
Distributed Maximum Flow in Planar Graphs

Yaseen Abd-Elhaleem∗

yaseenuniacc@gmail.com
Michal Dory∗

mdory@ds.haifa.ac.il

Merav Parter†

merav.parter@weizmann.ac.il
Oren Weimann∗

oren@cs.haifa.ac.il

Abstract

The dual of a planar graph G is a planar graph G∗ that has a vertex for each face of
G and an edge for each pair of adjacent faces of G. The profound relationship between a
planar graph and its dual has been the algorithmic basis for solving numerous (centralized)
classical problems on planar graphs involving distances, flows, and cuts. In the distributed
setting however, the only use of planar duality is for finding a recursive decomposition of G
[DISC 2017, STOC 2019].

In this paper, we initiate the study of distributed algorithms on dual planar graphs.
Namely, we extend the distributed algorithmic toolkit (such as recursive decomposition and
minor-aggregation) to work on the dual graph G∗. These tools can then facilitate various
algorithms on G by solving a suitable dual problem on G∗.

Given a directed planar graph G with positive and negative edge-lengths and hop-
diameter D, our key result is an Õ(D2)-round algorithm1 for Single Source Shortest Paths
on G∗, which then implies an Õ(D2)-round algorithm for Maximum st-Flow on G. Prior
to our work, no Õ(poly(D))-round algorithm was known for Maximum st-Flow. We fur-
ther obtain a D · no(1)-rounds (1 − ›)-approximation algorithm for Maximum st-Flow on
G when G is undirected and s and t lie on the same face. Finally, we give a near optimal
Õ(D)-round algorithm for computing the weighted girth of G. We believe that the toolkit
developed in this paper for exploiting planar duality will be used in future distributed algo-
rithms for various other classical problems on planar graphs (as happened in the centralized
setting).

The main challenges in our work are that G∗ is not the communication graph (e.g., a
vertex of G is mapped to multiple vertices of G∗), and that the diameter of G∗ can be much
larger than D (i.e., possibly by a linear factor). We overcome these challenges by carefully
defining and maintaining subgraphs of the dual graph G∗ while applying the recursive de-
composition on the primal graphG. The main technical difficulty, is that along the recursive
decomposition, a face of G gets shattered into (disconnected) components yet we still need
to treat it as a dual node.

∗Department of Computer Science, University of Haifa.
†Faculty of Mathematics and Computer Science, Weizmann Institute of Science.
1The Õ(·) notation is used to omit poly log n factors.
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1 Introduction

Distributed algorithms for network optimization problems have a long and rich history. These
problems are commonly studied under the CONGEST model [35] where the network is ab-
stracted as an n-vertex graph G = (V; E) with hop-diameter D; communications occur in syn-
chronous rounds, and per round,O(log n) bits can be sent along each edge. A sequence of break-
through results provided Õ(D +

√
n)-round algorithms for fundamental graph problems, such

as minimum spanning tree (MST) [9], approximate shortest-paths [32], minimum cuts [5], and
approximate flow [16]. For general graphs, Õ(D+

√
n) rounds for solving the above mentioned

problems is known to be near optimal, existentially [38].
A major and concentrated effort has been invested in designing improved solutions for spe-

cial graph families that escape the topology of the worst-case lower bound graphs of [38]. The
lower bound graph is sparse, and of arboricity two, so it belongs to many graph families. Ar-
guably, one of the most interesting non-trivial families that escapes it, is the family of planar
graphs. Thus, a significant focus has been given to the family of planar graphs, due to their
frequent appearance in practice and because of their rich structural properties. In their seminal
work, Ghaffari and Haeupler [13, 14] initiated the line of distributed planar graph algorithms
based on the notion of low-congestion shortcuts. The latter serves the communication backbone
for obtaining Õ(D)-round algorithms forMST [14], minimum cut [14,18] and approximate short-
est paths [40, 41] in planar graphs.

An additional key tool in working with planar graphs, starting with the seminal work of
Lipton and Tarjan [27], is that of a planar separator path: a path whose removal from the graph
leaves connected components that are a constant factor smaller. Ghaffari and Parter [17] pre-
sented a Õ(D)-round randomized algorithm for computing a cycle separator of sizeO(D)which
consists of a separator path plus one additional edge (that is possibly a virtual edge that is not in
G). By now, planar separators are a key ingredient in a collection of Õ(poly(D))-round solutions
for problems such as DFS [17], distance computation [26], and reachability [34]. An important
aspect of the planar separator algorithm of [17] is that it employs a computation on the dual
graph, by communicating over the primal graph.

Primal maximum flow via dual SSSP. Our goal in this paper is to expand the algorithmic
toolkit for performing computation on the dual graph. This allows us to exploit the profound
algorithmic duality in planar graphs, in which solving a problem A in the dual graph provides a
solution for problemB in the primal graph. Within this context, our focus is on theMaximum st-
Flow problem (in directed planar graphswith edge capacities). TheMaximum st-Flow problem is
arguably one of the most classical problems in theoretical computer science, extensively studied
since the 50’s, and still admitting breakthrough results in the sequential setting, such as the
recent almost linear time algorithm by Chen, Kyng, Liu, Peng, Gutenberg and Sachdeva [2].
Despite persistent attempts over the years, our understanding of the distributed complexity of
this problem is still quite lacking. For general undirected n-vertex graphs, there is a (1 + o(1))-
approximation algorithm that runs in (

√
n + D)no(1) rounds, by Ghaffari, Karrenbauer, Kuhn,

Lenzen and Patt-Shamir [16]. For directed n-vertex planar graphs, a D · n1=2+o(1)-round exact
algorithm has been given by de Vos [4]. No better tradeoffs are known for undirected planar
graphs. In lack of any Õ(poly(D))-roundmaximum st-flow algorithm for directed planar graphs
(not even when allowing approximation) we ask:

Question 1.1. Is it possible to compute the maximum st-flow in directed planar graphs within
Õ(poly(D)) rounds?

In directed planar graphs with integral edge-capacities, it is known from the 80’s [44] that
the maximum st-flow can be found by solving log – instances of Single Source Shortest Paths
(SSSP) with positive and negative edge-lengths on the dual graph G∗, where – is the maximum
st-flow value. We answer Question 1.1 in the affirmative by designing a Õ(D2)-round SSSP
algorithm on the dual graph G∗. Our algorithm works in the most general setting w.h.p.2 (i.e.

2W.h.p. stands for a probability of 1− 1=nc for an arbitrary fixed constant c > 0.
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whenG∗ is directed and has positive and negative integral edge-lengths) andmatches the fastest
known exact SSSP algorithm in the primal graph. We show:

Theorem 1.2 (Exact Maximum st-Flow in Directed Planar Graphs). There is a randomized dis-
tributed algorithm that given an n-vertex directed planar network G with hop-diameter D and in-
tegral edge-capacities, and two vertices s; t , computes the maximum st-flow value and assignment
w.h.p. in Õ(D2) rounds.

No prior Õ(poly(D)) algorithm has been known for this problem, not even when allowing a
constant approximation. We further improve the running time to D · no(1) rounds while intro-
ducing a (1− ›) approximation, provided that G is undirected and that s and t both lie on the
same face with respect to the given planar embedding:

Theorem 1.3 (Approximate Maximum st-Flow in Undirected st-Planar Graphs). There is a
randomized distributed algorithm that given an n-vertex undirected planar network G with hop-
diameter D and integral edge-capacities, and two vertices s; t lying on the same face, computes a
(1− ›)-approximation of the maximum st-flow value and a corresponding assignment in D · no(1)
rounds w.h.p.

This latter algorithm is based on an approximate SSSP algorithm that runs inD ·no(1) rounds
in planar graphs [41]. Our implementation of the algorithm on the dual graphmatches its round
complexity on the primal graph. The obtained almost-optimal round complexity improves sig-
nificantly over the current algorithm for general graphs that runs in (

√
n+D)no(1) rounds [16].

Minimum st-cut. By the well-known Max Flow Min Cut theorem of [7], our flow algorithms
immediately give the value (or approximate value) of the minimum st-cut. We show that they
can be extended to compute a corresponding bisection and the cut edges without any over-
head in the round complexity. Moreover, since our exact flow algorithm works with directed
planar graph, it admits a solution to the directed minimum st-cut problem. To the best of our
knowledge, prior to our work, Õ(poly(D))-round CONGEST algorithms for the minimum st-
cut problem were known only for general graphs with constant cut values by [33]. This is in
contrast to the global minimum cut problem that can be solved in Õ(D) rounds in undirected
planar graphs [14, 18].

Primal weighted girth via dual cuts. A distance parameter of considerable interest is the
network girth. For unweighted graphs, the girth is the length of the smallest cycle in the graph.
For weighted graphs, the girth is the cycle of minimal total edge weight. Distributed girth
computation has been studied over the years mainly for general n-vertex unweighted graphs.
Frischknecht, Holzer and Wattenhofer [8] provided an Ω(

√
n)-round lower bound for comput-

ing a (2 − ›) approximation of the unweighted girth. The state-of-the-art upper bound for the
unweighted girth problem is a (2− ›) approximation in Õ(n2=3 +D) rounds, obtained by com-
bining the works of Peleg, Roditty and Tal [36] and Holzer and Wattenhofer [21]. The weighted
girth problem has been shown to admit a near-optimal lower bound of Ω̃(n) rounds in general
graphs [22,28]. Turning to planar graphs, Parter [34] devised a Õ(D2) round algorithm for com-
puting the weighted girth in directed planar graphs via SSSP computations. For undirected and
unweighted planar graphs, the (unweighted) girth can be computed in Õ(D) rounds by replac-
ing the Õ(D2)-round SSSP algorithm by a O(D)-round BFS algorithm. In light of this gap, we
ask:

Question 1.4. Is it possible to compute the weighted girth of an undirected weighted planar
graph within (near-optimal) Õ(D) rounds?

We answer this question in the affirmative by taking a different, non distance-related, ap-
proach than that taken in prior work. Our Õ(D) round algorithm exploits the useful duality
between cuts and cycles. By formulating the dual framework of the minor-aggregation model,
we show how to simulate the primal exact minimum cut algorithm of Ghaffari and Zuzic [18]
on the dual graph. This dual simulation matches the primal round complexity. The solution to
the dual cut problem immediately yields a solution to the primal weighted girth problem. We
show:

2



Theorem 1.5 (Planar Weighted Girth). There is a randomized distributed algorithm that given an
n-vertex undirected weighted planar network G with hop-diameter D, computes the weighted girth
(and finds a corresponding cycle) w.h.p. in Õ(D) rounds.

2 Technical Overview

The dual of a planar graph G is a planar graph G∗ that has a node3 for each face of G. For every
edge e in G there is an edge e∗ in G∗ that connects the nodes corresponding to the two faces
of G that contain e . Our results are based on two main primal tools that we extend to work on
the dual graph: Minor Aggregation and Bounded Diameter Decomposition. We highlight the key
ideas of these techniques and the challenges encountered in their dual implementation. For all
the algorithms that we implement in the dual graph, we match the primal round complexity.

2.1 Minor-Aggregation in the Dual

An important recent development in the field of distributed computing was a new model of
computation, called the minor-aggregation model introduced by Zuzic r⃝4 Goranci r⃝ Ye r⃝
Haeupler r⃝ Sun [41], then extended by Ghaffari and Zuzic [18] to support working with virtual
nodes added to the input graph. Recent state-of-art algorithms for various classical problems
can be formulated in the minor-aggregationmodel (e.g., the exact min-cut algorithm of [18], and
the undirected shortest paths approximation algorithms of [40,41]). Motivated by the algorith-
mic power of this model, we provide an implementation of the minor aggregation model on the
dual graph. As noted by [41], minor aggregations can be implemented by solving the (simpler)
part-wise aggregation task, where one needs to compute an aggregate function in a collection of
vertex-disjoint connected parts of the graph. The distributed planar separator algorithm of [17]
implicitly implements a part-wise aggregation algorithm on the dual graph. Our contribution is
in providing an explicit and generalized implementation of the dual part-wise aggregation algo-
rithm and using it to implement the minor-aggregation model on the dual graph, see Section 4
for the details. We then use this algorithm for computing the exact minimum weighted cut in
the dual graph G∗, which by duality provides a solution to the weighted girth problem in the
primal graph G. We also use it to simulate the recent approximate SSSP by [41] on the dual
graph, leading to our approximate max st-flow algorithm on the primal graph when s and t
are on the same face. Since currently there are fast SSSP minor-aggregation algorithms only for
undirected graphs, this approach leads to an approximate max st-flow algorithm in undirected
planar graphs. To solve the more general version of the max st-flow problem, we need additional
tools described next.

2.2 SSSP in the Dual via Distance Labels

SSSP via distance labels. In order to compute single source shortest paths (SSSP) in the dual
graph we compute distance labels. That is, we assign each face of G (node of G∗) a short Õ(D)-
bit string known by all the vertices of the face s.t. the distance between any two nodes of G∗

can be deduced from their labels alone. This actually allows computing all pairs shortest paths
(APSP) by broadcasting the label of any face to the entire graph (thus learning a shortest paths
tree in G∗ from that face).

Theorem2.1 (Dual Distance Labeling). There is a randomized distributed Õ(D2)-round algorithm
that computes Õ(D)-bit distance labels for G∗, or reports that G∗ contains a negative cycle w.h.p.,
upon termination, each vertex of G that lies on a face f , knows the label of the node f in G∗.

The above theorem with aggregations on G∗ allows learning an SSSP tree in the dual, i.e.,

3Throughout, we refer to faces of the primal graph G as nodes (rather than vertices) of the dual graph G∗.
4 r⃝ is used to denote that the authors’ ordering is randomized.
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Lemma 2.2 (Dual Single Source Shortest Paths). There is a randomized Õ(D2) round algorithm
that w.h.p. computes a shortest paths tree from any given source s ∈ G∗, or reports that G∗ contains
a negative cycle. Upon termination, each vertex of G knows for each incident edge whether its dual
is in the shortest paths tree or not.

Our labeling scheme follows the approach of [10] who gave a labeling scheme suitable for
graph families that admit a small separator. We show the general idea on the primal graph and
then our adaptation to the dual graph.

As known from the 70’s [27,29], the family of planar graphs admits cycle separators (a cycle
whose removal disconnects the graph) of small size O(

√
n) or O(D). Since Ω(D) is a lower

bound for all the problems we discuss in the distributed setting, we will focus on separators
of size Õ(D). The centralized divide-and-conquer approach repetitively removes the separator
vertices SG from the graph G and recurses on the two remaining subgraphs that are a constant
factor smaller, constituting a hierarchical decomposition of the graph with O(log n) levels. The
labeling scheme is defined recursively, where the label of a vertex v inG stores distances between
v and SG and recursively the label of v in the subgraph that contains v (either the interior or the
exterior of SG ). Due to SG being a cycle, any shortest u-to-v path P for any two vertices u; v in G
either crosses SG (and the u-to-v distance is known by the distances between u; v and SG stored
in their labels), or P is enclosed in the interior or the exterior of SG (and the u-to-v distance is
decoded from the recursive labels of u and v in the subgraph that contains them). Moreover,
since the separator is of size Õ(D) and since there are O(log n) levels in the decomposition, the
labels are of size Õ(D).

Bounded diameter decomposition (BDD). Is a distributed hierarchical decomposition for
planar graphs, which plays an analogous role to the centralized recursive separator decompo-
sition, which was devised by Li and Parter [26] by carefully using and extending a distributed
planar separator algorithm of Ghaffari and Parter [17]. The BDD has some useful properties
that are specific to the distributed setting. In particular, all the separators and subgraphs ob-
tained in each recursive level have small diameter of Õ(D) and are nearly disjoint, which allows
to broadcast information in all of them efficiently in CONGEST. An immediate application of
the BDD is a distributed distance labeling algorithm for primal planar graphs that follows the
intuition above. In addition, BDDs have found other applications in CONGEST algorithms on
the primal graph G (e.g. diameter approximation, routing schemes and reachability [6, 26, 34]).

Challenges in constructing distance labels for the dual graph. Ideally, we would like to
apply the same idea on the dual graph. However, there are several challenges. First, if we apply
it directly, the size of the separator and the running time of the algorithm will depend on the
diameter of the dual graph, that can be much larger than the diameter D of the primal graph
(possibly by a linear factor). So it is unclear how to obtain a running time that depends on D.
Second, even though there are efficient distributed algorithms for constructing the BDD in the
primal graph, it is unclear how to simulate an algorithm on the dual network, as this is not our
communication network.

Our approach: recurse on primal, solve on dual. To overcome this, we suggest a different
approach. We use the primal BDD, and infer from it a decomposition of the dual graph. To get
an intuition, note that by the cycle-cut duality, a cycle in G constitute a cut in G∗. This means
that the separator ofG can be used as a separator ofG∗, in the sense that removing the cut edges
(or their endpoints) disconnects G∗. I.e, a hierarchical decomposition of G can (conceptually) be
thought of as a hierarchical decomposition of G∗. See Figure 1.

Then, we would hope that using [26]’s algorithm for such a hierarchical decomposition for
planar graphs would allow us to apply the same labeling scheme on G∗, where we consider
the dual endpoints of SG edges as our separator in G∗. However, taking a dual lens on the
primal decomposition introduces several challenges that arise when one needs to define the
dual subgraphs from the given primal subgraphs. This primal to dual translation is rather non-
trivial due to critical gaps that arise when one needs to maintain information w.r.t. faces of G,
rather than vertices of G. To add insult to injury, the nice structural property of the separator

4
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Figure 1: Two levels of the recursive separator decomposition ofG and their correspondent levels
in the desired dual decomposition of G∗. The black edges are the separating cycle SG in G, the
same edges map to a cut in G∗. For simplicity, the dual node corresponding to the face f∞ of G
is not illustrated in G∗ (its incident edges are the ones missing an endpoint).

being a cycle is simply not true any more. This is because the separator of [17] that the BDD
of [26] uses is composed of two paths plus an additional edge that exists only when the graph
is two-connected. Otherwise, that edge is not in G and cannot be used for communication. This
virtual edge, if added, would split a face into two parts, introducing several challenges, including:

Challenge I: dual subgraphs. There are three complications in this regard: (1) Taking the
natural approach and defining the dual decomposition to contain the dual subgraph of each
subgraph in the primal decomposition, does not work. This is because in the child subgraphs
there are faces that do not exist in their parent subgraph (e.g. in Figure 1, the "external" face of
black edges in G1). More severely, the cycle SG may not even be a cycle of G, rather, a path P
accompanied with a virtual edge. Thus, P is not necessarily a cut in G∗. (2) The second com-
plication arises from the distributed hierarchical decomposition of [26] which may decompose
each subgraph into as many as Õ(D) subgraphs rather than two. This is problematic in the case
where a given face (dual node) is split between these subgraphs. (3) Finally, the useful property
that a parent subgraph in the primal decomposition is given by the union of its child subgraphs
is simply not true in the dual, since removing P does not necessarily disconnect G∗ and may
leave it connected by the face that contains the virtual edge (see Figure 2). In order to disconnect
G∗, that face must be split, which solves one problem but introduces another as explained next.

Challenge II: face-parts. In the primal graph, a vertex is an atomic unit, which keeps its iden-
tity throughout the computation. The situation in the dual graph is considerably more involved.
Consider a primal graph G with a large face f containing Θ(n) edges. Throughout the recur-
sive decomposition, the vertices of the face f are split among multiple faces, denoted hereafter
as face-parts, and eventually f is shattered among possibly a linear number of subgraphs. This

5



G G∗

S
G

e
G

f

f

Figure 2: The edge eG in the interior of the face f is the virtual edge added to close a cycle, i.e.,
P = SG \ {eG}. Note, since eG is not an edge of G, it does not exist in G∗, and f corresponds to
a single node in G∗ instead of two. Thus, removing the separator vertices in G disconnects G,
however, removing its real (non-virtual) edges in G∗ does not disconnect it.

means that a node in a dual subgraph does no longer correspond to a face f of the primal sub-
graph, but rather to a subset of edges of f . This creates a challenge in the divide-and-conquer
computation, where one needs to assemble fragments of information from multiple subgraphs.

New Structural Properties of the Primal BDD. We mitigate these technical difficulties by
characterizing theway that faces are partitioned during the primal BDDalgorithmof [26]. While
we run the primal BDD almost as is, our arguments analyze the primal procedure from a dual
lens. Denote each subgraph in the BDD as a bag. We use the primal BDD to define a suitable
decomposition of G∗ that is more convenient to work with when performing computation on
the dual graph. Interestingly, for various delicate reasons, in our dual BDD , the dual bagX∗ of a
primal bagX in the BDD is not necessarily the dual graph ofX . Finally, we show that each vertex
in the primal graph can acquire the local distributed knowledge of this dual decomposition.

Our dual perspective on the primal BDD allows us to provide a suitable labeling scheme for
G∗. Next we give a more concrete description of our dual-based analysis of the primal BDD. The
full details are provided in Section 5.1.

Few face-parts. We show that in each bagX of the BDD there is at most one face of G that can
be partitioned between different child bags ofX and was not partitioned in previous levels. This
face is exactly the critical face f that contains the virtual edge of the bag. We call the different
parts of f that appear in different child bags face-parts. Since the decomposition has O(log n)
levels, overall we have at most O(log n) face-parts in each bag. Note that we do not count face-
parts that were obtained by splitting the critical face in ancestor bags (i.e., by splitting existing
face-parts). For full details, the reader is referred to Section 5.1.1.

Lemma 2.3 (Few face-parts, Informal). Any bag X of the BDD contains at most O(log n) face-
parts.

To prove Lemma 2.3, we consider the separator SX of X computed in the construction of the
BDD by [26]. SX constitutes a separating cycle in X containing at most one virtual edge eX that
might not be in E(G). The interior of SX defines one child bag X1 of X , and its exterior may
define as many as Õ(D) child bags X2; X3; : : : (see Figure 3). We prove that the face containing
the endpoints of eX is the only face that might get partitioned in the bag X . First, we show
that if eX ∈ E(G) then no face is partitioned, and all faces are entirely contained in one of the
child bags. If eX =∈ E(G), then we show that the critical face is the only face of G that can be
partitioned inX . We remark that face-parts can also be further partitioned, as shown in Figure 3.

Dual bags and separators. Since we are interested in faces of G, we trace them down the
decomposition and take face-parts into consideration when defining the dual bags. That is,
both the faces and the face-parts that belong to a bag X have corresponding dual nodes in X∗.

6
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X2X3

e
X

X4

X1

X2X3

f
e
X

X4

X1

X2X3

f

X5

Figure 3: Three examples of a bag X and its child bags Xi (of distinct colors). The bold black
cycle is the separator SX . The virtual edge eX is dashed. The green child bag X1 is the interior of
SX . When eX ∈ E(G) (left image), we show that no face is partitioned between the child bags
Xi . When eX =∈ E(G) (middle and right images), edges of the critical face f are red. Notice,
the face f (middle) is partitioned into two child bags (X1 and X4) and the face-part f (right) is
partitioned into three child bags (X1; X4; X5).

We connect two nodes of X∗ by a dual edge only if their corresponding faces share a primal
(non-virtual) edge in X . If X = G, then there are no face-parts and X∗ is the standard dual
graph G∗. For full details, the reader is referred to Section 5.1.

As mentioned earlier, we would like the separator of a bag X to constitute a separator for
X∗. We show that this is almost the case. In particular, we define a set FX of size Õ(D) that
constitutes a separator in X∗. The set FX consists of (1) nodes incident to dual edges of SX in
X∗, and (2) nodes corresponding to faces or face-parts that are partitioned between child bags
of X∗. See Figure 4.

X∗
X∗

1

X∗
2

X∗
3

X∗
4 X∗

5

Figure 4: A bag X∗ on the left and its child bags on the right. Each shadow color demonstrates
a distinct child bag of X∗. Each edge that is shadowed by a color, is entirely contained in the
child bag corresponding to that color. The nodes shown in X∗ are the nodes of FX . Some of
these nodes are partitioned into several nodes in different child bags of X∗. The black nodes are
nodes of X∗ that are incident to a (dual) edge of SX , the yellow node corresponds to the critical
face of X , and the red nodes correspond to face-parts of X . Notice how for the face-parts and
the critical face of X there are incident edges, each is entirely contained in a distinct child bag
of X∗. Edges that are not contained in any child bag of X∗ are (dual) edges of SX .

Following the high-level idea of the labeling scheme, the set FX is crucial. Themain structural
property it provides is the following.

Lemma 2.4 (Dual Separator - Informal). Any path in X∗ that is not entirely contained in a single
child bag of X∗ must intersect FX .

The above lemma is proved in Section 5.1.2. Intuitively, when X∗ is split into its child bags,

7



some of its nodes are "shattered" (those that correspond to its critical face or its O(log n) face-
parts), and some of its edges are removed (dual SX edges). We show how to assemble X∗ from
its child bags by considering faces and face-parts of child bags that correspond to nodes of FX .

Distributed knowledge. A node f inX∗ is simulated by the vertices of the corresponding face
or face-part f of X , and each dual edge adjacent to f will be known by one of its endpoints. In
particular, we assign each face and face-part in a bag X a unique Õ(1)-bit identifier and learn
for each vertex v ∈ X , the set of faces and face-parts containing it and its adjacent edges. This
is done by keeping track of G’s edges along the decomposition. At first we learn G∗ and then
extend this recursively to its child bags. The implementation relies on the fact that we have
only a few face-parts in each bag (Lemma 2.3) preventing high congestion when we broadcast
information about face-parts to learn the dual nodes. For details see Section 5.1.3.

The labeling scheme. Our next goal is to use the decomposition in order to compute distances
in the dual graph. More concretely, we (distributively) compute, for every node in every bag
X∗, a short label of size Õ(D), such that given the labels alone of any two nodes in X∗ we can
deduce their distance. The labeling scheme is a refinement of the intuition given earlier. For full
details, the reader is referred to Section 5.2.

Recall, the set FX plays the role of a node separator of X∗ (Lemma 2.4). A node g =∈ FX of X∗

corresponds to a real face ofG (i.e. not a face-part) contained inX . The distance label LabelX∗(g)
of g =∈ FX is defined recursively. IfX∗ is a leaf in the decomposition then LabelX∗(g) stores ID(g )
and the distances between g and all other nodes h ∈ X∗. Otherwise, the label consists of the ID
of X , the distances in X∗ between g and all nodes of FX , and (recursively) the label of g in the
child bag of X∗ that entirely contains g . In case g ∈ FX , we simply store the distances between
g and all other nodes in FX . The labels are of size Õ(D)-bits since |FX | = Õ(D) and since the
BDD is of a logarithmic height.

The correctness follows from Lemma 2.4. I.e, a g -to-h shortest path P in X∗ is either: (1)
Entirely contained in X∗

i , and distX∗(g; h) can be deduced from LabelX∗
i
(g) and LabelX∗

i
(h), or

(2) P intersects FX with an edge, then distX∗(g; h) = minf ∈F
X
{distX∗(g; f ) + distX∗(f ; h)}. If

one of g or h is a node of FX then distances are retrieved instantly, as each node in X∗ stores its
distances to FX .

The algorithm. We compute the distance labels bottom-up on the decomposition. In the leaf
bags, due to their small size (Õ(D)-bits) we allow ourselves to gather the entire bag in each of
its vertices. Then, vertices locally compute the labels of faces and face-parts that contain them.
If a negative cycle is detected, it gets reported via a global broadcast on G and the algorithm
terminates.

X∗
1

X∗
2

X∗
3

g

X∗
4

Figure 5: The graph DDG(g). The blue node is g , other nodes are nodes of FX , in particular, red
nodes correspond to face-parts and black nodes to endpoints of SX . The blue edges represent
distances between nodes that belong to the same child bag of X∗, red edges connect face-parts
of the same face in X∗, and black edges are dual edges to SX edges. For simplicity, the figure is
undirected.

In non-leaf bags, we broadcast Õ(D2) information that includes labels of nodes in FX in the
child bags (Õ(D) labels, each of size Õ(D)), and the edges of the separator. Since all the bags in
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the same level have Õ(D) diameter and are nearly disjoint, we can broadcast all the information
in Õ(D2) rounds in all bags. We prove that based on this information nodes can locally deduce
their distance label in X∗.

In particular, each vertex v ∈ X that belongs to a face or a face-part g ofX constructs locally
a Dense Distance Graph denoted DDG(g). DDG(g) is a small (non-planar) graph (with Õ(D)
vertices and Õ(D2) edges) that preserves the distances inX∗ between pairs of nodes in FX ∪{g}.
See Figure 5. Via (local) APSP computations on the DDGs, v learns the distances between g and
FX nodes in X∗ (i.e., constructs LabelX∗(g)). Again, vertices check for negative cycles locally (in
the DDG). To prove correctness, we show that each shortest path P in X∗ can be decomposed
into a set of subpaths and edges whose endpoints are in FX ∪{g}. Each such subpath is entirely
contained in a child bag of X∗ (so its weight can be retrieved from the already computed labels)
and each such edge is a (dual) edge of SX (whose identity and weight were broadcast). For full
details, the reader is referred to Section 5.3.

Finally, in order to compute distances from any given node s ∈ G∗, it suffices to broadcast
its label to the entire graph. Thus, vertices can learn locally for each face of G that contains
them the distance from s . To learn an SSSP tree from s in G∗, for each node g in G∗ we mark
its incident edge e = (f ; g) that minimizes dist(s; f ) + w(e). For this task, we use our Minor-
Aggregation implementation on G∗. Concluding our main result, a labeling scheme that gives
dual SSSP and hence primal maximum st-flow.

2.3 Flow Assignments and Cuts

Maximum st-flow. It was shown in the 90’s by Miller and Naor [30], that an exact st-flow
algorithm on a directed planar graph G with positive edge-capacities can be obtained by log –
applications of a SSSP algorithm on the dual graph G∗ with positive and negative edge-weighs
(each application with possibly different edge weights). We use this result as a black-box. At the
end, we obtain the flow value and the flow assignment to the edges of G. This works in Õ(D2)
rounds, since – (the value of the maximum st-flow) is polynomial in n and since our dual SSSP
algorithm terminates within Õ(D2) rounds.

Approximate maximum st-flow. For the case of undirected planar graphs where s and t lie
on the same face with respect to the given embedding, we further obtain an improved round
complexity at the cost of solving the problem approximately. Namely, it was shown in the 80’s
by Hassin [20] that in this setting it suffices to use an SSSP algorithm on the dual graph after
augmenting it with a single edge, dual to the edge (s; t), that is limited to positive edge-weights
and to undirected graphs. Since s and t are on the same face it is possible to add such an edge
while preserving planarity. Note that adding this edge splits a node in the dual graph. We
show that we can still simulate efficently minor-aggregation algorithms on the augmented dual
graph. To compute SSSP on that graph we use an SSSP algorithm by [41] that works in the
minor-aggregation model. In particular, it computes a (1 + ›)-approximate SSSP tree within
D · no(1) rounds, which allows us to find a (1− ›)-approximate flow value in this time.

Finding the flow assignment. As mentioned above, our exact maximum st-flow algorithm
also gives a flow assignment. However, in the approximate case, our algorithm easily gives the
approximate flow value, but it is not guaranteed to give a corresponding flow assignment due
to the fact that the reduction we use by [20] is meant to be used with an exact algorithm. In
particular, to have an assignment, the outputted SSSP tree needs to (approximately) satisfy the
triangle inequality. However, most distance approximation algorithms do not satisfy that qual-
ity. To overcome this, we apply a method of [39], that given any approximate SSSP algorithm
produces an SSSP tree that (approximately) satisfies the triangle inequality. To obtain an assign-
ment, by [39], we have to apply the approximate SSSP algorithm Õ(1) times each on different
virtual graphs related to the dual graph. This is not immediate, and raises several challenges.
Most importantly, their algorithm was not implemented in the minor-aggregation model so it is
not immediate to simulate it on the dual graph. We exploit the features of theminor-aggregation
model excessively in order to resolve this complication.
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Minimum st-cut. By the celebrated min-max theorem of Ford and Fulkerson [7], the exact (or
approximate) value of the max st-flow is equivalent to that of the min st-cut. We show that our
algorithms can also be extended to compute a corresponding bisection and mark the cut edges
of the min st-cut. In the exact case, we use classic textbook methods (e.g, residual graphs), and
since this flow algorithm works for directed planar graphs, we obtain a directed minimum st-
cut. In the approximate case, we have to work harder and exploit the minor-aggregation model
on the dual graph one last time, in which we apply a special argument on the cycle-cut duality
that was given in the 80’s by Reif [37].

Roadmap. The rest of the paper is organized as follows. Section 3 discusses preliminaries.
Section 4 gives an overview of our minor-aggregation simulation on the dual graph and its appli-
cations for the weighted girth, where full details and proofs appear in Appendix B. Our labeling
scheme for the dual graph appears in Section 5, and our applications for max st-flow and min
st-cut appear in Section 6. See also Figure 6.

Dual Minor-Aggregation
(Section 4, Appendix B)

Undirected Weighted Girth
(Theorem 1.5)

Approximate Dual SSSP

Extended BDD
(Section 5.1)

Dual Distance Labeling
(Section 5.2)

Exact Dual SSSP
(Section 5.3)

Primal Max st-Flow
(Section 6.1)

Primal Min st-Cut
(Section 6.2)

Figure 6: A roadmap of the paper.

3 Preliminaries

We denote by G = (V; E) the directed (possibly weighted) simple planar network of commu-
nication, and by D the network’s undirected and unweighted (hop) diameter. Let S be a set of
vertices or edges, we denote by G[S] the subgraph of G induced by S.

The CONGEST model. We work in the standard distributed CONGEST model [35]. Initially,
each vertex knows only its unique O(log n)-bit identifier and the identifiers of its neighbors.
Communication occurs in synchronous rounds. In each round, each vertex can send (and receive)
an O(log n)-bit message on each of its incident edges (different edges can transmit different
messages). When the edges of G are weighted we assume that the weights are polynomially
bounded integers. Thus, the weight of an edge can be transmitted in O(1) rounds. This is a
standard assumption in the CONGEST model.

Distributed storage. When referring to a distributed algorithm that solves some problem on a
network G, the input (and later the output) is stored distributively. That is, each vertex knows
only a small (local) part of the information. E.g. when computing a shortest paths tree from a
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single source vertex s , we assume that all vertices know (as an input) the ID of s and the weights
and direction of their incident edges. When the algorithm halts, each vertex knows its distance
from s and which of its incident edges are in the shortest paths tree.

Planar embedding. Let G = (V; E) be a directed planar graph. The geometric planar embed-
ding of G is a drawing of G on a plane so that edges intersect only in vertices. A combinato-
rial planar embedding of G provides for each v ∈ G, the local clockwise order of its incident
edges, such that, the ordering of edges is consistent with some geometric planar embedding
of G. Throughout, we assume that a combinatorial embedding of G is known locally for each
vertex. This is done in Õ(D) rounds using the planar embedding algorithm of Ghaffari and
Haeupler [13].

The dual graph G∗. The dual of the primal planar graph G is a planar graph, denoted G∗. The
nodes of G∗ correspond to the faces of G. The dual graph has an edge e∗ for each pair of faces
in G that share an edge e ∈ G (and a self-loop when the same face appears on both sides of an
edge). If e is directed then the direction of e∗ is from the face on the left of e to the face on the
right of e where left and right are defined with respect to the direction of e . Observe that if two
faces of G share several edges then G∗ has several parallel edges between these faces. I.e., G∗

might be a multi-graph even when the primal graph G is a simple graph. See Figure 7. Since the
mapping between edges of G and G∗ is a bijection, we sometimes abuse notation and refer to
both e and e∗ as e . We refer to the vertices of G as vertices and to the vertices of G∗ as nodes.

Figure 7: The graph G in blue and its dual graph G∗ in red. A primal cycle and its dual cut are
dashed.

We use the well-known duality between primal cycles and dual cuts:

Fact 3.1 (Cycle-Cut Duality). A set of edges C is a simple cycle in a connected planar graph G
if and only if C is a simple cut in G∗ (a cut C is said to be simple if when removed, the resulting
graph has exactly two connected components).

The face-disjoint graph Ĝ. In the distributed setting, the computational entities are vertices
and not faces. Since a vertex can belong to many (possibly a linear number of) faces of G, this
raises several challenges for simulating computations over the dual graph G∗: (1) We want to
communicate on G∗ but the communication network is G. (2) G∗ might be of a large diameter
(up to Ω(n) even when the diameter of G is D = O(1)). (3) We wish to compute aggregate
functions on sets of faces of G. To do so efficiently we want faces to be vertex-disjoint.

To overcome these problems, the face disjoint graph Ĝ was presented in [17] as a way for sim-
ulating aggregations on the dual graph G∗ in the distributed setting, which we slightly modify
here. As it is mainly a communication tool, we think of Ĝ as an undirected unweighted graph,
however, it will still allow working with weighted and directed input graphs G, as each endpoint
of an edge in Ĝ that represents an edge of G∗, shall know the weight and direction of that edge.
Intuitively, Ĝ can be thought of as the result of duplicating all edges of G so that faces of G map
to distinct faces of Ĝ that are both vertex and edge disjoint. See Figure 8.

The following are the properties of Ĝ that we use. For the full definition of Ĝ and a proof of
these properties see Appendix A.
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f∞

C∞

w

w1
w

Figure 8: On the left, the primal graph G. On the right, the face-disjoint graph Ĝ. Each vertex in
G has a star-center (blue) copy in Ĝ, in addition to deg(v) (black) additional copies. Black edges
in Ĝ are duplicates of G edges, such that, connected components induced by them map to faces
of G, e.g., the face f∞ of G maps to the component C∞ in Ĝ (thick black). Dashed blue edges
connect each star-center to other copies of the same vertex and solid blue edges connect two
components if and only if there corresponding faces should be connected in G∗. For example,
there are two such edges connecting C∞ to the component that maps to the face which contains
w .

1. Ĝ is planar and can be constructed in O(1) rounds (after which every vertex in G knows
the information of all its copies in Ĝ and their adjacent edges).

2. Ĝ has diameter at most 3D.

3. Any r -round algorithm on Ĝ can be simulated by a 2r -round algorithm on G.

4. There is an Õ(D)-round algorithm that identifies G’s faces by detecting their correspond-
ing faces in Ĝ. When the algorithm terminates, every such face of Ĝ is assigned a face
leader that knows the face’s ID. Finally, the vertices of G know the IDs of all faces that
contain them, and for each of their incident edges the two IDs of the faces that contain
them. Thus, each vertex ofG knows for each pair of consecutive edges adjacent to it (using
its clockwise ordering of edges) the ID of the face that contains them.

5. There is a 1-1 mapping between edges ofG∗ and a subset of edgesEC of Ĝ. Both endpoints
of an edge in EC know the weight and direction of its corresponding edge in G∗ (if any).

4 Weighted Girth via Minor Aggregations

We provide an implementation of the minor-aggregation model in the dual graph, which imme-
diately yields a collection of algorithmic results in the primal graph. In this section we provide
an overview of the approach, where the full details and proofs appear in Appendix B.

In the Minor-Aggregation model, introduced in [41], there is a given graph G, where the
vertices and edges ofG are computational units, and an algorithmworks in synchronous rounds,
where in each roundwe can either contract some of the edges, or compute an aggregate function
on certain sets of disjoint vertices or edges. For the full details of the model see Appendix B.
As shown in [41], the minor-aggregation model can be simulated in CONGEST by solving the
following part-wise aggregation problem.

Definition 4.1 (Part-Wise Aggregation (PA)). Consider a partition {S1; : : : ; SN} of V where
every G[Si ] is connected. Assume each v ∈ Si has an Õ(1)-bit string xv . The PA problem asks
that each vertex of Si knows the aggregate function

L
v∈Si xv .

12



An aggregate operator is a function that allows to replace Õ(1)-bit strings by one Õ(1)-bit
string. This is usually a simple commutative function such as taking a minimum or a sum.

Minor-Aggregation for the dual graph. Our goal is to use the face disjoint graph Ĝ to simu-
late a minor-aggregation algorithm on the dual graph, where the vertices of a face simulate the
corresponding dual node, and each dual edge is simulated by the endpoints of the corresponding
primal edge. By the above discussion, our main goal is to show how to solve the PA problem on
the dual graph.

We remark that Ghaffari and Parter [17] showed how to solve specific aggregate functions
on G∗ using the graph Ĝ (aggregations on each face of G and sub-tree sums on G∗). For our
purposes, we need something more general, so we show how to perform general part-wise ag-
gregations on G∗. In particular, we need to perform aggregations that take into consideration
the outgoing edges of each part Si , something that was not done in [17]. This specific task
required our small modification to Ĝ compared to the one defined in [17].

To solve the PA problem on G∗ we exploit the structure of Ĝ. We prove that a PA problem in
the dual graph G∗ can be translated to a corresponding PA problem in Ĝ. In the graph Ĝ there is
a disjoint cycle representing each face ofG, where two such cycles are connected if there is a dual
edge between the corresponding faces. Hence, if we take a partition {S1; : : : ; SN} of the dual
nodes, such that each G[Si ] is connected in the dual graph, we can convert it to a partition of the
vertices of Ĝ, where each dual node f ∈ Si is replaced by the vertices of the cycle corresponding
to f in Ĝ. Since cycles corresponding to different faces are vertex-disjoint in Ĝ we indeed get a
partition.

In addition, by the properties of Ĝ, it is a planar graph with diameter O(D), and we can
simulate CONGEST algorithms efficiently on Ĝ. Based on this we can solve the PA problem in
Õ(D) rounds in Ĝ, which leads to solving the PA problem on the dual graph G∗ in Õ(D) rounds.
For full details see Appendix B. We also prove that we can simulate an extended version of the
minor-aggregation model defined in [18] that allows adding Õ(1) virtual nodes to the network,
which is useful for our applications.

Dealing with parallel edges in G∗. Recall the the dual graph G∗ can be a multi-graph, where
for some of our applications it is useful to think about it as a simple graph. For example, when
computing shortest paths we would like to keep only the edge of minimum weight connecting
two dual nodes, and when computing a minimum cut we can replace multiple parallel edges by
one edge with the sum of weights. Note that if G∗ was the network of communication it was
trivial to replace multiple parallel edges by one edge locally, but in our case each edge adjacent
to a face f can be known by a different vertex of f . While we can compute an aggregate operator
of all the edges adjacent to f efficently, if a face f has many different neighboring faces g , we
will need to compute an aggregate operator for each pair of neighboring faces which is too
expensive. To overcome it, we use the low arboricity of planar graphs to compute a low out-
degree orientation of the edges of the dual graph. This orientation guarantees that from each
face f there are outgoing edges only to O(1) other faces g , hence we can allow to compute an
aggregate function on the edges between each such pair efficiently. The algorithm for computing
the orientation is based on solving a series of Õ(1) part-wise aggregation problems. For details
see Appendix B.

Applications. By simulating minor-aggregation algorithms on the dual graph we can compute
the weighted girth in Õ(D) rounds by simulating a minimum weight cut algorithm on the dual
graph and exploiting the cycle-cut duality of planar graphs (Fact 3.1). This approach allows us
to find the weight of the minimum weight cycle, but we show that we can extend it to find also
the edges of the cycle, for details see Appendix B. Another application is a (1−›)-approximation
for maximum st-flow when the graph is undirected and s; t lie on the same face with respect
to the given planar embedding. Here, we simulate an approximate shortest path algorithm on a
virtual graph obtained from the dual graph G∗ by slight changes, for details see Section 6.
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5 Dual Distance Labeling

In this section we show how to compute single source shortest paths (SSSP) in the dual graph
G∗ using a labeling scheme. I.e., we assign each dual node a label, such that, using the labels
alone of any two dual nodes s and t , one can deduce the s-to-t distance in G∗. Notice that such
labeling actually allows computation of all pairs shortest paths (APSP), i.e, we can solve SSSP
from any source node by broadcasting its label to the entire graph. In this section, our algorithms
are stated to be randomized, however, the only randomized component is an algorithm of [17]
that we implicitly apply when using the BDD of [26] in a black-box manner. A derandomization
for that algorithm would instantly imply a derandomization of our results in this section.

Section organization. First, in Section 5.1 we extend the analysis of the BDD, divided into three
subsections, in each we provide the proofs of some new properties of the BDD. In particular,
Section 5.1.1 focuses on analyzing the way faces get split, Section 5.1.2 focuses on the dual
decomposition, and Section 5.1.3 shows how to learn that decomposition distributively. After
which, we would be ready to formally define the labeling scheme in Section 5.2. Finally, in
Section 5.3 we show an algorithm that constructs the labels and deduces an SSSP tree.

5.1 Extending the BDD

The Bounded Diameter Decomposition (BDD), introduced by Li and Parter [26], is a hierarchical
decomposition of the planar graph G using cycle separators. It is a rooted tree T of depth
O(log n)whose nodes (called bags) correspond to connected subgraphs ofG with small diameter
Õ(D). The root of T corresponds to the entire graph G, and the leaves of T correspond to
subgraphs of small size Õ(D). In [26], each bag X was defined as a subset of vertices. For our
purposes, it is convenient to define X as a subset of edges (a subgraph). Given that we want to
work with the dual graph G∗, the bijection between the edges of G∗ and the edges of G allows
us to move smoothly between working on G and G∗.

In this section, our goal is to extend the BDD of [26] to the dual network G∗. We stress
that the extension to the BDD is not obtained by a simple black-box application of the BDD on
G∗ (for the two reasons mentioned earlier: G∗ is not the network of communication, and G∗’s
diameter might be much larger than the diameter of G). Instead, we use the same BDD T and
carefully define the duals X∗ of bags X . We begin with the following lemma summarizing the
properties of the BDD of [26].

Lemma 5.1 (Bounded Diameter Decomposition [26]). Let G be an embedded planar graph with
hop diameter D. There is a distributed randomized Õ(D)-rounds algorithm that w.h.p. computes a
bounded diameter decomposition T of G, satisfying:

1. T is of depth O(log n).

2. The root of T corresponds to the graph G.

3. The leaves of T correspond to graphs of size O(D log n).

4. For a non-leaf bag X , let SX be the set of vertices of X which are present in more than one
child bag of X . Then, |SX | = O(D log n).

5. For every bag X , the diameter of X is at most O(D log n).

6. For every bag X with child bags X1; X2; : : :, we have X = ∪iXi .

7. Each edge e of G is in at most two distinct bags of the same level of T .

8. Every bag has a unique Õ(1)-bit ID. Every vertex knows the IDs of all bags containing it.

By the construction of the BDD, the set SX plays the role of a cycle separator of X .
Since our focus is on the dual graph, we need to understand how faces of G are affected by

the BDD. Namely, decomposing a bag X into child bags X1; X2; : : : might partition some faces
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of X into multiple parts, where each such face-part is contained in a distinct child bag of X . We
next discuss this in detail. Since each edge belongs to two faces of G, it is convenient to view an
edge as two copies (called darts) in opposite directions. This is fairly common in the centralized
literature on planar graphs.

f

Figure 9: Edges are black, each edge has two darts (green or red). The red clockwise cycle of
darts corresponds to the face f .

Darts. Every edge e ∈ E(X) is represented by two darts d− and d+ (if the graph is directed,
d+ has the same direction as e , and d− is in the opposite direction). The reverse dart is defined
as rev(d+) = d− and rev(d−) = d+. We think of the two darts as embedded one on top of the
other (i.e., replacing the edges with darts does not create new faces). When we mention a path
or a cycle C of darts, we denote by rev(C) the path or cycle obtained by reversing all darts of C.
The faces of G define a partition over the set of darts (i.e., each dart is in exactly one face) such
that each face of G is a cycle of clockwise directed darts. See Figure 9.

Face-parts. Ideally, we would like each face of a bag X to be entirely contained in one of its
child bags. However, it is possible that a face f is split into multiple child bags, each containing
a subset of f ’s darts (which we call a face-part). This issue was not discussed in [26] as they
work with the primal graph G.

We keep track of the faces of G and their partition into face-parts. In G, each face is a cycle
of directed darts. A face-part in a bag X is identified by a collection of directed paths of darts,
all belonging to the same face of G. Notice that a face-part might be disconnected. A bag X
therefore contains darts that form faces of G that are entirely contained in X , and darts that
form face-parts. If a dart d belongs to X but rev(d) does not belong to X , we say that rev(d)
lies on a hole (rather than a face or a face-part) of X . This happens when d is a dart of SH for
some ancestor bag H of X .

We think of obtaining face-parts as a recursive process that starts from the root of T . In each
level of T , each bag X has its faces of G and face-parts of G. Both of these may get partitioned
in the next level between child bags ofX , resulting with new (smaller) face-parts each contained
in one child bag of X .

Dual bags. We define the dual bag X∗ of a bag X to be the dual graph of the graph X when
treating face-parts (and not only faces) ofG inX as nodes ofX∗. Formally, each face or face-part
f of G in X has a corresponding dual node f ∗ in X∗. The dual edges e∗ incident to f ∗ in X∗

are the edges e (collection of paths) of X that define f and have both their darts in X . Recall
that each dart of e is part of exactly one face or face-part, and the dual edge e∗ connects the
corresponding dual nodes (if only one dart of e is in X then e lies on a hole of X and we do
not consider holes as dual nodes). The weight of e∗ is the same as that of e and its direction is
defined as in Section 3. For an illustration see Figure 10. When discussing dual bags, we refer to
a node that corresponds to a face-part as a node-part.

Ideally, we would like the child bags X∗
i to be subgraphs of X∗. If that were true, then X∗

would be the union of all X∗
i plus the edges dual to SX (since they are the only edges in more

than a bag of the same level). This is almost the case, except that X∗ may also have as many
as O(log n) (we prove this next) faces and face-parts that are further partitioned into smaller
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Figure 10: Two levels of the BDD (blue) and their corresponding levels in the dual decomposition
(red). For simplicity, the dual node corresponding to the face f∞ of G is not illustrated in G∗ (its
incident edges are the ones missing an endpoint).
First level: the graph G and its dual G∗. Black edges are the separator SG edges, the dashed one
is the virtual edge eG . Note, eG splits the critical face, f1.
Second level: the child bags G1; G2 of G and their corresponding dual bags G∗

1 ; G
∗
2 (respectively).

Purple edges in G1 and G2 are edges of the critical face f1 of G. In G1, those edges define the
face-part f 11 and in G2 they define the face-part f 21 . Both face-parts are represented by dual
nodes (squared purple). Bold edges in G1; G2 are edges of SG and non of them has a dual edge
in G∗

1 ; G
∗
2 as they lie on a hole. Each other edge has a dual edge, in particular, edges of f 11 (f 21 )

connect them to their neighbors from G∗ in G∗
1 (G∗

2 ).

face-parts in the child bags X∗
i . I.e., the union of all X∗

i has a different node set than that of X∗.
Thus, inX∗ we have O(log n) nodes that might be divided to multiple nodes, each in some child
bag X∗

i .
We are now ready to prove the following new properties of the BDD.

Theorem 5.2 (BDD Additional Properties). Let T be a Bounded Diameter Decomposition of an
embedded planar graph G with hop-diameter D. Within additional Õ(D) rounds, T satisfies the
following additional properties.

Few face-parts property:

9. Each bagX contains at mostO(log n) face-parts. Moreover, the number of face-parts resulting
from partitioning faces and face-parts of X across its child bags is O(D log2 n).

Dual bags’ properties:

10. The dual bags of leaves of T are of size O(D log n).
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11. For a non-leaf bag X∗, let FX be the set of nodes whose incident edges are not contained in a
single child bag of X∗. Then, FX is a node-cut (separator) of X∗ of size |FX | = O(D log n).
Concretely, FX is the set of (a) nodes incident to dual edges of SX , and (b) nodes corresponding
to faces or face-parts that are partitioned between child bags of X∗.

12. LetX∗ be a non-leaf bag with child bagsX∗
1 ; X

∗
2 ; : : :; Then,X

∗ is equivalent to∪iX∗
i ∪X∗[SX ]

after connecting all node-parts f1; f2; : : : in X∗
1 ; X

∗
2 ; : : : (resp.) corresponding to the same

f ∈ FX with a clique and contracting it. 5

Distributed knowledge:

13. Each node f of X∗ has an Õ(1) ID, s.t. the vertices v of X lying on f know its ID. Moreover,
v knows whether f corresponds to a face, a face-part or the critical face of G.

14. For all bags X , its vertices know the dual edges in X∗ (if exist) corresponding to each of their
incident edges.

5.1.1 The Few Face-parts Property

We start by proving Property 9. Mainly, we show,

Lemma 5.3 (Few face-parts). Any bag X ∈ T contains at most O(log n) face-parts. Moreover,
there is at most one face of G that is entirely contained inX and is partitioned in between child bags
of X .

Proof. Since the height of T isO(log n), it is sufficient to prove that in each bagX of T there is at
most one face of G that is entirely contained in X and is partitioned into face-parts in X’s child
bags.6 This would imply that each face-part of X can be associated with the unique leafmost
ancestor of X in which this face was whole (and thus there are only O(log n) face-parts in X).
Note, in bags X of deeper recursion levels, a face-part might consist of multiple disconnected
paths, we still count it as one face-part of X since all of those paths belong to the same face of
G.

To show that indeed there is only one such face, we need to understand the cases in which
faces are partitioned in the BDD of [26]. The set SX in a bag X ∈ T is a simple (unoriented)
cycle consisting of two paths in a spanning tree T of X and an additional edge eX . The edge eX
might not be an edge of E(G), in which case, we refer to it as the virtual edge of X . We think
of eX as if it is temporarily added to X , in order to define its child bags, and then removed. The
cycle SX is a balanced cycle separator, i.e. a cycle that contains a constant factor of V (G) in each
of its interior and exterior.

The edge eX is found in [17] by carefully identifying two vertices u; v , then setting eX = (u; v)
closing a cycle with T . eX is embedded without violating planarity. Given the two endpoints and
the embedding of eX , one can identify the critical face (face-part) f that contains eX by simply
considering the face (face-part) that contains the two edges in the local ordering of v which eX
is embedded in between.

The cycle SX defines the child bags ofX as follows (see Figure 11): The interior of the cycle SX
defines one child bag (denotedX1) and the exterior may define several child bags. Each external
child bag Xi is identified with a unique (internally disjoint) subpath Si of SX . That is, the only
edges that belong to more than one Xi are the edges of SX . For each such edge, one of its darts
d belongs to X1 and rev(d) belongs to some Xi ̸= X1 (note that rev(d) belongs to a hole in X1

and that d belongs to a hole in Xi ). Note that every path between a vertex of Xi and a vertex of
Xj ̸= Xi must intersect a vertex of Si (Property 4 of the BDD).

5For an intuition, see Figure 10: merging f 11 and f 21 to one node would result with G∗ after adding the separator
edges.

6In [26], a single hole of X (the union of some SH edges of ancestors H of X , referred to in [26] as the boundary
of X) might be partitioned between X’s child bags. In our case, since we do not care about holes, we do not count
this as a face (or a face-part) that gets partitioned.
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Figure 11: Two examples of a bag X . The bold cycle is SX , and the edge eX is dashed. Distinct
child bags of X are of distinct colors. The child X1 (green) is the interior of SX . The external
child bags Xi are each defined by a single subpath Si of SX . One such subpath may contain eX
(S4 in the left image) if its external part (bag X4 in the left image) is connected. Otherwise, the
external part is broken into two (connected) bags (X4; X5 in the right image), each with its own
Si that does not include eX (the additional dashed edges are some ancestor virtual edges). In
the left (resp. right) image, X1 and X4 (resp. X1; X4; X5) contain a face-part of the critical face
(face-part) f (in red).

The critical face f is partitioned (by eX ) into two face-parts. One part goes to X1 and the
other to an external child bag Xi ̸= X1. If f is a face of G, then we need to count the two new
face-parts that it generates. If f is a face-part, then we don’t need to count them (since we only
care about faces of G that get partitioned). However, in both cases we need to show that, except
for f , no other faces can be partitioned between the child bags of X . For that we dive a bit more
into the way the child bags are defined in [26].

Case I: When eX ∈ E(G). In this case we claim that no face of G gets partitioned among X’s
children. Assume for the contrary that some face g of G gets split between someXi andXj . The
face g must contain a dart (a; b) in Xi and a dart (c; d) in Xj such that neither (a; b) nor (c; d)
is a dart of Si . Since g is a cycle of darts, it is composed of (a; b); (c; d), and two dart-disjoint
b-to-c and d-to-a paths. Each of these two paths must intersect the vertices of Si , and so g
contains two vertices x; y of Si .

I.a. If g has some dart internal to SX ( w.l.o.g. (a; b) in Xj = X1) then, g is a cycle that consists
of two x-to-y paths, one is internal to SX (in X1) and the other is external to SX , thus, g
must enclose the x-to-y subpath of Si constituting a chord embedded inside the cycle g ,
contradicting that it is a face.

I.b. If g has no dart internal to SX , then all of its darts are in external child bags (g has at least
two darts each in a distinct external child bag). If g encloses a subpath of Si then we have
our contradiction. Otherwise, g does not enclose anything and its reversal rev(g) encloses
the entire graph. In that case, g has to contain the first and last vertex in all the subpaths
Si for all external bags Xi (since from the construction of the BDD, these are the only
vertices of Xi that can be shared with another external child bag, and there is no edge
connecting two different child bags). Hence, the only way to close a cycle g that contains
darts from different child bags is to contain all these vertices. There is only one face of X
that can do that, which by [26] is a hole. In fact, the endpoints of all Si are detected in
the algorithm of [26] by looking for intersections between g (referred to as the boundary
in their paper) and SX . g is a hole because in [26] the boundary is defined as the set of SH
edges contained in X , where H ̸= X is any ancestor of X in T .
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Case II: When eX =∈ E(G). In this case, there might be one child bag Xi ̸= X1 whose corre-
sponding subpath Si contains eX (in which case, the above proof of Case I fails as the x-to-y
subpath might be missing an edge), meaning there is a face that gets partitioned. We argue that
there is only one such face, the critical face, and that this can only happen (see Figure 11 left) if
the endpoints of eX are connected in some Xi ̸= X1.

II.a. When the endpoints of eX are connected in some Xi ̸= X1, then consider what happens
if we add eX as a real edge of E(G) and then remove it. By the proof of Case I, when eX
is in E(G), no face gets partitioned. Then, when we remove eX , the only face that can be
affected is the one enclosing both endpoints of eX (i.e. the critical face). Again there might
be a hole that gets partitioned (exactly as in Case I) that we do not care about.

II.b. When the endpoints of eX are not connected in any external bag, then no Si contains both
endpoints of eX . This can only happen if the critical face f is a face-part (see Figure 11
right), for otherwise the endpoints of eX would be connected by f . In this case, the critical
face-part f is partitioned between three (and not two) child bags (X1 and two external
child bags). However, apart from f , no other face gets partitioned. As in Case I, there is a
dart of g in X1, and then we can find a subpath of SX that crosses g , a contradiction. The
proof follows the same proof as in Case I (all Si consist of G edges); Otherwise, if no dart
of g is inX1, then g is not a cycle, a contradiction. That is, g has to use the endpoints of all
Si and somehow connect them to form a cycle, but the endpoints of eX are only connected
in X1.

The following completes the proof of Property 9.

Corollary 5.4. The total number of face-parts resulting from partitioning faces and face-parts of
a bag X ∈ T between its child bags is O(D log2 n).

Proof. By Lemma 5.3, in a bag X , there are at most O(log n) face-parts and one critical face
that get partitioned between child bags of X . We claim that any bag X has at most O(D log n)
child bags (and the corollary follows). To see why, recall that SX is a cycle separator of X s.t
its interior defines a child bag, and each external child bag is identified with a distinct (edge-
disjoint) subpath of SX . By Property 4 of the BDD we have |SX | = O(D log n).

We prove the following, which will be useful in the labeling scheme and in proving properties
11 and 12 of the BDD.

Lemma 5.5. Each dart d of G belongs to exactly one bag X in each level of T . Moreover, if a dart
d is in X and rev(d) is not in X then d belongs to SH for some ancestor H of X .

Proof. In the root of T , we have the graph G and the claim trivially holds. Assume the claim
holds for level ‘ − 1 of the BDD, we prove for level ‘. Recall that for a bag X , every edge e of
X either belongs to one child bag of X or to two child bags of X (if e ∈ SX ). If e is not an edge
of SX , then e belongs to one child bag Xi and its (one or two) darts in X belong to Xi (as both
of e’s endpoints are in Xi ). If e is an edge of SX that is contained only in one child bag, then
by the BDD algorithm e must be an edge of SH for some ancestor H ̸= X of X . Thus, e’s only
dart is also contained in the same child bag that contains e . Finally, if e is an edge of SX that is
contained in two child bags of SX , then e is in X and does not participate in SH of any ancestor
H, then, e has both of its darts in X . Thus, e belongs to two child bags of X , in particular, one
child bag is the internal (to SX ) and the other is external, each would contain one dart of e as
each dart of e is in a face (not a hole), and in this case, SX separates those two faces (face-parts),
each to a child bag. That way, all darts that correspond to the same face go to the same child
bag of X .

Corollary 5.6. Each face of G in a bag X ∈ T , except for the critical face (if exists), is entirely
contained in one child bag of X . Face-parts of X may get further partitioned between its child bags.
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5.1.2 Dual Bags and Their Properties

We are finally prepared to prove the additional properties 10, 11, and 12 of the BDD, starting
with a proof for Property 10.

Lemma 5.7. The size of a dual leaf bag X∗ is O(D log n).

Proof. By Property 3 of the BDD, we know that X has O(D log n) vertices. Since X is a simple
planar graph, it therefore has at most O(D log n) edges (Euler formula). For each edge e in X
there is at most one dual edge e∗ in X∗ as we define it. Then, |E(X∗)| = O(D log n), thus, X∗

has at most O(D log n) nodes as well (as each edge has two endpoints). Notice, there are no
isolated nodes (i.e, we are not under-counting), as if there were, then they are not connected to
any edge, and the only case that a primal edge has no dual is when it lies on a hole, thus, if there
were isolated nodes, they would correspond to holes, contradicting the definition of X∗.

Next, we prove Property 11.

Lemma 5.8 (Dual Separator). For a non-leaf bag X∗, let FX be the set of nodes whose incident
edges are not contained in a single child bag of X∗. Then, FX is a node-cut (separator) of X∗ of size
|FX | = O(D log n). Concretely, FX is the set of (a) nodes incident to dual edges of SX , and (b) nodes
corresponding to faces or face-parts that are partitioned between child bags of X∗.

Proof. First, we show that both definitions of FX are equivalent. I.e., a node (node-part) of X∗

does not have all of its edges in a single child bag if and only if it is contained in: (a) The set of
X∗’s nodes (node-parts) which get partitioned further into node-parts between its child bags,
or (b) The endpoints of edges dual to SX contained in X∗.

(if) Note, the dual edges of SX contained in X∗ are not contained in any child bag of it as
they lie on holes in them (Lemma 5.5), thus, their endpoints are in FX . In addition, the nodes of
X∗ that get divided correspond to the critical face and a subset of face-parts inX (Corollary 5.6),
thus, they have at least two distinct edges, each in a distinct child bag of X∗, hence, are in FX .

(only if) Consider a node f ∈ FX , by definition, some of its incident edges either: (1) Not
contained in any child bag of X∗, i.e, f is incident to an SX edge. Or (2) there are at least two
edges incident to f , each in a distinct child bag of X∗. Since a face of G in X is either fully
contained in a child bag or is divided across child bags (Corollary 5.6), we get that f corresponds
to the critical face or to one of the face-parts in X .

From the first definition of FX , it is clear that it constitutes a separating set, as each path
that crosses between child bags shall use at least two edges that share a node of X∗ which are
not contained in a single child bag. I.e, that node is in FX .

Finally, since there are at most O(D log n) edges of SX (Property 4 of the BDD), there are at
most twice the number of their endpoints in X∗. Moreover, there are at most O(log n) nodes
(node-parts) inX∗ that correspond to the faces and face-parts that get partitioned between child
bags of X∗ (Property 9 of the BDD).

Finally, we provide a proof of Property 12.

Lemma5.9 (AssemblingX∗ from child bags). LetX∗ be a non-leaf bagwith child bagsX∗
1 ; X

∗
2 ; : : :;

Then, X∗ is equivalent to ∪iX∗
i ∪ X∗[SX ] after connecting all node-parts f1; f2; : : : in X∗

1 ; X
∗
2 ; : : :

(resp.) corresponding to the same f ∈ FX with a clique and contracting it.

Proof. Let Kf be the clique on the set of node-parts across child bags of X∗ corresponding to

f ∈ FX . Denote M := (∪iX∗
i )
S
(X∗[SX ])

S“
∪f ∈F

X
Kf

”
. We start by showing that M is very

close toX∗, then show that the adjustment (contraction) suggested in the property onM indeed
yields X∗.

First, note that all edges of X∗ are contained in M , as any non-SX edge is contained in a
child bag (Lemma 5.5) and SX edges that are contained in X∗ are added to M by definition. In
addition, each node of X∗, except for some nodes of FX , is present inM , as each node that is in
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some X∗
i is contained inM by definition, and any node of X∗ that is not in any X∗

i must be an
FX node (by Property 11).

Now, we show that the contraction produces FX nodes, connects them correctly and removes
only non-X∗ edges from M (the lemma follows). Consider the graph M ′, given by M after
contracting Kf for all f ∈ FX .

1. The contraction gets rid of Kf edges, and only them, as distinct node-parts across child
bags of X∗ that correspond to the same f ∈ FX share no other edges. Thus, M ′ has the
exact same set of edges as X∗.

2. Consider a node f that was partitioned into node-parts f1; f2; : : :, such that each fi is in
a distinct child bag of X∗. We want to show that contracting all fi into one node, results
with one node that is incident to all f ’s X∗ neighbors inM ′, this node is identified with f .
That follows from the following claims (1) Each edge of f in X goes to one face-part of f
in the child bag that contains it (by definition of face-parts). (2) The only edges without a
dual in X∗ are edges of SH for some ancestor H of X (Lemma 5.5). Thus, if a primal edge
does not have a dual in any of X∗’s child bags, it is either an edge of SH ̸= SX , in which
case it is not in X∗ either (the claim does not fail), or it is in SX , thus, it is added to M
by definition. Thus, f ’s incident edges in X∗ are partitioned among fi ’s in M . Moreover,
by the previous item, the contraction affects none of these edges and leaves only them
incident to the resulting node, which we identify with f .

5.1.3 Distributed Knowledge Properties

To implement our algorithm, each vertex should know the IDs of all faces (face-parts) that con-
tain it in every bag X ∈ T (i.e., the list of nodes f ∈ X∗ it participates in). Here we show that
the distributed knowledge properties (13 and 14) of the BDD hold, which concludes the proof of
Theorem 5.2. As before, it will be convenient to think of an edge as having two copies (one for
each face containing it). To simplify, we refer to these as edge copies (rather than darts) since
there is no need to maintain the dart orientation. Every vertex incident to an edge e = (u; v)
considers itself incident to two copies e1; e2 of e , such that, e1 (e2) is the first (second) copy of e
relative to v according to a clockwise order (for the other endpoint u, e2 is its first copy).

We aim to assign each face (face-part) in any bag X a unique Õ(1) identifier and learn for
each vertex v ∈ X , the set of faces (face-parts) containing it and its adjacent edge copies. This
is done by keeping track of G’s edge copies along the decomposition. We start with (1) a local
procedure that allows the endpoints of each edge copy e to learn all the bags X that contain e ,
then, (2) the endpoints of each edge copy e learn the face of G that e participates in, and (3) we
show how to extend this for the next level of T . For a proof see Appendix C. This allows us to
(distributively) learn the nodes of X∗, after which, we have the necessary information to learn
the edges of X∗. Having:

Lemma 5.10. In a single round, each vertex v ∈ G can learn, for each incident edge copy, a list of
the bags X ∈ T that contain it.

Lemma 5.11. There is a Õ(D)-round distributed algorithm that assigns unique IDs to all faces of
G. By the end of the algorithm, each vertex v ∈ G learns a list (of IDs) of faces that contain it.
Moreover, v learns for each incident copy e ′ of an edge e in G the face ID of the face of G that
contains e ′.

We get the following lemma and corollary proving property 13 of the BDD:

Lemma 5.12 (Distributed Knowledge of Faces). There is a Õ(D)-round distributed algorithm
that assigns unique Õ(1)-bit IDs to all faces and face-parts in all bags X ∈ T . By the end of the
algorithm, each vertex v ∈ G learns a list (of IDs) of the faces and face-parts it lies on for each bag
X that contains it. Moreover, v learns for each incident copy of an edge e ′ the (ID of) the face or
face-part that e ′ participates in for each bag X that contains e ′.
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Corollary 5.13. In Õ(D) rounds, for each bagX , all vertices know for each of their incident copies
of edges whether they participate in the critical face (face-part) and whether they participate in any
face-part of X .

After each vertex v knows the necessary information for each copy of an incident edge e ,
in an additional round, v knows if e exists in X∗, its weight in X∗ and its direction. Proving
property 14 of the BDD.

Lemma 5.14. Let e = (u; v) be an edge in a bag X . In one round after applying Lemma 5.12, the
endpoints of e learn the corresponding dual edge e∗ in X∗ (if exists).

5.2 The Labeling Scheme

Here we describe our distance labeling scheme. Recall that, for every dual bag X∗, we wish to
label the nodes of X∗, such that, from the labels alone of any two nodes we can deduce their
distance in X∗. Recall, we refer to the dual node f ′ in a child bag X∗

i as a node-part of a node
f ∈ X∗, if f ′ corresponds to a face-part in Xi resulting from partitioning the face or face-part f
of X .

We already know that this set would play the role of a node-cut (separator) of X∗, and is
crucial for the labeling scheme and algorithm. The main structural property that FX provides is:
Any path in X∗ either intersects FX or is entirely contained in a child bag of X∗.

Note, a node g =∈ FX of X∗ corresponds to real faces of G (i.e. not face-parts) contained
in X . The distance label LabelX∗(g) of g =∈ FX is defined recursively. If X∗ is a leaf-bag then
LabelX∗(g) stores ID(g ) and the distances between g and all other nodes h ∈ X∗. Otherwise, the
label consists of the ID ofX , the distances inX∗ between g and all nodes of FX , and (recursively)
the label of g in the unique (by Corollary 5.6) child bag X∗

i of X∗ that entirely contains g .
Formally:

LabelX∗(g) = (ID(X); ID(g); {ID(f ); distX∗(f ; g); distX∗(g; f ) : f ∈ FX}; LabelX∗
i
(g))

For the set of nodes g ∈ FX , we remove the recursive part, and define

LabelX∗(g) = (ID(X); ID(g); {ID(f ); distX∗(f ; g); distX∗(g; f ) : f ∈ FX})

As we showed in property 11, faces and face-parts that correspond to nodes in FX are the
interface of the child bags of X∗ with each other.

Lemma 5.15 (Property 11 of the BDD, rephrased). Let g; h be two nodes in a non-leaf bag X∗,
the (edges of the) shortest g -to-h path in X∗ is either entirely contained in some X∗

i or intersects
FX .

Thus, a path inX∗ from g ∈ X∗
i to h ∈ X∗

j ̸=i must pass through some (part of a) node f ∈ FX .
I.e., a g -to-h shortest path P in X∗ is either: (1) Entirely contained in X∗

i , then distX∗(g; h)
can be deduced from LabelX∗

i
(g) and LabelX∗

i
(h). Or (2), P intersects FX , then distX∗(g; h) =

minf ∈F
X
{distX∗(g; f )+distX∗(f ; h)}. If one of g or h is a node of FX then distances are retrieved

instantly, as each node in X∗ stores its distances to FX .
By this reasoning, obtaining the distance between two nodes g; h in a leaf bag is trivial,

as all pairwise distances are saved in each label. For a non-leaf bag X∗, by Lemma 5.15, the
information saved in the labels of g; h in X∗ is sufficient in order to obtain the g -to-h distances
in X∗.

Lemma5.16. Let g; h be two nodes inX∗, then we can decode their distance inX∗ from LabelX∗(g)
and LabelX∗(h) alone.

Note, we define the labels in O(log n) steps from the leaf to the root of T , in each step,
we append to the label at most Õ(D) bits for distances from FX nodes. I.e., we have |FX | =
Õ(D) (Property 11 of the BDD), the weights are polynomial, the size of a leaf bag is O(D log n)
(Property 10 of the BDD) and IDs are of Õ(1)-bits (Property 8 and Property 13). Hence,

Lemma 5.17. The label of any node g in a bag X∗ of X ∈ T is of size Õ(D).
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5.3 The Labeling Algorithm

Here we show how to compute the labels of all nodes in all bags X∗ of T . At the end of the
algorithm, each vertex in a face g of X shall know the label of g in X∗. The planar network
of communication G is assumed to be directed and weighted, let w(e) denote the weight of an
edge e . The BDD tree T of G is computed in Õ(D) rounds, by Lemma 5.1 and Theorem 5.2, such
that, each (primal) vertex v knows all bags X that contain it, the IDs of all faces (face-parts) of
X that contain it, and the dual edges corresponding to each of its incident edges in X (if any).

We compute the label of every dual node g ∈ X∗ for all X∗ ∈ T in a bottom-up fashion,
starting with the leaf-bags. For a non-leaf bag X∗, we have two main steps: (i) broadcasting
labels of (parts of the dual separator) FX nodes contained in the child bags of X∗, broadcasting
the edges dual to (the primal separator) SX and (ii) using the received information locally in each
vertex of X for computing labels in X∗. For a high-level description, see Algorithm 1.

Algorithm 1: Dual Distance Labeling (high-level description)
Input: A BDD of a D-diameter network G satisfying the properties of Theorem 5.2.
Result: Each vertex v of G learns Label(g) in G∗ for each face g of G that contains it.

1 forall bags X of the same level, bottom-up, in parallel, do
2 if X is a leaf-bag then
3 Collect the entire graph X in each vertex v ∈ X ;
4 end
5 else /* Non-leaf bags */

/* Broadcast step */
6 Broadcast the dual edges of SX edges that exist in X∗ to the entire bag X ;
7 Broadcast, in two steps, the labels computed in the previous level (in child bags

of X∗) of faces (face-parts) that correspond to FX to the entire bag X .
/* Local Step */

8 Each vertex v ∈ X uses the received information in the above broadcast in
order to locally construct the Dense Distance Graph for each face (face-part) g
that contains it in X ;

9 end
10 Using the previously received information, each vertex v ∈ X computes locally

LabelX∗(g) for each face (face-part) g of X that contains it or reports a negative
cycle aborting the algorithm;

11 end

Leaf bags. For leaf-bags X∗, we show that we can broadcast the entire bag X∗ in Õ(D) rounds.
First, by Property 13, each vertex of X knows all the IDs of faces of X (both real faces of G and
face-parts) that contain it. These faces are exactly the nodes of the graph X∗, by Property 10,
|X∗| = Õ(D). That is, we can broadcast them to the whole bag in Õ(D) rounds. Note that
it may be the case that several different vertices broadcast the same ID, but since overall we
have Õ(D) distinct messages, we can use pipelined broadcast to broadcast all the IDs in Õ(D)
rounds. We can work simultaneously in all leaf bags, as each edge of G is contained in at most
two bags of the same level (Property 7 of the BDD). Next, we broadcast the edges of X∗. From
Property 14, for each edge e in X the endpoints of the edge know if this edge exists in X∗, and
if so they know the corresponding dual edge in the dual bag X∗. We let the endpoint of e with
smaller ID broadcast a tuple (ID(e∗), w(e)) to the bag, where ID(e∗) = (ID(f ); ID(g)) if e∗

is directed towards g in X∗. Notice, X∗ might be a multi-graph, thus, there might be multiple
edges with the same ID of e∗. This does not require any special attention, we broadcast all of
them as the total number of edges in X∗ is conveniently bounded. Since for each edge we send
Õ(1)-bits and in total we have Õ(D) edges inX∗ (Property 10), the broadcast terminates within
Õ(D) rounds. Afterwards, all the vertices of X know the complete structure of X∗. Then, all
vertices of X can locally compute the labels of nodes of X∗ by locally computing the distances
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in the graph X∗. Finally, since vertices have full knowledge of X∗, they can check for negative
cycles, if found, a special message is sent over a BFS tree of G, informing all vertices to abort.

Non-leaf bags. We assume we have computed all labels of bags in level ‘ of T , and show how
to compute the labels of all bags in level ‘ − 1 simultaneously in Õ(D2) rounds. We describe
the procedure for a single bag X∗ with child bags X∗

1 ; X
∗
2 ; : : :, by Property 7 of the BDD we can

apply the same procedure on all bags of the same level without incurring more than a constant
overhead in the total round complexity. The computation is done in two steps, a broadcast step
and a local step.

Broadcast step. We first broadcast the following information regarding FX : (1) The edges of SX
contained inX∗, (2) The labels of nodes (node-parts) of FX in the child bags ofX∗. I.e, if f ∈ FX is
entirely contained in a child bag X∗

i of X
∗, we broadcast LabelX∗

i
(f ). Otherwise, f is the critical

face of X or a face-part of X , f may get partitioned to f1; f2; : : : ; fk in between the child bags of
X . Thus, for each such f ∈ FX , we broadcast the labels LabelX∗

j
(fi ), where X∗

j is the child bag
that contains the node-part fi . Using this information, we shall compute the distances from any
node g to all nodes of FX . By induction, for each face (face-part) f of a child bagXi , every vertex
v that lies on f knows the label LabelX∗

i
(f ) of f in X∗

i .

1. Since each (primal) vertex v knows its incident SX edges (by the BDD construction), v also
knows for each such incident edge whether its dual is inX∗ or not (By Property 14). Thus,
we can broadcast edges in SX contained in X∗ to the whole bag X . For each edge, one
of its endpoints (say the one with smaller ID) broadcasts the edge (i.e., an Õ(1)-bit tuple
(ID(e∗); w(e))). The broadcast terminates in Õ(D) rounds as |SX | = Õ(D) (Property 4
of the BDD).

Next, we explain how to broadcast labels of nodes (node-parts) that correspond to FX in child
bags of X∗. We do that in two steps, a step for nodes of FX that get partitioned further in child
bags, and a step for the remaining nodes, which by definition of FX , have to be endpoints of
edges in SX .

2. Consider a face or a face-part f of X that gets partitioned into parts f1; : : : ; fk in between
child bags of X . For every fi , vertices v lying on fi broadcast the label LabelX∗

j
(fi ) to the

entire graph X (where X∗
j is the child bag containing fi ). By Property 13, each vertex v

in X on a face or a face-part f knows f as such, if it is partitioned, v also knows the IDs
of all parts fi that contain it. Thus, v can broadcast the relevant labels. The broadcast is
pipelined, s.t. if a vertex receives the samemessagemore than once, it passes that message
once only. A label is of Õ(D)-bits (Lemma 5.17), the diameter of X is Õ(D) (Property 5 of
the BDD) and by Property 9 there are at most Õ(D) face-parts in the child bags of X , i.e.,
at most Õ(D) distinct labels get broadcast, thus, the broadcast terminates within Õ(D2)
rounds.

3. By the first item, vertices incident to an edge e ∈ SX s.t. e∗ ∈ X∗ know the IDs of the
endpoints f ; g of e∗. Thus, if f is not the critical face nor a face-part (i.e., f is entirely
contained in X∗

i ), any vertex v contained in f knows this about f (Property 13), then
v broadcasts the label LabelX∗

i
(f ) of f . Notice that we send the labels of all (parts of)

endpoints of SX in X∗ (if they are face-parts they get handled in the previous broadcast,
if not, they get handled in this one).

Again, the broadcast is pipelined, and each vertex passes the same message only once.
There are at most |SX | = Õ(D) distinct labels being broadcast at any given moment. The
size of a label is Õ(D), the diameter of X is Õ(D). Thus, the broadcast terminates in
Õ(D2) rounds.

Local step. For every face or face-part g inX , the vertices lying on g compute locally LabelX∗(g).
Intuitively, this is done by decoding all pairwise distances of labels that were received in the pre-
vious step, then, constructing a graph known as theDense Distance Graph (DDG) and computing
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distances in it. The structure of this graph is described next, after that we shall prove that it in-
deed preserves distances in X∗.

The DDG (see Figure 12) is a (non-planar) graph that preserves the distances in X∗ between
a subset of nodes of X∗. Traditionally, the DDG is a union of cliques on a (primal) separator,
each clique representing distances inside a unique child bag, and the cliques overlap in nodes.
In our setting, the DDG is slightly more complicated: (1) the nodes of the DDG are not exactly
the separator nodes FX , but nodes corresponding to faces and face-parts of FX in child bags ofX .
(2) different cliques do not overlap in nodes, instead, their nodes are connected by (dual) edges
of SX that are also added to the DDG. (3) edges connecting face-parts of the same face but in
different child bags are added to the DDG with weight zero.

X∗
1

X∗
2

X∗
3

g

X∗
4

Figure 12: The graph DDG(g). The blue node is g , incident red nodes correspond to face-parts
of the same face of X∗ across its different child bags, and black nodes correspond to endpoints
of SX edges. The blue edges represent the clique on nodes that belong to the same child bag of
X∗, red edges are bidirectional edges of zero weight connecting face-parts of the same face in
X∗, and black edges are dual edges to SX edges. For simplicity, the figure is undirected.

Formally, the graphDDG(g) is a weighted directed graph. The node set ofDDG(g) consists
of (1) g , (2) the nodes in child bags of X that correspond to nodes (node-parts) of FX . Denote
by Vi the set V (DDG(g)) ∩ V (X∗

i ) for a child bag X∗
i of X∗, then, the edge set of DDG(g) is

defined as:

• An edge between every two nodes of DDG(g) that belong to the same child bag of X∗.
The weight of such an edge (f ; h) ∈ Vi × Vi is the f -to-h distance in the graph X∗

i . By
Lemma 5.16, each such distance can be obtained by pairwise decoding two labels of nodes
(received in the broadcast step) that belong to the same child bag X∗

i .

• The (dual) edges of SX which have both endpoints inX∗ (i.e., not edges incident to a hole).
For each such edge e = (f ; h), it is either the case that f exists in X∗ and in some X∗

j or
f is divided into parts f1; f2; : : : in the child bags of X∗. In the first case, e is incident to
f in the DDG. In the second case, e is incident to the part fi of f that contains e . Notice,
in case f is not partitioned then it is in the DDG as it is in FX for being an endpoint of
e ∈ SX . If it does get partitioned, then all its parts are in the DDG as they are face-parts
corresponding to a node of FX . The weight and direction of e is as in X∗. In either case,
the label of those nodes (f or its parts) got broadcast in the broadcasting step. In addition,
the information about e (ID, direction and weight) is known in vertices of X also by the
broadcast. Thus, vertices can know locally what nodes shall be incident to edges e ∈ SX
that are contained in X∗.

• Abidirectional zeroweighted edge between each two nodes fi ∈ Vi , fj ∈ Vj that correspond
to node-parts in Xi , Xj (respectively) of the same node f in FX . Again, this can be known
locally in any vertex v of X since v received the labels (which contain the IDs) of fi ; fj
in the broadcast step, and since the correspondence of fi ; fj to f can be known from the
information received in the broadcast (specifically, the IDs of fi ; fj contain the ID of f . For
more details, see the proof of Lemma 5.12 in Appendix C).
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Notice, the description of DDG(g) does not directly address the case where g is not con-
tained in exactly one child bag ofX∗ (i.e., g gets partitioned). However, if that happens, we have
a special case where (by definition) g ∈ FX , and all of its parts are represented in the DDG.
Meaning, the definition ofDDG(g) for a node g ∈ X∗ is general enough for both cases (g ∈ FX
and g ̸∈ FX ).

After each vertex v on the face or face-part corresponding to g ∈ X∗ locally constructs
DDG(g) and computes distances in it, v checks for a negative cycle. If found, v broadcasts a
special message informing all vertices of G (via a global BFS tree of G in O(D) rounds) to abort
their algorithm. Otherwise, v locally constructs LabelX∗(g) by appending distances computed
in DDG(g) to the recursive label of g (if exists). That is, v sets distX∗(g; f ) (resp. distX∗(f ; g)),
where f ∈ FX , to be distDDG(g)(g; f

′) (resp. distDDG(g)(f
′; g)) where f ′ is f (in case f ∈

V (DDG(g)) or is an arbitrary part of f in some child bag of X . Due to the fact that all parts f ′

of f are connected by zero weight edges, then the distance to any of them is exactly the distance
to all others.

Lemma 5.18. For all bags X∗ ∈ T , the above algorithm computes correct label as described in
Section 5.2 for all nodes in X∗.

In order to see why does the above hold, we need to show that DDG(g) of a node g ∈ X∗

is distance preserving w.r.t. the shortest paths metric of X∗.

Proof. For leaf bags, there is no DDG and the labels of all nodes get computed in the first step
of the algorithm. For non-leaf bags, it remains to show that the distances computed between
g ∈ X∗ and all f ∈ FX viaDDG(g) are correct inX∗. If f ∈ FX is contained in some child bag of
X∗ then it has a node in DDG(g). If not, then each of its parts has a node. These nodes are all
connected by zero weight edges, thus, contracting this clique to a single node in the DDG(g)
does not affect distances in the DDG. By Property 12 of the BDD, the resulting graph is a graph
on a subset of nodes of X∗, which by construction of DDG(g) are connected with edges that
represent paths in X∗ (the weights and direction were obtained by decoding labels in child bags
of X∗, which are correct by Lemma 5.16). So the distances in the DDG are at most their real
distances in X∗. Clearly they are also at least the real distances, as all edges represent paths in
X∗.

Note, if there is a negative cycle in X∗ it gets detected in the leaf-most descendant of X∗.

Lemma 5.19. A negative cycle in X∗ gets detected if and only if it exists.

Proof. IfX∗ has no negative cycle then we never report a negative cycle because by Lemma 5.18
all the distances we consider are correct distances inX∗. IfX∗ does have a negative cycle, letX∗

be a leafmost such bag. IfX∗ is a leaf-bag, then we detect the negative cycle since each vertex of
X collects the whole graph X∗ and checks for it. For a non-leaf bag X , by Lemma 5.15, all paths
(and thus cycles) in X∗ are either contained in child bags of X∗ or cross the set FX of nodes.
Since X∗ is a leafmost bag containing a negative cycle, the negative cycle must contain edges of
at least two child bags. Therefore, it can be divided into subpaths that cross FX (Lemma 5.15).
For any node g of the negative cycle, the graphDDG(g) represents all these subpaths correctly
(Lemma 5.18), and so the cycle is detected by some vertex v that lies on the face (face-part) g .

To conclude, a BDD T is built in Õ(D) rounds with each vertex v ∈ G knowing all relevant
information that is locally needed about X∗ (i.e., X∗ is distributively stored). In each level of
T we have at most Õ(D2) rounds. Thus, by Lemmas 5.18 and 5.19 the above gives a correct
distance labeling algorithm of the dual network. Formally,

Theorem2.1 (Dual Distance Labeling). There is a randomized distributed Õ(D2)-round algorithm
that computes Õ(D)-bit distance labels for G∗, or reports that G∗ contains a negative cycle w.h.p.,
upon termination, each vertex of G that lies on a face f , knows the label of the node f in G∗.
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5.3.1 SSSP in the Dual

After we compute the labeling of Theorem 2.1, we want to learn an SSSP tree in G∗ from a given
source s ∈ G∗. That is, (1) all vertices of a face f in G shall know the distance from s to f in
G∗, and (2) each vertex of G shall know its incident edges whose dual counterparts are in the
shortest paths tree.

We first choose the vertex v of minimum ID in the face s , which can be done in Õ(D) rounds
by communication over a BFS tree. Then, v broadcasts Label(s) to all vertices of the bag G, this
can be done in Õ(D) rounds, as we can broadcast the label in Õ(D) messages of size O(log n)
over a BFS tree in Õ(D) rounds. Then, all vertices of a face f can decode the distance from s to
f in G∗ from Label(s); Label(f ) by Lemma 5.16.

To mark the SSSP tree edges, an aggregate operator is computed for each node v of G∗ over
its neighbors (using Lemma B.9, we perform a single part-wise aggregation task). In particular,
for a dual node, we mark its incident edge that minimizes the distance product with its neigh-
bors, i.e, we take the operator computed is minu∈N(v){dist(s; u) + w(u; v)} (where N(v) is v ’s
neighborhood). Finally, G∗ might be a multi-graph, so there might be many edges connecting v
with a neighbor. Wemark the minimal weight edge connecting v to the neighbor that minimizes
the above (breaking ties by IDs for edges and for neighbors). Thus,

Lemma 2.2 (Dual Single Source Shortest Paths). There is a randomized Õ(D2) round algorithm
that w.h.p. computes a shortest paths tree from any given source s ∈ G∗, or reports that G∗ contains
a negative cycle. Upon termination, each vertex of G knows for each incident edge whether its dual
is in the shortest paths tree or not.

The above theorem in addition to Section 4 imply distributed (exact and approximate) algo-
rithms for Maximum st-Flow in G (i.e., proves Theorems 1.2 and 1.3) by an adaptation of the
centralized algorithms of Miller-Naor [30] and of Hassin [20]. The details are given in Section 6.

6 Primal Maximum st-Flow and Minimum st-Cut

In this section we show how to use the labeling algorithm of Section 5 to compute the maximum
st-flow in G, and how to use the minor-aggregation model simulation on G∗ of Section 4 to
approximate the maximum st-flow in G in the special case when G is undirected and both s
and t lie on the same face in the given planar embedding. I.e, when G is st-planar.

6.1 Maximum st-Flow

Theorem 1.2 (Exact Maximum st-Flow in Directed Planar Graphs). There is a randomized dis-
tributed algorithm that given an n-vertex directed planar network G with hop-diameter D and in-
tegral edge-capacities, and two vertices s; t , computes the maximum st-flow value and assignment
w.h.p. in Õ(D2) rounds.

The proof mostly follows a centralized algorithm of Miller and Naor [30], we provide an
overview of the general idea. For the full proof see Appendix D.1. The algorithm uses a logarith-
mic number of SSSP computations in the dual, after which one can deduce the value of the max
st-flow and a flow assignment. In particular, it performs a binary search on the value – of the
maximum st-flow. In each iteration, – units of flow are pushed along a (not necessarily shortest
nor directed) s-to-t path. If this does not violate the capacity of any dart in P then it is a feasible
flow and we conclude that the maximum st-flow is at least –. Otherwise, a residual graph is
defined, possibly having negative capacities. To fix that, an SSSP computation from an arbitrary
node f in the dual is performed, such that, the flow can be fixed to not violate capacities if and
only if the dual does not contain a negative cycle (if a negative cycle was found, then, the max
st-flow value is less than –). This gives the flow value. In the former case, Miller and Naor show
that the following is a feasible st-flow assignment of value –. For every edge d ∈ G that maps
to d∗ = (g; h) ∈ G∗: the flow on d is set to dist(f ; h)− dist(f ; g) + – if d is directed towards t
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in P , to dist(f ; h)− dist(f ; g)− – if d is directed towards s in P , and to dist(f ; h)− dist(f ; g) if
it is not in P .

The undirectedmaximum st-flow problem asks to find themaximum flow that can be pushed
from s to t in an undirected network. Alternatively, where two neighbors are connected by two
opposite direction edges with the same capacity. Although the s-to-t flow value equals t-to-s
flow value, the s-to-t flow itself is directed (e.g. the flow entering s is non-positive, the flow
entering t is non-negative).

Theorem 1.3 (Approximate Maximum st-Flow in Undirected st-Planar Graphs). There is a
randomized distributed algorithm that given an n-vertex undirected planar network G with hop-
diameter D and integral edge-capacities, and two vertices s; t lying on the same face, computes a
(1− ›)-approximation of the maximum st-flow value and a corresponding assignment in D · no(1)
rounds w.h.p.

To prove this, we simulate a centralized algorithm of Hassin [20], where he adds an edge
e = (t; s) and then computes SSSP in the dual of the resulting graph. s and t are required to be
on the same face in order to ensure that e does not violate planarity (it is embedded in the interior
of the face containing s and t). We use our minor-aggregation simulation on the dual (Section 4)
in order to apply an approximate SSSP algorithm of [41] on (G ∪{e})∗, the dual of G ∪{e}. We
use an approximate algorithm since there is no exact one in the minor-aggregation model. This
simulation instantly gives the value of the approximate maximum st-flow, however, in order to
get an assignment we need to work a bit harder because Hassin’s algorithm is an exact algorithm
whilst we use it approximately. Hassin defines the flow assignment on an edge e ′ whose dual
is e ′∗ = (f ; g) to be dist(f1; g) − dist(f1; f ), where f1 is the source of the SSSP tree computed
in (G ∪ {e})∗ (note, we need the exact distances for the assignment). Thus, approximately,
if we want the flow assignment to be capacity respecting (amongst other requirements), for
each edge, we need to bound the difference of its endpoints’ (approximate) distances, i.e, we
need the approximate distances to obey the triangle inequality. Most (distributed) distance
approximation algorithms do not have this feature. Meaning, the approximation can be very far
off the true answer. E.g, let u; v be two neighbors of distance Ω(n) from the source, connected
by a zero weight edge, we want the difference of their (approximate) distances from the source
to be zero, however, the difference of the approximate distances might be at least as large as ›n.
To overcome that, we show how to apply a recent algorithm of [39] on the dual. This algorithm
was not implemented in the minor-aggregation model before.

Proof. The algorithm follows the centralized algorithm of Hassin [20]: Let f be a face of G
containing both s and t . Firstly, we add an artificial edge e = (t; s) to G embedded inside the
face f (preserving planarity) with infinite capacity. This edge is assigned a weight of nW , where
W is the largest weight in the network, representing infinite capacity in Õ(1)-bits.

f1
f2

s

t

Figure 13: G ∪ {e} in black and its dual in red. e (e∗) is the dashed edge. f is the face in which
e is embedded, note, f is split into two faces f1; f2. Each of f1 and f2 has a corresponding node
in the dual.
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The edge e divides f into two faces, f1; f2, where f1 is the face on the left 7 of e if e were
to be directed from t to s (this would be important for the flow direction later). We compute
SSSP from f1 (this time all edge-lengths are non-negative) in (G ∪ {e})∗. See Figure 13. Hassin
showed that the value of the maximum st-flow in G is equal to dist(f1; f2) in (G ∪ {e})∗. We
note that Hassin’s algorithm works for directed and undirected graphs. For us however, it is
crucial that the graph is undirected since the (distributed) SSSP algorithm that we use works
only for undirected graphs.

Distributively, all vertices need to know the IDs of s; t , and f . We detect the face f by a
simple part-wise aggregation in Ĝ (Properties 2, 3 and 4 of Ĝ), where the input of each copy
of s (resp. t) is ID(s) (ID(t)) and an identity item for any other vertex (e.g. minus one, as no
ID is negative). The aggregate operator simply counts the distinct values of input. Then, the
face f is the face that has the minimum ID of the (at most two) faces which got a count of two
(s; t know these IDs and can choose the minimum locally). Note, this aggregation terminates in
Õ(D) since the values aggregated are of size Õ(1)-bits and there are at most two distinct values
aggregated on each face of Ĝ that maps to a face of G. Then, both s and t add e to the clockwise
ordering of their incident edges in G, and embed it to be in between two consecutive edges
of their incident edges in f . We use the minor aggregation model implementation (Section 4)
for the dual graph to simulate an SSSP minor-aggregation algorithm on (G ∪ {e})∗. We use
the algorithm of [41] that computes (1 + ›)-approximate SSSP in 2O(log n·log log n)

3=4
=›2 minor-

aggregation rounds, yielding an D · no(1) CONGEST algorithm in G for the undirected st flow
problem in st-planar networks. However, wewant to simulate the algorithm on (G∪{e})∗ rather
thanG∗, meaning the simulation result of Section 4 cannot be used straightforwardly. Moreover,
[41]’s algorithm assumes weights in [1; nO(1)] but not zero (not allowing zero capacities). So, we
assume that we do not have zero weight edges and first dive into the details of the simulation,
then we show how to get an assignment and finally show a simple fix for dealing with zero
weight edges.

Simulation. Here we desire to simulate [41]’s approximate SSSP algorithm on (G ∪ {e})∗ ̸=
G∗ by applying Section 4 (Theorem B.14) to simulate the extended minor aggregation model on
G∗. We exploit that the extended model can simulate any basic or extended minor aggregation
algorithm on any virtual graph G∗

virt that contains a small (poly-logarithmic) number of arbi-
trarily connected virtual nodes (see Appendix B for exact definitions). Thus, the only thing we
need to do, is to use that (Theorem B.14) in order to apply the approximate SSSP algorithm on
G∗
virt = (G ∪{e})∗. To do so, we only need to distributively store (G ∪{e})∗ as needed (match-

ing the input format of the algorithm stated in Theorem B.14, for full details, see Appendix B).
We explain; Recall, the face-disjoint graph Ĝ is used as the base graph for representing G∗, i.e.,
Ĝ is the distributed method for storing G∗; To store any virtual graph G∗

virt that is obtained by
replacing nodes or adding virtual nodes to G∗, we need that all vertices on a face ĝ of Ĝ (maps
to node g ∈ G∗) to know a list of (IDs of) g ’s incident virtual edges and all virtual edges that
connect any two virtual nodes (and their weight if exists) in G∗

virt . So, we need to (1) show how
to delete f from G∗, (2) add two nodes that play the roles of f1; f2, and (3), connect them to
neighbors of f and to themselves properly, represented in Ĝ as described; Such that, the ob-
tained G∗

virt has the exact same structure as (G ∪ {e})∗. Note, changes need only to be made
on f̂ ’s vertices and vertices lying on (faces ĝ in Ĝ corresponding to) neighbors g of f in G∗.

We start by: (1) Enumerating f̂ ’s vertices in Ĝ in ascending order and deactivating them
(deleting f ). This numbering would be useful to define f1; f2 (i.e, split f̂ ). (2) Learning (locally)
in Ĝ for each edge of EC 8 that is incident to f̂ , whether its corresponding edge in G∗ shall be
incident to f1 or to f2. Then, (3) Each (face ĝ in Ĝ that maps to a) neighbor g of f needs to
know its minimal weight edge connecting it to f1 and f2, as we are interested in shortest paths
and cannot afford to broadcast all edges of f , due to their possibly large quantity. To do so, we

7Left and right are defined w.r.t. the direction of e and can be deduced from the combinatorial embedding of e’s
endpoints.

8Those edges map 1-1 to edges of G∗, see Section 3 and Appendix A for more details.
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compute a minimum aggregate over weights of ĝ ’s edges that are mapped to edges that shall
be incident to f1 (f2), so that all vertices in ĝ know the edge that connects g to f1 (f2). Finally,
(4) A global maximum operator is computed over edge weights of G, such that, all vertices of
Ĝ learn that f1; f2 are connected by an edge whose weight is nW , where W is the maximum
weight found. We describe how each step is implemented; Assume Ĝ is already constructed and
its faces that correspond to G faces are identified (Properties 1, 4 of Ĝ).

1. For enumerating f̂ ’s vertices in Ĝ, we use a simple classic procedure of a subtree sum
using part-wise aggregations on Ĝ. Specifically, the input tree is f̂ minus the ER 9 edge
copy of the edge preceding e in s’s local ordering of its incident edges (this edge is known
to s locally), the root is the copy of s that is incident to the removed edge, and all vertices
get an input value of one initially. The procedure we use is similar to those described
in [14, 17]. We can do so in Õ(D) rounds by Section 4 (Lemma B.6).

Denote by s ′, the copy of s in f̂ which is incident to the two consecutive edges e ′1; e
′
2 (of

ER in Ĝ), that map to the edges e1; e2 incident to s , s.t. e is embedded in between e1; e2
(in G), we define t ′ analogously. Intuitively, let ea; eb be the two edges incident to s s.t. all
edges between ea; eb (in the local ordering of s) are in f , then all edges in between ea; e1
have to go to f1 and all edges in between e2; eb have to go to f2, as e is embedded right
after e1 and right before e2. We define s ′ to capture this in Ĝ (where edges have a lot of
copies, sometimes in the same face 10), in order to define f1; f2 correctly.

Now, s ′ (resp. t ′) broadcasts its ID, assigned number, and ID(f ). The ID of f1; f2 is defined
to be (ID(f ); 0) and (ID(f ); 1), respectively, all vertices now know these as well. The
broadcast is pipelined and terminates in Õ(D) rounds as there is a constant amount of
distinct messages sent. From now on, all vertices in f̂ consider themselves as deactivated -
they might still be used for communication in the simulation, but they do not participate
as an input.

2. Each vertex on a face ĝ of Ĝ already knows (by construction of Ĝ) for each of its incident
EC edge e∗, the (IDs of) faces it participates in and the ID of the edge e of G that e∗

corresponds to (recall, EC edges are meant to simulate G∗ edges in Ĝ). Thus, in one round
of communication, each vertex in Ĝ can know for each incident edge in EC whether it
shall be in f1 or f2, by firstly receiving the numbering of its neighbors in f̂ and then, by
deciding on each edge e∗ with both endpoints of e having a number in between s ′ and t ′

to be in f1, otherwise, to be in f2. Note, this is consistent with f1 being on the left of e if
directed from t to s due to the choice of s ′ and t ′.

3. Now that edges incident to f1 and f2 are known to their endpoints in Ĝ, two minimum
aggregations in Õ(D) rounds are then computed and broadcast in each neighbor ĝ of f̂
in Ĝ over EC edges that connect f1 to g and f2 to g , allowing all vertices on ĝ to learn the
two edges connecting g and each of f1; f2 in (G ∪ {e})∗, if any.

4. Finally, an aggregate overG edgeweights is computed inO(D) rounds for findingW , then,
since each vertex in Ĝ knows the ID of f1; f2 and W , it learns that f1; f2 are connected by
an edge with weight nW in (G ∪ {e})∗.

Notice, all the above terminates within Õ(D) rounds on G by Section 4 (Lemma B.6). Finally,
since G∗

virt = (G ∪ {e})∗ now is properly distributively stored, then, we can simulate the ex-
tended minor-aggregation model on it (see Theorem B.14 for details); So, we first use it in order
to deactivate parallel edges (Lemma B.15), keeping only the minimal-weighted edge between its
endpoints (we aim to compute SSSP). Then, since G∗

virt is simple and we can simulate any minor

9For each edge e of G, there are two edge copies in ER ⊂ E(Ĝ). Intuitively, there is an edge copy for each face
of G that contains e .

10E.g, if an edge e is internal to a face f , then it has its two ER copies in the face f̂ of Ĝ that maps to f . More
generally, if there is a tree attatched to a vertex in the interior of a face f , then each of those tree edges has two
copies in f̂ , as f̂ is basically an Euler tour on f . See Section 3 and Appendix A for more details.
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aggregation algorithm on it, it satisfies the requirements for applying the mentioned theorem
with [41]’s SSSP algorithm, obtaining an approximate SSSP tree rooted at the source f1.

Distances (flow value). Assuming we have computed an approximate SSSP tree T (with zero
weighted edges included) as promised, we can compute the distances of any node from the
source by a simple procedure. That is, root the computed tree with the source, then compute
the tree ancestor sum of every node g ∈ T , i.e., the weight of the f1-to-g T -path. For that, we
use a procedure of [18] that runs in Õ(1) minor aggregation rounds (Lemma 16 in their paper),
thus, Õ(D) rounds in G. After that process terminates, each vertex lying on f2 (in G) knows
the approximate distance from f1 to f2 in G∗

virt , thus, it can broadcast it to the whole graph.
Note, that distance is a (1 + ›) approximation of the maximum st-flow value (by Hassin [20]).
Since the algorithm guarantees to report ¸ · dist(f1; f2) instead of dist(f1; f2), for ¸ ∈ [1; 1 + ›],
multiplying by (1− ›), we get (1− ›)¸ ∈ [1− ›; 1− ›2], that is, a (1− ›) approximation of the
maximum st-flow value.

Approximate flow assignment. Note that in Theorem 1.2 we obtained both the value of
the maximum flow and a corresponding assignment of flow to the edges. Here however, we
approximate the flow value but do not immediately obtain an assignment (or an approximate
assignment) of the flow. The reason is as follows: Hassin’s algorithm was designed as an exact
algorithm (running an exact SSSP computation) while we use an approximate SSSP. For the
flow value this is fine, instead of dist(f1; f2) we report a (1 − ›)-approximation of dist(f1; f2).
However, for the corresponding flow assignment, recall that the flow on edge e ′ ∈ G with e ′∗ =
(f ; g) ∈ (G ∪{e})∗ is dist(f1; g)−dist(f1; f ). This means we need the approximation algorithm
to bound dist(f1; g) − dist(f1; f ) by the edge’s capacity (and not just approximate dist(f1; g)
and dist(f1; f )). I.e., we want the approximate distances to satisfy the triangle inequality. This
indeed is possible using (a dual implementation of) a recent algorithm of Rozhon, Haeupler,
Martinsson, Grunau andZuzic [39], however, their algorithmwas not implemented in theminor-
aggregation model. Given access to a (1+›)-approximate shortest paths oracle, [39]’s algorithm
produces smooth (defined next) approximate distances within a logarithmic number of calls to
the oracle with a parameter ›′ = O(›= log n). Before we dive into the simulation, we define what
a smooth distance approximation is, suggest a flow assignment and prove it is a feasible (1− ›)
approximate assignment using the smoothness property.

Smooth distances and a feasible flow assignment. In order to prove that the approximate SSSP
computation gives a feasible (1 − ›) approximate flow assignment, we need to show an as-
signment that is: (a) Capacity respecting: the flow being pushed on each edge is non-negative
and is at most its capacity, (b) Obeys conservation: for all vertices except for s and t , the flow
pushed into a vertex equals the flow pushed by it. Finally, the assignment should be (c) (1− ›)
approximate: the flow pushed from s to t is between (1 − ›) and once the maximum st-flow.
Note, even thought the graph of input is undericted, the flow itself is directed, so we address
that as well. We first define some notions and define the flow assignment, then proceed to prove
that the above holds.

In [39], a (1 + ›) distance approximation d(·) from a given (single) source in a graph G is
said to be (1 + ›)-smooth (definition 4.2 in their paper) if it satisfies the following:

∀u; v ∈ V (G) : d(v)− d(u) ≤ (1 + ›) · dist(u; v)

We assume we have computed a (1 + ›) smooth approximate distances from f1 in (G ∪ {e})∗
by combining [41] and [39], denoted d(·), and we define ‹(·) := (1 − ›)d(·). Then, for e ′ =
{u; v} ∈ G ∪ {e} s.t. e ′∗ = {f ; g} in (G ∪ {e})∗, we define the flow value pushed on e ′ to be
|‹(g) − ‹(f )|. When ‹(g) ≥ ‹(f ), the flow is being pushed on e from u to v , otherwise, it is
pushed from v to u. We denote this flow assignment by ffi(·), taking the induced assignment on
G gives the final assignment.

(a) Capacity respecting. Obviously, the flow pushed on each edge is non-negative (by defi-
nition). Given a (1 + ›)-smooth distance approximation from the source f1 in G∗

virt =
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(G ∪ {e})∗, we get a capacity respecting flow assignment as follows. Consider any edge
e ′ = (u; v)where e ′∗ = (f ; g) and the approximate distances d(·), s.t. d(g) ≥ d(f ), then,
from the smoothness property:

d(g)− d(f ) ≤ (1 + ›) · dist(f ; g) ≤ (1 + ›) · c(e ′) (1)

multiplying by (1− ›), we get,

‹(g)− ‹(f ) ≤ (1− ›2) · dist(f ; g) ≤ (1− ›2) · c(e ′) (2)

Note, the left-hand side of Equation (2) is exactly ffi(e ′), the flow pushed on e ′; c(e ′) is its
capacity and the property follows. The left inequality in Equation (1) follows simply from
the smoothness property, whilst the right one follows since the the edge weights of G∗

virt

are the edge capacities of the corresponding primal edges and that the exact distances
in G∗

virt is a metric that obeys the triangle inequality, i.e, dist(f ; g) is at most the weight
of the edge connecting f ; g . Equation (2) follows from Equation (1) since, by definition,
‹(·) = (1− ›)d(·).

(b) Conservation. By [25], assuming a planar directed graph with edge capacities and an
assignment of potentials (weights) ȷ(·) on its faces, then, assigning for each edge a flow
of ȷ(g) − ȷ(f ), where g (resp. f ) is the face on the right (left) of that edge, gives a flow
assignment that obeys conservation in all vertices 11. ConsideringG∪{e}, the assignment
we suggest, is deliberately defined so that the directions of the flow would be consistent
with the above. I.e, directing an edge in its defined flow direction and pushing |‹(g)−‹(f )|
units of flow would be consistent with the definition above. Thus, the flow assignment we
suggest obeys conservation in every vertex of G ∪ {e}. Note, G is equivalent to G ∪ {e}
after removing e = {s; t}, thus, the induced flow assignment on G obeys conservation
except in the endpoints of e , which are s and t .

(c) Flow value of the assignment. f1 was picked to be the source of the approximate SSSP
computation (‹(f1) = 0), thus, ‹(f2) ≥ ‹(f1), meaning, according to our definition of ffi(·),
the flow on e shall be directed from t to s , as f1 shall be the face on left of e w.r.t. the flow
direction on e . As a result, the flow pushed on e from t to s is ‹(f2) − ‹(f1). Note, ffi(·)
obeys conservation in all vertices of G ∪{e}, thus, removing e from G ∪{e} would induce
the flow assignment in G, directed from s to t , of value:

ffi(e) = ‹(f2)− ‹(f1) = (1− ›) · d(f2)− 0 = (1− ›) · ¸ · dist(f2; f1) (3)

where ¸ ∈ [1; 1+ ›]. We already have shown that the right-hand side of Equation (3) is a
(1− ›) approximation of the maximum st-flow value, thus, the induced flow assignment
by ffi(·) on G of value ffi(e) is (1− ›) approximate.

It remains only to show that we can apply [39]’s algorithm (Theorem 5.1, Algorithms 3 and
4 in their paper), in order to obtain smooth (1 + ›) approximate single source shortest paths
from f1 in G∗

virt = (G ∪ {e})∗ by invoking the algorithm of [41] that we use for approximating
distances, which we refer to as the oracle. We note that [39]’s algorithm assumes real weights
in [1; nO(1)], whereas we work with integral weights, however, they suggest a fix (by scaling) for
this that appears in Appendix C of their paper. Note, scaling can be implemented efficiently in
one minor-aggregation round, henceforth, we consider this issue resolved.

[39]’s algorithm in a high-level.We describe [39]’s algorithm for smooth distance approximation
in a high-level, highlighting only the computational tasks necessary to implement it in theminor
aggregationmodel. For the algorithm in full resolution, the reader is referred to Section 5 of [39].
Initially, nodes of the input graph shall know the source s , the approximation parameter › and
a trivial estimate ∆ of the maximum distance in the graph (∆ := 2nW in our case), then, each

11This kind of a flow assignment is referred to as a circulation in the centralized literature on planar graphs.
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node computes additional parameters that depend only on the former. Note, all of the former
may be implemented in only one minor-aggregation round.

Next, the algorithm computes a distance approximation, based on a call to the approxima-
tion oracle (any SSSP approximation algorithm, without any additional special guarantees) with
s and ›′ = O(›= log n) . Then, sequentially, O(log n) phases are performed, each defining a dis-
tance approximation, such that, the final output of the algorithm is the approximation computed
in the last phase. In each phase, two calls to the approximate oracle are performed with s and
›′=100. Each call to the oracle is on a level graph. Afterwards, each level graph defines a dis-
tance approximation of the input graph, and the phase’s distance approximation is computed
by taking the element- (node-) wise minimum over: (1) the approximations computed on the
level graphs, and (2) the approximation from the previous phase. Again, taking the minimum
requires only one minor-aggregation round.

Level graphs. The only vagueness in the implementation lies in the level graphs, which we now
define, then, show that they can constructed and simulated efficiently in the minor-aggregation
model. The level graph H (Definition 5.7 in [39]) in a specific phase of an input graph G where
each node of G knows its (approximate) distance from a source s , is defined as follows. The node
and edge sets of H are the same as those of G, then: (1) Each node assigns itself a level (a num-
ber), depending only on its distance from s and some parameter !, (2) each edge that connects
neighbors of different levels is removed, the weights of edges kept are altered depending only on
previously computed parameters that all nodes of G know. Finally, (3) An edge between s and
each u ∈ G is added, with weight depending only on ! and the s-to-u distance approximated
in the previous phase.

Implementation of level graphs. First, we start by computing ! in one minor-aggregation round
on G∗

virt as it depends only on parameters known to all nodes of the input graph (as ∆; › and
others). Then, we compute the level of each node, also in one round, as it only depends on !
and the s-to-u distance approximated in the previous phase. The remaining things to explain
are: (1) How to "delete" edges that cross levels, and (2) How to connect s to all nodes with the
appropriate edge weights.

1. Deactivating edges that cross levels is simple. Each edge e = (u; v) in the input graph
knows the level of both its endpoints, thus, it knows if it should participate in the level
graph or not. In more detail, recall, e in the minor aggregation model is simulated by its
endpoints u′; v ′ in the base communication graph (Ĝ in our case). In one round on Ĝ, u′

knows the level of the super-node that contains v ′ (and vise-versa). Thus, u′; v ′ know that
e is prevented from participating in computations onH. In case v ′ is virtual then all nodes
of the graph simulate it (in particular u′), and know its information (in particular, its level).

2. Luckily, we work in the extended minor-aggregation model, where adding virtual nodes
and connecting them arbitrarily to any other virtual or non-virtual node, is a feature of
the model. In the same manner that we described earlier (where we obtained G∗

virt ), we
alter H and replace s with a virtual node, all nodes in H now know they are connected to
the source. Notice, there are no problems regarding weights of edges, as the weight of an
added edge (s; u) depends only on ! and the approximated s-to-u distance in the previous
phase (already known to u). Thus, when nodes connect themselves to the replaced s , they
connect themselves with the needed weights. Again, virtual nodes are simulated by all
vertices, so for each virtual v , all real nodes know its info and locally consider it to be
connected to s with the right weight.

Note, each phase is of Õ(1)+TSSSP (›′) minor-aggregation rounds, where TSSSP (›′) denotes
the minor-aggregation round complexity of a (1+›′)-approximate SSSP oracle. Thus, the overall
minor-aggregate round complexity of the (1 + ›) smooth approximate distance computation is
O(log n) · Õ(TSSSP (›′)). Implementing the approximate SSSP oracle with the algorithm of [41],

results with a total minor-aggregate round complexity of O(log n) · ( 1›′ )
2 · 2O(log n·log log n)3=4 , i.e.,

log3 n
›2

· 2O(log n·log log n)3=4 , which translates to D
›2

· no(1) CONGEST rounds on the network of
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communication G. For conclusion, since each vertex v in G simulates its copies in Ĝ, which in
turn simulate the faces v participates in inG∗

virt , then, v knows for each face it participates in, its
distance from the source. Thus, after computing smooth distances in the relevant graph G∗

virt ,
in one round of communication, v knows for each incident edge e ′, such that e ′∗ = (f ; g), the
values ‹(f1; g) and ‹(f1; f ) and can locally compute ffi(e ′). Finally, we are ready to go through
the last modification required to keep our promise, that is, we show next how to allow zero
capacities (zero-weight edges in the dual shortest paths approximation).

Zeroweighted edges. The algorithm of [41] that we use for the approximate SSSP and of [39]
used to obtain the smoothness property work for weights in [1; nO(1)], indeed all weights in
G∗
virt , even that of the infinite capacity edge are in [1; nO(1)] except the zero-weighted ones.

To deal with that issue, we simulate the obtained smooth approximate SSSP algorithm above
while considering zero weighted edges as follows: We run the algorithm on maximal connected
components of G∗

virt \ {e : w(e) = 0}, obtaining a partial SSSP tree of G∗
virt , then we augment

it with some zero weighted edges without closing a cycle, obtaining an SSSP tree T of G∗
virt , all

done via the extended minor aggregation model.
Concretely, we work in two phases. In the first phase, we compute an approximate SSSP

tree T1 on the minor G∗
1 of G

∗
virt where all zero-weighted edges are contracted, where the source

is the super-node that contains f1. Now, we need to choose what zero-weighted edges shall be
added to complete the approximate SSSP tree T1 of G∗

1 into an approximate SSSP tree T of G∗
virt .

T1 defines a set of connected components in G∗
virt , contracting those components in G∗

virt (after
we undo the zero-weight edge contraction) results with another minor G2, that contains only
zero-weight edges. I.e., we are looking for some spanning tree in G2. So, we compute a minimum
spanning tree T2 of G∗

2 by a minor aggregation procedure of [41] (Example 4.4 in their paper).
Hence, the tree T = T1 ∪ T2 (considering the endpoints of edges of T1; T2 in G∗

virt rather than
G∗
1 ; G

∗
2 when taking the union) constitutes an approximate SSSP tree in G∗

virt .
Note, T obeys the triangle-inequality (which is crucial for a flow assignment) for the follow-

ing reasoning. Distances in T1 represent distances in G∗
virt , by construction any pair of nodes

in T1 satisfies the triangle inequality. Thus, map each node f ∈ G∗
virt to the super-node a of

T1 that contains it, the property follows since f and a have the same distances from the source
because T1 was obtained by contracting zero-weight edges only. I.e, T = T1 ∪ T2 satisfies the
triangle inequality as any pair of (super-)nodes in T1 does.

6.2 Minimum st-Cut

By the well knownMax-FlowMin-Cut Theorem [7], having the exact (approximate) value of the
maximum st-flow in G immediately gives the exact (approximate) value of the minimum st-cut
in G. So, here we focus on finding the cut edges and bisection. We use our flow algorithms to
do so.

Theorem 6.1 (Distributed Exact Directed Minimum st-Cut in Planar Graphs). Given a directed
planar graph G with non-negative edge weights and two vertices s; t , there is a Õ(D2) round ran-
domized algorithm that finds the minimum st-cut w.h.p.

To prove this, we use Theorem 1.2 to compute a maximum st-flow f in G in Õ(D2) rounds.
By [7], a corresponding minimum st-cut is the cut defined by the saturated edges (an edge is
saturated if the flow it pushes equals its capacity) that precede any other saturated edge on any
path that contains them and starts at s . To find those edges we set the weight of each saturated
edge to one and all other edges to zero. Then, we use an exact distance algorithm that runs in
Õ(D2) rounds for planar graphs by [26] on the graph with modified weights. Each edge that
has an endpoint with distance zero from s and another endpoint of distance one from s is a cut
edge. The bisection can be deduced from the distances as well, each vertex whose distance from
s is zero on s’s side of the cut, others are on t’s side. For a full proof, the reader is referred to
Appendix D.2.

34



Next, we show an almost optimal algorithm for (1 + ›) approximation of the undirected
minimum st-cut, where s and t lie on the same face.

Theorem 6.2 (Distributed Approximate Undirected Minimum st-Cut in st-Planar Graphs).
Given an undirected planar graph G with non-negative edge weights and two vertices s; t that lie on
the same face of G, there is a randomized algorithm that finds an approximate (1 + ›) minimum
st-cut and runs in D · no(1) rounds w.h.p.

Proof. Note, the method used in Theorem 6.1 does not apply instantly here, for two reasons, (1)
the round complexity of the primal SSSP computation is very high compared to our promise,
and (2) we cannot compute the residual graph, as we only have an approximation of the flow,
meaning, we may not distinguish between saturated edges and non-saturated edges, a crucial
step in the previous method. Eventually, the cut edges are going to be the path P found by
the SSSP computation we perform when we approximate the max st-flow (see the proof of
Theorem 1.3 for more details).

Concretely, we take a primal-dual detour, where we consider faces in the dual graph that
map to the vertices s and t in the primal12. See Figure 14. We refer to faces of the dual as
dual faces. A special case of the cycle-cut duality (Fact 3.1) is given by Reif [37], stating: An
st-separating cycle in the dual graph is the dual of an st-cut in the primal, where a cycle in the
dual graph is said to be st-separating, iff it contains the the dual face that is mapped to s in its
interior, and the dual face mapped to t in its exterior (or vice versa). Thus, we find a (1 + ›)-
approximation of the minimum st-separating cycle in G∗ in order to find its dual, the desired
(1 + ›)-approximate minimum st-cut in G.

f1
f2

s

t
P

Figure 14: G ∪ {e} in black and its dual in red. e (e∗) is the dashed edge. Each of s and t corre-
spond to a face in the dual. Both of those dual faces contain e . Note, the cycle C is demonstrated
by the f1-tof2 path P and e∗, where the dual face t is in its interior and the dual face s in its
exterior.

To do so, we compute a (1 + ›)-approximate max st-flow by Theorem 1.3, not (1 − ›), see
the proof of that theorem where we first obtain a (1 + ›) approximation (and then transform it
to a (1−›) one). Then we consider G∗

virt = (G∪{e})∗, where e = (s; t) splits the face f in G on
which both s; t lie into two faces, f1 and f2. Recall, the algorithm from Theorem 1.3, computes
a shortest path P from f1 to f2 in G∗

virt (see the proof of that theorem, its correctness is used in
this proof). We claim that P corresponds exactly to the approximate minimum st-cut in G. See
Figure 14.

Note, any st-cut in G ∪ {e} shall contain e , and removing it gives G. Thus, to have the
min st-cut in G, we can look for the min st-cut in G ∪ {e}. In particular, there is a mapping
between st-cuts of G and G ∪ {e}, where the value of the cut in G ∪ {e} is the same value of
the corresponding cut in G plus the weight (nW ) of e . Thus, when applying the duality of Reif
we consider G∗

virt . That is, we look for the approximate minimum separating cycle in G∗
virt . By

duality, this cycle should contain e∗ = (f1; f2).

12The dual of the dual is the primal, i.e, primal vertices map to faces of the dual graph. Moreover, the dual face
that is mapped to any vertex v is the (only) face that consists of all darts entering v . See [25] for more details.
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Note, the edge e∗ = (f1; f2) closes a cycle with P , denoted C = P ∪ {e∗}, that would be
the desired approximate min st separating cycle. C is separating as any cycle in a planar graph
is separating (Jordan curve theorem [43]), in particular it is st separating, for: (1) s and t are
faces in the dual, each has to be either in the interior or the exterior of C, (2) one dart of e is
in C’s interior and the other in its exterior, each such dart corresponds to a distinct dual face,
one of which maps to s and the other maps to t because e connects s and t in the primal. Note,
C is (1 + ›)-approximate st-separating minimum cycle in G∗

virt . Otherwise, P is not a (1 + ›)-
approximation to the shortest f1-to-f2 path. I.e, since C = P ∪{e}, then the length of C is that of
P plus nW . I.e, if C is not a (1+ ›) approximation of the minimum st separating cycle, then, the
length of C minus nW is not a (1+ ›) approximation to the shortest f1-to-f2 path, contradicting
the fact that P is.

Next, we aim to mark those st-cut edges in G. By the above, it is sufficient to mark edges in
G who are the duals of edges P inG∗

virt . Assuming we already applied Theorem 1.3, in particular,
we have computed an approximate SSSP tree T from f1, then, we want to mark P . We already
know that we can simulate anyminor-aggregation algorithm onG∗

virt (for details, one is referred
to the proof of Theorem 1.3), thus, we can simulate any minor-aggregation algorithm on any
subgraph of G∗

virt (Corollary 11 of [18]). I.e., we can invoke any minor-aggregation algorithm on
T . To mark P edges, a minor-aggregation tree-rooting and subtree-sum procedures of [18] are
invoked, where we root T with f1 and compute subtree-sum on the rooted tree, such that, the
input value of all nodes is zero, except for f2 that would have an input of one. The edges whose
both endpoints have subtree-sum value of one are marked, those exactly are the P -edges. Those
procedures are of Õ(1) minor-aggregation rounds, which are simulated within Õ(D) rounds in
G by applying Theorem B.14, the exact details of this simulation on G∗

virt are provided in the
proof of Theorem 1.3.

Next, we show how to find the cut vertices, in particular, we show how to find a set S such
that P = ‹(S; V \ S). To do that, we take an approach similar to that described in the proof of
Theorem 6.1, where we define a graphR′, in which, each P -edge is assigned a weight of one, and
all other edges a weight of zero, we then again use the minor-aggregation SSSP approximation
algorithm of [41] with an arbitrary constant approximation parameter › in order to compute a
(1 + ›)-approximate SSSP tree T from s in R′. In particular, we modify the algorithm to work
with edges with weights in [0; nO(1)] rather in [1; nO(1)], as shown in the proof of Theorem 1.3.
Finally, vertices whose distance is zero from s are in S (other vertices are in V \ S).

The round complexity of simulating the SSSP approximation algorithm isD ·no(1), since the
part-wise aggregation problem can be solved on G in Õ(D) CONGEST rounds (Corollary B.6),
and the approximate SSSP algorithm of [41] runs in no(1) minor-aggregation rounds. Thus, by
Lemma B.8 simulating the algorithm incurs a total of D · no(1) CONGEST rounds in G. Note,
after applying the distance approximation algorithm, vertices of G know locally to what side of
the cut do they belong.
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A The Graph Ĝ

We next give the full definition of the graph Ĝ, and prove its properties. Let deg(v) denote the
undirected degree of a vertex v in G. Then, a vertex v in G has deg(v) + 1 copies in Ĝ: A copy
v referred to as a star center (we denote by VS = V (G) the set of all star centers) and a copy vi
for each local region of v . A local region of v is defined by two consecutive edges in v ’s local
embedding. Notice that v has deg(v) local regions, and that each local region belongs to a face
of G (it is possible that several local regions of v belong to the same face). Eventually, we will
have that the faces of G correspond to (vertex and edge disjoint) faces of Ĝ. If i local regions of
v belong to the same face f of G, then v will have i copies in the face of Ĝ that corresponds to
f . The vertices of Ĝ are therefore VS ∪v∈G N(v) where N(v) = {v1; : : : ; vdeg(v)}.

We now define the edges of Ĝ in three parts E(Ĝ) = ES ∪ ER ∪ EC . The star edges ES are
of the form (v; vi ), the edges ER are of the form (vi ; uj) (for u ̸= v ) and the edges EC are of the
form (vi ; vj) (for i ̸= j ). For every edge e = (u; v) we need endpoints of e to figure out which
edges (vi ; uj) belong to Ĝ so that Ĝ is planar and faces of G map to faces of Ĝ. While a vertex of
G does not know any global information about the faces of G, adjacent vertices know that there
is some face that contains both of them.
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Figure 15: On the left, the primal graphG. The clockwise local numbering of u and v ’s edges is in
red. f∞ denotes the infinite face of G. On the right, the face-disjoint graph Ĝ. The face f∞ of G
maps to the face C∞ (thick black) of Ĝ[ER]. Vertex v in G has a star-center copy v in Vs ⊂ V (Ĝ),
and deg(v) additional duplicates v0; v1; v2 in V (Ĝ) connected by star edges ES ⊂ E(Ĝ) (dashed
blue). The edge (u; v) of G maps to three edges in Ĝ: an edge (v0; v2) in EC ⊂ E(Ĝ) (solid blue)
and two edges (u2; v2) and (u1; v0) in ER ⊂ E(Ĝ) (black edges). The vertex w ∈ G is of degree
one, thus, it has a star-center copy and one additional copy in Ĝ connected by a dashed blue
edge. Its only incident edge inG has two duplicates, each connected to a distinct non star-center
copy of its only neighbor. The non star-center copies of w ’s neighbor are connected by a solid
blue edge (corresponding to the edge incident to w ), this edge corresponds to a self loop in G∗

as it is connects the same face to itself (the face containing w ).

ES : These edges connect every star center v and its copies vi ∈ N(v).

ER: For each edge (u; v) ∈ G, there are two edges in ER, one copy for each face of G that
contains (u; v). Let (u; v) be the i ’th and j ’th edge in the clockwise local embedding of
u and v , respectively. Then the edges added to ER are (ui+1; vj) and (ui ; vj+1). This is
because the face containing the i ’th and (i + 1)’th edges of u is the face containing the
j ’th and (j − 1)’th edges of v (and the face containing the i ’th and (i − 1)’th edges of u
is the face containing the j ’th and (j + 1)’th edges of v ).

EC : In order to simulate computations on G∗, we make sure that if two faces of G share an edge
e (i.e. are adjacent nodes in G∗) then their corresponding faces in Ĝ are connected by a
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corresponding edge in EC , between two vertices vj ; vj+1 of the same star, since vj ; vj+1

each corresponds to a face that contains e . For an edge (u; v) we can add an edge in EC
between copies of u or copies of v , the choice of which such edge to add is arbitrary: For
every edge (u; v) in G we add the edge (vj ; vj+1) to EC if v ’s ID is larger than u’s, and
(u; v) is the j ’th edge in the clockwise local embedding of v .

In [17], Ĝ was defined without the edges EC , as their purposes did not require it. However,
the following properties (except for Property 5) of the face-disjoint graph were proven in [17]
and are yet valid.

1. Ĝ is planar and can be constructed in O(1) rounds (after which every vertex in G knows
the information of all its copies in Ĝ and their adjacent edges).

2. Ĝ has diameter at most 3D.

3. Any r -round algorithm on Ĝ can be simulated by a 2r -round algorithm on G.

4. There is an Õ(D)-round algorithm that identifies G’s faces by detecting their correspond-
ing faces in Ĝ. When the algorithm terminates, every such face of Ĝ is assigned a face
leader that knows the face’s ID. Finally, the vertices of G know the IDs of all faces that
contain them, and for each of their incident edges the two IDs of the faces that contain
them. Thus, each vertex ofG knows for each pair of consecutive edges adjacent to it (using
its clockwise ordering of edges) the ID of the face that contains them.

5. There is a 1-1 mapping between edges of G∗ and EC . Both endpoints of an edge in EC
know the weight and direction of its corresponding edge in G∗ (if G∗ is directed and/or
weighted).

Proof.

(1) Ĝ can be constructed in O(1) rounds, as the only information transmitted on an edge is
its local clockwise numbering in its endpoints’ combinatorial embedding.

For proving that Ĝ is planar, we show an explicit planar embedding, which can be deduced
from the planar embedding of G. Consider first the star-center copy of v in Ĝ. Recall
that v has deg(v) copies v1; v2; : : : that are incident to the star-center, the star center
local clockwise embedding is (v; v1); (v; v2); : : :. Now consider a non star-center copy vi
of v , such that u and w are neighbors of v in G and the edge (u; v) precedes the edge
(w; v) in v ’s local clockwise embedding. vi is possibly incident to the following edges
(vi ; uj); (vi ; vi+1); (vi ; v); (vi ; vi−1); (vi ; wk) which we embed in that order.

(2) Ĝ has diameter at most 3D as each edge in G becomes a path (u− ui − vj − v) in Ĝ \EC ,
and adding EC can only make the diameter smaller.

(3) Any r -round CONGEST algorithm on Ĝ can be simulated in 2r CONGEST rounds in G,
because each edge inG has exactly two copies inER. These are the only edges that require
simulation as edges (vi ; vj); (v; vi ) in EC ∪ ES are simulated locally by v .

(4) There is an Õ(D) round algorithm that identifies G’s faces by detecting their correspond-
ing (vertex and edge disjoint) connected components of Ĝ[ER] while considering Ĝ as
the communication network. The algorithm is a variant of [13]’s connectivity algorithm,
working in a Boruvka-like fashion performing O(log n) phases of merges.13 When the al-
gorithm terminates, every non star-center vertex of Ĝ knows its face ID and each face is
assigned a leader. Hence, the vertices of G know the IDs of all faces that contain them,
and for each of their incident edges the IDs of the two faces that contain them.

13The mentioned algorithm is randomized, however, the only randomized step in it is performing star-shaped
merges, a primitive which was derandomized by [18] and can be used as a black box in [13]’s algorithm to deran-
domize it.
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(5) There is a 1-1 mapping between edges of G∗ and EC . Every edge e∗ of G∗ corresponds to
exactly one edge of e of G so we show the 1-1 mapping between edges of G and EC . Each
edge e in G maps to one edge ê of EC . Each edge ê in EC is of the form (vi ; vi+1). vi+1 is
connected to some uj by an edge and vi is connected to uj+1 by an edge. These two edge
belong to ER and correspond to one edge e = (u; v) in G. We map the edge ê to e .

Consider e∗ ∈ G∗ that maps to ê = (vi ; vi+1) inEC . Since ê connects copies of v ∈ G then
it is mapped to an incident edge e of v , meaning, v knows e’s weight and direction. Thus,
ê is assigned the same weight as e , and the direction of ê is defined to be (vi ; vi+1) (resp.
(vi+1; vi )) if and only if e = (v; u) (resp. e = (u; v)). The directions are defined this way
for the following reason. Consider an edge e = (v; u) ∈ G, consider the clockwise local
numbering of v of e , denote the face to the left of e by v ’s numbering by f and the face
to the right of e by v ’s numbering by g , then, e∗ := (f ; g). And indeed, when e = (v; u),
then, vi is in the face that represents f in Ĝ (the face to the left of e) and vi+1 is in the face
that represents g (the face to the right of e), and vise versa in case e = (u; v). Meaning,
when e∗ is directed from f to g , ê is directed from the face that represents f to the face
that represents g .

The above can be achieved locally after construction, as the only information needed to
one endpoint of an edge is the other endpoint’s local numbering of that edge.

B Deferred Details and Proofs from Section 4

B.1 Preliminaries

Low-congestion shortcuts andpart-wise aggregation. In recent years, several breakthroughs
in distributed computing were based on the notion of low-congestion shortcuts introduced by
Ghaffari and Haeupler [14] (first for planar graphs, then for other graph families [15,19]). Con-
sider a partition {S1; : : : ; SN} of V where every G[Si ] is connected.

DefinitionB.1 (Low-Congestion Shortcuts). An¸-congestion ˛-dilation shortcut ofG, denoted
(¸; ˛)-shortcut, is a set of subgraphs {H1; : : : ; HN} of G such that the diameter of each G[Si ]∪
Hi is at most O(˛) and each edge of G participates in at most O(¸) subgraphs Hi .

Definition B.2 (Shortcut Quality). The shortcut quality SQ(G) of a graph G is the smallest ¸
for which G admits an (¸;¸) low-congestion shortcut.

Definition B.3 (Aggregation Operators). Given a set of b-bit strings {x1; : : : ; xm} and an ag-
gregation operator ⊕ (AND /OR /SUM etc.), their aggregate

L
i xi is defined as the result of

repeatedly replacing any two strings xi ; xj with the (b-bit) string xi ⊕ xj , until a single string
remains.

Definition B.4 (Part-Wise Aggregation). Assume each v ∈ Si has an Õ(1)-bit string xv . The
PA problem asks that each vertex of Si knows the aggregate function

L
v∈Si xv .

The following lemma captures the relation between the PA problem and shortcuts.

Lemma B.5 (Part-wise aggregation via low-congestion shortcuts [14, 15, 19]). If G admits an
(¸; ˛)-shortcut that can be constructed in r rounds, then the PA problem can be solved on G in
Õ(r + ¸+ ˛) rounds. In particular, the PA problem can be solved on G in Õ(r + SQ(G)) rounds,
where r is the number of rounds for constructing shortcuts of quality SQ(G).

Since a planar graphG of hop-diameterD admits shortcuts of quality SQ(G) = Õ(D) [14,15,19]
that can be constructed in Õ(D) rounds we get:

Corollary B.6. The PA problem can be solved on a planar graph G of hop-diameter D in Õ(D)
rounds.
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The Minor-Aggregation model.

Definition B.7 (Basic Minor-Aggregation Model [41]). Given an undirected graph G = (V; E),
both vertices and edges are computational entities (i.e. have their own processor and their own
private memory). Each vertex has a unique Õ(1)-bit ID. Communication occurs in synchronous
rounds. All entities wake up at the same time, each vertex knows its ID, and each edge knows
its endpoints’ IDs. Each round of communication consists of the following three steps (in that
order):

1. Contraction step. Each edge e chooses a value in {0; 1}. Contracting all edges that chose 1
defines a minor G′ = (V ′; E′) of G. The nodes V ′ of G′ are subsets of V called super-nodes.

2. Consensus step. Each node v ∈ V chooses an Õ(1)-bit value xv . For each super-node
s ∈ V ′, let ys =

L
v∈s xv , where ⊕ is a pre-defined aggregation operator. All v ∈ s learn

ys .

3. Aggregation step. Each edge e = (a; b) ∈ E′ learns ya and yb , then chooses two Õ(1)-bit
values, ze;a and ze;b . For each super-node s ∈ V ′, let I(s) be the set of incident edges of
s , then, zs =

N
e∈I(s) ze;s , where ⊗ is a pre-defined aggregation operator. All v ∈ s learn

the same zs .

It was shown by [41] that using low-congestion shortcuts, any minor-aggregation algorithm
can be simulated in the standard CONGEST model. It is easy to check that the consensus and
aggregation steps of the minor-aggregation model can indeed be phrased as PA problems, and
it was shown in [41] that the contraction step can be broken to a series of O(log n) PA problems.
More specifically, it was proved that any efficient (Õ(1)-round) minor-aggregation algorithm
implies an efficient CONGEST algorithm on G if one can solve the PA problem efficiently on G.
Our goal is to show a similar result for the dual graph G∗.

Lemma B.8 (Minor-Aggregation Model Simulation in CONGEST via PA [18,41]). Any fi -round
minor-aggregation algorithm can be simulated in the CONGEST model on G in O(fi · N) rounds
where N is the CONGEST round complexity for solving the PA problem on G.

Recall (LemmaB.5) that the PA problem onG can be solved inN = Õ(r+SQ(G)) CONGEST
rounds where r is the round complexity for constructing shortcuts of quality SQ(G). Therefore,
the above lemma implies that any fi -round minor-aggregation algorithm can be simulated in
the CONGEST model in Õ(fi · (r + SQ(G))) rounds, which is Õ(fi · D) for planar graphs (by
Corollary B.6).

B.2 Minor-Aggregation for the Dual Graph

We prove that any minor-aggregation algorithm A can be compiled into a CONGEST algorithm
that runs in the planar network of communication G, and simulates A on the dual graph G∗.
An application of this, is a CONGEST algorithm for finding the minimum-weight cycle of an
undirected weighted planar graph G. In this case, the algorithm A is a min-cut algorithm, and
so running A on G∗ gives the minimum-weight cycle of G by Fact 3.1 (to be shown later in
this section). Another application is an approximation for maximum st-flow when the graph is
undirected and s; t lie on the same face. In that case, the algorithm A is an approximate single
source shortest paths algorithm (see Section 6 for details and proof).

Since G∗ is not in hand, a straightforward CONGEST simulation on G∗ might suffer a linear
blow-up in the round complexity. Moreover, we cannot directly follow the method of [41] of
compiling the Minor-Aggregation model to CONGEST, since it is unclear how to do so on G∗.
Instead, we combine their method with part-wise aggregations on G∗ via Ĝ.

Using aggregations on Ĝ, aggregations on G∗ were previously done by Ghaffari and Parter
[17] to solve the specific problem of computing a primal balanced separator, thus, their aggre-
gation tasks were problem-specific (aggregations on faces of G and sub-tree sums on G∗). For
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our purposes, we need something more general, so we extend their method to perform general
part-wise aggregations on G∗. In particular, we need to perform aggregations that take into
consideration the outgoing edges of each part Si , something that was not done in [17]. This
specific task required our small modification to Ĝ compared to the one defined by Ghaffari and
Parter.

Lemma B.9 (Part-Wise Aggregations on G∗). Let P = {S1; S2; : : : ; SN} be a partition of V (G∗),
such that, (1) all G∗[Si ] are connected, (2) each vertex on a face f̂ of Ĝ that correspond to a node
f ∈ Si , knows the same ID for Si , (3) each input of a node f is known to the leader vertex of f̂ in Ĝ
and (4) each input of an edge e∗ is known to the two endpoints in Ĝ of the edge ê ∈ EC that maps to
e∗. Then, any aggregate operator over all Si can be computed simultaneously in Õ(D) CONGEST
rounds, such that, the output value of each Si is known to all vertices of G that lie on the faces in
Si .

Proof. The computation is done via aggregations inside Ĝ, in particular, a partition ofG∗ induces
a partition on Ĝ. Notice that Ĝ is planar, is built in O(1) rounds, of diameter O(D) and allows
CONGEST simulation in G with a constant blow-up factor in the round complexity (Properties
1, 2 and 3 of Ĝ). Thus, Ĝ admits Õ(D) quality low-congestion shortcuts in Õ(D) rounds and the
PA problem is solved in Õ(D) rounds on it (Lemma B.5 and Corollary B.6).

A partition P of G∗ induces a partition P̂ on Ĝ as follows. A node f of G∗ maps to a face
f̂ of Ĝ, the part Ŝi ∈ P̂ is defined to contain all vertices on faces f̂ of Ĝ that map to nodes
f of G∗ in Si . All Ŝi are connected and vertex-disjoint, as each two distinct f ; g ∈ G∗ map
to distinct faces f̂ ; ĝ of Ĝ, in addition, f̂ ; ĝ are connected by an EC edge for each edge in G∗

connecting f ; g . Notice that star-center vertices (VS) are not in any part Ŝi , so we define each
to be its own part. Hence, one can see that P̂ = (∪i∈[N]{Ŝi}) ∪ (∪v∈VS{v}) is a partition of
Ĝ into connected vertex-disjoint subgraphs. Thus, to compute part-wise aggregation on P , we
compute part-wise aggregations on P̂ , in which, vertices of VS do not participate as an input to
the part-wise aggregation task and are used exclusively for communication, henceforth, we do
not refer to these vertices.

Initially, all vertices in a part Ŝi know the same ID of Ŝi (equivalently, ID of Si ). Thus, low-
congestion shortcuts can be constructed. Recall that in the PA task, each vertex v in a part of
the partition has an Õ(1)-bit input, and the aggregate operator is computed over all inputs of
vertices which are in the same part. When computing a PA task over nodes of G∗, the input
of f ∈ G∗ is required to be known to some vertex v̂ ∈ Ĝ (w.l.o.g. the leader) on the face of Ĝ
that maps to f (Property 4 of Ĝ). Then, aggregations on all Ŝi shall simulate aggregations on Si ,
where only the input of the leader of f̂ is considered as an input of the dual node f . That is, the
aggregation task considers input from leaders only, and all other vertices of Ĝ participate in the
algorithm just for the sake of communication (their input is an identity element).

If the PA task is over inside-part edges or over outgoing edges, then, each vertex v of Ĝ that is
incident to an edge ê = {u; v} ∈ EC (recall, edges of EC map 1-1 to E(G∗) by Property 5 of Ĝ)),
knows if ê’s input should or should not be considered in the aggregation - as v knows the ID of
the part Ŝi that contains it, and know the ID of Ŝj that contains u in one communication round.
Then, aggregations on all Ŝi simulate aggregations on Si , where any v ∈ Ĝ that participates in
the aggregation considers some of its edges as an input depending on the task and on whether
they are inside-part edges or not. Vertices that have no incident input edge, participate in the
algorithm just for the sake of communication (their input is an identity element).

Finally, after the aggregation task is done, all vertices in Ĝ \ VS know the output value of
their part, which directly translates from Ĝ to G (as in Property 1 of Ĝ). Notice, even though for
any specific node f ∈ G∗ there is no entity in Ĝ that knows all its "local" information (i.e. a list
of its incident edges), we still can compute part-wise aggregations over G∗.

Now, having part-wise aggregations on G∗, we show a sketch of simulating of the minor-
aggregation model in CONGEST via PA (as in [41]), where the input graph is the same as the
network of communication. Then describe the differences with the similar proof for simulation
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on G∗. A vertex of G simulates itself, and the two endpoints of an edge e simulate e . The sim-
ulation consists of three main steps: (1) A few (Õ(1)) part-wise aggregation tasks are executed
to elect a leader for each super node, defining the nodes of the obtained minor, (2) A part-wise
aggregation task is executed to simulate consensus, where a part is G[s] (s is some super-node),
and finally (3) The endpoints of each edge exchange their parts’ consensus values and one more
part-wise aggregation task is performed to compute the aggregation values. A corollary of Lem-
mas B.8 and B.9 is the following theorem.

Theorem B.10 (Basic Minor-Aggregation Model for G∗). Any fi -round minor aggregation algo-
rithm A can be simulated on G∗ within Õ(fi ·D) CONGEST rounds on G, such that, the output of
each node f ∈ G∗ is known to all vertices of the corresponding face f of G, and the output of an
edge e∗ ∈ G∗ is known to the endpoints of e ∈ G.

Proof. Let s = {f1; f2; : : :} be a super-node of G∗ (fi ∈ V (G∗)), the vertices of Ĝ that map
to s are the vertices that lie on the faces f̂i of Ĝ, such that, f̂i maps to the node fi . Then, the
computational power of a super-node of G∗ is simulated by all vertices of Ĝ that map to it. The
computational power of an edge in (a minor of) G∗ shall be simulated by the endpoints of its
corresponding EC edge in Ĝ (Property 5). Often, we will use Lemma B.9 as a black-box for PA
on G∗ in order to implement the simulation.

There are three steps in a minor-aggregate round: contraction, consensus and aggregation.
In fact, there is an implicit initial step at the start of each round for electing a leader of each
super-node. We follow the method of [41] and show how all steps compile down to PA in G∗

and a few simple operations in Ĝ as follows.

1. Electing a leader (and contraction). Recall, in the contraction step, each edge has a value of
zero or one, and considered to be contracted if and only if its value is one. To implement
that, we have mainly two computational tasks. First, merge clusters of nodes of G∗ over
their outgoing edges of value one (clusters eventually define super-nodes of G∗). Second,
assign each cluster an ID that is known to all vertices inside it.

Initially, a cluster is a single node of G∗, then, clusters are grown to match the set of
super-nodes of (the minor of) G∗.

Implementing that, (1) connected components of Ĝ[ER] are detected (those are faces of
Ĝ that map to a node v ∈ G∗), where the ID of a node of G∗ is the minimal ID of a
vertex in Ĝ that maps to it, this is done in Õ(D) rounds by property 4 of Ĝ. Now each
vertex of Ĝ knows in which of these connected components it is (defines a partition on
G∗ where each part is a single node) defining each node as a cluster. Notice that now
Lemma B.9 (PA in G∗) is applicable, due to the fact that all vertices of Ĝ that correspond
to a face f in a cluster, know the same ID for that cluster. Then, (2) we grow clusters.
The merging process follows Boruvka’s classic scheme, where the process breaks down
into O(log n) star-shaped merges, the classic implementation is randomized and similar
to that of [14, 17], however, one can implement this merging process deterministically
with the derandomization of [18]. Namely, the PA task on G∗ here is when each cluster
defines a part in a partition of V (G∗), and the aggregate operator is computed over the
outgoing edges of each cluster, deciding the merges; the operator computed is over labels
of neighboring clusters, where each cluster is labeled as a joiner or a receiver, such that,
joiners suggest merges and receivers accept them (i.e., receivers are the star centers in the
star-shaped merges). Randomly, the labels are decided by a fair coin flip that the leader
of the cluster tosses and broadcasts to the whole cluster, deterministically, the classic
algorithm for 3-coloring by Cole and Vishkin [3] is used (for more details see [18]). At
most Õ(1) merges are repeatedly done until clusters match super-nodes of G∗. In each
phase of merges, all nodes maintain the minimum ID of a node v (of G∗) in the cluster.
The vertex of Ĝ that has that exact ID is considered to be the leader of vertices in Ĝ that
map to the super-nodes represented by the cluster. Notice, there is such a vertex in Ĝ
that has that exact ID since IDs of nodes of G∗ are IDs of vertices in Ĝ that map to them.
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Notice that at the end of each phase Lemma B.9 (PA on G∗) is applicable, thus, applying
it once in each of the Õ(1) phases results with a round complexity of Õ(D) for the entire
process.

The above implements the contraction step, as now all vertices of Ĝ that simulate the
same super node of G∗ have a leader and a shared cluster-unique ID.

2. Consensus. After assigning IDs to clusters, as said, each vertex of Ĝ knows the ID of the
cluster that it maps to, which is used as the part ID in the part-wise aggregation tasks on
G∗. Regarding input, the input is (perhaps unique) per node of G∗, which elected leaders
in Ĝ know, hence, Lemma B.9 is applicable and is used to implement the consensus step.

3. Aggregation. After performing the consensus step, each endpoint in Ĝ of an edge in EC
informs the other endpoint with the consensus value of the cluster that it maps to. Then,
an endpoint v ∈ Ĝ of an edge e ∈ EC that maps to the edge e∗ = (a1; a2) (where a1; a2
are distinct super nodes of G∗), does the following. If v is in the cluster (that maps to)
ai , v thinks of the edge e as if it was assigned the value/weight of ze;ai , and an identity
element otherwise. Then, the aggregate operator is computed over the outgoing edges of
super-nodes, where the weight ze;ai is considered for the edge e in the cluster (that maps
to) ai . Again, the aggregation is done by Lemma B.9. Finally, the two endpoints of each
edge know the output of the aggregate operator, thus, they can choose zero or one for
that edge, and we are ready for the next round.

Notice that after the simulation finishes, each vertex in a cluster knows the output value of its
cluster’s corresponding super-node. Hence, by definition of Ĝ (see Property 1 of Ĝ), for each
f ∗ ∈ G∗ its output is known to all vertices on the corresponding face f of G, and the value of
an edge e∗ that maps to e ∈ Ĝ is known to e’s endpoints in Ĝ as specified in the statement of
Lemma B.9.

The extended model. We now define the extended Minor-Aggregation model as presented
in [18]. Then, we show that it can be simulated in G∗.

DefinitionB.11 (ExtendedMinor-AggregationModel [18]). Thismodel extends the abovemodel
to work on virtual graphs that have a small number of virtual nodes without strongly affecting
the round complexity. In particular, (1) arbitrarily connected Õ(1) virtual nodes can be added
to the network, and (2) Õ(1) nodes of the network, each can be replaced with an arbitrarily
connected virtual node.

A virtual node is a node that does not exist in the input network (has no computational
power) and must be simulated by nodes that do actually exist. Adding a virtual node vvirt
means to decide to which other (virtual and real) nodes it is connected. Replacing a node v
of the network with a virtual node vvirt , means that v does not participate in computations,
instead, vvirt (that might be connected to different neighbors than v ) is simulated by other
(than v ) non-virtual nodes of the network. An edge that is connected to a virtual node is a
virtual edge. The obtained graph from the input network G by adding virtual nodes is called a
virtual graph and denoted Gvirt . All non-virtual nodes of Gvirt are required to know the list of
all (IDs of) virtual nodes in Gvirt . A virtual edge connecting a non-virtual u ∈ Gvirt and a virtual
v ∈ Gvirt is only known to u. A virtual edge between two virtual nodes in Gvirt is required to
be known by all non-virtual nodes of Gvirt .

In our context, a node of the graph is a face of Ĝ, thus, all vertices on a face f̂ of Ĝ that maps
to a node f of G∗ shall know the (IDs of) all virtual nodes, virtual edges connecting f to virtual
nodes of G∗

virt and virtual edges connecting two virtual nodes. Notice, this is feasible, as there
are at most Õ(1) virtual nodes, thus, there is a total of Õ(1)-bits that shall be known to vertices
of f̂ . We now want to simulate a minor-aggregation algorithm A on G∗

virt that has at most O(˛)
virtual nodes. That is, we want to (1) represent (store) the obtained network G∗

virt distributively
as defined above, and (2) run any minor aggregation algorithm A on G∗

virt with O(˛) blow up
factor in the minor-aggregate round complexity of A.
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Given the additional O(˛) virtual nodes and virtual nodes that replace real nodes as input -
that is, real nodes that are incident to a virtual node know its ID, and a real node that shall be
replaced with a virtual node, knows itself as such. Ghaffari and Zuzic [18] showed the following.

Lemma B.12 (Lemma 15 and Theorem 14 of [18]). There is an O(˛) minor-aggregation rounds
deterministic algorithmA1 that stores a virtual networkGvirt . If multiple edges connect some virtual
node vvirt with some neighbor, Gvirt will contain a single edge with a weight equal to the sum (or
any aggregate operator) of such edges in G.

Lemma B.13 (Lemma 15 and Theorem 14 of [18]). Let Gvirt be a virtual graph obtained from a
connected graph G, and A be an O(fi)-round minor-aggregation algorithm. Then, there is a minor
aggregation algorithm A2 on G that simulates A on Gvirt within O(fi˛) minor-aggregate rounds.
Upon termination, each non-virtual node v learns all information learned by v and all virtual nodes.
The output of a virtual edge is known to all nodes if both of its endpoints are virtual, otherwise, its
output is only known to its non-virtual endpoint.

Our proof would make a black-box use of Lemma B.13, however, we provide a sketch of the
proof of [18] just to make things a bit clearer (for the full proof see Theorem 14 of [18]). (1 -
Contraction) Contract non-virtual edges that shall be contracted, then, in O(˛) rounds, each
super node shall learn the IDs of virtual-nodes it is connected to, via computing an aggregate
over its incident virtual edges. Then, the super-nodes’ IDs get computed, (2 - Consensus) At
first, all super-nodes that do not contain any virtual node perform their consensus step, then, we
iterate over all virtual nodes and compute the consensus of the super-node they are contained
in, such that, all nodes of the graph know the output value of each super node. Finally (3 -
Aggregation) A real edge simulates itself, a virtual edge that has one non-virtual endpoint node
is simulated by that endpoint and a virtual edge that the two of its endpoints are virtual is
simulated by all nodes. The z value of each edge is computed and an aggregation is performed
as in the consensus step.

Now we move to simulating the extended minor-aggregation model to run on G∗, which
is a direct corollary of Lemmas B.12, B.13 and Theorem B.10. Let G∗

virt be a virtual graph that
is obtained from G∗ by adding and replacing nodes with up to ˛ arbitrarily connected virtual
nodes, then,

Theorem B.14. Any fi -round minor-aggregation algorithm A can be simulated on G∗
virt within

Õ(fi˛D) CONGEST rounds of communication on G, such that, the output of each non-virtual
f ∈ G∗

virt is known to all vertices on the corresponding face f of G, and the output of each virtual
fvirt ∈ G∗

virt is known to all v ∈ G. The output of a virtual edge e is known to all vertices of G if
both of its endpoints are virtual in G∗

virt , otherwise, e’s output is only known to vertices of G that
lie on the faces that correspond to e’s non-virtual endpoint.

Notice that adding virtual nodes and edges to G∗ might violate planarity, but that is not a
problem, as these virtual nodes and edges are simulated by (on top of) the same underlying net-
work Ĝ that is used to simulate the basic model, without making any changes on it. In particular,
this extended model, is simulated by the basic model unconditionally, i.e., Lemma B.13 and B.12
constitute a universal algorithm that runs in the basic model for simulating the extended model,
so we simply apply that algorithm on G∗ using Theorem B.10.

Dealing with parallel edges in G∗. We now address the problem of G∗ being a non-simple
graph, i.e. has self-loops and parallel edges. This might be a problem due to the fact that many
algorithms assume their input graph is simple. We provide a procedure for deactivating parallel
edges of G∗: Consider two nodes u; v of G∗ that are connected by multiple edges e1; e2; : : : ; em.
We deactivate all these edges except for one (called the active edge). If edges are assigned a
weight w(·), the active edge gets assigned a new weight ⊗iw(ei ), where ⊗ is a predefined
aggregation operator. E.g., ⊗ is the summation operator if one is interested in computing a
minimum cut, and the minimum operator if one is interested in computing shortest paths.

One cannot straightforwardly use part-wise aggregations on G∗ in order to do the above,
since a node of G∗ might be connected to many nodes, and the required task is an aggregation
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for each neighbor rather than one aggregation over all incident edges, this may lead to high
congestion if all nodes do those aggregations naively and simultaneously. We use the the fact
that G∗ has a small arboricity of ¸ = 3 (the arboricity of a graph is the minimal number of
forests into which its edges can be partitioned) to obtain a minor-aggregation procedure that
requires Õ(¸) minor-aggregate rounds for orienting G∗ edges, so that each node has at most a
constant out-degree (we count all parallel edges between two nodes as one), which we utilize
for load balancing the aggregation tasks. We then apply that procedure on G∗ in a black-box
manner using Theorem B.14, resulting with an Õ(D) CONGEST algorithm on G simulating the
procedure on G∗. We henceforth assume that G∗ is a simple graph. Formally, we obtain the
following lemma.

LemmaB.15 (Deactivating parallel edges and self-loops). There is aminor-aggregation algorithm
that runs in Õ(¸)-rounds and deactivates parallel edges and self-loops in an input graph of arboricity
¸, assigning each active edge (u; v) a weight equivalent to a predefined aggregate operator over the
weights of all edges with the same endpoints.

Let ¸ be the arboricity of the input graph, we implement an algorithm of [1] in the minor-
aggregation model that runs in Õ(¸) minor-aggregation rounds and produces such an orienta-
tion. Since the arboricity of G∗ is three (counting all parallel edges between two nodes as one),
we get our constant out-degree orientation.

Proof. First, we omit self loops, each edge whose endpoints have the same ID, deactivates itself,
this is done in only one minor-aggregate round. Next, we describe [1]’s algorithm and then
describe how to implement each step in the minor-aggregation model. At the start of the algo-
rithm, all nodes are white. For each node, there is a time where it becomes black, the algorithm
terminates when all nodes turn black. The algorithm produces a partition of the node’s set into
‘ = ⌈2 log n⌉ parts, H1; : : : ; H‘. Upon termination, each node knows the part Hi that contains
it. Moreover, the following orientation of edges, results with an orientation with at most O(¸)
outgoing edges for each nodes (counting parallel edges between two nodes as one). The orienta-
tion is as follows. An edge e = (u; v) where u ∈ Hi and v ∈ Hj s.t. i < j , gets oriented towards
v . Otherwise, if both u; v belong to the same part, e is oriented towards the endpoint with a
greater ID.

The algorithm for computing such a partition is simple. Let v be a (super-)node, then, for a
phase i ∈ [‘]: If v is white with at most 3¸ white neighbors, (1) make v black, (2) add v to Hi
and (3) notify v ’s neighbors that v has turned black and has joinedHi . This is implemented this
in the minor aggregation model is as follows.

1. We want to know for each node v if it has at most 3¸white neighbors. We do that with at
most 3¸ consensus and aggregation steps. That is, a node v computes an aggregate over
IDs and labels (black/white) of its neighboring nodes, iteratively countingwhite nodes that
were not already counted by v in the current phase, then the ID of that node that just got
counted is broadcast (inside the super node v ). Thus, given the previously broadcast IDs
one can count a new node that was not already counted and avoid counting nodes that
were counted already. If v counts more than 3¸ values it stops counting.

2. If the super-node v has counted 3¸ neighbors, via a consensus step, this information (v
shall turn black) is broadcasted to all inside v . I.e., edges incident to v learn this informa-
tion, and v ’s neighbors learn that v is black and belongs to Hi .

After the algorithm terminates, each edge knows to orient itself as was described earlier.
Each node now has at most ¸ outgoing edges (counting parallel edges as one). This procedure
terminates in Õ(¸) rounds. Note, the orientation of an edge can be decided locally by the two
vertices in the communication graph which simulate that edge.

Deactivate parallel edges. Assume edges are assigned unique Õ(1)-bit IDs in Õ(1) rounds. Hav-
ing self-loops deactivated, we now use the orientation to deactivate parallel edges. Each node
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deactivates its outgoing parallel edges in O(¸) rounds. First, enumerate outgoing edges from 1
to 3¸, where all edges that connect v to the same neighbor have the same number, this is done
in O(¸) rounds, in an iterative way similar to that of counting neighbors. Then, for all i ∈ [3¸],
for edges with number i (1) An aggregation step over their weights is computed, (2) An edge is
chosen to be the active edge by another aggregation step (say the minimum ID one) and other
edges deactivate themselves.

This process terminates in O(¸) rounds.

Note, each edge in G∗ can be identified by its primal endpoints IDs (as the primal graph is
simple), we consider this to be the edge’s ID and is known locally by the edge’s endpoints in the
communication graph Ĝ.

B.3 Weighted Girth

In this subsection we show how to compute the weighted girth (i.e. the minimum-weight cycle)
of an undirected weighted planar graph G. We do this by exploiting the result of the previous
subsection for simulating a minor-aggregate weighted minimum-cut algorithm on G∗, which
(by Fact 3.1) gives the weighted girth of G.

Recently, a universally optimal 14 algorithm for the exact weightedminimum cut problemwas
discovered by Ghaffari and Zuzic [18], generalizing a breakthrough of Dory, Efron, Mukhopad-
hyay and Nanongkai [5]. Their algorithm is formulated in the extended minor-aggregation
model.

Theorem B.16 (Minor-aggregate exact min-cut, Theorems 12, 18 and 40 of [18]). Let G be an
exp(Õ(1)) edge-weighted input graph. There is a randomized Õ(1)-round minor aggregation algo-
rithm that computes the weight of the minimum weight cut C of G w.h.p. Upon termination, the
value of C is known to all vertices.

Notice, applying Theorem B.16 above on G∗ already allows us to find the weighted girth of
our planar network. In [18]’s work, the focus was on finding the weight of the minimum cut, but
it can be easily extended to find also the edges of the minimum cut. Let T be a spanning tree
of G and C = (S; V (G) \ S) be a cut of G, then, C is, respectively, (one-) two-respecting of T if
and only if there are exactly (one) two edges of T that cross the cut. Given such a tree, where its
edges that cross the cut are known, in O(1) minor aggregation rounds, one can mark all edges
of the cut.

Lemma B.17 (Mark Cut). Let G be any network, T a spanning tree of G and C any cut that one-
(two-) respects T , defined by edges e1; e2 ∈ T (possibly e1 = e2). Given G, assuming that edges of
T and the edges e1; e2 know themselves, there is anO(1) deterministic minor-aggregation algorithm
that marks all C edges in G.

Proof. Consider the tree T , we start by (a contraction step) contracting all T edges except for
e1; e2, which results in a minor G′ of G with at most three super nodes. Next, each super-node
shall compute its cost - defined as the number of edges from e1; e2 that are incident to it. That
is done by an aggregation step, each edge in G′ chooses a weight of zero, except for e1; e2, each
chooses a weight of one, and an aggregation step is performed with the sum operator, resulting
with the sum of exiting edges which is the cost of that super node. Now, the ID of the maximum-
cost node is computed and broadcast to all the graph - by contracting all the graph into a single
super-node s , initiating the input of each v ∈ s to the ID and cost of s ′ ∈ G′ s.t. v ∈ s ′, then
computing the maximum by a consensus step (breaking ties arbitrarily). Finally, we return to
consider G′ as our graph (we undo the last contraction that we did). Notice, edges of G′ know
the ID of the maximum-cost node, so, they mark themselves if only if they are incident to it.

14An algorithm that has an optimal round complexity (up to polylog n factor) on each specific network topology,
conditioned on an efficient construction of low-congestion shortcuts in that topology. For an extended discussion,
see [18, 40, 41].
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The round complexity is clear. The correctness is as follows. G′ is a graph that is composed
of two or three super-nodes, each super-node corresponds to a connected component of T \ C,
each induces a connected subgraph of G, such that, one of which is incident to all edges e1; e2 in
G, that subgraph defines one side of the cut (denoted S) and the other (at most two) subgraphs
define the other side of the cut. Since S is incident to e1; e2 it has the highest cost, thus, all
edges exiting S in G get marked, these are exactly the edges of G that cross the cut, hence, all
edges of C.

The algorithm of [18] (Theorem B.16), like many min-cut algorithms (both centralized and
distributed, see [5, 11, 12, 14, 23, 24, 31, 42]) consists of three main steps: (1) pack spanning trees
of G, (2) compute a minimum 1-respecting cut of each packed tree and (3) compute a minimum
2-respecting cut of each packed tree, the final output is the overall minimum. As said, upon
termination the value ofC is known to all nodes, in addition, it is implied in [18] that the edges of
a spanning tree T ofG that C (1-) 2-respects know themselves, in particular, edges in T ∩C know
themselves as such. Using Theorem B.14 on G∗ in order to apply the exact min-cut algorithm
(Theorem B.16) and to apply the procedure for marking cut edges (Lemma B.17), we get an
undirected planar weighted girth algorithm:

Theorem 1.5 (Planar Weighted Girth). There is a randomized distributed algorithm that given an
n-vertex undirected weighted planar network G with hop-diameter D, computes the weighted girth
(and finds a corresponding cycle) w.h.p. in Õ(D) rounds.

Proof. First we make G∗ simple by applying Lemma B.15 for deactivating parallel edges, the
(only) active edge left between any two nodes u; v , gets assigned a weight equal to the sum of
weights of edges with the same endpoints in G∗. Then, we compute the minimum cut C of the
dual network G∗ by applying Theorem B.14 to simulate [18]’s minor-aggregate exact min-cut
algorithm (Theorem B.16) on G∗. Afterwhich, we can assume that we have the min-cut C value,
thatC is (1-) 2-respecting to some tree T , and that each edge in T alongwith T ’s edges e1; e2 that
cross the cut know themselves (e1 = e2 in case C is 1-respecting). Now we use Theorem B.14 for
applying Lemma B.17 in order to mark the edges of C in G∗. By the cycle-cut duality (Fact 3.1),
the weight of C is the weight of G’s minimum cycle and the edges of C constitute a minimum
weight cycle in G.

We clarify a low-level detail regardingmarking the edges ofC. Recall, theminor-aggregation
model simulation on G∗ is done via the face-disjoint graph Ĝ. Since the edges of C are edges
of G∗, each edge e∗ of them maps to exactly one edge ê of Ĝ (Property 5), which itself maps to
the edge e ∈ G (the dual of e∗), that is, indeed, marking edges of G∗ marks the corresponding
edges of G. Notice, the marked edges ê ∈ Ĝ might not form a cut nor a cycle in Ĝ but that is
fine as it is only a communication tool and not our input graph for the problem.

C Deferred Details and Proofs from Section 5.1.3

To implement our labeling algorithm, each vertex should know the IDs of all faces (face-parts)
that contain it in every bag X ∈ T (i.e., the list of nodes f ∈ X∗ it participates in). After
(distributively) learning the nodes of X∗, we also learn its edges. That is, for each edge (u; v),
its endpoints should know the corresponding edge in the dual bag X∗ (if exists). I.e., the IDs of
the two faces (face-parts) in X containing the edge, as well as the weight and direction (if any)
of the edge in X∗. We next explain how all vertices learn this information by keeping track of
the edges of G along the decomposition. As before, it will be convenient to think of an edge as
having two copies (one for each face containing it). To simplify, in this section we refer to these
as edge copies (rather than darts) since there is no need to maintain the dart orientation (every
vertex that stores an incident edge e = (u; v) stores both its copies e1; e2). We identify e1 as the
first copy of e relative to v , and e2 as the second copy of e relative to v (for the other endpoint
u, e2 is its first copy).
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Lemma 5.10. In a single round, each vertex v ∈ G can learn, for each incident edge copy, a list of
the bags X ∈ T that contain it.

Proof. We wish to learn, for each copy of an edge the ID of the single bag in each level of T
that contains it. For the root G of T , all vertices know that all their incident edges belong to G.
For a general bag X , we assume each vertex v ∈ X knows which of its incident copies of edges
belong to X , and we show how to learn this for every child bag of X that contains v . If v is in
only one child bag Xi of X (v knows it is in Xi ), then v ’s incident edges in Xi are the same as
in X . Otherwise, v must be a vertex of SX (and by the BDD properties, v knows this). For each
child bagXi that contains v , v knows two incident edges a; b, such that, its incident edges inXi
are exactly a; b and all edges Ev (Xi ) strictly between a and b in v ’s clockwise order. Thus, each
child bag that contains v is identified with a pair of ordered edges incident to v . Observe that
one of those edges might be the virtual edge eX (if v is an endpoint of eX ). Though eX is not an
actual edge of X , it (and its embedding) is known to its endpoints by the BDD construction. To
conclude, for any copy e ′ of an edge e incident to v , v can learn if that copy is in Xi by checking
if e ′ = a2 (second copy of a), or e ′ = b1 (first copy of b), or e ′ ∈ Ev (Xi ).

We next show how for all bagsX , every vertex v ∈ X learns the IDs of faces (face-parts) that
contain it and for each of its edge copies e ′ in X the ID of the face (face-part) in X containing
e ′. We begin by showing this for X = G and then for a general bag X .

Lemma 5.11. There is a Õ(D)-round distributed algorithm that assigns unique IDs to all faces of
G. By the end of the algorithm, each vertex v ∈ G learns a list (of IDs) of faces that contain it.
Moreover, v learns for each incident copy e ′ of an edge e in G the face ID of the face of G that
contains e ′.

Proof. We first assign unique O(log n)-bit IDs to the faces of the graph G and let all vertices
learn the IDs of all the faces of G that contain them. We can do so in Õ(D) rounds by using
Property 4 of the face-disjoint graph (Section 3). Once a vertex v knows all faces containing it,
it remains only to assign those faces to the copies of edges incident to v (which is done locally).

Recall, each edge e of G has two copies e1; e2 in the set of edges ER of Ĝ, and each vertex
v of G has deg(v) many copies vi in Ĝ \ VS . Moreover, Ĝ[ER] is a collection of disjoint cycles,
each corresponding to a face of G. Let e = (u; v) ∈ E(G) be the i ’th and j ’th edge in u’s and v ’s
local embedding (in G), respectively. Then, the copies ui+1; vj are connected by an edge in ER
identified with the copy e1 of e , and the copies ui ; vj+1 are connected an edge in ER identified
with the copy e2 of e (relative to v ). It is important that e1 is the first copy of e relative to v
(breaking symmetry between the two copies of an edge), as copies vi of v are ordered according
to v ’s local embedding, this way, the first copy of e and the second copy of its predecessor
edge in the ordering of v participate in the same face. This is the same order we keep in other
algorithms (lemmas) for consistency. We assign e1 (e2) the component (face) ID that contains
them in Ĝ[ER]. Since u; v in G simulate all their copies in Ĝ, each of them knows for each of
e1; e2 the connected component ID in Ĝ[ER] it participates in. This is the ID of the face that
corresponds to that component. Thus, for each of e1; e2, both u and v learn the correspondence
to faces of G.

Lemma 5.12 (Distributed Knowledge of Faces). There is a Õ(D)-round distributed algorithm
that assigns unique Õ(1)-bit IDs to all faces and face-parts in all bags X ∈ T . By the end of the
algorithm, each vertex v ∈ G learns a list (of IDs) of the faces and face-parts it lies on for each bag
X that contains it. Moreover, v learns for each incident copy of an edge e ′ the (ID of) the face or
face-part that e ′ participates in for each bag X that contains e ′.

Proof. Throughout, we assume that for each X ∈ T we already computed a BFS tree Tx of X
rooted at an arbitrary vertex of X . The subscript is dropped when X is not ambiguous. This can
be done in Õ(D) rounds using the properties of the BDD. The algorithm described in the proof
is given in a high-level pseudocode by Algorithm 2.
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Algorithm 2: Distributed Knowledge of Faces
Input: A BDD T of a D-diameter network G and a BFS tree TX for each X ∈ T .
Result: Each vertex v of G learns for each incident edge copy the list of faces and

face-parts that contains it in each bag X ∈ T that contains it.
1 Each vertex learns for each of its incident edge copies the list of bags that contains it

(Lemma 5.10);
2 Each vertex learns for each of its incident edge copies the list of faces that contain it in

bag X = G (Lemma 5.11);
3 forall bags X of level ‘ ∈ [2;Depth(T )], in parallel, do

/* Global step */
4 Detect the critical face (face-part) of X if exists and broadcast a message on T

notifying all vertices that it shall be partitioned;
5 For each edge that participates in a face-part of X , broadcast the ID of the face-part

and the child bag that contains it to the root of T ;
6 The root of T broadcasts to all vertices of X the IDs of face(-parts) that shall be

partitioned in between child bags of X∗;
/* Local Step */

7 Each vertex of X learns locally for each incident edge copy the new ID of each
face(-part) that contains it in each child bag of X∗ that contains it (if any);

8 end

First, we apply Lemma 5.10 in order for each vertex to learn for each incident edge copy the
bags that contain it in the decomposition. Then, forX = G we apply Lemma 5.11 assigning each
copy of an edge a face in G. For a general bag X , we assume we have the required information
and show how to maintain it for child bags of X . For a face or face-part f that is contained in
X and is entirely contained in one of its child bags Xi , endpoints of edge copies in f inherent
the ID of f from X . However, in the case where f gets partitioned between child bags of X , we
need to identify each new face-part and assign it a unique ID.

We work in two steps. First, a global broadcast over X is performed in order to detect the
faces and face-parts ofX that shall be partitioned. Then, a local step of assigning IDs to the new
resulting face-parts in the child bags of X .

1. Global step. In this step we detect the face of G and all face-parts f inX to be partitioned (if
any). We start with the unique (by Lemma 5.3) critical face (or face-part) ofG inX . The endpoints
of eX lie on f , are on SX and know if eX is virtual or not (if it is, then f gets partitioned). Therefore,
f can be detected by the endpoints u; v of eX by the BDD construction (i.e., using the algorithm
of [17] that [26] use for computing a separator). More concretely, the edge eX is embedded
between two consecutive incident edges a; b in the clockwise embedding of v . Copies a2; b1 (in
that order) of those edges define the face f s.t. a; eX ; b appear in that order in the embedding of
v (analogously for u). Additionally, an arbitrary endpoint of eX broadcasts the ID of the critical
face (face-part) on T saying it shall be partitioned as well (if it does).

After identifying the critical face, we move on to identifying the other face-parts that shall
be partitioned. We exploit the small (logarithmic) number of face-parts in X (Lemma 5.3) for
performing the following broadcast. Each vertex v on a face-part f ofX knows (its incident edge
copies in) f . Then, v upcasts ID(f ); ID(Xi ) to the root of the BFS tree T of X , where Xi is a
child bag that contains edge copies of f incident to v (the correspondence between copies of
edges and child bags is known from Lemma 5.10). We need to be careful in this upcast not to
suffer unnecessary congestion, as a face-part might contain many vertices and more than one
connected component. So, if some vertex of X receives more than one child bag ID for the same
face-part f , it stops passing messages of f , and upcasts only one special message saying that f
shall be partitioned. The upcast is performed in a pipelined method. Finally, after the root stops
receiving messages, it broadcasts the IDs of all face-parts that shall be partitioned.

51



2. Local step. For each face or a face-part f that is not partitioned, the vertices lying on f
consider the ID of f to be the same as from the parent level and remember that it also exists
as a whole in the child bag it is contained in. For a face or a face-part f that is partitioned, the
vertices v of f know for each incident copy e ′ of an edge that belongs to f in which child bag Xi
is it contained (Lemma 5.10). Thus, v locally learns (ID(f ); ID(Xi )) as the ID of the face-part
that contains e ′ in Xi . We get that all vertices on a part of f in some child bag of X know the
same ID for that part.

We claim that this terminates within Õ(D) rounds. First, the IDs of face-parts are of size
Õ(1) since (1) by Lemma 5.11 the faces in G are assigned IDs of size O(log n), (2) by the con-
struction of the BDD in [26], the ID of a child bag is of size Õ(1) (and there are O(log n) levels
of T ), and (3) a face-part in a level ‘ is assigned the ID of a face (or face-part) of level ‘− 1 after
appending O(log n) additional bits. Second, by Lemma 5.3 the number of face-parts in X is at
mostO(log n) and there is at most one critical face (or face-part). Meaning, any vertex shall pass
at most O(log n) messages of size Õ(1) throughout the course of the procedure (one message
for the critical face and one per face-part of X). Finally, the BFS tree used for broadcast has a
diameter ofO(D log n) (Property 5 of the BDD), and all bagsX can run the procedure in parallel
with a constant factor overhead (Property 7 of the BDD).

Lemma 5.14. Let e = (u; v) be an edge in a bag X . In one round after applying Lemma 5.12, the
endpoints of e learn the corresponding dual edge e∗ in X∗ (if exists).

Proof. Recall that by the definition of the dual bag, there is a dual edge e∗ between two faces or
face-parts f1; f2 of X (on both sides of e) iff the two copies of e are contained in X (i.e., none of
them is on a hole). By invoking Lemma 5.12 and Lemma 5.10 v can know which of its incident
edges e has both copies in X , and the ID of the face (face-part) each copy participates in. The
endpoints of such edges e can compute the correspondence locally as follows. Consider such
an edge e incident to a vertex v ∈ X and let f1; f2 be the faces containing the first and second
copies of e (relative to v ), respectively. Then, the corresponding dual edge is directed from f1
to f2 when e’s direction in G is outwards v . Notice, this definition is consistent (independent
from v ) and relies only on the direction of e and on faces it participate in. I.e., the first copy of
e relative to v is the second copy of e relative to u (and vice versa). If G is undirected, then dual
edges are undirected as well. If G is weighted, then, e∗ has the same weight as e .

D Deferred Details and Proofs from Section 6

D.1 Deferred Details and Proofs from Section 6.1

Theorem 1.2 (Exact Maximum st-Flow in Directed Planar Graphs). There is a randomized dis-
tributed algorithm that given an n-vertex directed planar network G with hop-diameter D and in-
tegral edge-capacities, and two vertices s; t , computes the maximum st-flow value and assignment
w.h.p. in Õ(D2) rounds.

Proof. The algorithm follows the centralized algorithm of Miller and Naor [30]. It works by
performing a binary search on the value – of the maximum st-flow. In each iteration, – units of
flow are pushed along a (not necessarily shortest) s-to-t path of darts P . If this does not violate
the capacity of any dart in P then it is a feasible flow and we conclude that the maximum st-
flow is at least –. Otherwise, a residual graph is defined by subtracting – from the capacity of
every dart in P and adding – to their reverse dart (in the beginning every edge e of capacity
c(e) corresponds to two darts - one in the direction of e with capacity c(e), and its reverse with
capacity zero). Notice that residual capacities may be negative for the darts of P . To fix this,
an arbitrary face f of G is chosen and SSSP (with positive and negative edge lengths) in G∗

is computed from f . Miller and Naor [30] showed that if a negative cycle is detected then we
can conclude that the maximum st-flow in G is smaller than –, and otherwise it is at least –.
Moreover, in the latter case, the following is a feasible st-flow assignment of value –. For every
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dart d ∈ G that maps to d∗ = (g; h) ∈ G∗: the flow on d is set to dist(f ; h) − dist(f ; g) + – if
d ∈ P , to dist(f ; h)− dist(f ; g)− – if rev(d) ∈ P , and to dist(f ; h)− dist(f ; g) otherwise.

The path P can be found in O(D) rounds (notice that P is a directed path of darts but does
not need to be a directed path of edges in G), and the dual SSSP computation is done in Õ(D2)
rounds as we showed in Section 5 (with a slight modification that we show next). Since – is
assumed to be polynomial, all iterations of the binary search are done in Õ(D2) rounds. The
flow assignment on the edges of G is given by the assignment to its darts, that can be deduced
locally from its endpoint vertices by Property 14 of the BDD (since for a dart d = (u; v) ∈ G
with d∗ = (f ; g) ∈ G∗ the endpoints u; v belong to both faces f and g in G).

Notice however, the SSSP algorithm on G∗ from Section 5 uses darts for gaining the neces-
sary distributed knowledge for it to work, however, its output is an SSSP tree of edges and not
darts. Thus, we need to show that it can output an SSSP of darts, i.e., to consider the two darts of
an edge (with weights as described earlier) when computing the labeling and the shortest paths
tree. To do that, we slightly modify the input network and use the algorithm as a black-box on it.
We work with the network G′ obtained from G by adding the reversal of each edge to the graph,
such that, the two copies of an edge are ordered one after another in the embedding. The rever-
sal of an edge gets assigned a capacity of zero. It is not hard to see that G′ can be constructed
and embedded in the plane (assuming G is embedded) without any need for communication,
and that each CONGEST round on G′ is simulated within two rounds on G.

The algorithm runs as follows, G′ is constructed, an s-to-t path P in G′ is found in O(D)
rounds via a breadth first search starting at s , then, – = 1 (at first) units of flow are pushed
on P , capacities of P edges and their reversals are (locally) changed as explained earlier, then
the algorithm for an SSSP tree of G′∗ from Lemma 2.2 is activated with the source f being the
minimum ID face of G′ (f can be known in O(D) rounds by aggregating on G′ the IDs of its
faces, which are known by Property 13 of the BDD), thus, each node v in G′ knows the distance
from f to each of the (dual nodes mapped to) faces it lies on, thus, v can learn the flow value for
each of its incident edges. Notice, in each iteration, each vertex in G′ knows locally the current
value of –, depending on whether or not it has received a message reporting a dual negative
cycle from the Dual SSSP algorithm. Finally, indeed by the end of the algorithm, each vertex v
of G knows the st-flow value in G and (locally) a corresponding flow assignment to its incident
edges (the assignment induced by G′).

D.2 Deferred Details and Proofs from Section 6.2

Theorem 6.1 (Distributed Exact Directed Minimum st-Cut in Planar Graphs). Given a directed
planar graph G with non-negative edge weights and two vertices s; t , there is a Õ(D2) round ran-
domized algorithm that finds the minimum st-cut w.h.p.

Proof. At first, we use Theorem 1.2 to compute a maximum st-flow f in G in Õ(D2) rounds.
To mark the minimum st-cut edges we work in the residual graph of G with respect to f . The
residual graph R w.r.t. a flow assignment f of a network G, is the network where each edge has
a weight equivalent to its capacity minus the flow sent on it by f . By [7], a minimum st-cut
is a cut consisting of the s-most saturated edges, i.e, the saturated edges which have no other
saturated edge that precedes them in any s-to-t path that contains them. In R, those are zero
weighted edges. We denote this cut by

−→
‹ (S; V \ S), where S (respectively, V \ S) is the side of

the cut containing s (t). To find those edges, we compute an SSSP tree from s in R′, where we
modify the edge weights ofR′ as follows: A saturated edge gets assigned a weight of one and all
other edges, a weight of zero. Note, finding the saturated edges in G is equivalent to finding the
s-most edges whose weight is zero in R, which is equivalent to finding the s-most edges whose
weight is one in R′, thus, we work in R′. After computing an SSSP tree from s in R′, we decide
that an edge (u; v) is in the cut, iff its weight is one in R′, dist(s; u) = 0 and dist(s; v) = 1.
Those are exactly the saturated s-most edges, for the following reasons: (1) (u; v) is saturated
since its weight is one in R′, (2) it is the s-most saturated edges on any path starting at s that
contains it, for otherwise dist(s; u) > 0. Notice, the samemethod allows to compute the vertices
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of S (equivalently, V \ S). Namely, a vertex u is in S, if and only if u has dist(s; u) = 0. For
otherwise, dist(s; u) > 0 which means it is further from a saturated edge that lies on some path
starting at s , meaning it is on the other side of the cut (otherwise, it would contradict that the
cut computed is composed of s-most saturated edges).

The endpoints of an edge know if it is saturated or not, since they know its weight and flow
value, thus, R′ can be constructed in one round. To compute a directed SSSP tree from s , we
borrow an exact SSSP algorithm of Li and Parter’s [26] for planar graphs, which runs in Õ(D2)
rounds (Theorem 1.6, Lemma 5.3 in their paper). Although it is stated for the undirected case in
their paper, it can be easily adapted for the weighted case as noted by Parter in [34].
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