points, and α is a smoothing constant that determines the balance between stability and

discriminative ability. α = 0 means that the distance will always be zero, and α = 1 means no

smoothing. In our experiments we used α = 0.05.

We found that verification score function has a steep slope near the optimum pose. Thus we

can further improve the accuracy of pose estimation by running optimization of the verification

function, with the hypothesized pose as a starting point. To this end we choose a few hypothesized

poses with the best verification score and run a standard routine for constrained non-linear

optimization [35] using these poses as starting points. The pose that produces the best score

(after optimization) is chosen to be the pose of the object. If the model used in the process is

the correct one, then this pose is the true pose of the object, otherwise the pose has no meaning.

The verification process allows to recover the light direction in the scene. After adjusting the
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specular cap on the sphere, its central normal ~N corresponds to the bisector between the light

direction ~L and the viewing direction ~V (which is (0,0,1) in the camera centered coordinate

system). Note the object’s normals are rotated using the estimated rotation. The light direction
~L can be estimated as

~L = 2( ~N · ~V ) ~N − ~V .

IV. THE RECOGNITION SYSTEM

Next we present an example of a system for recognition of specular free-form objects. The

system incorporates the concepts introduced in the previous section with other modules, the

implementation of which depends on the application at hand. The algorithm is quite efficient

and most of its steps can be parallelized,which allows close to real time performance.

A. Offline Stage

The offline stage performs the following steps for every object in the database.

Given a 3D model of an object, define a set of unit vectors { ~Ni} which is a subset of the

object’s normals according to a certain tessellation. For each ~Ni perform the following steps:

Step 1. Set ~V = ~L = ~Ni where ~V is the viewing direction and ~L is the lighting direction. Render

a binary image Bi of the object from the viewing direction ~V according to the model introduced

above: the intensity of a pixel is set to one if the dot product between its corresponding normal

and ~Ni is larger than a predefined shininess threshold t̃, otherwise the intensity is set to zero.

Step 2. Locate significant highlights in Bi by finding the connected components and removing

very small ones. Small shapes are more prone to error in the affine invariants since they consist

of a small number of discrete pixels.

Step 3. Compute an affine invariant descriptor (see Section III-C) for every significant highlight

in Bi. Store the descriptor along with the 3D centroid of the surface patch that produced it and

with the normal ~Ni.

B. Online Stage

Given an image I of an unknown object perform the following steps:
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Fig. 3. Step 1 and 5 of the online stage. Top row, left to right: a given image with unknown pose and lighting, high
threshold binary image, low threshold binary image, highlights from low threshold which intersect with those that passed the
high threshold; Bottom row, left to right: correct hypothesized pose, initial overlap for correct pose (threshold highlights are in
red, rendered highlights are in green, the overlap between the two is in yellow), refined overlap (using the Gaussian sphere),
incorrect hypothesized pose and the corresponding overlap, overlap with an incorrect hypothesized model (cane). This figure is
best viewed in color.

Step 1. Extract the specular highlights in I by thresholding the specular component of the

image. Let BI denote the binary image of the extracted highlights. The significant highlights in

BI are determined in the same way as in step 2 in Section IV-A.

Section II-B discusses different methods for separating the specular and diffuse components

of the image. In our experiments we used a simple two-step threshold on the intensity of the

input pixels to extract the specularities, which first applies a high threshold on the image, and

then a low threshold but selects only the highlights which intersect with those that passed the

high threshold (Figure 3).

Step 2. Compute the affine invariant descriptor (see Section III-C) and the 2D centroid for each

significant highlight in BI . Now I is represented by a set of (centroid, descriptor) pairs. The

size of the set is equal to the number of significant highlights in BI .

For each 3D model Mk in the data base apply steps 3 to 6:

Step 3. Find candidate correspondences between the highlights in I and the 3D model Mk

and rank them. To this end, for each viewing direction according to the tessellation

defined in the offline stage, construct a full bipartite graph as shown in Section III-B and

find the best maximum match using Hungarian algorithm [26]. The maximum match

relates between the 3D centroids of the highlights, generated for the 3D model in the

offline stage, and the 2D centroids of the highlights that were extracted from the input

image. Assign a score to the found correspondence as the average distance between

the descriptors of the matched highlights. Choose up to K views, with matching
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Fig. 4. Models used in the experiments: doll, Buddha, cane, cow, duck, fertility, frog, gargoyle, horse, kitten, mouse, torso,
pin. These names are used in the following figures.

score higher than a predefined threshold, as candidates views. (Alternatively, a given

percentage of views with the highest score can be chosen.)The threshold and K are

chosen empirically.

Step 4. For each candidate correspondence, compute the pose as described in Section III-D.

Discard poses with an out-of-bounds translation vector. In the case of more than 3

points, each triplet produces a pose. A pose which is inconsistent with poses obtained

from other triplets is likely to be erroneous and should be discarded.

Step 5. For each pose, obtained in Step 4. apply the verification process as described in

Section III-E.

Step 6. (Optional) Choose S poses with the highest verification score and use them as starting

points in the optimization of verification function 2. Choose the pose that produces the

best score (after optimization). Store the verification score for the model Mk and go

back to Step 3.

Step 7. Identify the object in I as the one corresponding to the model with the highest verification

score.

V. EXPERIMENTS

We built a new data base for model-based recognition of specular objects and ran all the exper-

iments on this set. The data base is available at http://www.cs.haifa.ac.il/̃ rita/specObj/main.html.

It contains 3D models of 13 objects and images of these objects under varying viewing conditions.

The 3D models of 11 objects (2− 12 in Figure 4) were obtained from AIM@SHAPE Shape

Repository (http://shapes.aim-at-shape.net/) and used to create real objects using 3D printing

technology which allows to produce objects from a CAD model with relatively high accuracy.

These objects were painted with a glossy paint, which produces specular effects (Figure 5). We

2due to running time constraints we ran optimization on very few poses (S = 3).
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colored the objects with the same uniform color, since textureless objects are more challenging

for pose estimation and recognition in general. Our method gains no advantage from the uniform

color and doesn’t make any assumptions about the texture of the objects. However, to show that

it can work with textured objects, we added two such objects to the data base (Figure 5). The

3D models of these objects (doll and pin in Figure 4) were computed from 2D images assuming

rotational symmetry [34]. The 3D models of all objects were centered, bound to the unit sphere

in size, and remeshed to have between 50, 000 and 100, 000 faces. Processing of the models was

done using MeshLab (http://meshlab.sourceforge.net/).

The data base contains 741 images of 13 objects, divided into three subsets: synthetic, real

outdoor, and real indoor. The images contain variations in lighting conditions (direction, intensity,

and the size of the source), background, pose, and size of the objects. Some of the images contain

large shadows and partial occlusions. The data base also includes images in which the object is

slightly out-of-focus, which tests the robustness of the affine invariant matching. The examples

of real images with some of the listed variations are shown in Figures 5 and 9.

Synthetic Images: For each object, we have generated 20 synthetic images in random poses with

random light direction, restricting them to have at least three highlights (in total 260 images).

Figure 4 shows examples of the synthetic images with various levels of shininess.

Outdoor Set: The outdoor subset contains 155 images against black background and 76 images

against cluttered background, in total 231 images. All the images were taken with the sun light

in different hours of the day. Thus some variation in lighting direction is present in these images

(due to sun movement).

Indoor Set: The indoor subset contains 250 images against both plain and cluttered backgrounds

and includes large variation in illumination direction. In many of these inputs, the light source

and camera were not very far from the object, which allowed us to test the robustness of the

algorithm against deviation from the assumption of a distant light source and a weak perspective

projection. Some of the images include partially occluded objects.

A. Implementation Details

The highlights in the offline stage of the algorithm and all images in the synthetic set, were

rendered at a resolution of 1024× 1024. The resolution of real images varied from 866 to 2053

(all images had square size). For the verification step (Section III-E), rendering of the mapped-
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Fig. 5. Viewing conditions in the test sets. First row: examples of the lighting conditions – the first four images were captured
in the sun light, the next three images were taken with an indoor light source with varying direction. Second row: the first
four images show the size variation, the next three images provide examples of partial occlusions. Both rows show typical
backgrounds in our experiments.

back highlights was done at a resolution of 256 × 256. The number of candidate views, K,

chosen for verification was 20% for the synthetic images and 50% for the real images.

The algorithm was implemented mostly in MATLAB and partially in Java for the OpenGL

renderings. The average (online) running time of the algorithm was around 60 seconds per

input image, which could be significantly improved by a more efficient implementation and

also by parallelization, which is possible during most stages of the algorithm. The test runs were

performed on a laptop with Intel Core i7 Q 720 CPU and NVIDIA GeForce GTS 250M graphics

card.

B. Determining t̃

In order to find t̃, we use a 3D model of the object and its image aligned with the model. After

segmenting the highlights, we map the pixels within the highlights to the points on the Gaussian

sphere having the same surface normal. According to the model, introduced in Osadchy et al.

[34], the specular points of the sphere must form a cap, which we find using the algorithm from

Osadchy et al. [34]. We set t̃ to the value of the dot product between the normal in the center

of the cap and the most peripheral normal within the cap.

C. Recognition Results

We ran recognition tests separately for synthetic, indoor, and outdoor sets. The results are

summarized as confusion matrices and shown in Figure 6. Recognition rates of objects (the

percentage of images of the object that were recognized correctly) are listed along the diagonal.

May 16, 2012 DRAFT



21

The average recognition rates of the synthetic, outdoor, and indoor sets are 87.3%, 77%, and

72.5% correspondingly. The gap in the performance between the synthetic and the real sets

results from noisier specularity extraction and violation of assumptions in real images. The

average recognition rate on the indoor set is the lowest, because the positions of the light source

and the camera were close to the object in at least half of the indoor images, and the indoor

set includes images with partially occluded objects. Section V-E provides a detailed discussion

about the sensitivity of our method.

To improve the robustness of recognition, one could consider rejecting inputs with confidence

level lower than a certain threshold. Inputs with low confidence level could come from objects

that are not in the database or images with high level of noise. Such confidence measure can

be easily obtained using the normalized distance H employed in the verification step (Section

III-E). H = 0 characterizes a perfect match between the highlights, and H = 1 means no match.

Therefore, we can use 1−H as the confidence measure of the result. Figure 6 (bottom, right)

shows the average recognition rates as a function of rejection rates for the three sets. We can see

that by rejecting a small fraction of the inputs with low confidence, we improve the recognition

results and reliability of the system.

D. Pose Accuracy Validation

Measuring the accuracy of pose is not trivial both mathematically and practically. First, because

it depends on application and second, because it requires accurately labeled poses and these are

very hard to obtain (it either requires a robotic arm or manual labeling which is extremely

tedious).

Given the true pose T and the pose found by the algorithm T̃ , a measure of distance between T

and T̃ is required. Our pose space is essentially 6-dimensional: 3 dimensions of translation, and

3 dimensions of rotation. Measuring distance between the 3 translation parameters is straight-

forward, using the Euclidean distance between the translation vectors. Measuring the rotation

distance is more difficult, and depends on the representation of the rotation.

A popular representation of rotation is the Euler angles. They are the most compact represen-

tation, but there is no straightforward way of denoting distances between two triplets of angles

as a single number. In our work we used the axis-angle representation,which is described by two

parameters: a unit vector indicating the direction of the rotation axis and a real value describing
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Fig. 6. Recognition Results. Confusion matrices: top left, indoor set; top right, outdoor set, bottom left, synthetic set. Average
recognition rates of objects are listed along the diagonal. Bottom right, average recognition rates for the three sets as a function
of rejection rate.

the angle of rotation about this axis.

We have evaluated the accuracy of the pose estimation separately for translation error and

rotation error. Denote the true translation vector as τ and rotation matrix that corresponds to the

true rotation angles as R. Denote the corresponding output of the algorithm as τ̃ and R̃. The

translation error is defined as ||τ− τ̃ ||. The rotation error is defined as the angle that corresponds

to the axis-angle representation of the rotation matrix that brings from R to R̃. Since we do not

use the texture of the object, pose estimation of a rotationally symmetric object is ambiguous

around the axis of symmetry. Thus for such objects, we measured the rotation error as an angle

between the true and the estimated axes of symmetry.

We used the correctly recognized images in the synthetic set and in a subset of the outdoor

set, which were manually labeled for the 2D-3D correspondences (165 images), to evaluate the

translation and rotation errors of the pose estimation algorithm. Figure 7 shows the rotation
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Fig. 7. Pose estimation errors in the synthetic set (including 260 images) and in a subset of the outdoor set (including 165
images with pose annotation obtained from manual correspondences). Left – rotation error, right – translation error. Rotation
errors are given in degrees, and translation errors are relative to the object size. The x-axis enumerates the models according to
the order given in Figure 4.

Fig. 8. Examples of pose estimation results on real images. The white contour corresponds to the occluding contour of the
object in the estimated pose. 5 last images in the bottom row show some of the failure cases. Note that the shape and the
location of the highlights are plausible for the incorrectly estimated poses, which can explain the errors.

and translation errors for the two sets. Due to the high difficulty of the manual correspondence

labeling, we did not annotate the entire real set. However, the success of the pose estimation

can be judged by the recognition success. Figures 8 and 9 show examples of real images and

illustrate the result of the pose estimation.
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Fig. 9. Variation of poses for one of the objects from the outdoor subset. The pose estimations shown by white contours are
overlaid with the original images.

E. Robustness

Our experiments contain images with large variation in light source and viewing directions,

showing the robustness of the proposed approach to these factors. The real images are illuminated

by sun and by lamps of different sizes and intensities, which shows the robustness of our method

to the intensity and color of the light source.

In some of the tested images the object of interest was partially occluded either by the holding

hand or intentionally (see Figure 5, bottom row for examples). Since the highlights are local

and sparse, the chance of occluding them is low. Thus our method is quite robust to partial

occlusions. 44 images in the indoor set contain partial occlusions; 31 of them were recognized

correctly, which is 70.5% compared to 72.5% for the entire indoor set.

The proposed approach is insensitive to cluttered background as long as it doesn’t exhibit

highlights. In our experiments we used several types of background (cluttered and homogenous);

Figure 5 shows the variation in background in our tests. Some of the images have background

highlights. When their shapes and positions don’t match any of the objects’ highlights, our

method performs well. However, we cannot claim the robustness to background highlights in

general. We plan to address this problem in future research.

In order to test the robustness of the recognition algorithm to object size, we took 8 scenes of

four objects that were recognized correctly in previous experiments and created 5 croppings per

scene with varying amount of background. Then we scaled the images to the same size. This

way we vary both the resolution of the object and its size relative to the scene. The upper limit

on the size of the object is constrained by the requirement that the object should fit the image.

The smallest size is not defined, but we set the lower limit on the number of pixels, comprising

a highlight. The plot showing the recognition rate as a function of object size (averaged over
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Fig. 11. Sensitivity to the size of the object relative to the size of the scene; left – recognition rate as a function of object
scale; right – examples of images with scales used in the test.

the scenes) and an example of croppings for one scene are shown in Figure 11.

We assume that the object of interest has uniform reflectance. However, in practice, the paint

has small variations in reflectance properties and even finger marks left on the objects from

holding them change their reflectance, but our method appears to be robust to such variation.

To test the sensitivity of the algorithm to errors in the estimation of specular properties of the

object, which are characterized by t̃ (the threshold on the dot product of the normals defining

the highlight size), we ran the recognition algorithm on 20 images of two objects using 5 values

of t̃. Figure 10 shows the recognition rate as a function of t̃ and the renderings obtained with

min and max values of t̃. This test shows that our method is moderately robust to the errors in

estimation of the material properties.
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VI. DISCUSSION AND FUTURE WORK

In this work we addressed a challenging task of recognition in difficult viewing conditions, in

which conventional features for establishing 2D-3D correspondence are unreliable. We showed

that for shiny objects, under the assumption of a dominant light source, specular highlights could

be used as pose-invariant features. We developed a pose estimation and recognition algorithms

that rely solely on highlights and do not require the knowledge of lighting. The proposed method

showed good results in an extensive evaluation that included both synthetic and real images of

complex objects. We provided a data base of complex shiny objects that includes accurate CAD

model of the objects and their real images under varying viewing conditions.

The two main sources of errors in our method are incorrect extraction of highlights and

similarities in the local shape of the object. The specularity extraction is a non-trivial task

and there is no generic solution for it yet. Previous work shows nice results for assumed

conditions (Section II-B), thus the choice of the method for highlight extraction should be

carefully considered based on the application at hand.

Different parts of a symmetric object could produce highlights with the same shape up to

affine transformation. Our current approach matches the highlights in the input image to the

rendered view using the Euclidian distance between the affine invariants of the highlights and

only the best match is considered. Thus if the correct view contains several highlights with

similar shape (up to affine transformation) the best match is ambiguous and in such cases the

current implementation is likely to fail. Previous work shows that there is a significant advantage

in resolving ambiguities during the hypothesis testing instead of the matching phase [20]. The

straightforward solution is to check all possible correspondences in the view, but this solution is

exponential in the number of highlights. Moreover each such match should be validated, but our

current validation requires a rendering step and thus is not very efficient. In future research we

shall consider extending the current approach to several matches per view with more efficient

validation that doesn’t involve rendering. These will also help in developing more practical

method that can handle background highlights, multiple light sources and objects in the scene.

There are other sources of errors, but they are much less common. For example, partial

occlusion of a highlight could change the affine invariant descriptor, which results in a wrong

match. Future work may address these cases by detecting abnormalities in the shapes of the
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highlights and filtering those highlights. Objects with many ridges have patches with similar

normals close to each other. This results in highlights which are close to each other, and for

some viewing direction such highlights merge into one highlight. This could also confuse the

matching procedure. For example, our method has lower recognition rates on the gargoyle object

that has many such ridges.

The reflectance properties of the objects are assumed to be part of the object’s model. If these

parameters are not given, we showed how to estimate them. Objects with the same shape but

different reflectance could be considered as different reference models. It is possible to generalize

the proposed algorithm to varying reflectance properties by optimizing the verification function

over the specular cap size (Section III-E).

There are parts of the algorithm that could be further optimized, for instance, the search of

the best matching views is linear in the number of samples on the viewing sphere. Reducing

the number of viewing directions could result in errors in pose estimation. A possible solution

is to use non-uniform tessellation, which is sparser on smooth parts of the object and denser in

areas of high curvature. This and other optimizations will be explored in future work.
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