
Computer Security Seminar
API Attacks

Security Engineering/Ross Andersson, Chapter 18

Shai Ziv

25th May, 2014

Application Programming Interface

• Interface for communication between two programs.
• Two threads of the same program.

• Two programs running on the same server.

• Client and server.

API is Vulnerable

• Door to the outer world.

• Untrusted sources give commands.

• Designing a secure API is very difficult.

• Small programming oversights can be disastrous.

The Perfect API

void API(void)

{

printf(“No commands available”);

}

Useful, eh?

Attack on Visa Security Module

• Hardware device for bank security.

• Stores no memory.
• Only a single master key stored in tamper-resistant memory.

• Encryption under this key is “unbreakable”.

• We will look at the Terminal Key Generation for ATMs

• ATM security is based on dual control (secret sharing)
• 𝐾 = 𝐾1 ⊕ 𝐾2

Attack on Visa Security Module –
cont.
• Key creation:

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
𝐸𝑀(𝐾1)

𝑉𝑆𝑀
𝐾1

𝑊𝑜𝑟𝑘𝑒𝑟 1

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
𝐸𝑀(𝐾2)

𝑉𝑆𝑀
𝐾2

𝑊𝑜𝑟𝑘𝑒𝑟 2

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
𝐸𝑀 𝐾1 ,𝐸𝑀(𝐾2)

𝑉𝑆𝑀

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
𝐸𝑀(𝐾=𝐾1⊕𝐾2)

𝑉𝑆𝑀

• What happens if we insert the same encrypted key twice?
• 𝐾 = 𝐾1 ⊕ 𝐾1 = 0.

• Known key inside the system.

Attack on Visa Security Module – cont.

• The problem: Support of offline ATMs.

• 𝑃𝑟𝑜𝑔𝑟𝑎m
𝐸𝑀 𝑃𝐼𝑁 ,𝐸𝑀(𝐾)

𝑉𝑆𝑀

• 𝑃𝑟𝑜𝑔𝑟𝑎𝑚
𝐸𝐾(𝑃𝐼𝑁)

𝑉𝑆𝑀

• 𝑃𝐼𝑁 = 𝐷0(⋅).

Attack on Visa Security Module – cont.

• How to fix?

• Independent atomic commands!

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
𝐸(𝐾)

𝑉𝑆𝑀
𝑊𝑜𝑟𝑘𝑒𝑟 1

𝑊𝑜𝑟𝑘𝑒𝑟 2

𝐾1

𝐾2

Attack on IBM PIN Generation

• Wild credit cards appear!

• IBM uses PIN generation.

• It’s not very effective…

• In IBM PIN code generation, 𝑃𝐼𝑁𝐶 depends on 3 values:
• 𝑃𝐼𝑁𝑀 – bank’s master PIN.

• 𝑁𝐶 – account number.

• 𝑜𝑓𝑓𝑠𝑒𝑡 – for memorable (weak) PIN.

Attack on IBM PIN Generation – cont.

• The algorithm:

𝐻𝑒𝑥 = 𝐸𝑃𝐼𝑁𝑀
𝑁𝐶 𝐻𝑒𝑥 = 𝑎2𝑐𝑒126𝑐69𝑎𝑒𝑐82𝑑

𝐷𝑒𝑐 = 𝐷𝑒𝑐_𝑇𝑎𝑏𝑙𝑒(𝐻𝑒𝑥) 𝐷𝑒𝑐 = 022412626904823

𝑃𝐼𝑁𝐶 = 𝐷𝑒𝑐 1. . 4 + 𝑜𝑓𝑓𝑠𝑒𝑡 𝑃𝐼𝑁𝐶 = 0224 + 6565 = 6789

• Great Idea (?): 𝐷𝑒𝑐_𝑇𝑎𝑏𝑙𝑒 is supplied by the user.

• 𝐷𝑒𝑐_𝑇𝑎𝑏𝑙𝑒 = 0123456789012345 was widely used.

Attack on IBM PIN Generation – cont.

• Set 𝐷𝑒𝑐_𝑇𝑎𝑏𝑙𝑒 = 0000000000000000.

• Get E 𝑃𝐼𝑁𝐶 = 0000 .

• Set 𝐷𝑒𝑐_𝑇𝑎𝑏𝑙𝑒 = 1000000000000000.

• If 𝐸(𝑃𝐼𝑁𝐶) changed, then it contained a ‘0’.

• And so on…

• With a few dozen queries 𝑃𝐼𝑁𝐶 can be found.

Attack on IBM PIN Generation – cont.

• How to fix?
• IBM’s “solution”:

• Must contain at least 8 different characters, that appear at
most 4 times.

• What about “0123456789012345”, then “1123456789012345”,
and so on?

• Be careful when using user’s input, and avoid it as
much as possible.
• Remember the perfect API!

API Programming - Input Check

• The API itself can be 100% safe.

• The communication still will not be secure.

• Before you execute, check the input you are executing!

SQL Injection (Input Check – example)

• Many APIs use SQL transactions in the background.

• The code is written in advance,

and the parameters are taken from the API call.

• If the parameter isn’t checked, SQL code can be ‘Injected’
and executed.

• SQL code:
𝑠𝑒𝑙𝑒𝑐𝑡 ∗
𝑓𝑟𝑜𝑚 𝑤𝑜𝑟𝑘𝑒𝑟𝑠
𝑤ℎ𝑒𝑟𝑒 𝑛𝑎𝑚𝑒 = ′$$′ ;

• Expected parameter ($$): 𝑆ℎ𝑎𝑖 𝑍𝑖𝑣

• Attacker’s parameter:
𝑆ℎ𝑎𝑖 𝑍𝑖𝑣′); 𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 (′𝐽𝑜𝑓𝑓𝑟𝑒𝑦 𝐵𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑛

• When inserted:
𝑠𝑒𝑙𝑒𝑐𝑡 ∗
𝑓𝑟𝑜𝑚 𝑤𝑜𝑟𝑘𝑒𝑟𝑠
𝑤ℎ𝑒𝑟𝑒 𝑛𝑎𝑚𝑒 = (′𝑆ℎ𝑎𝑖 𝑍𝑖𝑣′);

𝑖𝑛𝑠𝑒𝑟𝑡 𝑖𝑛𝑡𝑜 𝑤𝑜𝑟𝑘𝑒𝑟𝑠
𝑣𝑎𝑙𝑢𝑒𝑠 (′𝐽𝑜𝑓𝑓𝑟𝑒𝑦 𝐵𝑎𝑟𝑎𝑡ℎ𝑒𝑜𝑛′);

SQL Injection – cont.

Buffer Overflow (Input Check – example)

• Every API reads input from the user.

• No computer has an infinite input buffer.

• Devastating attacks can be executed if input string length is not
checked.

• What is the problem here?

𝑚𝑎𝑖𝑛 ⋅

{
𝑐ℎ𝑎𝑟 𝑏𝑢𝑓𝑓𝑒𝑟 128 ;
𝑔𝑒𝑡𝑠 𝑏𝑢𝑓𝑓𝑒𝑟 ;

}

Buffer Overflow – The Stack

Stack

gets locals

BP

return addr

param - buffer

buffer

BP

return addr

gets frame

main frame

No Buffer Overflow – No Attack

Stack

gets locals

BP

return addr

param - buffer

buffer

BP

return addr

Stack

gets locals

BP

return addr

param - buffer

‘Hello World!’

BP

return addr

Stack

‘Hello World!’

BP

return addr

Buffer Overflow – The Attack

Stack

gets locals

BP

return addr

param - buffer

buffer

BP

return addr

Stack

gets locals

BP

return addr

param - buffer

Code:
download(‘nyan.mp3’)

while (1)
play(‘nyan.mp3’)

~override~

buffer addr

• main finishes as usual
• Computer is infected

Summary – API Design

• Designing a secure set of commands is very difficult.

• Single secure looking command might be insecure.

• Multiple secure commands might be insecure when
combined.

• Each user input can be used for an attack.

Summary – API Design – cont.

• Simplicity is key.
• Complicated APIs are all the more vulnerable.
• Atomic and independent commands.

• Many failures happen when adding features to API.
• When designed initially, those features were not considered.
• The feature itself should be checked and rechecked.
• Relations between the new feature and old features might be problematic.
• Is the feature necessary?

• Use as minimal input as possible.
• There is no reason to use a parameter from the user,
when you know its value in advance.

Summary – API Implementation

• Input check.

• Input check.

• Input check.

• The code which handles the user’s input is extremely
critical, and should be treated that way.

Backup

Attack on the 4758

• 4758 is IBM’s equivalent to Visa’s module.

• The 4758 supported “check value” creation for a key 𝐾

• 𝑐ℎ𝑒𝑐𝑘 = 𝐸𝐾(0)

• At the time the key length was 56 bits.
• This means we need 255 effort to crack an unknown key,

which is (not really) too much.

Attack on the 4758 – cont.

• We do not need to crack a specific key.
• The 4758 would re-encrypt data with a different key

• Meet in the middle attack:
1. Collect a number of check values. Say 216 (takes a few hours)

2. Store them in a hash table.

3. Go over keys until you get a hit. (takes
256

216 = 240 effort)

4. ?????

5. Profit.

