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Abstract. The kite generator, first introduced by Andreeva et al. [1],
is a strongly connected directed graph that allows creating a message
of almost any desired length, connecting two chaining values covered by
the kite generator. The kite generator can be used in second pre-image
attacks against (dithered) Merkle-Damg̊ard hash functions.

In this work we discuss the complexity of constructing the kite genera-
tor. We show that the analysis of the construction of the kite generator
first described by Andreeva et al. is somewhat inaccurate and discuss its
actual complexity. We follow with presenting a new method for a more
efficient construction of the kite generator, cutting the running time of
the preprocessing by half (compared with the original claims of Andreeva
et al. or by a linear factor compared to corrected analysis). Finally, we
adapt the new method to the dithered Merkle-Damg̊ard structure.

1 Introduction

One of the important fundamental primitives in cryptography is cryptographic
hash functions. They are widely used in digital signatures, hashing passwords,
message authentication code (MAC), etc. Hence, their security has a large impact
on the security of many protocols.

Up until the SHA3 competition, the most widely used hash function con-
struction was the Merkle-Damg̊ard one [5, 11]. The Merkle-Damg̊ard structure
extends a compression function f : {0, 1}n×{0, 1}m → {0, 1}n into a hash func-
tion MDHf : {0, 1}∗ → {0, 1}n. Indeed, the Merkle-Damg̊ard structure is still
widespread, as can be seen from the wide use of the SHA2 family [12]. However,
in the last fifteen years, a series of works pointed out several structural weak-
nesses in the Merkle-Damg̊ard construction and its dithered variant [1, 6–9].

One way for comparing between different structures of cryptographic hash
functions is considering generic attacks. Naturally, generic attacks use complex
algorithms and data structures, and often become used as subroutines in other
attacks. In such cases, the accurate analysis of these algorithms and data struc-
tures becomes very important. For example, Kelsey and Kohno suggest a special
data structure, called the diamond structure, which is a complete binary tree
with 2` leaves, to support the herding attack [8]. Blackburn et al. [4] point out
an inaccuracy in Kelsey-Kohno’s analysis and fix it, resulting in an increased
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time complexity. Later work presented new algorithms for more efficient con-
structions of the diamond structure [10,14].

A different second pre-image attack is based on the kite generator. This is
a long message (with 2k blocks) second pre-image attack due to Andreeva et
al. [1] on the Merkle-Damg̊ard structure and its dithered variant [13]. The kite
generator is a strongly connected directed graph of 2n−k chaining values that
for each two chaining values a1, a2 covered by the kite generator, there exist a
sequence of message blocks of almost any desired length that connects a1 to a2.
Their analysis claims that the kite generator ’s construction takes about 2n+1

compression function calls.
We start this paper by pointing out an inaccuracy in their construction based

on some theorems from the Galton-Watson branching process field: We show that
the resulting graph, using the original construction, is not strongly connected
and therefore is unusable in the online phase. We proceed by offering corrected
analysis that shows that the construction of the kite generator takes about (n−
k) · 2n compression function calls.

We then show a completely different method to build the kite generator. This
new method allows constructing the kite generator in time of 2n compression
function calls, i.e., it takes half the time of the originally inaccurate claim. Fi-
nally, we adapt all these issues to the dithered variant of the Merkle-Damg̊ard
structure.

This paper is organized as follows: Section 2 gives notations and definitions
used in this paper. In Section 3 we quickly recall Andreeva et al.’s second pre-
image attack, and most importantly, the construction of the kite generator. We
identify and analyze the real complexity of constructing a usable kite generator
in Section 4. We introduce a new method for constructing kite generators in
Section 5. We treat the analysis of the kite generator and the new construction
in the case of dithered Merkle-Damg̊ard in Section 6. Finally, we conclude the
paper in Section 7.

2 Notations and Definitions

Definition 1. A cryptographic hash function is a function H : {0, 1}∗ → {0, 1}n,
that takes an arbitrary length input and transforms it to an n-bit output such
that H(x) can be computed efficiently, while the function has three main security
properties:

1. Collisions resistance: It is hard to find (with high probability) an adversary
that could produce two different messages M,M ′ such that H(M) = H(M ′)
in less than O(2n/2) calls to H(·).

2. Second pre-image resistance: Given M such that H(M) = h, an adversary
cannot produce (with high probability) an additional message M ′ 6= M such
that H(M ′) = h in less than O(2n) calls to H(·).

3. Pre-image resistance: Given a hash value h, an adversary cannot produce
(with high probability) any message M such that H(M) = h in less than
O(2n) calls to H(·).
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Definition 2 (Merkle-Damg̊ard structure (MDH)). The Merkle-Damg̊ard
structure [5,11] is a structure of an iterative hash function. Given a compression
function f : {0, 1}n × {0, 1}m → {0, 1}n that takes an n-bit chaining value and
an m-bit message block and transforms them into a new n-bit chaining value,
MDHf is defined as follow: For an input message M :

1. Padding step1

(a) Concatenate ‘1’ at the end of the message.
(b) Let b be the number of bits in the message, and ` be the number of bits

used to encode the message length in bits.2 Pad a sequence of 0 ≤ k < m
zeros, such that b+ 1 + k + ` ≡ 0 (mod m).

(c) Append the message with the original message length in bits, encoded
in ` bits.

2. Divide the message to blocks of m bits, so if the length of padded message
is L ·m then

M = m0||m1|| . . . ||mL−1.

3. The iterative process starts with a constant IV , denoted by h−1, and it
updated in every iteration, according to the appropriate message block mi

(for 0 ≤ i ≤ L− 1), to new chaining value:

hi = f(hi−1,mi).

4. The output of this process is:

MDHf (M) = hL−1

The process is depicted in Fig. 1.

IV
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f

m1

h0
. . . f

mL−2

hL−3

f

mL−1

hL−2
hL−1 =MDHf (M)

Fig. 1. The Merkle-Damg̊ard Structure

Merkle [11] and Damg̊ard [5] proved that if the compression function is
collision-resistant then the whole structure (when the padded message includes
the original message length) is also collision-resistant. Although the Merkle-
Damg̊ard structure is believed to be secure also from second pre-image attacks,
in practice it is not [1, 2, 6, 9].

1 We describe here the standard padding step done in many real hash functions such
as MD5 and SHA1. Other variants of this step exist, all aiming to achieve prefix-
freeness.

2 It is common to set 2` − 1 as the maximal length of a message.
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Definition 3. Let G = (V,E) be a directed graph. A directed edge from v to u is
denoted by (v, u). For each v ∈ V we define the in-degree of v, denoted by din(v),
to be the number of edges that ingoing to v, and the out-degree of v, denoted by
dout(v), to be the number of edges that outgoing from v.

Definition 4 (Galton-Watson Branching Process). A Galton-Watson branch-
ing process is a stochastic process that illustrates a population increasing, which
starts from one individual in the first state S0, and for each t ∈ N ∪ {0} each
individual from St produces i ∈ N ∪ {0} offsprings for the next state St+1 ac-
cording to a fixed probability distribution. Formally, a Galton-Watson branching
process is defined as a Markov chain {Zt}t∈N∪{0}:

1. Let Z0 := 1.
2. For each (i, t) ∈ N×N let Xt

i be a random variable follows a fixed probability
distribution P : N ∪ {0} → [0, 1] with expected value µ <∞.

3. Define inductively:

∀t ∈ N : Zt :=
∑

1≤i≤Zt−1

Xt
i .

The random variable Xt
i represents the number of offspring produced by the i’th

element (if there is one) of the Zt−1 elements from the time t− 1.
A central issue in the theory of branching processes is ultimate extinction,

i.e, the event of some Zt = 0. One can see that E(Zt) = µt. Still, even for µ ≥ 1
as long as Pr[Xi = 0] > 0 the ultimate extinction is an event with a positive
probability. To study such events of ultimate extinction we need to study their
probability, given by

lim
t→∞

Pr[Zt = 0] = Pr[∃t ∈ N : Zt = 0].

In [3] Athreya and Ney show that the probability of ultimate extinction is the
smallest fixed point x ∈ [0, 1] of the P ’s moment-generating function fP (x).
For example, if Xt

i ∼ Poi(λ), then the probability of ultimate extinction is the
smallest solution x ∈ [0, 1] of eλ(x−1) = x.

3 The Kite Generator

In [1] Andreeva et al. suggest a method to generate second pre-images for long
messages of 2k blocks. Using an expensive precomputation of 2n+1 compression

function calls, the online complexity of their attack is max(O(2k),O(2
n−k

2 )) time
and O(2n−k) memory.

3.1 The Attack’s steps

The Precomputation. In the precomputation the adversary constructs a data
structure called the kite generator, which is a strongly connected directed graph
with 2n−k vertices. The vertices are labeled by chaining values and the directed



Efficient Construction of the Kite Generator Revisited 5

edges by message blocks which lead one chaining value to another. Given two
chaining values a1, a2 covered by the kite generator, this structure allows to
create a message of almost any desired length that connects a1 to a2.

To construct the kite generator, the adversary picks a set A of 2n−k different
chaining values, containing the IV . For each chaining value a ∈ A he finds two
message blocks ma,1,ma,2 such that f(a,ma,1), f(a,ma,2) ∈ A. We note that for
each chaining value a ∈ A, dout(a) = 2, and therefore ∀a ∈ A : E[din(a)] = 2.

The Online Phase. In the online phase, given a long message M , the adversary
computes H(M) and finds, with high probability, a chaining value hi, for n−k <
i < 2k, such that hi ∈ A. Now the adversary creates, using the kite generator, a
sequence of i message blocks, starting from the IV , that leads to hi. It is done
in the following steps:

1. The adversary performs a random walk in the kite generator of i − (n − k)
message blocks, from the IV . To do so, the adversary starts from the IV
and chooses an arbitrary message block m ∈ {mIV,1,mIV,2} and traverse
to the next chaining value h1 = f(IV,m). The adversary continues in the
same manner i − (n − k) − 1 times, until hi−(n−k) is reached. Denote the
concatenation of the chosen message blocks by s1.

2. The adversary computes all the 2
n−k

2 chaining values reachable from hi−(n−k)
by walking n−k

2 steps in the kite generator.

3. The adversary computes all the expected 2
n−k

2 chaining values that may lead
to hi by walking back in the kite generator n−k

2 steps from hi.
4. The adversary looks for a collision between these two lists (due to the birth-

day paradox, such a collision is expected with high probability). Denote the
concatenation of the message blocks yielding from hi−(n−k) to the common
chaining value by s2, and the concatenation of the message blocks yielding
from the common chaining value to hi by s3.

The concatenation s1||s2||s3 is a sequence of i message blocks that leads from
the IV to hi, as desired. Now, the adversary creates a second pre-image:

M ′ = s1||s2||s3||mi+1|| · · · ||mk.

Fig. 2 illustrates the attack.

3.2 The Attack Complexity

The Precomputation Complexity. As described in Section 3.1, to construct the
kite generator, the adversary has to find, for each chaining value a ∈ A, two
message blocks ma,1,ma,2 such that f(a,ma,1), f(a,ma,2) ∈ A. To do so, he
generates 2 · 2k message blocks, each leads to one of the 2n−k chaining values of
A with probability of 2−k. Hence, is expected to find two such message blocks,
and the total complexity is about 2·2k ·2n−k = 2n+1 compression function calls.3

3 Note that using this method dout(a) follows a Poi(2) distribution, and about 13%
of the chaining values are expected to have dout(a) = 0. To solve this issue, it is
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Fig. 2. A Second Pre-Image Using a Kite Generator.

The online Complexity. First of all, the memory used to store the kite generator
is O(2n−k). Second, the online phase has two steps:

1. The adversary should compute the M ’s chaining values to find the common
chaining value with the kite generator’s chaining values. This step requires
O(2k) compression function calls.

2. The adversary should find a collision between the two lists described in

Section 3.1. Since each list contains about 2
n−k

2 chaining values, this step

requires O(2
n−k

2 ) time and memory.4

Thus, the online time complexity is

max(O(2k),O(2
n−k

2 )),

and the online memory complexity is

O(2n−k).

4 A Problem in the Construction of the Kite Generator

4.1 On the Inaccuracy of Andreeva et al.’s Analysis

As described in Section 3.1, for constructing the kite generator Andreeva et al. [1]
suggest to find from each chaining value of A two message blocks, each of them

possible to generate for each chaining value as many message blocks as needed to
find two out-edges. Now, the average time complexity needed for a chaining value
a is 2k+1. The actual running time for a given chaining value is the sum of two
geometric random variables with mean 2k each. Hence, the total running time is the

sum of 2n−k+1 geometric random variables Xi ∼ Geo(2−k). Since
∑2n−k+1

i=1 (Xi−1) ∼
NB(2n−k+1, 1−2−k), then

∑2n−k+1

i=1 Xi ∼ 2n−k+1+NB(2n−k+1, 1−2−k). Therefore,

E[
∑2n−k+1

i=1 Xi] = 2n−k+1 + (1−2−k)2n−k+1

2−k = 2n+1 with a standard deviation of√
2n−k+1(1−2−k)

2−k ≤ 2
n+k+1

2 .
4 Andreeva et al. [1] note that it is possible to find the common chaining value by a

more sophisticated algorithm which requires the same time but negligible additional
memory, using memoryless collision finding. Our findings affect these variants as
well.
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leads to a chaining value of A. They claim that as ∀a ∈ A : E[din(a)] = 2, the
resulting graph is strongly connected.

We agree with their claim that due to the fact that dout(a) = 2 then ∀a ∈
A : E[din(a)] = 2, but we claim that their conclusion, that the resulting graph is
strongly connected, is wrong. The actual distribution of din(a) can be approx-
imated by din(a) ∼ Poi(2), as the number of entering edges follows a Poisson
distribution with a mean value of 2. Hence, for each chaining value a ∈ A:

Pr[din(a) = 0] =
e−2 · 20

0!
= e−2.

Thus, about 2n−k · e−2 ≈ 13% of the chaining values in the kite generator are
expected to have din(a) = 0. Obviously, the resulting graph is not strongly
connected.

Moreover, there are more hi’s in the kite generator for which the attack fails.
The construction of the “backwards” tree from hi is a branching process with
Poi(2) offspring (see Def. 4). Therefore, an ultimate extinction of the branch-
ing process suggests that hi cannot be connected to, and the online phase fails.
According to the branching process theorems [3], the probability of ultimate ex-
tinction in a branching process with offspring distribute according a distribution
P is the smallest fixed point x ∈ [0, 1] of the moment-generating function of
P . In our case the distribution is Poi(2), and the moment-generating function
is f(x) = e2(x−1). Hence, the probability of ultimate extinction is the smallest
solution x ∈ [0, 1] of e2(x−1) = x. Using numerical computation we get that
x ≈ 0.2032. It means that in about 20% of the cases the “backwards” tree is
limited. We note that usually this extinction happens very quickly. For example,
about 85% of the “extinct” hi do so in one or zero steps (i.e., their backwards
tree is of depth of at most 1).

To fix this problem we need that E[din(a)] = n − k, and then the expected
number of chaining values a ∈ A with din(a) = 0 is 2n−k · e−(n−k) � 1. The
naive approach to do so, is to generate from each chaining value a ∈ A, n − k
message blocks, ma,1,ma,2, . . . ,ma,n−k, for which f(a,ma,i) ∈ A \ {a}. Using
this approach, the complexity of the precomputation increases to (n − k) · 2n
compression function calls.

A different approach for fixing the problem is to increase the kite generator
by adding vertices such that the intersection between a message of length 2k and
the kite generator is sufficiently large (i.e., that there are several joint chaining
values). Hence, even if some of the pairs of the joint chaining values fail to
connect through the kite generator, there is a sufficient number of pairs that do
connect. This approach does not increase the precomputation time beyond 2n+1

(as the additional vertices in the kite generator reduce the “cost” of connecting
any vertex). At the same time, it increases the memory complexity of the attack.
We do not provide a full analysis of this approach given the improved attack of
Section 5 which does not require additional memory, and enjoys a smaller time
complexity.
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5 A New Method for Constructing Kite Generators

In the construction described in Section 3.1, the set A of the chaining values is
chosen arbitrarily. We now suggest a new method for choosing the chaining values
in order to optimize the complexity of constructing a kite generator. Our main
idea is to define the set A iteratively in a manner that ensures that din(a) ≥ 1
(for all but one chaining value, the IV ).

Construction. For the reading convenience we consider two different message
blocks m1,m2.5 The following steps are required:

1. Let L0 := {h0 = IV }.
2. Set the second layer L1 = {h1 = f(IV,m1), h2 = f(IV,m2)}.
3. Continue by the same method to set

Li = {f(h,m) | h ∈ Li−1,m ∈ {m1,m2}},∀1 ≤ i ≤ n− k − 1

until Ln−k−1 is generated.
4. Set

A =

n−k−1⋃
i=0

Li.

Note that6 |A| =
∑n−k−1
i=0 2i = 2n−k − 1.

5. Finally, for each chaining value a reached in the last layer Ln−k−1, look for
two message blocks ma,1,ma,2 (probably different than m1,m2) that lead to
some chaining value b ∈ A.

Fig. 3 illustrates the construction of A.
The advantage of this method is that for each chaining value IV 6= a ∈ A,

there exists another chaining value b ∈ A and a message block mb such that

f(b,mb) = a

i.e.,
din(a) ≥ 1.

The case of din(IV ) = 0 is not problematic, since we need the IV in the kite
generator only as the source of the random walking, and it is done only with
the out-edges. In addition, In this method of constructing A, each chaining value
a 6= IV follows din(a) ∼ 1+Poi(1). It implies that ∀a 6= IV : Pr[din(a) = 0] = 0,
and therefore the probability of ultimate extinction in the branching process
defined by the backwards tree is 0.

5 It is not necessary to use only two different message blocks in the setting, but it is
possible since they are used for different chaining values.

6 With high probability we expect some collisions in A. This can be easily solved
during the construction: If a chaining value f(hi,mj) is already generated, replace
the message block mj one by one until a new chaining value is reached. It is easy to
see that the additional time complexity is negligible.
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Fig. 3. An Example for an Iterative Construction of A

Analysis. Steps 1-4 generate arbitrary message blocks for each reached chaining
value until about 2n−k chaining values are reached. They require about 2n−k

compression function calls. Step 5, of finding two out-edges from each chaining
value that reached in the last layer Ln−k−1, requires about 2 · 2n−k−1 · 2k = 2n

compression function calls.7 Thus, the precomputation complexity is about

2n + 2n−k ≈ 2n

7 Again, in this step we actually need to generate for each chaining value as many
message blocks as needed to find two out-edges. Now, the average time complexity
needed for a chaining value a is 2k+1. The actual running time for a given chaining
value is the sum of two geometric random variables with mean 2k each. Hence, the
total running time is the sum of 2n−k geometric random variables Xi ∼ Geo(2−k).

Since
∑2n−k

i=1 (Xi−1) ∼ NB(2n−k, 1−2−k), then
∑2n−k

i=1 Xi ∼ 2n−k +NB(2n−k, 1−
2−k). Therefore, E[

∑2n−k

i=1 Xi] = 2n−k+ (1−2−k)2n−k

2−k = 2n with a standard deviation

of

√
2n−k(1−2−k)

2−k ≤ 2
n+k

2 .
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compression function calls. It means that our method not only ensures that the
resulting graph is strongly connected, but is also more efficient than the original
method.

Improvement I. As additional improvement, we can reduce the complexity of
Step 5 described above by finding only one out-edge from each chaining value
in the last layer Ln−k−1. Now, each chaining value a 6= IV follows din(a) ∼ 1 +
Poi(0.5), and the branching process does not extinct. To use this improvement,
we need to slightly change the online phase: We need to increase the length of
the sequences s2, s3 mentioned in Section 3.1 to about log 3

2
(2) · n−k2 (instead

of n−k
2 ) to find, with high probability, a common chaining value. Using this

improvement, the complexity of the precomputation is reduced by a factor of 2
to about 2n−1 compression function calls. There is no change in the online time
complexity.

6 Adapting our New Method to Dithered
Merkle-Damg̊ard

6.1 Dithered Merkle-Damg̊ard

The main idea of the dithered Merkle-Damg̊ard structure [13] is to perturb the
hashing process by using an additional input to the compression function. This
additional input is formed by taking elements of a fixed dithering sequence.
Using this additional input, the compression of a message block depends on
its position in the whole message. Thus, it decreases the adversary’s control
on the input of the compression function. Using the dithered Merkle-Damg̊ard
structure, some attacks such as the Dean’s attack [6] and the Kelsey-Schneier’s
expandable-messages attack [9] are mitigated.

In order to use the dithered sequence for any message with the maximal
number of message blocks in the hash function, it is reasonable to consider an
infinite sequence. Let B be a finite alphabet, and let z be an infinite sequence
over B and let zi be the i’th symbol of z. The dithered Merkle-Damg̊ard con-
struction is obtained by replacing the iterative chaining value defined in the
original Merkle-Damg̊ard structure (see Def. 2) with

hi = f(hi−1,mi, zi).

6.2 Adapting the Kite Generator to Dithering Sequence

As described in Section 3.1, the adversary could not know in advance the posi-
tion of the message blocks to be used in the second pre-image. Thus, in order
to allow the use of the kite generator at each position of the message, the ad-
versary should consider any factor of z. To do so, Andreeva et al. [1] adapt the
precomputation phase as follows: For each chaining value a ∈ A and for each
symbol α ∈ B the adversary looks for two message blocks ma,α,1,ma,α,2 s.t.
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f(a,ma,α,1, α), f(a,ma,α,2, α) ∈ A. Hence, The complexity of the precomputa-
tion using the original method is about

2 · |B| · 2n

compression function calls.
The same problem mentioned in Section 4.1 carries over to this case as well.

As described in Section 4.1, in order to fix the inaccuracy that the resulting
graph is not strongly connected, the adversary should generate about n−k such
message blocks for each chaining value and for each dithered symbol. Hence, the
complexity of the precomputation is increased to about

(n− k) · |B| · 2n

compression function calls.

6.3 Adapting our Method

Construction. As described in Section 5, the main idea of our new method is
to choose the chaining values of A by generating two message blocks for each
reached chaining value, starting from the IV . In order to adapt it to the dithered
Merkle-Damg̊ard structure, the following steps are required:

1. Choose an arbitrary symbol α ∈ B, and construct the kite generator using
this symbol only, according to our new method.

2. Use the original method to complete the kite generation for the remaining
symbols of B, i.e., for each chaining value a ∈ A and for each symbol α 6=
β ∈ B, look for n− k message blocks that lead to another chaining value of
A.

Analysis. The complexity of the first step, of constructing the kite generator
using one symbol, is similar to the one in Section ??, i.e., about 2n−1 compression
function calls (using the improved method). The complexity of the second step, of
completing the kite generator for the remaining symbols, is about (n−k)·(|B|−1)·
2n compression function calls. Thus, the total complexity of the precomputation
is about

((n− k) · (|B| − 1) + 0.5) · 2n

compression function calls.

6.4 Improvement II

In Section 6.3 we adapted our new method while considering the probability of
ultimate extinction in the construction of the “backwards” tree tends to zero. We
now show that by allowing a small probability of ultimate extinction, denoted
by p, we can reduce the complexity as follows. We look for a λ(p) such that
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the probability of ultimate extinction in a branching process with Poi(λ(p))
offspring is p. According to the branching process theorems [3] we need that

eλ(p)(1−p) = p

that implies

λ(p) =
ln(p)

1− p
.

For examples, λ(0.01) ≈ 4.65, and λ(0.001) ≈ 6.91. It means that in the con-
struction described in Section 6.3, we can replace the second step of looking for
n− k message blocks per symbol for each chaining value, by looking for such a
constant number. Thus, consider p = 0.001, the complexity of the precomputa-
tion is reduced to about

(6.91 · (|B| − 1) + 0.5) · 2n

compression function calls.

7 Summary

As a concluding discussion, we note that when the kite generator has 2n−k

chaining values and the message is of length 2k blocks, one should expect the
kite generator to contain one of the message’s chaining values with probability
63%, which translates to about 50% success rate. The way to fix this issue is
trivial — increase the size of the kite generator. Multiplying the number of nodes
in the kite generator by a factor of 2, reduces the probability of disjoint sets of
chaining values from 1/e ≈ 37% to merely 1/e2 ≈ 13.5%, and this rate can be
further reduced to as small probability as the adversary wishes.8 However, when
the kite generator is not strongly connected, as our analysis shows, the success
probability of the original is upper bounded by 80%, no matter how large the
kite generator is taken to be.

To conclude, in this work we pointed out an inaccuracy in the analysis of the
construction of the kite generator suggested by Andreeva et al. [1]: The kite gen-
erator is not strongly connected, and thus the online phase fails in probability
of at least 20%. We showed that to fix the inaccuracy, we need to increase the
complexity of the construction phase by a factor of n−k

2 . We then suggested a
new method to optimize the construction of the kite generator that is both cor-
rect and more efficient than the original method. Finally, we adapted the fixing
analysis and our new method to the dithered Merkle-Damg̊ard construction.

For comparison, we present in Table 1 the number of required compression
function calls to construct a kite generator, using the different methods, for the
Merkle-Damg̊ard structure and its dithered variant.

8 This issue happens also in the online phase, when the adversary looks for common
chaining values between the two lists described in Section 3.1. The fixing is similarly
– increase the size of these lists accordingly.
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Method
Complexity

Merkle-Damg̊ard Dithered Merkle-Damg̊ard
Andreeva et al. [1] † 2n+1 |B| · 2n+1

Our fixed analysis (n− k) · 2n (n− k) · |B| · 2n
Our new method 2n ((n− k) · (|B| − 1) + 1) · 2n
Improvement I 2n−1 ((n− k) · (|B| − 1) + 0.5) · 2n
Improvement II Not relevant (6.91 · (|B| − 1) + 0.5) · 2n

† — Andreeva et al.’s analysis is inaccurate.

Table 1. Comparing the Complexities of the Different Methods.
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