o Security

rity

Examples C

Conclusions

Does Lightweight Cryptography Imply Slightsecurity?

Orr Dunkelman

Computer Science Department University of Haifa

7th July, 2014

	Intro	Security	Examples	Conclusions
Out	line			

- Lightweight Cryptography
- Lightweight Cryptography Primitives

2 The Path to Security

3 A Few Examples

- The MISTY1 to KASUMI Transition
- The AES to LED Transition
- The KTANTAN Block Cipher
- ZORRO

4 Conclusions/Discussions

Lightweight Cryptography

- Targets constrained environments.
- Tries to reduce the computational efforts needed to obtain security.
- Optimization targets: size, power, energy, time, code size, RAM/ROM consumption, etc.

Why now?

Intro Security Examples Conclusions LWC Primitive

Lightweight Cryptography is All Around Us

- Constrained environments today are different than constrained environments 10 years ago.
- ► Ubiquitous computing RFID tags, sensor networks.
- Low-end devices (8-bit platforms).
- Stream ciphers do not enjoy the same "foundations" as block ciphers.
- Failure of previous solutions (KeeLoq, Mifare) to meet required security targets.
- Good research direction...

Intro

Some Lightweight Primitives

Block Ciphers	Stream Ciphers	Hash Functions	MACs
HIGHT	Grain	H-PRESENT	SQUASH <mark>SQUASH</mark>
mCrypton	Trivium	PHOTON	
DESL	Mickey	QUARK	
PRESENT	F-FCSR-HF-FCSR-H	ArmadilloArmadillo	
KATAN	WG-7	SpongeNT	
KTANTAN <mark>KTANTAN</mark>	CAZAD	GLOUN	
PRINTCIPHER PRINTCIPHER		Keccak-f*	
SEA			
KleinKlein			
LBlock			
GOSTGOST			
ZORROZORRO			
TWINE			
LED			
PRINCE			
Simon			
Speck			

Intro Security Examples Conclusions
Security Challenges

- ► Lightweight ⇒ pick the point on the security/performance curve with as little security margins as possible.
- Use best-of-the-art approaches:
 - Count the number of active S-boxes (wide trail),
 - ► Scale-down "known" ciphers (Misty1 → KASUMI, AES→ LED, Zorro, DES→ DESL, ...)
 - ▶ Use "secure structures" (GFNs/AES-like/etc.)
 - Ignore related-key attacks...
- Use provable approaches:
 - Even-Mansour (1-Key/Multiple Key)

► As usual . . . pray.

- Introduced by Matsui in 1997.
- 64-bit block, 128-bit key.
- Recursive structure 8 Feistel rounds, each round function is a 3-round Feistel function.
- Each of these semi-round functions is a 3-round Feistel on its own.
- Uses 7-bit and 9-bit S-boxes for maximal nonlinearity.
- Every two rounds there is an *FL*-layer.
- Cryptrec-approved, NESSIE-portfolio, RFC, ISO.
- Predecessor of KASUMI.

MISTY1

KASUMI

Orr Dunkelman Lightweight \Rightarrow Slightsecurity

Intro Security Examples Conclusions KASUMI LED KTANTAN ZORRO

- KASUMI Changes from MISTY1
 - Done by ETSI's SAGE group to fit mobile handsets.
 - ► *FL* functions to be moved from datapath to round-path.
 - One key addition reduced from the FO function.
 - ► Extra S7 in Fl (⇒ FO can no longer be divided into 4 parallel functions, but only 2).
 - Key schedule changed significantly.

Intro Security Examples Conclusions KASUMI LED KTANTAN ZOF

- In the single-key model: KASUMI \approx MISTY1:
 - ▶ 6-Round Misty1 [JL12]: 2^{52.5} CPs, 2^{112.4} time.
 - ▶ 6-Round KASUMI [K12]: 2⁵⁵ CPs, 2¹⁰⁰ time.
- In the related-key model: MISTY1 \gg KASUMI.
 - Practical key recovery attack against the full KASUMI ([DKS10]).
 - MISTY1: not even close (without FL, [DK13]).

The LED Block Cipher

Security

- ▶ Introduced by [G+11].
- ▶ 64-bit block with 64-bit key (LED-64) or 128-bit key (LED-128).

Conclusions

LED

► LED-64: 8-Step 1-Key Even-Mansour.

Examples

- ► LED-128: 12-Step 2-Key Even-Mansour.
- The "public permutation": 4-round unkeyed AES-like construction.

The LED Block Cipher (cont.)

Examples

Security

48-round (12-step LED-128) offer security against differential, linear, meet-in-the-middle, ...

Conclusions

- ► No related-key issues/weakness in key schedule.
- As long as the 8-Step 1-Key Even-Mansour secure (LED-64) or 5-Step 1-Key Even-Mansour secure (LED-128).

LED

Intro

Conclusions

Results on LED (Single-Key)

Source	Cipher	Steps	Time	Data	Memory
[IS12]	LED-64	2	2 ⁵⁶	2 ⁸ CP	2 ⁸
[D+14]	LED-64	2	2 ⁴⁸	2 ¹⁶ CP	2 ¹⁷
[D+14]	LED-64	2	2 ⁴⁸	2 ⁴⁸ KP	2 ⁴⁸
[D+13]	LED-64	3	2 ^{60.2}	2 ⁴⁹ KP	2 ⁶⁰
[IS12]	LED-128	4	2 ¹¹²	2 ¹⁶ CP	2 ¹⁹
[M+12]	LED-128	4	2 ⁹⁶	2 ⁶⁴ KP	2 ⁶⁴
[NWW13]	LED-128	4	2 ⁹⁶	2 ³² KP	2 ³²
[NWW13]	LED-128	6	2 ^{124.4}	2 ⁵⁹ KP	2 ⁵⁹
[D+13]	LED-128	6	2 ^{124.5}	2 ⁴⁵ KP	2 ⁶⁰
[D+13]	LED-128	8	2123.8	2 ⁴⁹ KP	2 ⁶⁰

KASUMI **LED** KTANTAN ZORRO

Related-Key Attacks on LED-64 [M+12]

Examples

Security

- Find iterative characteristic $\Delta \rightarrow \Delta$ through P_i .
- Set key difference to Δ , plaintext difference to 0 ...
- 3-Step immediate related-key attack on LED-64, can be extended to 4-Step.

Conclusions

▶ 6-Step immediate related-key attack on LED-128.

The KTANTAN Block Ciphers [DDK09]

Examples

 KTANTAN has 3 flavors: KTANTAN-32, KTANTAN-48, KTANTAN-64.

Conclusions

- ▶ Block size: 32/48/64 bits.
- Key size: 80 bits.

Security

- ► KATAN-*n* and KTANTAN-*n* are the same up to key schedule.
- In KTANTAN, the key is burnt into the device and cannot be changed.

KTANTAN

General Structure of KATAN/KTANTAN

The KTANTAN Block Ciphers — Key Schedule

- Main problem related-key and slide attacks.
- Solution A two round functions, prevents slide attacks.
- Solution B divide the key into 5 words of 16 bits, pick bits in a nonlinear manner.
- ► Specifically, let $K = w_4 ||w_3||w_2||w_1||w_0$, $T = T_7 \dots T_0$ be the round-counter LFSR, set:

$$a_{i} = MUX16to1(w_{i}, T_{7}T_{6}T_{5}T_{4})$$

$$k_{a} = \overline{T_{3}} \cdot \overline{T_{2}} \cdot (a_{0}) \oplus (T_{3} \vee T_{2}) \cdot \overline{T_{3}} \cdot T_{2} \cdot (a_{4})$$

$$\oplus (T_{3} \vee \overline{T_{2}}) \cdot MUX4to1(a_{3}a_{2}a_{1}a_{0}, \overline{T_{1}T_{0}})$$

$$k_{b} = \overline{T_{3}} \cdot T_{2} \cdot (a_{4}) \oplus (T_{3} \vee \overline{T_{2}}) \cdot MUX4to1(a_{3}a_{2}a_{1}a_{0}, \overline{T_{1}T_{0}})$$

Security Analysis — Differential Cryptanalysis

- Computer-aided search for the various round combinations and all block sizes.
- ► KATAN32: Best 42-round characteristic has probability 2⁻¹¹.
- ► KATAN48: Best 43-round characteristic has probability 2⁻¹⁸.
- ► KATAN64: Best 37-round characteristic has probability 2⁻²⁰.
- This also proves that all the differential-based attacks fail (boomerang, rectangle).

Examples Related-Key Differentials in KATAN

No good methodology for that.

Security

In KATAN32 — each key bit difference must enter (at least) two linear operations and two non-linear ones.

Conclusions

- Hence, an active bit induces probability of 2^{-2} , and cancels four other bits (or probability of 2^{-4} and 6).
- So if there are 76 key bits active there are at least 16 quintuples, each with probability 2^{-2} .
- The key expansion is linear, so check minimal hamming weight in the code.
- Our analysis, so far revealed 72 as the lower bound.

KTANTAN

KASUMI LED KTANTAN ZORRO

Attacks on the KTANTAN Family

Examples

- [BR10] Meet in the middle attacks
 - Data: 2–3 KPs, Time: $\approx 2^{75}$, Memory: O(1).
- [A11] Related-key attacks

Security

▶ Data: A few pairs of RK CPs (with 2–4 keys), Time: 2^{30} , Memory: O(1).

Conclusions

- ▶ [W+11] Meet in the middle attacks
 - Data: 4 CPs, Time: $\approx 2^{73}/2^{74}/2^{75}$, Memory: O(1).

- ► The key schedule.
- The bits which are chosen as the key are not "well distributed".
- ► For example, bit 32 of the key, does not enter the first 218 rounds...
- Other bits which are not that common also appear.
- This can be used in several ways (MitM, RK differentials).

Conclusions KASUMI LED KTANTAN ZORRO

Zorro block cipher [G+13]

Security

 Lightweight block cipher that targets side channel security.

Examples

- ▶ 128-bit block, 128-bit key.
- Single-key iterated Even-Mansour construction.
- 24 rounds, every four rounds the key is XORed to the state.
- Based on the AES

The ZORRO Block Cipher (cont.)

ZORRO

Intro

Examples

Conclusions

The ZORRO Round Function

- S-boxes are used only in the first row.
- Circulant matrices have interesting properties when raised to the power. Namely,

$$\left(\begin{array}{rrrrr} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{array}\right)^{4} = \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$

So what?

• Consider differences/masks of the form:

- The equality of different columns remains, up to the S-boxes.
- Which are applied only to the first row.
- So let's try to not activate it...

Our^{*} Improvments

 Using linear algebra and solving for low number of active S-boxes, we can reduce the number of active S-boxes starting from:

▶ Independently found by [R+14].

Differential/Linear Properties of Zorro (cont.)

$$\begin{pmatrix} 0 & 0 \\ 9E & 88 \\ 16 & 16 \\ AF & 95 \end{pmatrix} \xrightarrow{SB} \begin{pmatrix} 0 & 0 \\ 9E & 88 \\ 16 & 16 \\ AF & 95 \end{pmatrix} \xrightarrow{SR} \begin{pmatrix} 0 & 0 \\ A4 & B2 \\ 00 & 58 \\ AF & CD \end{pmatrix} \xrightarrow{SR} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SB} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SB} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ B2 & 14 \\ FE & FE \\ 33 & B9 \end{pmatrix} \xrightarrow{SR} \xrightarrow{MC'} \begin{pmatrix} 0 & 0 \\ 9E & 88 \\ 16 & 16 \\ AF & 95 \end{pmatrix}$$

ZORRO

Security

Examples

Conclusions

KASUMI LED KTANTAN ZORRO

Summary of the Attacks

Attack	Complexity			
	Data	Time	Memory	
Differential	2 ^{41.5} CPs	2 ⁴⁵	2 ¹⁰	
Linear	2 ⁴⁵ KPs	2 ⁴⁵	2 ¹⁷	

Joint work with Achiya Bar-On, Itai Dinur, Virginie Lallemand, and Boaz Tsaban.

- Too few active S-boxes.
- Circulant matrices, which are good for implementation, may have undesirable security properties.
- Adding the key a few times may cause some security problems.

Intro Security Examples Conclusions

Conclusions/Discussions

- How much are we willing to pay for security in lightweight schemes?
- What is the target for lightweight schemes optimization?
- Scale-down or "innovate"?
- Related-key attacks? Weak key schedules? How? Why? What?
- Side channel? Yes? No?

Thank you for your attention! 訪訪

