
JPEG 2000:
March 1997: JTC 1.29.14 (ISO/IEC

15444-1 or ITU-T Rec. T.800

Nimrod Peleg
Nov. 2001

Why a new standard?
• Superior low bit-rate performance: below 0.25 bpp
• Lossless & lossy compression under one environment
• Large images: karger than 64k x 64k
• Single decompression architecture (current JPEG has

44 modes)
• Transmission in noisy environments
• Computer generated imagery
• Compound documents compression

A unified system
• Intended to create a new image coding

system for different types of still images:
bilevel, gray level, color, multi-component.

• Different characteristics: natural images,
scientific, medical, remote sensing, text,
rendered graphics, etc.

• different imaging models: (client/server,
real-time transmission, image library
archival, limited buffer and bandwidth
resources, etc.

The Target
• Low bit-rate operation with rate distortion

and subjective image quality performance
superior to existing standards, without
sacrificing performance at other points in
the rate-distortion spectrum.

• Part I is an international standard since
December 2000.

Main Features 1/2

• Superior low bit-rate performance: below
0.25 b/p for highly detailed gray scale images

• Continuous-tone and bilevel compression:
various dynamic ranges (e.g., 1 to 16 bits)

• Lossless and lossy compression: with
embedded bit stream and allow progressive
lossy to lossless buildup.

• Random access and processing

Main Features 2/2

• Progressive transmission by pixel accuracy
and resolution

• Region-of-interest (ROI) coding
• Open architecture
• Robustness to bit errors
• Protective image security (watermarking,

labeling, stamping, or encryption)

JPEG 2000 Compression Engine

Encoder and Decoder general structure

System Overview 1/2
• The source image is decomposed into

components.
• The image components are (optionally)

decomposed into rectangular tiles.
• A wavelet transform is applied on each tile:

different resolution levels.
• The subbands of coefficients are quantized

and collected into rectangular arrays of
“code blocks.”

System Overview 2/2

• The bit planes of the coefficients in a code
block are entropy coded.

• certain regions of interest can be coded at a
higher quality than the background.

• Markers are added to the bit stream to allow
for error resilience.

The Pre-Processing

Tiling, dc-level shifting, color transformation (optional) and DWT
of each image component.

Pre-Processing I : Image Tiling
• Image is partitioned into rectangular non-

overlapping blocks which are compressed
independently.

• All operations, including component mixing,
wavelet transform, quantization and entropy coding
are performed independently on the image tiles

• All tiles have exactly the same dimensions, except
maybe those at the boundary of the image.

• Arbitrary tile sizes are allowed, up to and including
the entire image.

Tiling Effects 1/2
Image :”ski” of size 720x576 :
(a) original image, (b)-(d)
reconstructed
images after JPEG 2000
compression at 0.25 bpp:
(b) without tiling,
(c) with 128 x 128 tiling,
and (d) with 64 x 64 tiling.

courtesy of Phillips Research,
UK

Tiling Effects 2/2
Larger tiles perform
visually better than
smaller tiles.
Image degradation is
more severe in the case
of low bit rate than the
case of high
bit rate.

More than 4.5 dB !
Only 1.5 dB !

Pre-Processing II: DC Level Shifting

• All samples of the image tile component are DC
level shifted by subtracting the same quantity
2P-1, where P is the component’s precision.

• It actually converts an unsigned representation to
a two’s complement representation.

• At the decoder side, inverse DC level shifting is
performed on reconstructed samples.

Pre-Processing III:

Component Transformations
• Different components need not have the same

bit depths nor need to all be signed or unsigned.
• The standard supports two different component

transformations:
– one irreversible component transformation (ICT)

that can be used for lossy coding
– one reversible component transformation (RCT)

that may be used for lossless or lossy coding.
• Encoding without color transformation is also

possible.

The forward and the inverse ICT

The forward and the inverse RCT

The RCT is a decorrelating transformation,
which is applied to the three first
nents of an image. Three goals are achieved
by this transformation:
• color decorrelation for efficient compression.
• color space with respect to the HVS
• ability of having lossless compression,

All three components shall have the same
sampling parameters and the same bit depth.

ICT/RCT Effect

JPEG2000 does not use the RGB to YCrCb decorrelation
transform (followed by sub-sampling) since the multiresolution
nature of the wavelet transform may be used to achieve the same
effect.

Pre-Processing full Scheme

The JPEG 2000 multiple component encoder. Color transformation
is optional. If employed, it can be irreversible or reversible.

The Core Processing I: DWT

• The decomposition levels contain a number
of subbands, which consist of coefficients
that describe the horizontal and vertical
spatial frequency characteristics of the
original tile component.

• In Part I of the JPEG2000 standard only
power of 2 decompositions are allowed in
the form of dyadic decomposition.

Three-level dyadic wavelet decomposition of
the image “Lena.”

The DWT can be
irreversible or
reversible.

The Lossy Mode

• The default irreversible transform is
implemented by means of the Daubechies
9-tap/7-tap filter.

• The analysis and the corresponding
synthesis filter coefficients are given the
next slide.

Lossy Mode Filters

Daubechies 9/7 Analysis and Synthesis Filter Coefficients.

Lossless Mode

The default reversible transformation is implemented by
means of the Le Gall 5-tap/3-tap filter

The DWT Scheme

The forward (analysis) wavelet transform using lifting.
P and U stand for prediction and update, respectively.

Periodical Extension
• For both optional modes (convolution and

lifting) to be implemented, the signal should
first be extended periodically.

• This periodic symmetric extension is used to
ensure that for the filtering operations that take
place at both boundaries of the signal, one
signal sample exists and spatially corresponds to
each coefficient of the filter mask.

• The number of additional samples required at
the boundaries of the signal is therefore filter-
length dependent.

Example: Periodic symmetric extension

of the finite length signal “ABCDEFG.”

Core Processing II: Quantization

• After transformation, all coefficients are
quantized. Uniform scalar quantization with
dead-zone about the origin.

• This operation is lossy, unless the quantization
step is 1 and the coefficients are integers, as
produced by the reversible integer 5/3 wavelet.

Quantization Formula

• Each of the transform coefficients ab(u,v) of
the subband b is quantized to the value
qb(uv) according to the formula:









∆

=
b

b
bb

(u,v)a
(u,v))sign(avuq),(

The quantization step-size ∆b is represented relative to the dynamic
range of subband b, i.e., JPEG 2000 supports separate quantization
step-sizes for each subband ! (one per subband).

Core Processing III: Entropy Coding

• JPEG2000 uses arithmetic coding that
compresses binary symbols relative to an
adaptive probability model associated with
each of 18 different coding contexts.

• The specific algorithm has been selected in
part for compatibility reasons with the
arithmetic coding engine used by the JBIG2
compression standard.

Entropy Coding: Context usage
• The arithmetic coding system uses binary

symbols relative to an adaptive probability
model associated with each of 18 different
coding contexts.

• The restricted number of contexts allows
rapid probability adaptation and decreases
the cost of independently coded segments.

• The models are always reinitialized at the
beginning of each code block.

Entropy Coding: Arithmetic Coding

• The arithmetic coder is always terminated at
the end of each block, i.e., the end of the last
sub-bit plane (useful for error resilience)

Entropy Coding: ‘Lazy’ Mode
• A ‘lazy’ coding mode is used to reduce the

number of symbols that are arithmetically
coded:
– after the fourth bit plane is coded, the first and

second pass are included as uncompressed data.
– the coder is bypassed, while only the third coding

pass of each bit plane employs arithmetic coding.
– This results in significant speedup for software

implementations at high bit rate.

Bit-Stream Formation

• After quantization, each subband is divided
into non-overlapping rectangular blocks.

• Three spatially rectangles - one from each
subband at each resolution - comprise a
packet partition area (precinct).

• Each precinct is further divided into non-
overlapping rectangles, called code blocks,
which form the input to the entropy coder.

Partition of a tile component into code blocks
and precincts.

The size of the code block is typically
64x64 and no less than 32x32.

The Code Blocks 1/2

• The code blocks are scanned in raster order,
Within each subband.

• These code blocks are then coded a bit plane at
a time starting with the most significant bit
plane with a nonzero element, to the least
significant bit plane.

• Each code block is coded independently,
without reference to other blocks.

The Code Blocks 2/2

• This independent embedded block coding
offers significant benefits such as:
– spatial random access
– efficient geometric manipulations
– error resilience
– parallel computations

Three Coding Passes 1/2

• The individual bit planes of the coefficients in
a code block are coded within 3 passes.

• Every coding pass collects context information
about the bit plane data. This information is
used by the arithmetic coder to generate a
compressed bit stream.

• Each bit plane of a code block is scanned in a
particular order, starting from the top left, the
first four bits of the first column are scanned.

Three Coding Passes 2/2
• Then the first four bits of the second column,

until the width of the code block is covered.
Then the second four bits of the first column
are scanned and so on.

• A similar vertical scan is continued for any
leftover rows on the lowest code blocks in the
subband.

Scan pattern of each bit plane of
each code block:

selected to facilitate efficient
hardware and software implementations

The Significance Propagation Pass
• Each coefficient bit in the bit plane is coded in

only one of the three coding passes, (The
significance propagation, the magnitude
refinement, and the cleanup pass)

• For each pass, contexts are created (provided to
the arithmetic coder)

• During the significance propagation pass, a bit
is coded if its location is not significant, but at
least one of its eight-connect neighbors is
significant.

The Contexts Bins
• Nine context bins are created based on how

many and which ones are significant.
• If a coefficient is significant then it is given a

value of 1 for the creation of the context,
otherwise it is given a value of 0.

• The significance propagation pass includes only
bits of coefficients that were insignificant (the
significance bit has yet to be encountered) and
have a nonzero context.
– All other coefficients are skipped.

The Magnitude Refinement Pass
• During this pass, all bits that became

significant in a previous biplane are coded.
• This pass includes the bits from coefficients

that are already significant.
– except those that have just become significant

in the preceding significance propagation pass.
• The context used is determined by the

summation of the significance state of the
horizontal, vertical, and diagonal neighbors.

The Clean-up Pass
• All the bits not encoded during the previous

passes are encoded.
– coefficients that are insignificant and had the

context value of zero during the significance
propagation pass.

• The cleanup pass not only uses the neighbor
context, but also a run-length context.

• Run coding occurs when all four locations
in the column of the scan are insignificant
and each has only insignificant neighbors.

Packets and Layers
• For each code block, a separate bit stream is

generated. No information from other blocks
is utilized during the generation of the bit
stream for a particular block.

• Rate distortion optimization is used to allocate
truncation points to each code block.

• The bit stream has the property that it can be
truncated to a variety of discrete lengths
– the distortion incurred, when reconstructing from

each of these truncated subsets, is estimated and
denoted by the mean squared error.

Packets structure
• The compressed bit streams from each code block in a

precinct comprise the body of a packet.
• A collection of packets, one from each precinct of each

resolution level, comprises the layer
• A packet could be interpreted as one quality increment

for one resolution level at one spatial location, since
precincts correspond roughly to spatial locations.

• Similarly, a layer could be interpreted as one quality
increment for the entire full resolution

• Each layer successively and monotonically improves
the image quality

Conceptual correspondence between the spatial and
the bit stream representations.

Progressive Modes
• There are four types of progression:
resolution, quality, spatial and component.
• Once the entire image has been compressed, a post-processing

operation passes over all the compressed code blocks. This
operation determines the extent to which each code block’s
should be truncated to achieve a target bitrate or distortion.

• The first, lowest layer (of lowest quality), is formed from the
optimally truncated code block bit streams.

• Each subsequent layer is formed by optimally truncating the
code block bit streams to achieve successively higher target bit
rates.

Region of Interest (ROI)

• When certain parts of the image are of higher
importance than others these regions need to
be encoded at higher quality than the
background.

• The ROI coding scheme in Part I of the
standard is based on the called MAXSHIFT*.
– * C.A. Christopoulos, J. Askelof, and M. Larsson, “Efficient methods

for encoding regions of interest in the upcoming JPEG 2000 still
image coding standard,” IEEE Signal Processing Lett., vol. 7, pp.
247-249, Sept. 2000.

ROI: MAXSHIFT
• The principle of the general ROI scaling-

based method is to scale (shift) coefficients
so that the bits associated with the ROI are
placed in higher bit planes than the bits
associated with the background.

MAXSHIFT - con’t
• During the embedded coding process, the most

significant ROI bit planes are placed in the bit stream
before any background bit planes.

• Depending on the scaling value, some bits of the ROI
coefficients might be encoded together with non-ROI
coefficients
– the ROI will be decoded, or refined, before the rest of the

image.
– a full decoding of the bit stream results in a reconstruction

of the whole image with the highest fidelity available.
– If the bit stream is truncated, or the encoding process is

terminated before the whole image is fully encoded, the
ROI will be of higher fidelity than the rest of the image.

