
Benny Pinkas, Bar-Ilan University

$X

• Want to find out if X > Y

• But leak no other information! (even to each other)

• Standard crypto tools (encryption) do not help in
this case!

$Y
Alice Bob

x y

 F(x,y) and nothing more

Input:

Output:

x y As if…

F(x,y) F(x,y)

Trusted third party

Similar definitions exist for the multi-party case

$X

Comparing numbers is useful for auctions, bidding, and
negotiations.

$Y
Alice Bob

 Run an auction while hiding the bids even from the
auctioneer itself
◦ The auctioneer learns who won the auction and how much

the winner has to pay. Everything else is kept secret.

◦ It is possible to support any auction rule (e.g., second-price
auctions)

◦ Efficient for even for thousands of bids

6

 Client Server

 Input: X = x1 … xn Y = y1 … yn

 Output: X Y only nothing

Other variants exist (e.g., both parties learn output; client learns
size of intersection; compute some other function of the
intersection, etc.)

7

 Input: X, K1 secret key K2

 Output: E(K1 xor K2)(x) nothing

Instead of hiding the key using DRM, store it remotely.
Can encrypt without revealing the data.

8

 user cloud

 Input: X, Program

 Output: Program(X) nothing

The holy grail of secure computation.

Possible using fully homomorphic encryption.

Far from being practical.

 Can be used to securely compute any function

 Based on representing the function as a Boolean
circuit

i0 i2

DB3
DB2 DB0 DB1

i1

 Can be used to securely compute any function

 Based on representing the function as a Boolean
circuit
• A Turing machine running in memory M and time T can be

replaced by a circuit of size O(TM)

• For many tasks, the circuit is linear in the input length

 Adding or comparing two numbers

 An AES circuit has about 30,000 gates

• There exist compilers from programs to circuits

• We can handle circuits with 106 - 109 gates.

 Performance
◦ Depends on security, preprocessing, and engineering

◦ Secure computation of AES: from 3ms to 3sec per block

 Two or more parties
with symmetric roles

 Each with its own
input

 Exchanging messages
with each other

pa
ge
13

 This model might not
be realistic
◦ Asymmetric resources

/ tasks

◦ Synchronization
problems

 E.g.,
◦ auctions, data sharing

◦ outsourced
computation

pa
ge
14

 “The Cloud”

 A weak client
outsources its data
and computation to
the cloud

 Can be implemented
at great costs using
FHE

pa
ge
15

 Many parties provide
inputs, in a single
interaction

 Later, computation servers
run the computation
(potentially in several
rounds)

 Secure as not too many
servers collude

 Relevant for auctions, etc.

pa
ge
16

 Software as a service.
◦ Software runs in the cloud. Input should be kept hidden

from software provider.

 Outsourcing data
◦ Data is stored in the cloud. Client wants to run analysis tools

on its data.

pa
ge
17

 Data sharing
◦ Multiple parties with private inputs wish to run an

algorithm over their combined data.

 Distributing trust
◦ Storing shares of sensitive data/keys in multiple servers

(and being able to use them), so that breaking into any one
server does not leak any useful data.

pa
ge
18

 Two-party transactions
◦ A pair of parties with sensitive data and a specific algorithm

(e.g., intersection and its variants)

◦ Many pairs of parties run simple algs on their data
(comparisons, trading,…)

pa
ge
19

 We have done a lot of work on improving the
overhead of secure computation protocols

 In particular
◦ Minimizing the interaction in secure computation protocols

(namely, achieving non-interactive secure comptation)

◦ Moving most work to a preprocessing stage

◦ Security against malicious adversaries

 SCPAI: Secure Computation API

 An open-source Java library for secure computation

 Three layers:
◦ Low-level cryptographic functions (AES, hash, public key)

◦ Non-interactive mid-level cryptographic functions
(encryption, signature)

◦ Interactive cryptographic protocols (secure computation,
zero-knowledge proofs)

 Three layers:
◦ Low-level cryptographic functions (AES, hash, public key)

◦ Non-interactive mid-level cryptographic functions

◦ Interactive cryptographic protocols

 Can easily use different libraries
◦ Native Java vs. very efficient C libraries

 Can use different primitives
◦ Public key operations modulo p vs. in an elliptic curve group

SCAPI is constantly updated to use the state of the art in
secure computation

24

 Client Server

 Input: X = x1 … xn Y = y1 … yn

 Output: X Y only nothing

 User-to-user Matching
◦ Two mobile users compute the intersection of their

contact lists

◦ Two mobile users check how good they match to each
other (a dating app?)

 User-to-service matching
◦ Mobile device has web history of user. A service wants

to check if some item is in the history (content
targeting).

◦ Mobile device has list of ads shown to a user.

 The user now shops at a site.

 A service wants to check if the user was shown an ad
 for that specific site (checking ad conversion rate).

 A naïve solution:
◦ A and B agree on a “cryptographic hash function” H()

◦ B (with input y1,…,yn) sends to A: H(y1),…, H(yn)

◦ A (with input x1,…,xn) compares this to H(x1),…, H(xn) and
finds the intersection

 Does not protect B’s privacy if inputs do not have
considerable entropy

 Several secure protocols for PSI exist

 A straightforward generic protocol based on a
circuit is inefficient
◦ For input sets of length n it requires n2 comparisons

◦ More efficient circuits exist

 Of size O(nlogn)

 E.g., sort the union of the two sets; compare adjacent
items; shuffle the results.

 We recently compared the most promising PSI
protocols, as well as

◦ Optimized the protocols using new techniques (OT
extension and advanced hashing)

◦ Designed a new protocol tailored for the new
techniques

 The protocol [M86, HFH99, AES03]:

(H is modeled as a random oracle. Security based on DDH)

Implementation: very simple; can be based on elliptic-
curve crypto; minimal communication.

x1,…,xn

y1,…,yn

(H(x1)),…, (H(xn))
(H(y1)),…, (H(yn))

((H(x1))),…, ((H(xn)))
((H(y1))),…, ((H(yn)))

Compares the two lists

in parallel

in parallel

What else could we want?

Protocol 80-bit security
(sec)

128-bit security
(sec)

Comm. Mbit

DH FFC 99 1224 192

DH ECC 178 416 26

Blind RSA 125 1982 72

Circuit + GMW 807 1304 23400

Optimized circuit 462 762 14040

Garbled Bloom 72 154 1393

Optimized G. Bloom 34 68 740

OT + hashing 13 14 78

(Single core desktop)

New ideas can probably improve by a factor of 5-10.

 Set intersection can be efficiently applied to very
large input sets

 Different settings require different protocols
◦ Communication

◦ Generality

 Many tasks have efficient secure computation
solutions

 If you wish that you had a trusted party for
computing a task
◦ And you’re OK with disclosing the final output of the

computation

◦ Then it might be possible to implement the computation
without any trusted party

pa
ge
33

