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$X 

• Want to find out if X > Y 

• But leak no other information! (even to each other) 

• Standard crypto tools (encryption) do not help in 
this case! 

$Y 
Alice Bob 



x    y 

     F(x,y) and nothing more 

Input: 

Output: 

x    y As if… 

F(x,y) F(x,y) 

Trusted third party 

Similar definitions exist for the multi-party case 



$X 

Comparing numbers is useful for auctions, bidding, and 
negotiations. 

$Y 
Alice Bob 



 Run an auction while hiding the bids even from the 
auctioneer itself 
◦ The auctioneer learns who won the auction and how much 

the winner has to pay. Everything else is kept secret.  

 

◦ It is possible to support any auction rule (e.g., second-price 
auctions) 

 

◦ Efficient for even for thousands of bids 
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           Client              Server  

 

   Input:            X = x1 … xn              Y = y1 … yn 

  Output:          X  Y only            nothing 

Other variants exist (e.g., both parties learn output; client learns 
size of intersection; compute some other function of the 
intersection, etc.) 
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   Input:            X, K1     secret key K2 

  Output:          E(K1 xor K2)(x)            nothing 

Instead of hiding the key using DRM, store it remotely.  
Can encrypt without revealing the data.   
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    user   cloud             

  
   Input:            X, Program 

  Output:          Program(X)   nothing 

The holy grail of secure computation. 

Possible using fully homomorphic encryption. 

Far from being practical. 



 Can be used to securely compute any function 

 

 Based on representing the function as a Boolean 
circuit 

i0 i2 

DB3 
DB2 DB0 DB1 

i1 



 Can be used to securely compute any function 

 

 Based on representing the function as a Boolean 
circuit 
• A Turing machine running in memory M and time T can be 

replaced by a circuit of size O(TM) 

• For many tasks, the circuit is linear in the input length 

 Adding or comparing two numbers 

 An AES circuit  has about 30,000 gates 

• There exist compilers from programs to circuits 

• We can handle circuits with 106 - 109 gates. 

 



 Performance 
◦ Depends on security, preprocessing, and engineering 

◦ Secure computation of AES: from 3ms to 3sec per block 

 



 



 Two or more parties 
with symmetric roles 

 Each with its own 
input 

 Exchanging messages 
with each other 

 

pa
ge 
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 This model might not 
be realistic 
◦ Asymmetric resources 

/ tasks 

◦ Synchronization 
problems 

 E.g., 
◦ auctions, data sharing 

◦ outsourced 
computation 
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 “The Cloud” 

 A weak client 
outsources its data 
and computation to 
the cloud 

 Can be implemented 
at great costs using 
FHE 
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 Many parties provide 
inputs, in a single 
interaction 

 Later, computation servers 
run the computation 
(potentially in several 
rounds) 

 Secure as not too many 
servers collude 

 Relevant for auctions, etc. 
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 Software as a service. 
◦ Software runs in the cloud. Input should be kept hidden 

from software provider. 

 

 Outsourcing data 
◦ Data is stored in the cloud. Client wants to run analysis tools 

on its data. 
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 Data sharing 
◦ Multiple parties with private inputs wish to run an 

algorithm over their combined data. 

 

 Distributing trust 
◦ Storing shares of sensitive data/keys in multiple servers 

(and being able to use them), so that breaking into any one 
server does not leak any useful data. 
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 Two-party transactions 
◦ A pair of parties with sensitive data and a specific algorithm 

(e.g., intersection and its variants)  

 

◦ Many pairs of parties run simple algs on their data 
(comparisons, trading,…)  

pa
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 We have done a lot of work on improving the 
overhead of secure computation protocols 

 

 In particular 
◦ Minimizing the interaction in secure computation protocols 

(namely, achieving non-interactive secure comptation) 

 

◦ Moving most work to a preprocessing stage 

 

◦ Security against malicious adversaries 

 



 SCPAI: Secure Computation API 

 An open-source Java library for secure computation 

 

 Three layers: 
◦ Low-level cryptographic functions (AES, hash, public key) 

◦ Non-interactive mid-level cryptographic functions 
(encryption, signature) 

◦ Interactive cryptographic protocols (secure computation, 
zero-knowledge proofs) 



 Three layers: 
◦ Low-level cryptographic functions (AES, hash, public key) 

◦ Non-interactive mid-level cryptographic functions 

◦ Interactive cryptographic protocols 

 

 Can easily use different libraries 
◦ Native Java vs. very efficient C libraries 

 Can use different primitives 
◦ Public key operations modulo p vs. in an elliptic curve group 

SCAPI is constantly updated to use the state of the art in 
secure computation 
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           Client              Server  

 

   Input:            X = x1 … xn              Y = y1 … yn 

  Output:          X  Y only            nothing 



 User-to-user Matching  
◦ Two mobile users compute the intersection of their 

contact lists 

 

◦ Two mobile users check how good they match to each 
other (a dating app?) 



 User-to-service matching 
◦ Mobile device has web history of user. A service wants 

to check if some item is in the history (content 
targeting). 

 

◦ Mobile device has list of ads shown to a user. 

   The user now shops at a site. 

   A service wants to check if the user was shown an ad   
 for that specific site (checking ad conversion rate). 



 A naïve solution: 
◦ A and B agree on a “cryptographic hash function” H()  

◦ B (with input y1,…,yn) sends to A: H(y1),…, H(yn) 

◦ A (with input x1,…,xn) compares this to H(x1),…, H(xn) and 
finds the intersection  

 

 Does not protect B’s privacy if inputs do not have 
considerable entropy 



 Several secure protocols for PSI exist 

 

 A straightforward generic protocol based on a 
circuit is inefficient 
◦ For input sets of length n it requires n2 comparisons  

◦ More efficient circuits exist 

 Of size O(nlogn) 

 E.g., sort the union of the two sets; compare adjacent 
items; shuffle the results. 

 

 



 We recently compared the most promising PSI 
protocols, as well as 

 

◦ Optimized the protocols using new techniques (OT 
extension and advanced hashing) 

◦ Designed a new protocol tailored for the new 
techniques 

 

 



 The protocol [M86, HFH99, AES03]: 
 

(H is modeled as a random oracle. Security based on DDH) 

Implementation: very simple; can be based on elliptic-
curve crypto; minimal communication.  

 

 

x1,…,xn 
 

y1,…,yn 

(H(x1)),…, (H(xn))   
(H(y1)),…, (H(yn)) 

((H(x1))),…, ((H(xn))) 
((H(y1))),…, ((H(yn)) ) 

Compares the two lists 

in parallel 

in parallel 

What else could we want? 



Protocol 80-bit security  
(sec) 

128-bit security 
(sec) 

Comm. Mbit 

DH FFC 99 1224 192 

DH ECC 178 416 26 

Blind RSA 125 1982 72 

Circuit + GMW 807 1304 23400 

Optimized circuit 462 762 14040 

Garbled Bloom 72 154 1393 

Optimized G. Bloom 34 68 740 

OT  + hashing 13 14 78 

(Single core desktop) 

New ideas can probably improve by a factor of 5-10. 



 Set intersection can be efficiently applied to very 
large input sets 

 

 Different settings require different protocols 
◦ Communication 

◦ Generality 



 Many tasks have efficient secure computation 
solutions 

 

 If you wish that you had a trusted party for 
computing a task 
◦ And you’re OK with disclosing the final output of the 

computation 

◦ Then it might be possible to implement the computation 
without any trusted party 
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