
1

1

The Fourier Transform
(and more…)

Nimrod Peleg

Nov. 2005

2

Outline

• Introduce Fourier series and transforms

• Introduce Discrete Time Fourier
Transforms, (DTFT)

• Introduce Discrete Fourier Transforms
(DFT)

• Consider operational complexity of DFT

• Deduce a radix-2 FFT algorithm

• Consider some implementation issues of
FFTs with DSPs

2

3

The Frequency Domain

• The frequency domain does not carry any
information that is not in the time domain.

• The power in the frequency domain is that it is simply
another way of looking at signal information.

• Any operation or inspection done in one domain is
equally applicable to the other domain, except that
usually one domain makes a particular operation or
inspection much easier than in the other domain.

• frequency domain information is extremely important
and useful in signal processing.

4

3 Basic Representations for FT

• 1. An Exponential Form

• 2. A Combined Trigonometric Form

• A Simple Trigonometric Form

3

5

The Fourier Series: Exponential Form

Periodic signal expressed as infinite
sum of sinusoids.

dte)t(x
T

1
c

where,ec)t(x

p

0

0

T

tjk
p

p
k

k

tjk
kp

∫

∑
−

∞

−∞=

=

=

ω

ω

Ck’s are frequency domain amplitude and phase representation
For the given value xp(t) (a square value), the sum of the first four terms of

trigonometric Fourier series are: xp(t) ≈ 1.0 + sin(t) + C2 sin(3t) + C3sin(5t)

Complex Numbers !

6

The Combined Trigonometric Form

• Periodic signal: xp (t) = xp(t+T) for all t

and cycle time (period) is: T
f

= =
1 2

0 0

π
ω

f0 is the fundamental frequency in Hz
w0 is the fundamental frequency in radians:

xp(t) can be expressed as an infinite sum of orthogonal functions.
When these functions are the cosine and sine, the sum is called the
Fourier Series. The frequency of each of the sinusoidal functions in
the Fourier series is an integer multiple of the fundamental frequency.

Basic frequency + Harmonies

2 fω π=

4

7

Fourier Series Coefficients

• Each individual term of the series, ,is the
frequency domain representation and is generally
complex (frequency and phase), but the sum is
real.

• The second common form is the combined
trigonometric form:

Ck
jk te ω 0

x C C k t

C

C

p t k

k

k

k
k

k

() sin()

tan
Im()

Re()

= + +

=

=

∞

−

∑0

1

1

2 0ω θ

θ

Again: Ck are Complex Numbers !

8

The Trigonometric Form

All three forms are identical and are related using Euler’s identity:

0 0

0

0

() 0

=1

0 () ()

()

()

= + ()+ ()

1
= = Average value of

= ()

= in(

DC

)

p

p

p

p t k k

k

p t p t

p
T

k p t

T

k p t

T

x A A Cos k t B Sin k t

A dt x
T

A Cos k t dt

B S k t dt

x

x

x

ω ω

ω

ω

∞

=

∑

∫

∫

∫

e Cos jSinj± = ±θ θ θ
Thus, the coefficients of the different forms are related by:

2 0 0

1 1

C A jB C A

B

A

C

C

k k k

k
k

k

k

k

= −

= =− −

 ; =

θ tan tan
Im()

Re()

j -j

j -j

Reminder:

e e
Cos =

2

e -e
=

2j
Sin

θ θ

θ θ

θ

θ

+

5

9

The Fourier Transform 1/3

The Fourier series is only valid for periodic signals.

For non-periodic signals, the Fourier transform is used.

Most natural signals are not periodic (speech).
We treat it as a periodic waveform with an infinite period.
If we assume that TP tends towards infinity, then we can produce
equations (“model”) for non-periodic signals.

If Tp tends towards infinity, then w0 tends towards 0.
Because of this, we can replace w0 with dw, and it leads us to:

lim
t pT

d
→∞

=
1

2

ω
π

1
2

p
p

f
T

ω
π= =

10

The Fourier Transform 2/3

Increase TP = Period Increases : No Repetition:

Discrete coefficients Ck become continuous:

Discrete frequency variable becomes continuous:

C
d

x e dtt
j t

() ()ω
ωω

π
= −

−∞

∞

z
2

1

2 2T

d

p
= ⇒
ω
π

ω
π

kω ω0 ⇒

C Ck ⇒ ()ω

()
()2 j t
t

C
x e dt

d

ω ωπ
ω

∞
−

−∞

= ∫

6

11

The Fourier Transform 3/3

We define: { }()
2 () ()

C
X x t

d

ωπ ω
ω

= F�

X x e dt x t x e dt
j t j t

() () ()()ω
ω

ω
ω

π
ω= ⇔ =−

−∞

∞

−∞

∞

z z
1

2

12

Signal Representation by Delta Function

Instead of a continuous signal we have a “collection of samples”:

This is equivalent to sampling the signal with one Delta
Function each time, moving it along X-axis, and summing
all the results:

x xs t t t nTs() () ()= −
−∞

∞

∑ δ Note that the Delta is “1” only
If its index is zero !

7

13

Discrete Time Fourier Transform 1/3

• Consider a sampled version, xs(t) , of a continuous
signal, x(t) :

x xs t t t nTs() () ()= −
−∞

∞

∑ δ

Ts is the sample period. We wish to take the Fourier transform of this
sampled signal. Using the definition of Fourier transform of xs(t)

and some mathematical properties of it we get:

x x es nTs
j nTs

n

() ()ω
ω= −

=−∞

∞

∑Replace continuous time t with (nTs)
Continuous x(t) becomes discrete x(n)

Sum rather than integrate all discrete samples

14

Discrete Time Fourier Transform 2/3

Fourier
Transform

Discrete Time
Fourier Transformdtetxx

tj∫
∞

∞−

−=
ω

ω)()(∑
∞

−∞=

− Ω

=Ω
n

j ne)n(x)(x

ωω
π

= ∫
∞

∞−

ω

de)(x
2

1
)t(x

tj ΩΩ
π

= ∫
π

π−

Ω

de)(x
2

1
)n(x

)n(j
Inverse
Fourier

Transform

Inverse Discrete
Time Fourier

Transform

Limits of integration need not go beyond ±π because the spectrum
repeats itself outside ±π (every 2π):

Keep integration because is continuous:
means that is periodic every Ts

X X() ()Ω Ω= + 2π

X ()Ω Ω = ωTs

Ω

8

15

Discrete Time Fourier Transform 3/3

• Now we have a transform from the time
domain to the frequency domain that is
discrete, but ...

DTFT is not applicable to DSP because it

requires an infinite number of samples and

the frequency domain representation is a

continuous function – impossible to represent

exactly in digital hardware.

16

1st result: Nyquist Sampling Rate 1/2

• The Spectrum of a sampled signal is
periodic, with 2*Pi Period: () (2)X X πΩ = Ω+

Easy to see: (2) 2(2) () ()

() ()

jn jn j n

n n

jn

n

X x n e x n e e

x n e X

π ππ
∞ ∞

− Ω+ − Ω −

=−∞ =−∞

∞
− Ω

=−∞

Ω + = =

= = Ω

∑ ∑

∑

2 cos(2) sin(2) 1j ne n j nπ π π− = − =

9

17

1st result: Nyquist Sampling Rate 2/2

• For maximum frequency wH :

|

 :

2
 =2

H

H

H s

s H

Ts

Ts

Ts BUT Ts

Ts

ω ω π
ω

π ω
π π
ω ω

πω ω

=

=

Ω =
Ω =
=

= =

⇒

18

Nyquist Conclusion…

10

19

Practical DTFT

Take only N time domain samples

Sample the frequency domain, i.e. only evaluate x(Ω) at N

discrete points. The equal spacing between points is ∆Ω = 2π/N

∑
∞

−∞=

− Ω

=Ω
n

j n

enxx)()(∑
−

=

− Ω

=Ω
1

0

)()(
N

n

j n

enxx

x
k

N
x n e k Nj

n

N kn N

() () , , ,...,
/2

0 1 2 1
2

0

1π π

= = −−

=

−

∑

20

The DFT

The result is called Discrete Fourier Transform (DFT):

Since the only variable in is k , the DTFT is written:2πk N/

x k x n e k Nj

n

N kn N

() () , , ,...,
/

= = −−

=

−

∑
2

0

1

0 1 2 1
π

Using the shorthand notation: (Twiddle Factor)W eN
j N= − 2π /

X k x n W and x n
N

X k WN N
kn

n

N

N N
kn

k

N

() () () ()= =
=

−
−

=

−

∑ ∑
0

1

0

11

11

21

Usage of DFT

• The DFT pair allows us to move between
the time and frequency domains while using
the DSP.

• The time domain sequence x[n] is discrete
and has spacing Ts, while the frequency
domain sequence X[k] is discrete and has
spacing 1/NT [Hz].

22

DFT Relationships
Time Domain Frequency Domain

|x(k)|

0

0

1 2 N/2 N-2 N-1

N

Fs
N

F2 s

2

Fs
N

F2 s−
N

Fs−

≈ ≈

N Samples

k

f

N Samples

0

0

Ts

1

2Ts

2

3Ts

3 N-1

(N-1)Ts

≈

X(n)

t

n

12

23

Practical Considerations

1000-point DFT requres 10002 = 106 complex multiplications
And all of these need to be summed….

Standard DFT:

An example of an 8 point DFT:

Writing this out for each value of n :

0k
7W)0(xEach term such as requires 8 multiplications

Total number of (complex !) multiplications required: 8 * 8 = 64

1

0

() () 0 1
N

kn
N n N

n

X k x k W k N
−

=

= ≤ ≥ −∑

7,...,1,0k,W)7(x.......W)1(xW)0(x)k(X 7k
7

1k
7

0k
7n =+++=

7

7
0

() () 0,1, 2, ..., 7kn
N N

n

X k x k W k
=

= =∑

24

Fast Fourier Transform
Symmetry Property

Periodicity Property

THE FAST FOURIER TRANSFORM

Splitting the DFT in two
(odd and even)

or

Manipulating the twiddle factor

k
N

2/Nk
N WW −=+

k
N

Nk
N WW =+

2/N

)
2/N

2
(j)2

N

2
(j

2
N WeeW ===

π−π−

∑∑
−

=

−

=

++=
1

2

N

0r

rk2
N

1
2

N

0r

k
N

rk2
NN)W).(1r2(xW)W).(r2(x)k(X

∑∑
−

=

+

−

=

++=
1

2

N

0r

k)1r2(
N

1
2

N

0r

rk2
NN W).1r2(xW).r2(x)k(X

∑ ∑
−

=

−

=

++=
1

2
N

0r

1
2
N

0r

rk
2N

k
N

rk
2Nn W)1r2(xWW)r2(x)k(X

13

25

FFT complexity

N/2 Multiplications

For an 8-point FFT, 42 + 42 + 4 = 36 multiplications, saving 64 - 36 = 28
multiplications

For 1000 point FFT, 5002 + 5002 + 500 = 50,500 multiplications, saving
1,000,000 - 50,500 = 945,000 multiplications

∑∑
−

=

−

=

++=
12

0
2/

12

0
2/)12()2()(

N

r

rk
N

k
N

N

r

rk
NN WrxWWrxkx

(N/2)2 multiplications (N/2)2 multiplications

26

Time Decimation

Decimate once Called Radix-2 since we divided by 2

Splitting the original series into two is called decimation in time

n = {0, 1, 2, 3, 4, 5, 6, 7}n = { 0, 2, 4, 6 } and { 1, 3, 5, 7 }

Let us take a short series where N = 8

Decimate again

n = { 0, 4 } { 2, 6 } { 1, 5 } and { 3, 7 }

The result is a savings of N2 – (N/2)log2N multiplications:
1024 point DFT = 1,048,576 multiplications
1024 point FFT = 5120 multiplication

Decimation simplifies mathematics but there are more twiddle
factors to calculate, and a practical FFT incorporates these extra factors
into the algorithm

14

27

Simple example: 4-Point FFT

Let us consider an example where N=4:

Decimate in time into 2 series:
n = {0 , 2} and {1, 3}

We have two twiddle factors.
Can we relate them?

Now our FFT becomes:

X x n Wk
kn

4 4
0

3

() ()= ∑

X x r W W x r W

x x W W x x W

k
rk

r

k rk

r

k k k

4 2
0

1

4 2
0

1

2 4 2

2 2 1

0 2 1 3

() () ()

{ () () } { () () }

= + +

= + + +
= =
∑ ∑

W e

W e e W

N
k

j
N

k

k
j k j k

k

=

= = =

−

− −

2

2

2

2

2

4
2

2
2

π

π π

X x x W W x x Wk
k k k

4 4
2

4 4
20 2 1 3() { () () } { () () }= + + +

28

4-Point FFT Flow Diagram

The 2 DFT’s:
for k=0,1,2,3

X x x W W x x Wk
k k k

4 4
2

4 4
20 2 1 3() { () () } { () () }= + + +

For k=0 only: X x x W W x x W4 0 4
0

4
0

4
00 2 1 3() { () () } { () () }= + + +

A ‘flow-diagram’ of it:

x(0)

x(2)
W4

0
+

x(1)

x(3)

W4
0

+

W4
0

+

This is for only 1/4 of the
whole diagram !

15

29

A Complete Diagram

x(0)

x(1)

x(2)

x(3)

X4(0)

X4(1)

X4(2)

X4(3)

0

2

0

2 3

2

1

0

X x x W W x x W4 0 4
0

4
0

4
00 2 1 3() { () () } { () () }= + + +

X x x W W x x W4 1 4
2

4
1

4
20 2 1 3() { () () } { () () }= + + +

X x x W W x x W4 2 4
0

4
2

4
00 2 1 3() { () () } { () () }= + + +

X x x W W x x W4 3) 4
2

4
3

4
20 2 1 3({ () () } { () () }= + + +

Note: W eN
k j

N
k

=
−

2π

W e W
j

4
4

2

4
4

4
01= = =

−
π

W e W
j

4
6

2

4
6

4
21= = − =

−
π

30

The Butterfly

X1

X2
x2

WN

k

x1
x1X1

= + WN

k
x2

x1X2
= – WN

k
x2

A Typical Butterfly

W4

3
= j

W4

2
= -1

W4

1
= -j

W4

0
= 1

Twiddle Conversions

X0 = (x0 + x2) + W4

0
(x1+x3)

X1 = (x0 – x2) + W4

1
(x1–x3)

X2 = (x0 + x2) – W4

0
(x1+x3)

X3 = (x0 – x2) – W4

1
(x1–x3)

4 Point FFT Equations

X0

X1

X3

X2

x3

x2

x1

x0

W4

0

W4

1

4 Point FFT Butterfly

16

31

Summary
Frequency domain information for a signal is important for processing

Sinusoids can be represented by phasors

Fourier series can be used to represent any periodic signal

Fourier transforms are used to transform signals

From time to frequency domain

From frequency to time domain

DFT allows transform operations on sampled signals

DFT computations can be sped up by splitting the original series into
two or more series

FFT offers considerable savings in computation time

DSPs can implement FFT efficiently

32

Bit-Reversal
• If we look at the inputs to the butterfly FFT, we can see

that the inputs are not in the same order as the output.

• To perform an FFT quickly, we need a method of
shuffling these input data addresses around to the
correct order.

• This can be done either by reversing the order of the
bits that make up the address of the data, or by pointer
manipulation (bit reversed addition).

• Many DSPs have special addressing modes that allow
them to automatically shuffle the data in the
background.

17

33

Bit-Reversal example

• To obtain the output
in ascending order
the input values must
be loaded in the
order: {0,2,1,3}

• for 512 or 1024 it is
much more
complicated...

x(0)

x(1)

x(2)

x(3)

X4(0)

X4(1)

X4(2)

X4(3)

0

2

0

2 3

2

1

0

34

8-point Bit-Reversal
• Consider a 3-bit address (8 possible locations).

• After starting at zero, we add half of the FFT
length at each address access with carrying from
left to right (!)

Start at 0 = 000 =x(0)
000+100 = 100 =x(4)
100+100 = 010 =x(2)
010+100 = 110 =x(6)
110+100 = 001 =x(1)
001+100 = 101 =x(5)
101+100 = 011 =x(3)
011+100 = 111 =x(7)

Note that reversing the order
of the address bits gives same
result !

18

35

And what about DCT ???

The rest of the math is quite similar…..
Note: at least 4 types of DCT !!!

1 1
II 22

0

1 1
II 22

0

1
2

()
(k)= b(k) ()cos

()
() b(k)X (k)cos

if k=0
b(k)=

1 if k=1,...,L-1

N

N
n

N

N
k

n k
X x n

N

n k
x n

N

π

π

−

=

−

=

+ 
  

+ =   




∑

∑
DCT Type II*:

* after: A course in Digital Signal Processing, Boaz Porat

36

DCT Type II

DCT Basis Vectors for N=8

Type I Type II Type III Type IV

Most used for compression:
JPEG, MPEG etc.

19

37

DCT Features

• Real transformation

• Reversible transformation

• 2D Transformation exists and separable

• Better than the DFT as a “de-correlator”

• Fast algorithm exists (NlogN Complexity)

38

Aliasing, Transforms and More…
• Nyquist's Sampling Theorem is explained here:

– http://www.cs.cf.ac.uk/Dave/Multimedia/node149.html

• The effect of the above and aliasing is also shown here:
– http://www.efunda.com/designstandards/sensors/methods/dsp_

nyquist.cfm

• And examples to aliasing in images is shown here:
– http://www.cogs.susx.ac.uk/users/ianw/teach/ms/node19.html

• Java examples of various signal processing:
– http://www.jhu.edu/~signals/

