
Benny Pinkas, Bar-Ilan University

$X

• Want to find out if X > Y

• But leak no other information! (even to each other)

• Standard crypto tools (encryption) do not help in
this case!

$Y
Alice Bob

x y

 F(x,y) and nothing more

Input:

Output:

x y As if…

F(x,y) F(x,y)

Trusted third party

Similar definitions exist for the multi-party case

$X

Comparing numbers is useful for auctions, bidding, and
negotiations.

$Y
Alice Bob

 Run an auction while hiding the bids even from the
auctioneer itself
◦ The auctioneer learns who won the auction and how much

the winner has to pay. Everything else is kept secret.

◦ It is possible to support any auction rule (e.g., second-price
auctions)

◦ Efficient for even for thousands of bids

6

 Client Server

 Input: X = x1 … xn Y = y1 … yn

 Output: X  Y only nothing

Other variants exist (e.g., both parties learn output; client learns
size of intersection; compute some other function of the
intersection, etc.)

7

 Input: X, K1 secret key K2

 Output: E(K1 xor K2)(x) nothing

Instead of hiding the key using DRM, store it remotely.
Can encrypt without revealing the data.

8

 user cloud

 Input: X, Program

 Output: Program(X) nothing

The holy grail of secure computation.

Possible using fully homomorphic encryption.

Far from being practical.

 Can be used to securely compute any function

 Based on representing the function as a Boolean
circuit

i0 i2

DB3
DB2 DB0 DB1

i1

 Can be used to securely compute any function

 Based on representing the function as a Boolean
circuit
• A Turing machine running in memory M and time T can be

replaced by a circuit of size O(TM)

• For many tasks, the circuit is linear in the input length

 Adding or comparing two numbers

 An AES circuit has about 30,000 gates

• There exist compilers from programs to circuits

• We can handle circuits with 106 - 109 gates.

 Performance
◦ Depends on security, preprocessing, and engineering

◦ Secure computation of AES: from 3ms to 3sec per block

 Two or more parties
with symmetric roles

 Each with its own
input

 Exchanging messages
with each other

pa
ge
13

 This model might not
be realistic
◦ Asymmetric resources

/ tasks

◦ Synchronization
problems

 E.g.,
◦ auctions, data sharing

◦ outsourced
computation

pa
ge
14

 “The Cloud”

 A weak client
outsources its data
and computation to
the cloud

 Can be implemented
at great costs using
FHE

pa
ge
15

 Many parties provide
inputs, in a single
interaction

 Later, computation servers
run the computation
(potentially in several
rounds)

 Secure as not too many
servers collude

 Relevant for auctions, etc.

pa
ge
16

 Software as a service.
◦ Software runs in the cloud. Input should be kept hidden

from software provider.

 Outsourcing data
◦ Data is stored in the cloud. Client wants to run analysis tools

on its data.

pa
ge
17

 Data sharing
◦ Multiple parties with private inputs wish to run an

algorithm over their combined data.

 Distributing trust
◦ Storing shares of sensitive data/keys in multiple servers

(and being able to use them), so that breaking into any one
server does not leak any useful data.

pa
ge
18

 Two-party transactions
◦ A pair of parties with sensitive data and a specific algorithm

(e.g., intersection and its variants)

◦ Many pairs of parties run simple algs on their data
(comparisons, trading,…)

pa
ge
19

 We have done a lot of work on improving the
overhead of secure computation protocols

 In particular
◦ Minimizing the interaction in secure computation protocols

(namely, achieving non-interactive secure comptation)

◦ Moving most work to a preprocessing stage

◦ Security against malicious adversaries

 SCPAI: Secure Computation API

 An open-source Java library for secure computation

 Three layers:
◦ Low-level cryptographic functions (AES, hash, public key)

◦ Non-interactive mid-level cryptographic functions
(encryption, signature)

◦ Interactive cryptographic protocols (secure computation,
zero-knowledge proofs)

 Three layers:
◦ Low-level cryptographic functions (AES, hash, public key)

◦ Non-interactive mid-level cryptographic functions

◦ Interactive cryptographic protocols

 Can easily use different libraries
◦ Native Java vs. very efficient C libraries

 Can use different primitives
◦ Public key operations modulo p vs. in an elliptic curve group

SCAPI is constantly updated to use the state of the art in
secure computation

24

 Client Server

 Input: X = x1 … xn Y = y1 … yn

 Output: X  Y only nothing

 User-to-user Matching
◦ Two mobile users compute the intersection of their

contact lists

◦ Two mobile users check how good they match to each
other (a dating app?)

 User-to-service matching
◦ Mobile device has web history of user. A service wants

to check if some item is in the history (content
targeting).

◦ Mobile device has list of ads shown to a user.

 The user now shops at a site.

 A service wants to check if the user was shown an ad
 for that specific site (checking ad conversion rate).

 A naïve solution:
◦ A and B agree on a “cryptographic hash function” H()

◦ B (with input y1,…,yn) sends to A: H(y1),…, H(yn)

◦ A (with input x1,…,xn) compares this to H(x1),…, H(xn) and
finds the intersection

 Does not protect B’s privacy if inputs do not have
considerable entropy

 Several secure protocols for PSI exist

 A straightforward generic protocol based on a
circuit is inefficient
◦ For input sets of length n it requires n2 comparisons

◦ More efficient circuits exist

 Of size O(nlogn)

 E.g., sort the union of the two sets; compare adjacent
items; shuffle the results.

 We recently compared the most promising PSI
protocols, as well as

◦ Optimized the protocols using new techniques (OT
extension and advanced hashing)

◦ Designed a new protocol tailored for the new
techniques

 The protocol [M86, HFH99, AES03]:

(H is modeled as a random oracle. Security based on DDH)

Implementation: very simple; can be based on elliptic-
curve crypto; minimal communication.



x1,…,xn


y1,…,yn

(H(x1)),…, (H(xn))
(H(y1)),…, (H(yn))

((H(x1))),…, ((H(xn)))
((H(y1))),…, ((H(yn)))

Compares the two lists

in parallel

in parallel

What else could we want?

Protocol 80-bit security
(sec)

128-bit security
(sec)

Comm. Mbit

DH FFC 99 1224 192

DH ECC 178 416 26

Blind RSA 125 1982 72

Circuit + GMW 807 1304 23400

Optimized circuit 462 762 14040

Garbled Bloom 72 154 1393

Optimized G. Bloom 34 68 740

OT + hashing 13 14 78

(Single core desktop)

New ideas can probably improve by a factor of 5-10.

 Set intersection can be efficiently applied to very
large input sets

 Different settings require different protocols
◦ Communication

◦ Generality

 Many tasks have efficient secure computation
solutions

 If you wish that you had a trusted party for
computing a task
◦ And you’re OK with disclosing the final output of the

computation

◦ Then it might be possible to implement the computation
without any trusted party

pa
ge
33

