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The Fourier Transform
(and more…)

Nimrod Peleg

Nov. 2005
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Outline 

• Introduce Fourier series and transforms

• Introduce Discrete Time Fourier 
Transforms, (DTFT)

• Introduce Discrete Fourier Transforms 
(DFT)

• Consider operational complexity of DFT

• Deduce a radix-2 FFT algorithm

• Consider some implementation issues of 
FFTs with DSPs
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The Frequency Domain

• The frequency domain does not carry any 
information that is not in the time domain.

• The power in the frequency domain is that it is simply 
another way of looking at signal information. 

• Any operation or inspection done in one domain is 
equally applicable to the other domain, except that 
usually one domain makes a particular operation or 
inspection much easier than in the other domain.

• frequency domain information is extremely important
and useful in signal processing.
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3 Basic Representations for FT

• 1. An Exponential Form

• 2. A Combined Trigonometric Form

• A Simple Trigonometric Form 
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The Fourier Series: Exponential Form

Periodic signal expressed as infinite 
sum of sinusoids.
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Ck’s are frequency domain amplitude and phase representation
For the given value xp(t) (a square value), the sum of the first four terms of 

trigonometric Fourier series are:    xp(t) ≈ 1.0 + sin(t) + C2 sin(3t) + C3sin(5t)

Complex Numbers !
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The Combined Trigonometric Form

• Periodic signal: xp (t) = xp(t+T)     for all t

and cycle time (period) is: T
f

= =
1 2

0 0

π
ω

f0 is the fundamental frequency in Hz 
w0 is the fundamental frequency in radians: 

xp(t) can be expressed as an infinite sum of orthogonal functions. 
When these functions are the cosine and sine, the sum is called the 
Fourier Series. The frequency of each of the sinusoidal functions in
the Fourier series is an integer multiple of the fundamental frequency.

Basic frequency + Harmonies

2 fω π=
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Fourier Series Coefficients 

• Each individual term of the series,              ,is the 
frequency domain representation and is generally 
complex (frequency and phase), but the sum is 
real.

• The second common form is the combined 
trigonometric form:
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Again: Ck are Complex Numbers !
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The Trigonometric Form

All three forms are identical and are related using Euler’s identity:
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The Fourier Transform 1/3

The Fourier series is only valid for periodic signals.

For non-periodic signals, the Fourier transform is used.

Most natural signals are not periodic (speech).
We treat it as a periodic waveform with an infinite period. 
If we assume that TP tends towards infinity, then we can produce 
equations (“model”)  for non-periodic signals.

If Tp tends towards infinity, then w0 tends towards 0. 
Because of this, we can replace w0 with dw, and it leads us to:
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The Fourier Transform 2/3

Increase TP = Period Increases  : No Repetition:  

Discrete coefficients Ck become continuous:

Discrete frequency variable becomes continuous: 
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The Fourier Transform 3/3

We define:  { }( )
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Signal Representation by Delta Function

Instead of a continuous signal we have a “collection of samples”:

This is equivalent to sampling the signal with one Delta
Function each time, moving it along X-axis, and summing 
all the results:

x xs t t t nTs( ) ( ) ( )= −
−∞

∞

∑ δ Note that the Delta is “1” only 
If its index is zero !
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Discrete Time Fourier Transform    1/3

• Consider a sampled version, xs(t) , of a continuous 
signal, x(t) :

x xs t t t nTs( ) ( ) ( )= −
−∞

∞

∑ δ

Ts is the sample period. We wish to take the Fourier transform of this 
sampled signal.   Using the definition of  Fourier transform of xs(t)

and some mathematical properties of it we get:
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∑Replace  continuous time t with (nTs)
Continuous x(t)  becomes discrete  x(n)

Sum rather than integrate all discrete samples
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Discrete Time Fourier Transform 2/3

Fourier 
Transform

Discrete Time 
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Limits of integration need not go beyond ±π because the spectrum 
repeats itself outside ±π (every 2π):   

Keep integration because           is continuous: 
means that        is periodic every Ts

X X( ) ( )Ω Ω= + 2π

X ( )Ω Ω = ωTs

Ω
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Discrete Time Fourier Transform 3/3

• Now we have a transform from the time 
domain to the frequency domain that is 
discrete, but ...

DTFT is not applicable to DSP because it 

requires an infinite number of samples and 

the frequency domain representation is a 

continuous function – impossible to represent 

exactly in digital hardware.
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1st result: Nyquist Sampling Rate  1/2

• The Spectrum of a sampled signal is 
periodic, with 2*Pi Period: ( ) ( 2 )X X πΩ = Ω+
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1st result: Nyquist Sampling Rate  2/2

• For maximum frequency wH :

|

       :       

2
 =2

H

H

H s

s H

Ts

Ts

Ts BUT Ts

Ts

ω ω π
ω

π ω
π π
ω ω

πω ω

=

=

Ω =
Ω =
=

= =

⇒

18

Nyquist Conclusion…
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Practical DTFT

Take only N time domain samples

Sample the frequency domain, i.e. only evaluate x(Ω) at N 

discrete points. The equal spacing between points is ∆Ω = 2π/N
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The DFT

The result is called Discrete Fourier Transform (DFT):

Since the only variable in         is k , the DTFT is written:2πk N/
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Usage of DFT

• The DFT pair allows us to move between 
the time and frequency domains while using 
the DSP. 

• The time domain sequence x[n] is discrete 
and has spacing Ts, while the frequency 
domain sequence X[k] is discrete and has 
spacing 1/NT [Hz].
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DFT Relationships
Time Domain Frequency Domain
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Practical Considerations

1000-point DFT requres 10002 = 106 complex multiplications
And all of these need to be summed….

Standard DFT: 

An example of an 8 point DFT: 

Writing this out for each value of n :
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Total number of  (complex !) multiplications required: 8 * 8 = 64
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Fast Fourier Transform
Symmetry Property

Periodicity Property

THE FAST FOURIER TRANSFORM

Splitting the DFT in two
(odd and even)

or

Manipulating the twiddle factor
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FFT complexity

N/2 Multiplications

For an 8-point FFT,  42 + 42 + 4 = 36 multiplications, saving  64 - 36 = 28 
multiplications

For 1000 point FFT,  5002 + 5002 + 500 = 50,500 multiplications, saving 
1,000,000 - 50,500 = 945,000 multiplications
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Time Decimation

Decimate once Called Radix-2 since we divided by 2

Splitting the original series into two is called decimation in time

n = {0, 1, 2, 3, 4, 5,  6, 7}n = { 0, 2, 4, 6 } and { 1, 3, 5, 7 }

Let us take a short series where N = 8

Decimate again

n = { 0,  4 }  { 2,  6 }  { 1, 5 } and { 3, 7 }

The result is a savings of N2 – (N/2)log2N multiplications:
1024 point DFT = 1,048,576 multiplications
1024 point FFT = 5120 multiplication

Decimation simplifies mathematics but there are more twiddle
factors to calculate, and a  practical FFT incorporates these extra factors 
into the algorithm
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Simple example: 4-Point FFT

Let us consider an example where N=4:

Decimate in time into 2 series:
n = {0 , 2} and {1, 3}

We have two twiddle factors.
Can we relate them?

Now our FFT becomes:
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4-Point FFT Flow Diagram

The 2 DFT’s:
for k=0,1,2,3

X x x W W x x Wk
k k k

4 4
2

4 4
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For k=0 only: X x x W W x x W4 0 4
0

4
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4
00 2 1 3( ) { ( ) ( ) } { ( ) ( ) }= + + +

A ‘flow-diagram’ of it:
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This is for only 1/4 of the
whole diagram !
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A Complete Diagram 
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The Butterfly
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x2
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A Typical Butterfly
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Twiddle Conversions

X0 = (x0 + x2) + W4

0
(x1+x3) 

X1 = (x0 – x2) + W4

1
(x1–x3) 

X2 = (x0 + x2) – W4

0
(x1+x3) 

X3 = (x0 – x2) – W4

1
(x1–x3) 

4 Point FFT Equations
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4 Point FFT Butterfly
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Summary
Frequency domain information for a signal is important for processing

Sinusoids can be represented by phasors

Fourier series can be used to represent any periodic signal

Fourier transforms are used to transform signals

From time to frequency domain

From frequency to time domain

DFT allows transform operations on sampled signals

DFT computations can be sped up by splitting the original series into 
two or more series

FFT offers considerable savings in computation time

DSPs can implement FFT efficiently
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Bit-Reversal
• If we look at the inputs to the butterfly FFT, we can see 

that the inputs are not in the same order as the output. 

• To perform an FFT quickly, we need a method of 
shuffling these input data addresses around to the 
correct order. 

• This can be done either by reversing the order of the 
bits that make up the address of the data, or by pointer 
manipulation (bit reversed addition). 

• Many DSPs have special addressing modes that allow 
them to automatically shuffle the data in the 
background.
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Bit-Reversal example

• To obtain the output 
in ascending order 
the input values must 
be loaded in the 
order: {0,2,1,3}

• for 512 or 1024 it is 
much more 
complicated...

x(0)

x(1)

x(2)

x(3)

X4(0)

X4(1)

X4(2)

X4(3)

0

2

0

2 3

2

1

0
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8-point Bit-Reversal
• Consider a 3-bit address (8 possible locations).

• After starting at zero, we add half of the FFT 
length at each address access with carrying from 
left to right (!)

Start at 0 = 000   =x(0)
000+100 = 100   =x(4)
100+100 = 010   =x(2)
010+100 = 110   =x(6)
110+100 = 001   =x(1)
001+100 = 101   =x(5) 
101+100 = 011   =x(3)
011+100 = 111   =x(7)

Note that reversing the order 
of the address bits gives same 
result !
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And what about DCT ???

The rest of the math is quite similar…..
Note: at least 4 types of DCT !!!
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DCT Type II*:

* after: A course in Digital Signal Processing, Boaz Porat
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DCT Type II

DCT Basis Vectors for N=8

Type I Type II Type III Type IV

Most used for compression:
JPEG, MPEG etc.
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DCT Features

• Real transformation

• Reversible transformation

• 2D Transformation exists and separable

• Better than the DFT as a “de-correlator”

• Fast algorithm exists (NlogN Complexity)
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Aliasing, Transforms and More…
• Nyquist's Sampling Theorem is explained here:

– http://www.cs.cf.ac.uk/Dave/Multimedia/node149.html

• The effect of the above and aliasing is also shown here:
– http://www.efunda.com/designstandards/sensors/methods/dsp_

nyquist.cfm

• And examples to aliasing in images is shown here:
– http://www.cogs.susx.ac.uk/users/ianw/teach/ms/node19.html

• Java examples of various signal processing:
– http://www.jhu.edu/~signals/


